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“It from bit” and “Law without law”:
The route of information theory towards the

refoundation of physics

Michel Feldmann∗

Abstract

We propose an explicit framework for realizing the Wheeler’s “It from bit” doctrine that
information is the foundation of physics. Based on a Bayesian information-theoretic in-
terpretation of quantum mechanics, we construct a purely information model of universe,
providing a new paradigm for quantum gravity. The universe is thereby equated to a gi-
gantic memory that can be specified by its storage capacity and its current entropy. From
these sole two inputs, it is possible to infer the physical laws and calculate most physical
constants. The theory requires drastic conceptual changes since all physical concepts are
necessarily emergent, whether time, space or energy as well as fields, matter and radiation.
In return, a large number of standard puzzles, like the information paradox, the asymmetry
matter/antimatter, the origin of discrete symmetries or the source of universe expansion
become simple platitudes. This version is preliminary.

Contents
1 Introduction 2

1.1 The quest for information in physics . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Rooting explicitly physics in information . . . . . . . . . . . . . . . . . . . . . 4
1.3 Refoundation of physics in a nutshell . . . . . . . . . . . . . . . . . . . . . . . 4

2 The cosmic Bayesian theater 5
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Evolution of the universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 The motor of evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Mach’s principle and snapshots of the universe . . . . . . . . . . . . . 12

2.3 Structure of the Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 The cosmic statistical operator . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Parameterizing the universe . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Eigensubspace structure . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 The episodic clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Directional window group . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Emergence of spacetime 23
3.1 Bayesian perception of Boolean variables . . . . . . . . . . . . . . . . . . . . . 23
3.2 The Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Geometric representation of the universe . . . . . . . . . . . . . . . . . . . . . 28
3.4 Cosmic time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

∗Electronic address: michel.feldmann@polytechnique.org

1



3.5 Definition of dark matter and black-holes . . . . . . . . . . . . . . . . . . . . 33
3.6 Expansion of the universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 The holographic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Energy 37
4.1 Definition of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Distribution of energy in the universe . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Energy of parts of the universe . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Energy of classical states . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Energy of Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Massive objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Episodic objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Comoving objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 Matter and antimatter . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.4 Dragging comoving objects . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.5 Mediators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Temperatures 44
5.1 Temperatures of the universe as a whole . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Information temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 Expansion temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.3 Expansion force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.4 Gravitational field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.5 Calibrating the total mass of the universe . . . . . . . . . . . . . . . . 48
5.1.6 Unruh’s temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.7 Milgrom’s acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Temperatures of parts of the universe . . . . . . . . . . . . . . . . . . . . . . 51

6 Provisional conclusion 51

References 51

1 Introduction
Information is at the heart of physics and especially, preservation of information is per-
haps the main challenges of cosmology. In so far, can physics be downright identified with
information as originally suggested by R. Landauer [1] and J. A. Wheeler [2]? This arti-
cle tentatively adopts this paradigm by proposing a concrete implementation of the concept
within the framework of Bayesian inference theory. Although perfectly definite, the universe
is uniquely described in terms of Bayesian probability applied to abstract Boolean variables,
that is, in a sense, “law without law”1.

1.1 The quest for information in physics
The early involvement of information in natural sciences took place avant la lettre in ther-
modynamics in the 19th century. Initially viewed as the science of energy, thermodynamics
gradually emerged in the 17th and 18th century with the development of steam engines, but
the first truly scientific achievement was based on a deep contemplation of the impossibility
of perpetual motion by Sadi Carnot formulated in 1824 in a celebrated monograph, Reflec-
tions on the Motive Power of Fire. The equivalence of work and heat was established by

1The meaning we give to this expression is different from that of Wheeler in Ref. [3], who meant that there is
indeed a law but it is created at each moment and not determined in advance. By contrast we do mean here that
the only “law” is effectively the absence of any physical law, while observation is sustained by a strict Aristotelian
logic whose durability constitutes perhaps the only one mystery.
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James Joule in 1843 and finally the equivalence of energy and mass by Albert Einstein in
1905.

The indisputable link of thermodynamics with information relates to entropy, initially
developed by Rudolph Clausius in 1865 as a purely physical concept. It is the famous
Maxwell’s demon, conceived by James Clark Maxwell in 1867 that first hinted at a close
relation between probability and thermodynamics, formally proposed by Ludwig Boltzmann
in 1872 and Josiah Willard Gibbs in 1876. The next significant step, due to Lèo Szilard in
1929 [4], implicitly grasped the concept of information by revisiting critically the Maxwell’s
demon puzzle.

In 1948, C. E. Shannon [5] founded the very information theory as such, independently
of physics while construing the mathematical concept of entropy as a measure of uncertainty
in its accurate physical sense. In 1956, Léon Brillouin [6] provided a keen interpretation of
the equivalence of information entropy and thermodynamic entropy and coined the term
“negentropy” synonymously of information, as opposed to uncertainty.

The final step to identify the two conceptions of entropy is due to Rolph Landauer, who
showed in 1961 [1] that any erasure of information is necessarily a dissipative process. Al-
though this is not always fully acknowledged, since erasure of information is by definition an
increase of entropy, the essence of the Landauer principle is basically a complete identifica-
tion of the two conceptions, allowing later C. H. Bennett to definitively resolve the Maxwell’s
demon puzzle [7]. Closing the debate, this identification has been confirmed experimentally
in 2012 [8–11]. The stunning equivalence of two concepts coming from seemingly unrelated
fields marks certainly a major milestone towards the comprehension of physics, similar to
the equivalence of gravitational and inertial masses in General Relativity.

At this stage, one can argue that thermodynamics goes far beyond a simple theory of
energy and actually merges with information theory as a universal concept that governs all
physics and ensures its consistency [12]. This opens a new horizon sometimes viewed as the
ultimate explanatory principle in physics, with the famous cross slogans, “It from bit” by
J. A. Wheeler [2] and “Information is physical” by R. Landauer [13].

Enhancing this perspective, two issues have emerged. The first concerns Bayesian prob-
ability, which suggests a direct connection between information and quantum physics. In
1957, E. T. Jaynes incorporated the Shannon’s concept of entropy in the Bayesian infer-
ence theory [14]2 and pointed out in 1989 that the Bayesian model is strongly reminiscent
of quantum formalism [15]. In 2002, C. M. Caves, C. A. Fuchs, and R. Schack [16] pro-
posed to understand quantum probability within a Bayesian framework and Fuchs coined
the term “QBism” [17] for “Quantum Bayesianism” to describe this conception. Supporting
this view, we have shown explicitly that in fact quantum information is nothing but classical
information implemented by Bayesian inference theory [18].

The second issue concerns an amazing link between thermodynamics and General Rela-
tivity. In 1973, Jacob Bekenstein [19] found that a black hole has an entropy proportional to
the area of its horizon. This was confirmed by S.W. Hawking [20] in 1975 while J. M. Bardeen
et all [21] established the black-hole thermodynamics. Next, P. C. W. Davies in 1975 [22]
and W. G Unruh in 1976 [23] proved that uniformly accelerated observers experience a
thermal bath at a definite temperature. A major turning point was marked in 1995 by Ted
Jacobson [24] demonstrating that conversely the laws of General Relativity can be deduced
from the thermodynamic equilibrium. Inversely, observation of the spiral galaxy dynamics
hinted at limits to the theory of general relativity, expressed by Mordehai Milgrom [25] in
the form of a maximum acceleration on the cosmic scale. At last, a surprising consequence
of these studies is that the entropy in the universe is not distributed proportionally to the
volume but to the border area of space, leading in 1994 to the holographic theory [26] of
Leonard Susskind [27] and Gerard ’t Hooft [28] and raising a questioning on the very status
of spacetime.

Undoubtedly, the slogans by Wheeler and Landauer appear more and more plausible in
the scientific community. For instance, Norman Margolus exhibited in 2003 an example in

2Surprisingly enough, he stated in 1957 that information and thermodynamics entropies should be distin-
guished, whereas all his works demonstrate the opposite.
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which “Nature” is identified with a computer [29].

1.2 Rooting explicitly physics in information
In this article, as an extension of these discoveries, we propose a road to explicitly root
physics in information. Beyond the concept of entropy, this requires to identify any physical
quantity, e.g, energy, fields, particles, space, time, with an information concept. Such a
paradigm has a price at the outset: we have to give up on the principle of reversibility
in physics. In addition, a large number of standard notions must be completely revisited,
so that this refoundation must be considered at this stage as preliminary. Nevertheless,
the results seem extremely attractive and in our view, this approach constitutes a major
step towards the theory of quantum gravity, that is a unique framework compatible with
all experimental data and encompassing all physics. Such a level of generality requires an
ultimate simplicity, what can be posited by the slogan “a law without Law”.

Quantum Bayesian inference theory is the technical tool of the paper and in particu-
lar, our model for Qbism [18] is widely a prerequisite, while our guideline is primarily the
conventional thermodynamics. From standard physics, we retain some experimental results
to calibrate the theory, essentially the value of the Hubble constant to set the age of the
universe and that of the Milgrom’s acceleration to determine its storage capacity. Of course,
these parameters need to be refined afterwards by comparison with more precise data on
their consequences.

We adopt the perspective of the philosopher Karl Popper, according to whom the scope
of science is confined on the only falsifiable questions. Since hypotheses based on clues non
observable for ever are ipso facto non falsifiable, we propose to identify the physical universe
with the ensemble of the available information. This means that we deliberately ignore
any unobservable entity in an open universe and forgo any specific ontology beyond pure
information. For instance, the concepts like multiverses are beyond the scope of this paper.
However, excluding ontologies as such does not mean that we rule out various representations
where appropriate, including spacetime, particles or fields. Theses useful representations will
be regarded as “emergent” from the information framework.

Let us begin with a short draft of the theory which arises to be dramatically simple in
its principle.

1.3 Refoundation of physics in a nutshell
The universe is conceived as the logbook of all available information, without reference to
any preexisting ontology. Inputs are obtained by a question-and-answer procedure and then
processed by Bayesian inference.

The universe is thus identified with a gigantic memory. By observing the movement of
spiral galaxies, one can deduce that its storage capacity is bounded to about 10126 bits.
This capacity, or rather its square root, is identified with a paramount parameter, namely
the total energy of the universe. In accordance with the Bayesian theory of information,
evolution is seen as a race towards maximum entropy, so that basically information is not
conserved. However, the fact that the present universe is not already in its state of maximum
entropy calls for a major constraint, namely a limit of entropy at the present epoch. This
is nothing more than a definition of time. As a result, the current universe displays an age,
assumed by observation of the Hubble constant to be about 14 Gyrs.

These only two parameters, storage capacity and current entropy, constitute the fun-
damental prior information. They are sufficient to derive the statistical properties of the
universe in its evolution towards the state of maximum entropy. Theses are the “laws of
physics”, also called “laws of motion”.

Refoundation of physics is thus to inventory and interpret these statistical properties
compared to standard physics. Proceeding by Bayesian inference given the fundamental
prior information, this task is just technical implementation of plain information theory.
Therefore, from Ref. [18], the universe must be identified with a so-called “Bayesian theater”,
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based essentially on the standard Hilbert space of quantum mechanics, itself constructed
from the initial batch of Boolean variables required by the question and answer procedure.

Of course, there is a lot of contingent additional parameters, for instance, in Wigner
words [30], “that we are on the Earth, that there is a Sun around, and so on”. They are
viewed as initial conditions as opposed to laws of motion. They can be introduced as further
updates of the Bayesian prior in our model. But in any case, they are unable to modify
the statistical properties of the universe as a whole because they remain in a very limited
quantity compared to the gigantic number of variables.

Finally, it happens that most of standard physical notions can be retrieved as particular
pieces of information in the Bayesian theater. This is the core of the present article. Beyond
time and energy, the most notable concept is space, resulting from the possibility of chang-
ing the batch of queries at will in the question-and-answer procedure. It turns out that the
increase in entropy over time then results in an expansion of the universe. An unexpected
bonus lies in the recovery of the so-called “holographic principle”. The differential links be-
tween entropy and energy introduce various temperatures interpreted as so many standard
fields, like gravity, electromagnetism, strong and weak fields. In particular, gravity governs
the universe expansion. Physical massive objects emerge as Boolean formulas on the batch
of queries. Remarkably, dark matter and black-holes find a particularly simple information
definition, namely, as deterministic and completely random degrees of freedom respectively.
Matter and antimatter appear by pair whereas their apparent asymmetry results from par-
ticular perception schemes.

The standard model of particles emerges from evolution of the simplest massive objects,
identified with the standard fermions. This will be presented quantitatively in a further
version of this paper.

2 The cosmic Bayesian theater
Already suggested by Einstein in 1956 [31] and explicitly proposed by G.’t Hooft in 1978 [32,
33], it is often accepted that quantum gravity must fall within a discrete framework. Indeed
this is already the case of loop quantum gravity, one of the main approaches to quantum cos-
mology, others being especially string theory and non-commutative geometry. This departs
from the standard conception of physics, particularly general relativity but also quantum
mechanics, even if the early introduction of quanta by Max Planck in 1901 [34] involves
precisely a discretization of light energy. Now, we argue that Quantum Bayesianism must
likewise offer a discrete framework for quantum gravity, so that the universe can be identified
with a “Bayesian theater”, that is the information-theoretic framework sustaining quantum
theory [18].

2.1 Fundamentals
Consider a particular observer O who contemplates the cosmos. By definition, the observer
collects information through a batch of queries. The best way to handle the responses to
these queries is Bayesian analysis. In turn, for a Bayesian observer, the information thus
available is the one and only source of knowledge about the universe. We propose therefore
to identify the universe with this available information.

Assumption 1 (Information universe). For a particular observer O, the universe is the
ensemble of the available information.

As a result, we regard throughout the words “universe” and “observable universe” as
synonymous.

2.1.1 Degrees of freedom
In standard cosmology, the entropy of all events that have been, are or will be observable,
is called “event entropy” and is finite (see below Sec 2.1.2). In a Bayesian framework, this
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means that the available information as a whole, that is, the storage capacity of the memory
is finite. We propose to adopt this result from the start.
Assumption 2 (Finite universe). The information contained in the universe is finite.

Since continuous variables would involve infinite information, Assumption (2) implies
that the universe is basically discrete.

Now, still in standard cosmology, the universe is evolving. In a Bayesian framework,
this means that information is not conserved. However, this immediately contradicts the
common belief.
Assumption 3 (Stability). The information contained in the universe is not stable.

Hint. This is another way of saying that the information universe is evolving even if
the concept of stability is not very precise at this stage. Owing to its importance, this
assumption will be more widely elaborated later (Sec. 2.2). 2

To proceed further, we need to encode this information. Without loss of generality, we
adopt a dichotomic gauge, meaning that information is encoded through a finite batch of
binary digits3. At last, we suppose that the physical data are expressed in Planck units,
meaning that the standard gravitational constant G, the reduced Planck constant ~, the
speed of light in vacuum c and the Boltzmann constant kB are normalized to unity at the
present epoch, so that the model is formally dimensionless. Occasionally, we will however
restore dimensional units for clarity.

Let Nu bits denote the maximum information contained in the universe, that is the
storage capacity of the memory. To comply with the uses of information theory, we choose
to identify one discrete degree of freedom with one “bit”, derived from base 2, although it is
common in physics to use instead one “nat”, derived from natural logarithms. Nevertheless,
when all other variables are formulated in Planck units, entropy in physics is expressed in
natural units and not in bits, so that we will adopt the most convenient gauge for entropy
where appropriate.
Definition 1 (Degree of freedom). A discrete degree of freedom is one dichotomic choice.

We assume that the data are estimated by Bayesian inference from the observed events.
This means that the task of the observer is not to determine the exact truth value of all
degrees of freedom, which is totally inaccessible, but only to assign a probability to their
occurrence.

According to our interpretation of quantum information [18], this requires that physical
data are expressed in quantum formalism, which makes it imperative to use the essential tool
of this theory, namely a “Bayesian theater”. Basically, a Bayesian theater brings together all
compatible batches of Boolean variables to describe the dichotomous choices. We will see
just below that each particular batch constitutes an observation window and the change of
observation window requires to construct the Hilbert space of standard quantum mechanics.

Throughout the article, the reader is assumed to have a minimum familiarity with this
tool although we will try to recall the major points before their first use.
Definition 2 (Cosmic Bayesian theater). The cosmic Bayesian theater is the Bayesian
theater of Nu discrete degrees of freedom perceived by a particular observer O. It is associated
with a du-dimensional Hilbert space, Hu(O) where du = 2Nu and a quantum state defined
by a statistical operator Πu

4 of rank ru ≤ du.

To get an idea, we will propose in Proposition (70) that Nu ' 6.23 × 10125, (see also
Sec. 2.1.2 just below).

3 Such a gauge choice greatly simplifies the presentation. In principle, conversion into other gauges could
be computed exactly but this would require infinite precision. Yet, infinite information is impossible in a finite
universe! As a result, the genuine gauge, if any, is simply unfalsifiable.

4To avoid confusion with the classical energy densities, ρm, ρΛ, etc., used in cosmology, we refer to the standard
“density operator” of quantum information usually symbolized by ρ as a “statistical operator” symbolized by Π.
This was the initial terminology employed by von Neumann.

6



Observation windows. The universe is necessarily depicted through a particular set
of Boolean variables depending on the observer in terms of location, velocity, orientation,
experimental setup, etc., characterizing a particular viewpoint. This corresponds to a specific
allocation of Nu Boolean variables to the Nu discrete degrees of freedom. Ideally, one would
prefer to choose mutually independent variables. In principle, this is always possible but in
practice this is not necessarily granted at the outset. For example, the observer experiments
only from Earth or at least from the solar system. Such an allocation is called “observation
window” of the Bayesian theater in our information-theoretic interpretation of quantum
information Ref. [18]. We will see that the choice of relevant windows is essential to generate
the emergence of spacetime.
Definition 3 (Observation window). An observation window is the allocation of a specific
batch of Nu Boolean variables Xj , j ∈ J1, NuK to the Nu discrete degrees of freedom of the
Bayesian theater.

Each observation window defines a sample set Γu of du = 2Nu complexions or classical
states, γi ∈ Γu

5, with i ∈ J1, duK. The classical states can also be regarded as the basic
vectors of a real-valued probability space Pu. At the same time, each window specifies a
particular basis in the du-dimensional Hilbert space Hu associated with the Bayesian theater.
In general, we will note its basic vectors |ei〉 or |γi〉 with i ∈ J1, duK in correspondence with
the set of classical states. When the Nu variables are mutually independent, the window is
“completely divisible”, meaning that both the Hilbert space Hu and the statistical operator
Πu are respectively the Kronecker products of Nu 2-dimensional partial Hilbert spaces Hj

and Nu partial 2×2 statistical operators Πj with j ∈ J1, NuK. In addition, each partial Πj is
diagonal, leading to a diagonal global operator Πu. The window is then termed “principal”.

Notice that the initial allocation of a variable batch in a “source window” requires de-
ciding for each degree of freedom what is the “TRUE” (or 1) truth value and therefore what
is the “FALSE” (or 0) truth value. This involves Nu gauge choices between the Boolean
variables and their negation. In Ref. [18] we have called “discrete Boolean gauge” such an
initial choice.
Definition 4 (Discrete Boolean gauge). A discrete Boolean gauge is the initial choice for
each degree of freedom in the source window of either a specific Boolean variable or of its
negation.

In fact, the only designation of an observer O must be equated to the attribution of a
specific discrete Boolean gauge in the source window, because this sole definition implies
necessarily Nu dichotomic choices. We propose to name this gauge the “observer gauge”.
Definition 5 (Observer gauge). The observer gauge is the specific discrete Boolean gauge
implicitly adopted by the observer O for describing the Bayesian theater.

This inescapable gauge selection is not so innocuous because the choices are made in one
step, which on the one hand implicitly defines the concept of simultaneity and on the other
hand involves the implicit creation of Nu bits of information. This will be clarified later
with the Mach’s principle (Assumption 9).

Now, the object of physics is to determine the likelihood of any event, that is, to assign
to every classical state γu ∈ Γu a probability P(γu|O) conditional on the observer gauge.
As a result, all probability functions like entropy, statistical operators, etc., are implicitly
computed with respect to this unique Boolean gauge. For simplicity, unless it could be
confusing, we will omit throughout this condition (|O). Now, the probabilities P(γu) can
be computed by Bayesian inference from a basic prior information and updated [35] by
observation where appropriate. However, the status of specific updates is different from
that of the initial prior because they can only affect a tiny part of the universe. In other
words, the initial prior information determines the physical laws whereas observation depicts
particular objects.

5To avoid confusion with the density ratios, Ωm, ΩΛ, etc., used in cosmology, we symbolize the “classical
states” ω ∈ Ω in Ref. [18] by γu ∈ Γu. The subscript u stands for “universe”. When relevant, we will replace u
by t (for “time”).
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By anticipation, in the present article, we will limit the basic prior information to the
storage capacity Nu bits of the register (about 6.23× 10125 bits) and the current age of the
universe (about 14.45× 109 years). This will be clarified in Assumption (8) below.

Observable. The information content of the universe can be recovered by means of ob-
servable “measurements”, each carried out with respect to a specific batch of Nu Boolean
variables Xi, i ∈ J1, NuK. Technically, each particular measurement requires a particular
observation window called “proper window” of the observable and the result of the mea-
surement is, by definition its Bayesian estimation, that is to say, a linear combination of
the probability of the du classical states. Incidentally, the requirement of a particular win-
dow becomes implicit when using the quantum formalism and is even fundamentally the
justification for this theory (see Ref. [18]).

As already mentioned, the number of degrees of freedom, Nu, is closely related to the
standard “event entropy” of the universe.

2.1.2 Cosmic event entropy
In conventional thermodynamics, the fate of an isolated system is to end up in a state of
maximum entropy. We do assume that this result is valid for the full universe, as first
proposed by Jean-Sylvain Bailly in 1777 and supported by William Thomson in 1850. Yet,
the idea of a “heat death of the universe” was challenged by Max Planck on the grounds
that entropy of an infinite system is inconsistent. In the present model, this objection is no
longer valid with regards to Assumption (2). Therefore, the ultimate statistical operator
in the Hilbert space, say Πmax, will be the identity matrix 1u of dimension du, normalized
to unit trace, Πmax = 1u/du, whose von Neumann entropy is Smax = log2 du = Nu bits or
Nu ln 2 nats. This ultimate quantum state is invariant by unital channels and irrespective
of the window, corresponds to complete randomness in the sample set Γu (see Ref. [18]).

In standard cosmology [36, 37], the limit of the future observable universe for a particular
observer is called the cosmic event horizon [38] (CEH). We will define the horizon later (see
below Sec. 3.7) but we already propose to identify Smax with the event entropy of standard
cosmology.
Assumption 4 (Cosmic event entropy). The cosmic event entropy is the ultimate von
Neumann entropy Smax = −Tr(Πmax log2 Πmax) of the statistical operator Πmax.

This assumption implies immediately the following result:
Proposition 1 (Number of variables). The number of binary degrees of freedom of the
universe, Nu, is the cosmic event entropy Smax expressed in bits.

Proof. We have Smax = log2 du = Nu bits. 2

The present estimation of the cosmic event entropy by C.A. Egan and C. H. Lineweaver [39]
is Smax = 2.6× 10122 nats, which leads to Nu = 2.6/ ln 2× 10122 ' 3.7× 10122. However, it
seems that this estimation leaves out much of the current dark matter in the present model.
Based on the velocity of stars in spiral galaxies, we will propose instead Nu = 6.23× 10125

in Proposition (70) below.

2.2 Evolution of the universe
As first proposed by Ludwig Boltzmann [40], it is often conjectured that the arrow of time
is derived from thermodynamics [41]. The current model is constructed in accordance with
this view.

However, in standard physics, the status of thermodynamic is not very clear and per-
haps inconsistent with regard to reversibility. On the one hand, thermodynamics is certainly
taken for granted and extensively used in all areas of physics. But on the other hand, stan-
dard theories are fundamentally reversible, based on the time symmetry of physical laws
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in classical physics and conservation of probability in quantum physics. Already in 1874,
Loschmidt objected that it must have been impossible to conceive of an irreversible process.
Bypassing Loschmidt’s objection, Gibbs’ entropy [42] is constructed while acknowledging
micro-reversibility6, so that in the end, irreversibility appears as an exogenous feature, ulti-
mately explained in classical physics by the boundary conditions, the complexity of macro-
systems and subsequent coarse-graining [35], and in quantum mechanics, by decoherence [44]
meaning coupling with claimed “random” unobservable extra degrees of freedom from an
open system and leading to deterministic chaos. Be that as it may, irreversibility in standard
physics is in fact interpreted as an appearance or even a conspiracy [12], perfectly compati-
ble, for example, with a cyclic evolution of the universe [45]. This leads to paradoxes, and
especially the famous loss of information in black-holes, reminiscent of the inconsistency of
the aether at the turn of the 19th/20th century.

At any rate, observation is fundamentally irreversible because information captured by
an observer accumulates over time7 (see particularly the illuminating explanation by Jaynes
in Ref. [15], Part “Diffusion”). This corresponds to the Gibbs’ “thermodynamics irreversibil-
ity” which also governs Bayesian inference theory. In other words, an inference problem is
fundamentally dissymmetrical between the past and the future, so that the standard con-
ception of physics is simply irrelevant in a Bayesian framework. In the current model based
explicitly on the theory of inference, we are therefore committed to taking irreversibility as
a starting point, as already expressed by Assumption (3) above.

2.2.1 The motor of evolution
In standard physics, evolution is the change of the universe over time. In a Bayesian frame-
work, the state of the universe is the most likely probability distribution taking into account
all prior constraints while prohibiting the implicit introduction of any extra hypothesis, i.e.,
exhibiting the maximum uncertainty compatible with the prior information. Technically,
this corresponds to the maximum Shannon entropy. Now, we immediately run into a prob-
lem, namely that the most likely distribution is directly the ultimate state Πmax of the
universe: A steady world at maximum entropy.

Why the universe does not rush in this stable state? At least one reason is that entropy is
a continuous function, so that it cannot pass from the minimum, say Smin, to the maximum,
Smax, without going through all intermediate levels. Therefore, if the initial state of the
universe is not the stillborn state of maximum entropy, it is possible to observe the interme-
diate states provided that an extra prior information is imposed, namely that the current
entropy of the universe is limited by a bound St ∈ [Smin, Smax]. This new prior information
is nothing but a definition of time as we will propose formally in Assumption (18) below.
In other words, time labels a continuous set of snapshots at intermediate entropy.

As a convenient convention, we propose to set the minimum entropy to zero, Smin = 0.

Assumption 5 (Initial entropy). The minimum entropy at the origin of time t = 0 is zero,
Smin = 0.

Hint. The entropy is conveniently computed with respect to the observer gauge, Def-
inition (5). Since the choice of this gauge can be viewed as creation of information, we
can suppose that the entropy is reset to zero on this occasion, that is, Smin = 0 at t = 0.
However, this assumption is rather a convention because it is unfalsifiable. 2

The task of the Bayesian observer is now to assign a probability distribution on the sample
set Γu under the sole assumption that the global entropy Su is bounded above by St.

Assumption 6 (Principle of evolution). The state of the universe is the most likely prob-
ability distribution whose entropy Su is bounded by a monotonically increasing function St

of a real parameter t, so that Su(t) ≤ St.
6Gibbs’ main argument is that “thermodynamic reversibility” has nothing to do with “mechanical reversibility”.

This claim was later endorsed by Planck and next by Jaynes (see Jaynes [43]).
7This is perfectly consistent with the fact that time is irrelevant in a logical statement.
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Then, the most likely distribution of maximum entropy corresponds exactly to this bound
as we will show just below. In other words the Bayesian equilibrium of the universe at time
t is attained for Su(t) = St. As a result, the increase of entropy over time is the universal
cause of evolution. This supports in particular a proposal by Erik Verlinde [46] that gravity
forces are of entropic nature, but beyond we must regard the increase of cosmic entropy in
its race towards its maximum as the unique impetus of all changes in the universe. In short,
evolution is tautologically driven by the time itself. To make evolution possible, a hypothesis
similar to Assumption (6) is essential in any Bayesian framework, with the conclusion that
irreversibility is completely inescapable.

In sharp contrast, evolution over time in standard physics is described by unitary channels
and then is reversible. To understand the source of this conflict, note that in quantum theory,
the unitarity of the scattering matrix is established by positing as an axiom that both the
input and the output are waves vectors, that is pure states, i.e., both with zero entropy (see
Ref. [18]). Reversibility, based on the conservation of probability, is thus just a consequence
of this quasi-universal assumption, which remains nevertheless controversial [47]. In the
present model, the hypothesis that the state of the universe is a pure wave function is
irrelevant: Input and output are perfectly allowed and even committed to be mixed states
so that the proof breaks down. Nevertheless, conservation of probability does obviously still
hold. We will show that its physical meaning is found only in the first law of thermodynamics,
i.e., conservation of energy (see Definition 24 below).

We will show later that the passage of time is directly expressed by the expansion of the
universe. Therefore, we can characterize standard physics as the approximation in which
the expansion of the universe is neglected and deduce that the entropy of the “standard
universe” is then constant, so that time becomes just a parameter.
Assumption 7 (Standard physics). Standard physics is a differential description of the
universe in which the cosmic entropy is constant and the expansion neglected.

Hints. Except in cosmology, standard physics only concerns a tiny part of spacetime
at the scale of the universe. This can be compared to a linearization in the neighborhood
of a particular point in differentiable systems. In other words, standard physics must be
regarded as a differential description at constant cosmic entropy of a tiny patch of an ideal
universe, out of the complexity of real life. 2

We will refer to the most likely distribution at entropy St as the “instantaneous equilibrium
of the universe”.
Definition 6 (Instantaneous equilibrium of the universe). The instantaneous equilibrium
of the universe at entropy St is the most likely state whose entropy is bounded by St.

Formally, we thus identify this instantaneous state with the statistical operator of the
universe Πu(t), which means that the value of any observable is assimilated to its expectation
with respect to Πu(t). In Sec (3.4) below, we will propose to equate the parameter t with
the standard cosmic time of cosmology.

Now, a definite entropy corresponds to an instantaneous equilibrium of the universe,
i.e., Su(t) ≤ St. Assume that the statistical operator is expressed in a principal window
by Πt = Diag(λ1, λ2, . . . , λdu), where the eigenvalues λi represent the probability of the
classical states (See Ref. [18]). Then, we have technically to solve the mere problem

Maximize

du∑
i=1

−λi log λi

subject to the constraints

λi ≥ 0 ;

du∑
i=1

−λi log λi ≤ St ;

du∑
i=1

λi = 1

(1)

By simple inspection, the objective function is also a constraint. As a result, the problem
is degenerate and the solution can be chosen anywhere on the boundary of the attainable
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domain. In other words, we only have to satisfy to

λi ≥ 0 ;

du∑
i=1

λi = 1 ;

du∑
i=1

−λi log λi = St (2)

so that any solution to Eq. (2) is formally feasible.
We now arrive to the basic conjecture to refound physics. Beforehand, it is worth quoting

E. Wigner who precisely justifies Assumption (8) just below:

E. Wigner: If we look at the body of our knowledge in physics, we must note that it
divides the phenomena into two groups, in fact into two sharply distinguished groups. Into
the first group falls our knowledge of what may be called initial conditions, that we are on
the Earth, that there is a Sun around, and so on. We maintain that these initial conditions
are accidental, that there is no precise theory which would explain them, that there can be
no such theory. Into the second category falls our knowledge of the “laws of motion” which
tell us how to foresee the future state of the World, assuming that we know the present state.
These laws, we are convinced, are exact, of almost unbelievable precision, and of a beauty
and simplicity which is much greater and deeper than any that we could have invented [30].

In the present model, we name “physical laws” the Wigner’s “laws of motion” and identify
the “initial conditions” with Bayesian updates obtained by further observations, introducing
what we call “contingent data”. By definition, they are new and therefore totally irreducible
to previous data or, in other words, completely “random”.
Assumption 8 (Physical laws). Physical laws are equated to the statistical properties of the
universe, given only its storage capacity and its current global entropy.

Hint. The universe is investigated as a Bayesian theater. The laws of physics describe
its general characteristics while occasional objects demand particular observations, which
means one-off specific updates of the prior information. Since there are gigantically many
variables compared to a very limited number of observations, such one-off specific updates
can only provide limited information and are therefore unable to modify the statistical
estimation of the universe as a whole. 2

Now, the “laws of motion” of Wigner are the statistical properties of the universe. Strictly
speaking, they are not “exact” but their accuracy is about 1/

√
Nu, that is about 60 signifi-

cant decimal places. Moreover, their “beauty and simplicity” is none other than that of the
binomial probability distribution, as we will show shortly, Proposition (5) below. They can
lead to extraordinary phenomena, such as life, because of the gigantic number of variables
that make almost certain the occurrence of events a priori totally improbable.

Now, the present article aims to compute the statistical properties of the universe irrespec-
tive of any update provided by specific observations, that is to say, establish these “laws” as
the foundation of physics. In short, “laws” emerge as the statistical properties of a “no-law”
background.

Definition 7 (Fundamental prior). The fundamental prior is composed of the mere condi-
tion Eq. (2) without further update.

Under Assumption (8), that is, conditional on the fundamental prior, Eq. (2) contains all
physical laws! First, it allows to define a snapshot on the entire register and thus establishes
the concept of simultaneity of the Nu binary variables required to evolve together, whereas
they were regarded hitherto as completely unrelated. By construction, the Bayesian theater
is compatible with all statistical distributions of binary variables. Of these, a snapshot is a
section with a specific entropy.
Definition 8 (Snapshot). A snapshot is a section of the universe characterized by a definite
entropy St.
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The notion of snapshot has introduced the concept of simultaneity. This appears as a
Bayesian requirement, in that it is primarily required by the observer to be able to observe.
It will be formalized by the so-called “Mach’s principle”, Definition (9), in the next section.

Proposition 2. In a specific snapshot, the universe is in a particular state expressed in any
observation window by a statistical operator Πt.

Proof. The entropy St is necessarily the von Neumann entropy of a specific quantum
state. 2

Actually, “snapshot” and “quantum state” coincide. When no confusion can occur, a
snapshot will be henceforth referred to by its entropy St.

2.2.2 Mach’s principle and snapshots of the universe
Newton devised an absolute space invariant at any time regardless of its content. This
conception was criticized by Mach as problematic, so that the alternative was put forward
by Einstein under the name of “Mach’s principle” [48]. In the present model, the Mach’s
principle can be thought as the assertion that a patch of the world at any moment is
necessarily defined in relation to the rest of the universe, which implies that all degrees of
freedom must be related. We adopt for clarity the following definition:

Definition 9 (Mach’s principle). The Mach principle is the property of all degrees of freedom
to be linked in any snapshot.

In the present model, the Nu binary variables observed in a principal window are by
construction mutually independent and thus completely unrelated, meaning in particular
that they can evolve independently. However, in any snapshot, they are by definition grasped
as a whole by the observer. Therefore, the mere fact of observing a snapshot creates de facto
a link between all degrees of freedom, yet this link is not intrinsic but only established by
the observer.

Proposition 3. The Mach’s principle holds in the cosmic theater in that the classical state
probabilities λi in a principal window are linked in any particular snapshot St by Eq. (2).
This is the definition of a snapshot and not a property of the variables and expresses that the
degrees of freedom are observed as a whole. This does not create new correlations between
the variables themselves which remain independent in the principal window.

Proof. The definition of a snapshot demand to collect each variable in a particular state.
These states are thus linked to the snapshot. In a specific observation window, this link
constitutes a relationship established by the observer between the variables but which does
not affect their behavior in any way. In particular, in a principal window, the variables
remain mutually independent by definition. This is not a contradiction because the Mach’s
principle is a property or rather a definition of the snapshot, which does not concern the
variables themselves. 2

2.3 Structure of the Hilbert space
This section essentially provides technical results. Given the fundamental prior information,
Definition (7), we construct the statistical operator Πt acting on the cosmic Hilbert space
Hu and investigate the structure of its eigensubspaces hk. These are routine and tedious
calculations useful for later uses. However, the results are widely unexpected.

We finally introduce two major concepts: the episodic clock, Sec. (2.3.4), which shows
that surprisingly enough the eigensubspaces hk can be considered as clock hands for the
cosmic time, and the directional window group, Sec. (2.3.5), which is a prerequisite for
constructing space-time.
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In a principal window, consider the batch of Nu independent variables, say Xj with
j ∈ J1, NuK, taking value in {0, 1}. From Assumption (3) the register is not stable and
therefore all variables can potentially jump in an uncontrolled way from 0 → 1 or 1 → 0.
Now, from Mach’s principle and Proposition (3), the outcomes of all variables are observed
simultaneously in a single snapshot. Therefore, the jumps are observed at some discrete
snapshots St. As a result, the functions St 7→ Xj(St) taking value in {0, 1} can be defined
as right-continuous and for St < Smax only a finite number of jumps can occur in the open
interval ]0, St[ (technically, there is no “explosion”). Incidentally, when St → Smax the
situation turns out to be explosive at Smax.

At last, all variables Xj are equivalent for the Bayesian observer, i.e., are assumed to
experience the same process. In particular, they jump from 0 → 1 or 1 → 0 with equal
probability. As a result, the variables are independent Bernoulli random variables and the
batch of binary variables is simply subject to a standard binomial probability distribution.
Proposition 4. Given the fundamental prior information, the binary variables Xj consid-
ered in a principal observation window are equivalent irrespective of j in any snapshot.

Proof. By hypothesis, the fundamental prior, Definition (7), is entirely provided in the
current framework by Eq. (2) in the initial principal window. From the Bayesian principle of
indifference, without further update, all variables Xj or their negation Xj like all their truth
values must be treated on the same footing irrespective of j because there are no grounds
in the fundamental prior to make any difference. Since the variables are initially chosen in
a principal window, the variables are mutually independent and thus the window remains
principal and therefore completely divisible (see Ref. [18]). Only updating the prior could
make a difference. 2

2.3.1 The cosmic statistical operator
Consider the complete batch of mutually independent binary variables, Xj with j ∈ J1, NuK.
Since the variables are independent, they define a principal observation window. Each
variable Xj acts on a partial sample set Γj and generates an individual 2D-probability space
Pj that can be transcribed into a 2D-Hilbert space Hj (see Ref. [18]). The global Hilbert
space, Hu, is the Kronecker product of the Nu partial Hilbert spaces.

Assume that the prior snapshot is the initial snapshot of entropy S0 = 0. Therefore,
all variables Xj are initially in the same partial deterministic state of statistical operator
Π0j = Diag(1, 0) acting on Hj . Consider now a posterior snapshot St with the only new
hypothesis St > 0. Then, from Proposition (4), we must still assign the same partial
statistical operator Πtj to the Nu variables. As a result, a principal partial 2D-basis in Hj

defines a du-principal basis in Hu.
Proposition 5. When the state Π0 is the initial deterministic universe of Nu bits in the
snapshot S0 = 0 and without further update, the posterior cosmic statistical operator Πt in
any snapshot St > 0 is the Kronecker product of Nu identical 1-bit states Πtj and expressed
in a principal window as

Πt =

Nu⊗
j=1

Πtj with ∀j Πtj =

[
qt 0
0 pt

]
and pt + qt = 1, (3)

where pt ∈ [0, 1/2] is a probability characterizing the transition from 0 to 1 between the prior
snapshot S0 and the posterior snapshot St. The eigenvalues λi(pt) of the statistical operator
Πt = Diag(λi) for i ∈ J1, duK) with du = 2Nu in Eq. (2), take only Nu + 1 distinct values,
respectively αk = pkt q

Nu−k
t of multiplicity dk =

(
Nu

k

)
with k ∈ J0, NuK. As a result

Πt =

Nu∑
k=0

αk × Ak with dk =

(
Nu

k

)
and αk = pkt q

Nu−k
t (4)

where Ak is the projection operator Hu → hk of the Hilbert space on the eigensubspace hk of
dimension dk. The von Neumann entropy St of the Kronecker product is equal to Nu times
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the von Neumann entropy Stj of any individual variable. Thus,

St = −
du∑
i=1

λi log λi = −
Nu∑
k=0

dkαk logαk = Nu × Stj = −Nu × (pt log pt + qt log qt). (5)

For pt ∈ [0, 1/2] and St ∈ [0, Nu] (in bits), the mapping S : pt 7→ St is invertible as
St 7→ pt = S−1(St).

Proof. Assume that the prior is the initial snapshot S0 = 0. From Assumption (5),
every binary variable Xj is deterministic, namely, Xj = 0, with zero entropy, so that the
individual statistical operators in the prior window are Π0j = Diag(1, 0) and the global
statistical operator is their Kronecker product Π0 = Diag(1, 0, 0, . . . , 0).

As the variables remain mutually independent, the global state remains the Kronecker
product of the individual states. However, the posterior state in no longer deterministic
so that the individual posterior states Πtj become a statistical combination of Xj = 0 and
Xj = 1. While independent, the variables are observed in the same snapshot St and thus from
Proposition (4) with the same transition probability pt depending only on St irrespective
of j as Πtj = Diag(qt, pt) with qt = 1 − pt. Initially, we have p0 = 0 and q0 = 1 in the
prior snapshot S0 and therefore pt ≤ 1/2 and qt ≥ 1/2 in the snapshot St. Now, the global
posterior statistical operator Πt is the Kronecker product Eq. (3). Expanding the product,
we obtain

Πt = Diag(λ1, . . . , λi, . . . , λdu)

where du = 2Nu and λi is of the form λi = pαi
t q

βi

t with αi + βi = Nu and αi, βi ∈ J0, NuK.
Therefore, there are ne = Nu + 1 distinct products αk = pkt q

Nu−k
t repeated dk =

(
Nu

k

)
times with k ∈ J0, NuK, corresponding to ne eigensubspaces hk of the statistical operator
Πt. Then, for each index k ∈ J0, NuK and for all a ∈ J1, dkK, we have λi = αk where
i = a +

∑k−1
`=0 d`. When k = 0, d0 = 1, i = 1 and α0 = λ1 = qNu . When k = Nu, dNu

= 1

and αNu
= λdu

= pNu . Clearly,
∑du

i=1 λi = (pt + qt)
Nu = 1. The von Neumann entropy St

of the Kronecker product is also the sum of the Nu individual entropies Stj of the factors
Πj , Eq. (5). For St = Smin = 0, we have pt = pmin = 0 by construction and for St → Smax,
pt → pmax = 1/2. 2

Each binary variable Xj can fluctuate in an uncontrolled way from 0 → 1 and 1 → 0
but in the current snapshot, each variable is obviously in one and only one of these states.
By definition, we only consider the final balance because any intermediate jump, if any,
e.g. 0 → 1 → 0, is not checked and thus simply ignored. We propose to name formally
“transition probability” the probability pt of the transition 0 → 1 when the entropy increases
from S0 to St. We propose also to name “binary entropy” the corresponding entropy Stj .

pt

St

pt

1/2

0 Smax

Definition 10 (Transition probability). The transition probability
pt ∈ [0, 1/2] is the probability assigned to any binary variable Xj to
jump from 0 to 1 between the prior snapshot S0 and the posterior
snapshot St without intermediate update.

Quantitatively, at the present epoch t0, assume that St0 = 3.24 ×
10122 bits and Smax = 6.23 × 10125 bits. The entropy of each bi-
nary variable Xj is St0j = St0/Nu = 2.31 × 10−7 bits and thus
the transition probability is pt0 ' 0.120 × 10−7. Its exact value is
extraordinary robust and precise because it is represented by the
gigantic number of Nu independent samples.

Definition 11 (Binary entropy Stj). The binary entropy Stj = −pt ln pt − qt ln qt is the
entropy defined by the transition probability pt.
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From Assumption (5), all variables are reset in the initial snapshot S0 and thus start from
the same invalid truth value 0. This reset is a shock that will gradually relax to restore
balance.

Consider the snapshot of entropy St. The expected number of valid truth values is ptNu

and thus the remaining expected number of invalid truth values is (1−pt)Nu. By hypothesis,
each variable Xj , j ∈ J1, NuK, is in no way influenced by the other variables, because they are
independent, nor by its own current truth value, because it depends on a gauge parameter.
Therefore, the jump probabilities from 1 → 0 or from 0 → 1 are equal, irrespective of the
index j.

On the other hand, the transition probability, that is the expectation value of Xj , in-
creases from pt to pt + dpt. Therefore, the expected number of valid truth values increases
by Nudpt. This corresponds to probability increase of the balance of jumps from 0 → 1 and
those from 1 → 0.

Definition 12 (Jump probability). The probability of jump is the probability that any binary
variable Xj equal to zero in the snapshot St will be 1 in the snapshot St + dSt.

The jump probability is thus the differential increase of pt as

P(Xj(St + dSt) = 1 |Xj(St) = 0) =
dpt
dStj

dStj =
dStj

ln(qt/pt)
(6)

2.3.2 Parameterizing the universe
The fundamental prior limits to two the number of independent parameters. Let us list
some convenient representations.

Nominal representation (Nu, pt). The nominal representation uses Nu and pt. The
number Nu = log2 Smax is thought as integer but this is not mandatory. Moreover, since it
is a gigantic number, it can anyway be approximated by a real-valued variable.

We have

∂St

∂Nu

∣∣∣
pt

= Stj ;
∂St

∂pt

∣∣∣
Nu

= Nu × ln
1− pt
pt

;
∂2St

∂p2t

∣∣∣
Nu

= − Nu

pt(1− pt)
(7)

It is convenient to assign a special name to the coefficient log[(1 − pt)/pt], equal to the
inverse jump probability density, dpt/dStj , Eq. (6).

Definition 13 (Entropy increment). In each snapshot St, the entropy increment st is the
coefficient

st
(def)
=

1

Nu

∂St

∂pt

∣∣∣
Nu

=
dStj

dpt
= ln

1− pt
pt

. (8)

Quantitatively, at the current epoch we have st0 = 18.235 nats.

Basic representation (St, Nu). In general, physics investigates phenomena in a fixed
framework as a function of the snapshot. The relevant independent parameters are then Nu

and St.
We have Stj = St/Nu while pt is defined implicitly by Stj = −pt ln pt− (1−pt) ln(1−pt).

From Eq. (8), dStj = stdpt and then

∂Stj

∂Nu

∣∣∣
St

= − St

N2
u

;
∂Stj

∂St

∣∣∣
Nu

=
1

Nu

∂pt
∂Nu

∣∣∣
St

=
dpt
dStj

∂Stj

∂Nu

∣∣∣
St

= − St

stN2
u

;
∂pt
∂St

∣∣∣
Nu

=
dpt
dStj

∂Stj

∂St

∣∣∣
Nu

=
1

stNu
.

(9)
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Expansion representation (St, Stj). The pair (St, Stj) is another convenient set of
independent variables. Then, Nu = St/Stj where Stj = −(pt log pt + qt log qt).

∂Nu

∂St

∣∣∣
Stj

=
1

Stj
;

∂Nu

∂Stj

∣∣∣
St

= − St

S2
tj

(10)

For reasons that will appear later, we propose to call this representation the “expansion
representation”.

Definition 14 (Expansion representation of the universe). The expansion representation
of the cosmic theater given the fundamental prior is the choice of the entropy St and the
binary entropy Stj as independent parameters.

Information representation (St, It). Finally, is also possible to take St as an inde-
pendent variable together with the so-called “negentropy”, It = Smax − St.

Definition 15 (Negentropy). The negentropy It of the universe is It = Smax − St.

Obviously, at the origin of time I0 = Nu ln 2 nats and ultimately Itmax
= 0. Let us call

“information representation” this choice of St and It as independent parameters.

Definition 16 (Information representation of the universe). The information representation
of the cosmic theater given the fundamental prior is the choice of the entropy St and the
negentropy It as independent parameters.

We have then Nu = (St + It)/ ln 2 and Stj = St/Nu = St ln 2/(St + It).

∂Nu

∂St

∣∣∣
It

=
1

ln 2
;

∂Nu

∂It

∣∣∣
St

=
1

ln 2
(11)

2.3.3 Eigensubspace structure
The gigantic number of dimensions involves special features. In particular, Proposition
(10), is nothing but a specific expression of the law of large numbers. Also, the probability
P(hk|pt) can be assimilated to a probability density p(hk|pt)

Proposition 6. The eigensubspaces hk collect the classical states with k outcomes Xj = 1
and Nu − k outcomes Xj = 0 in the principal variable batch {Xj}. Given the fundamental
prior, the probability of drawing from the batch exactly k outcomes with Xj = 1 is P(hk|pt) =
dkαk(pt), where αk(pt) is the eigenvalue belonging to hk and dk its multiplicity. As a result,
the probability, say Pt(K), of drawing at most K outcomes with Xj = 1 is

Pt(K) =

K∑
k=0

P(hk|pt) =
∫ K

0

p(hk|pt)dk

where k is equated with a real-valued number, so that

p(hk|pt)
(def)
=

∂Pt(k)

∂k
= P(hk|pt)

is the probability density assigned by the observer to the eigensubspace hk for the infinitesimal
index interval (k, k + dk).

Proof. By definition, αk(pt) is the probability assigned by the observer to any eigen-
vector belonging to the eigensubspace hk in the snapshot St characterized by the transition
probability pt. As a result, the probability assigned to the full subspace hk is dkαk while∑Nu

k=0 dkαk = 1. In standard information theory, irrespective of the snapshot, k is the com-
mon Hamming weight of the classical states γi belonging to the eigensubspace hk. Since
Nu is a gigantic number, it is convenient to equate k ∈ J0, NuK to a real-valued number
k ∈ [0, Nu] and then compute the sum as an integral. As a result, the discrete probability
P(hk|pt) is also the probability density, p(hk|pt). 2
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Proposition 7. Each eigensubspace hk is invariant by permutation of its basic vectors in
the principal window, governed by the standard symmetric group Sdk

of degree dk =
(
Nu

k

)
.

Proof. Each permutation of the basic vectors represents a particular realization of the
pattern with k outcomes Xj = 1 andNu−k outcomes Xj = 0. Incidentally, the corresponding
entropy is thus ln dk nats irrespective of the snapshot St. 2

Proposition 8. Each eigensubspace hk is invariant under the unitary gauge group U(dk).

Proof. The subspace hk is a dk-dimensional Hilbert space and therefore globally invariant
under any unitary operator acting on it. As a result, from Ref. [18], the unitary group
U(dk) is a gauge subgroup of the Hilbert space Hu endowed with the statistical operator
Πt. Clearly, U(dk) is the Lie group derived from the discrete symmetric group Sdk

. 2

Proposition 9. In any snapshot St, the highest eigenvalue is α0 of index k = 0 and
multiplicity d0 = 1.

Proof. From Eq. (4), αk(pt) = pkt q
Nu−k
t with qt = 1−pt > pt. As a result, in any snapshot

St, the maximum eigenvalue is trivially α0 = (1 − pt)
Nu of index k = 0 and multiplicity

d0 =
(
Nu

0

)
= 1. Even the highest eigenvalue is minuscule for pt > 0. For instance, at the

present epoch, α0 ' 10−10117 . 2

Proposition 10 (Eigensubspace probability density). Given the fundamental prior, in any
snapshot St the probability P(hk|pt) assigned by the observer to the eigensubspace hk for both
k � 1 and Nu − k � 1 can be represented by a normal probability density k 7→ p(hk|pt)
described by the Gaussian function

k 7→ p(hk|pt) =
1√
2π σt

exp
(
− (k −Nupt)

2

2σ2
t

)
(12)

of variance σ2
t = Nupt(1− pt) = −N2

u/(∂
2St/∂p

2
t )|Nu

, where k is equated with a real-valued
number.

Proof. From Eq. (4), irrespective of pt, the dimension of the eigensubspace hk is dk =(
Nu

k

)
. Using the Stirling asymptotic approximation of the factorial n! ∼

√
2πn× (n/e)n we

obtain for large k and Nu − k,

dk =
Nu!

k!× (Nu − k)!
=

√
2πNu

2πk × 2π(Nu − k)
× NNu

u

kk × (Nu − k)Nu−k

=

√
1

2πNu
×

√
1

(k/Nu)(1− k/Nu)
× 1

(k/Nu)k × (1− k/Nu)Nu−k

(13)

while αk depends on pt as αk(pt) = pkt (1− pt)
Nu−k. Introduce a reduced index pk = k/Nu,

so that pk ∈ [0, 1] can be thought as a probability. We obtain from a routine computation

dkαk(pt) =

√
1

2πNu
×

√
1

pk(1− pk)
×
[( pt
pk

)pk

×
( 1− pt
1− pk

)1−pk
]Nu

=Mt × [exp(−H(pk‖pt))]Nu .

(14)

where H(pk‖pt) = pk∗ln(pk/pt)+(1−pk)∗ln((1−pk)/(1−pt)) is the standard relative entropy
of the binary distribution (pk, 1 − pk) with respect to the binary distribution (pt, 1 − pt).
For pk = pt, the relative entropy H(pk‖pt) is zero and from Proposition (6),

Mt
(def)
= dkαk(pt)

∣∣
k=ptNu

(def)
= dkαmax(k) =

1√
2π σt

=

√
1

2πNupt(1− pt)
(15)
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is the probability density assigned to the eigensubspace hk for k = ptNu. When k deviates
from ptNu, dkαk tends very quickly to zero . Let |pk − pt| � 1. At second order approxi-
mation in (pk − pt), we obtain H(pk‖pt)) ' (1/2)(pk − pt)

2/pt(1− pt). Define the standard
deviation σ2

t

(def)
= Nupt(1 − pt) ' Nupk(1 − pk) = 2π/M2

t , to obtain finally the Gaussian
function Eq. (12). 2.

kkt

Mt

p(hk|pt)

0 Nu/2
|

o

We have σt/Nu ∼ 1/
√
Nu, which implies that

most of the total probability is concentrated
into the eigensubspaces hk of adjacent indexes
k ' ptNu

(def)
= kt. Let us call hkt

the “dominant
eigensubspace”.

Definition 17 (Dominant eigensubspace). In
any snapshot St, the dominant eigensubspace is
the subspace hkt of index kt = ptNu ≤ Nu/2.
The index kt is called the dominant index.

In Eq. (12), the total probability is
∑Nu

k=0 dkαk = 1. On the other hand, from standard
mathematical results on the normal distribution, we have∫ +∞

−∞

1

σt
√
2π

exp
(
− (k − kt)

2

2σ2
t

)
dk = 1.

Neglecting the two distribution tails for k < 0 and k > Nu/2 respectively, we have with an
excellent approximation for the gigantic value of Nu,∫ Nu/2

0

1

σt
√
2π

exp
(
− (k − kt)

2

2σ2
t

)
dk ' 1. (16)

Quantitatively, at the present epoch, using Nu = 6.23× 10125 and pt0 = 1.204× 10−8, the
maximum probability density p(hkt0

|pt0) =Mt0 = 4.6× 10−60 is attained for the dominant
index kt0 = Nupt0 = 1.17 × 10121 with a standard deviation of σt0 = 8.66 × 1058 while
of course Mt0 × σt0 = 1/

√
2π. The origin index, k = 0, is separated from 1062 standard

deviations of kt0 and the index k = Nu/2 from 1066 standard deviations.
This induces a standard deviation of ςpt0

= 1.39 × 10−67 for the transition probability
pt, a standard deviation of ςSt0

= 5.72 × 1049 nats for the snapshot entropy St and, by
anticipation of Assumption (18), a standard deviation of ςt0 = 5.8×10−56 s = 10−12 Planck
unit of time for the present cosmic time t0. This can be seen as the “thickness” of the
present. In other words, one Planck units of time represents currently as many as 1012

standard deviations! Also, two adjacent indexes k = kt ± 1 correspond to a minuscule lapse
time of about st/(2πt) = 3.43× 10−61 Planck time units = 1.85× 10−104 s.
Proposition 11. The dominant eigensubspace, hkt

, is the eigensubspace hk for which the
eigenvalue αk(pt) is maximum with respect to pt.

Proof. Consider the curve family pt 7→ αk(pt) indexed by k. The maximum αmax(k) of
αk with respect to pt is obtained for dαk/dpt = 0, where

dαk

dpt
= αk(pt)

k −Nupt
ptqt

, (17)

so that when k ≤ Nu/2, αmax(k) is obtained for pt =
k/Nu. In particular for k = 0 the maximum is obtained
for pt = 0. When k ≥ Nu/2, αmax(k) = 1/du is obtained
for pt = 1/2 irrespective of k. The curve family is univer-
sal in logarithmic scale up to a homothety factor of Nu.
When the scale is linear, for the actual value of about
Nu ' 10126, the maximum is thus very sharp, like a delta
function 2

ptk/Nu

αmax(k)

αk(pt) [log scale]

1

1/du

k > 0

0 1/2

k = 0
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Deriving Eq (17), the second derivative of αk(pt) at pt = k/Nu is

d2αk

dp2t

∣∣∣
pt=k/Nu

= −αk(pt)
Nu

ptqt

∣∣∣
pt=k/Nu

= −αmax(k)
N2

u

k(Nu − k)

so that in the close neighborhood of k/Nu, the second degree Taylor polynomial approxima-
tion reads for k > 0

αk(pt)

αmax(k)
= 1− N2

u

2k(Nu − k)

(
pt −

k

Nu

)2

= 1− (pt − pk)
2

2pk(1− pk)
(18)

where pk = k/Nu and from Eq. (15),

αmax(k) =
kk(Nu − k)Nu−k

NNu
u

=
Mt

dk
. (19)

Definition 18 (Tail probability). The tail probability is the cumulative probability of the
eigensubspaces hk for all k ∈ JNu/2 + 1, NuK.

The tail distribution is completely negligible except in the vicinity of the ultimate snap-
shot, because it is composed of eigensubspaces hk far away from the dominant subspace.

2.3.4 The episodic clock
It turns out that the eigensubspaces hk, with k ∈ J0, Nu/2K, are key components to interpret
the Bayesian theater in physics. They constitute a kind of “clock” embedded in the Hilbert
space where the dominant eigensubspace acts as the “clock hand”. This is a form of “episodic
memory” stored in the statistical operator. The universe started from the eigensubspace h0
marking the initial position of the “clock hand”. Then, in each snapshot St, the current
“clock hand” is represented by the dominant eigensubspace hkt

with kt = Nupt. Its acuity
is characterized by the “tiny” standard deviation σt. For instance, quantitatively, at the
current epoch, σt = 8.66 × 1058, which means that σt/kt = 7.41 × 10−63. When Nu → ∞
the “clock hand” tends to a Kronecker delta function.

For ease of presentation, we propose the following terminology:

Definition 19 (Episodic clock-hand). In the cosmic Hilbert space Hu, irrespective of the
snapshot, an episodic clock hand denotes a particular eigensubspace hk of the statistical
operator Πt with k ∈ J0, Nu/2K.

This definition stresses that the clock hands are independent of the particular snapshot.

Definition 20 (Episodic distance). The episodic distance between two episodic clock hand
hk1 and hk2 is the index gap |k2 − k1|.

Definition 21 (Episodic clock). The set of all episodic clock hands is termed episodic clock.

Definition 22 (Episode). In any snapshot St, an episode is the set of events recalled by an
episodic clock hand.

By definition, the current snapshot brings together all the information available to the
observer. It turns out that the episodic clock makes it possible to distinguish between the
current events, the relics of the past and the clues of the future among the information
stored in the statistical operator Πt.

In standard information theory, the “Hamming weight” of a binary classical state, e.g.,
(0, 1, 0, 0, 1), is its number of “1” truth values, e.g. 2.

Proposition 12. In the principal observation window, irrespective of the snapshot, the clock
hand hk collects all the distinct classical states of Hamming weight k.
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Proof. By reverse transcription of the Hilbert space into a standard joint probability dis-
tribution, the classical states γi corresponding to hk are Boolean conjunctions of k functions
Xj = 1 and Nu − k functions Xj′ = 0. By definition, the “Hamming weight” is thus k and
this exhausts the classical states of Hamming weight k. 2

Proposition 13. In the current snapshot St the clock hand hk with k ∈ J0, Nu/2K points
towards the current episode for k = kt, the relics of past episodes for k < kt and the clues
of future episodes for k > kt.

Proof. Since most of the probability is concentrated in hkt
, this subspace contains most

of the current events. From Proposition (12), the eigensubspaces hk are fixed irrespective of
St. As a result, in the snapshot St, they refer to episodes occurring when this subspace hk
was, is or will be dominant, whether in the past, present, or future. 2

The “future episodes” have in reality a very special status: they are not directly observable
because they represent outgoing entities, e.g. outgoing light-rays. Under certain conditions
we will propose that they represent antimatter, Assumption (27) below.

Let pt ∈ [0, 1/2] denote the transition probability associated to the current snapshot St

and for any k ∈ [0, Nu/2] let αk(pt) = pkt (1− pt)
Nu−k. In the snapshot St, we note αkt

the
“dominant eigenvalue”.

Proposition 14. The dominant eigenvalue αkt
(pt) with kt = Nupt is

αkt(pt) = sup
p′∈]0,1/2[

αkt(p
′) = e−St (20)

where St ∈ [0, Smax] is expressed in nats. Then, pkt
= pt = kt/Nu, αkt

(pkt
) = e−St and

from Eq. (15), dkt
=Mte

St = [2πNupkt
(1− pkt

)]−1/2eSt .

kkt

−St

lnαk

0−

−Smax

lnα0

0 Nu/2

o

Proof. In the snapshot St, consider the family
of straight-lines k 7→ lnαk(pt) indexed by pt as

lnαk(pt) = k ln pt + (Nu − k) ln(1− pt).

By a straightforward calculation, when k = kt =
ptNu, lnαkt = Nu

(
pt ln pt+(1−pt) ln(1−pt)

)
=

−St. From Eq. (17), the straight-line family en-
velops the curve kt 7→ −St (in dashed line), so
that Eq. (20) holds. 2

Associated to the current snapshot St characterized by its transition probability pt, it is
easy to establish a correspondence between the indexes k ∈ J0, Nu/2K of the clock hands
and an ensemble of discrete snapshots Sk. The extra indexes k ∈ JNu/2, NuK are associated
with the tail of the probability distribution and do not point to a specific snapshot.

Convention. For simplicity, when there is no risk of confusion, we use Sk for Stk where
the index tk should refer to the cosmic time defined later and corresponding to this specific
entropy. Notice incidentally that Sk is a snapshot entropy of the full universe and not the
entropy of the eigensubspace hk induced by the current statistical operator Πt, which is
actually ln dk irrespective of the snapshot (see Ref. [18]).
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Sk

k Nu/20

Smax
For k = kt, Skt

= St is in practice very close to
ln dkt

, e.g., 2.248× 10122 nats at the present epoch.

Proposition 15. Irrespective of the current snap-
shot St characterized by the transition probability pt,
there is a one-to-one correspondence between every
episodic clock hand hk with k ∈ J0, Nu/2K and a dis-
crete snapshot Sk ∈ [0, Smax] as

J0, Nu/2K → [0, Smax] : k 7→ Sk = −k ln(k/Nu)− (Nu − k) ln(1− k/Nu) (21)

Sk represents the present snapshot St for k = ptNu, a past snapshot for k < ptNu and a
future snapshot for k > ptNu.

Proof. The index k is the dominant index in the snapshot Sk. With the usual convention
0 ln 0 = 0, Eq. (21) is always valid even for k = 0. Then S0 = 0 and SNu/2 = Nu ln 2 = Smax

respectively. 2

A snapshot St is a probabilistic combination of eigensubspaces hk, while every hk repre-
sents the pattern of Boolean occurrences with exactly k truth values equal to 1. A transition
hk → hk+1 is achieved by a single jump of a binary variable, say Xj , from 0 → 1. Obviously,
the index k ∈ J0, Nu/2K constitutes a discrete sampling of the continuous segment [0, Nu/2].
However, because of the gigantic number of variables Nu, the discrete set J0, Nu/2K is gener-
ally indistinguishable from a continuous set [0, Nu/2] with a finite precision. For convenience,
we will call the snapshots Sk “episodic snapshots”.
Proposition 16. Every snapshot St is indistinguishable from an episodic snapshot Sk for
some index k ∈ J0, Nu/2K and thus the transition probability pt is indistinguishable from the
rational number pk = k/Nu.

Proof. In the Bayesian theater, all parameters are only probabilistic estimates on a set
of Nu samples, that is, with an accuracy of about 1/

√
Nu, namely, the standard deviation

of the Gaussian distribution. But the separation between two integers implies a precision
of about 1/Nu, which is much more precise and therefore non-significant here. In other
words, any snapshot is in fact indistinguishable from it closest snapshot with integer index
kt = k. Equivalently, the transition probability pt is indistinguishable from the rational
number pk = k/Nu = pkt . 2

2.3.5 Directional window group
In the cosmic Bayesian theater, the source batch of mutually independent variables {Xj} is
obviously not the only possible observation window. The other windows are generated from
the source window by the so-called “window group” acting on the Hilbert space Hu, that is
the full unitary group U(du).

By construction, the source window defined by the batch of independent variables {Xj}
is principal and thus completely divisible [18], meaning that with this batch, the statistical
operator Πt acting on Hu is the Kronecker product of Nu individual two-dimensional sta-
tistical operator Πtj acting on individual Hilbert spaces Hj . They are furthermore diagonal
in the source window.

A priori, any observation window generated from the principal window by the full unitary
group U(du) is feasible. Remarkably, it turns out that the concept of spacetime emerges from
a strict limitation to the completely divisible observation windows. With this restriction, all
individual 2-dimensional Hilbert spaces Hj remain globally invariant. This defines a window
subgroup that only acts inside each partial space Hj . For reasons that will appear soon, we
term this subgroup the “directional window group”.
Definition 23 (Directional window group). The directional window group is the subgroup
of the full window group U(du) that conserves globally the individual two-dimensional Hilbert
spaces Hj.
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Definition 24 (Directional window). A directional window is an observation window gen-
erated from the principal window by the directional window group.

Of course, in each 2-dimensional Hilbert spaces Hj , the partial observation windows are
in general non-principal. They will be referred to as µ while the principal window will be
marked λ. By construction, in any snapshot St a particular µ-window is derived from the
λ-window by a unitary transition operator Rµj acting on Hj and mapping the λ-window onto
the µ-window and thus the corresponding basic vectors, say |eµj〉, are computed from the
principal basic vector |eλj〉 by the operators R−1

µj , i.e., .|eµj〉 = R−1
µj |eλj〉. It turns out that

these windows can be endowed with a so-called partial orientation, namely a qubit which
will allow to construct spacetime explicitly. Furthermore, the qubit is only defined up to its
effective transcription gauge group [18], which will actually represent the exact geometric
symmetries as perceived by the Bayesian observer.

Definition 25 (Orientations of a partial directional window in Hj). The orientation of
a particular window, µ, in a 2-dimensional Hilbert space Hj is its first basic vector |eµj〉,
irrespective of the second basic vector |fµj〉, that is a specific qubit, specified up to its effective
transcription gauge group.

- Especially, the orientation of the principal window, λ, is |eλj〉 = |0〉j ∈ Hj. We will
say that “the partial principal window is pointing in the |eλj〉 direction”.

- The orientation of the µ-window is |eµj〉 = R−1
µj |eλj〉 ∈ Hj, where Rµj is a unitary

transition operator acting on Hj mapping the λ-window to the µ-window. We will say that
the partial µ-window is pointing in the |eµj〉 direction.

Definition 26 (Uniform directional window). A directional window µ is uniform when the
Nu partial orientations of the µ-windows are all identical, meaning that irrespective of j,
assuming |eλj〉 = |0〉 we have |eµj〉 = |eµ〉.

By construction, the principal window is a uniform directional window |eλj〉 = |eλ〉 = |0〉.

Proposition 17. A uniform directional window can be generated from the principal window
by a unique transition operator Rµ acting in each partial Hilbert space Hj.

Proof. Assuming irrespective of j |eλj〉 = |0〉 in the principal window, the first basic
vectors |eµj〉 = |eµ〉 are obviously also identical irrespective of j. 2

For simplicity, under otherwise stated, we will assume that any uniform directional window
is so generated. This convention corresponds to a particular transcription gauge for the full
Hilbert space Hu (see Ref. [18]). As a result, the second basic vectors are also identical
irrespective of j.

Given the fundamental prior, Eq. (2), all partial operators Πtj = Diag(1 − pt, pt) ex-
pressed in the principal window are identical. As a result, when observed in a uniform
directional window µ, the statistical operators Πµtj are likewise identical in each partial
Hilbert space Hj .

Proposition 18. Given the fundamental prior and in a uniform directional window µ, the
global statistical operator Πµt is the Kronecker product of Nu identical partial statistical
operators Πµtj as

Πµt = (Πµtj)
⊗Nu .

Proof. Given the fundamental prior, Eq. (2), all partial statistical operators Πλtj are
identical irrespective of j in the principal window λ and thus also Πµtj expressed in a uniform
directional window µ. 2

Definition 27 (Uniform directional group). The uniform directional group is the subgroup
of the directional group that acts identically on all partial spaces Hj.

Proposition 19. The uniform directional group is the special unitary Lie group SU(2).
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Proof. In the uniform directional window the window group acting on any partial sub-
space Hj is the Lie group U(2) = SU(2) n U(1) irrespective of j. From Definition (25)
the orientation is defined up to the gauge transcription of the first basic vector so that the
directional group proper is reduced to SU(2). 2

Proposition 20 (Partial directional statistical operator). The partial statistical operator
expressed in the directional window pointing in the direction |eµ〉 = (α, β) in each partial
Hilbert space Hj is

Πtjµ =

[
αα∗qt + ββ∗pt αβ∗(qt − pt)
α∗β(qt − pt) αα∗pt + ββ∗qt

]
(22)

Proof. Consider a uniform orientation window µ of directional orientation |eµ〉. By
hypothesis, |eµ〉 it is the first basis vector in each partial Hilbert space Hj . Let |eµ〉 =
(α, β) ∈ Hj with αα∗ + ββ∗ = 1 denote its coordinates expressed in the principal window
λ. From definition (25), the second basic vectors, say |fµ〉, is arbitrary and can be chosen
independently of j. For definiteness, let |fµ〉 = (−β∗, α∗) be its coordinates expressed in the
principal window. The inverse transition matrix from the basis λ to the basis µ is thus

R−1
µj =

[
α −β∗

β α∗

]
= R†

µj

Irrespective of j, the partial statistical operator Πtj = Diag(qt, pt) in the principal window
is expressed in the basis (|eµ〉,|fµ〉) as

Πtjµ = R†
µjΠtjRµj =

[
α −β∗

β α∗

] [
qt 0
0 pt

] [
α∗ β∗

−β α

]
which gives Eq. (22). 2

3 Emergence of spacetime
Humans perceive the universe as something completely different from an information ware-
house. How is it possible? We propose that the fundamental reason lies in their Bayesian
perception of information. Indeed, basically, the usual 3D-Euclidean space of the everyday
world emerges from the experimental fact that, (surprisingly enough!), several points of view
are required to completely describe an object. This is the signature of a Bayesian theater
characterized by the need to have several observation windows to be able to specify the full
set of observables (see Ref. [18]).

3.1 Bayesian perception of Boolean variables
The Bayesian representation of a single Boolean variable is very different from its deter-
ministic representation, simply because it is impossible to express all observables by using
a single alternative, namely the variable and its negation. Therefore, each initial query
must be complemented by a set of related alternatives using distinct Boolean variables and
thus constructing a Bayesian theater. Technically, these alternatives are generated from
the source variable by the window group. As a result, a single degree of freedom becomes
necessarily represented by a set of Boolean variables and no longer as a single dichotomic
function.

For the Nu degrees of freedom of the universe, it turns out that given the fundamental
prior, Definition (7), the full window group is not necessary. Indeed, the minimum window
group required to completely observe all alternatives is reduced to the uniform directional
window group, Definition (27), namely SU(2). We propose that it founds the standard
physical space. Technically, SU(2) is conveniently described as an action group acting on
the set of qubits belonging to C2. In turn, this set of qubits is conveniently represented in
R3 by the so-called “Bloch sphere”.

This role of qubits was already conjectured out of any Bayesian framework by a number
of authors, pioneered in 1943 by von Weizsäcker and collaborators [49–51] and reinterpreted
in 1995 by H. Lyre [52] in the framework of standard quantum information theory.
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3.2 The Bloch sphere
In standard quantum information, the set of qubits belonging to C2 is routinely pictured by
a Bloch sphere S2 of unit radius in a real-valued three dimensional vector space R3 endowed
with Euclidean metric, S2 ⊂ R3. To construct this sphere, irrespective of j, consider the
usual Pauli matrices in the principal window of each Hj with basis (|0〉j , |1〉j), or simply
(|0〉, |1〉) irrespective of j, as

σ1 =

[
0 1
1 0

]
; σ2 =

[
0 −i
i 0

]
; σ3 =

[
1 0
0 −1

]
.

In standard physics, they posit at the same time three spin observables, three generators
of the special unitary group SU(2) in its Lie algebra su(2) (with the standard conventions
of physics) and finally three involutive unitary operators acting on Hj , meaning that they
are their own inverse, σ2

i = 12. Of course, there are many expressions of Pauli matrices.
This particular choice singles out a basis in the principal window that we will call “principal
orientation”.

From Definition (27), a uniform µ-orientation in the cosmic Hilbert space Hu is depicted
by a unique qubit |eµ〉 ∈ Hj irrespective of j in the partial Hilbert spaces Hj . From
Definition (25), for each orientation |eµ〉 = R−1

µj |0〉j ∈ Hj , define the three entries of a so-
called “Bloch vector” nµ = (nµi) ∈ R3 as the expectations of the Pauli observables σi with
respect to the pure state |eµ〉,

nµi
(def)
= 〈eµ|σi|eµ〉, i ∈ J1, 3K. (23)

From σ2
i = 12, irrespective of |eµ〉, it is easy to verify that n2µ1 + n2µ2 + n2µ3 = 1, so that

the Bloch vector is a point of a unit 2-sphere S2 of R3. Furthermore, it can be seen by
routine computation that the qubit |eµ〉 is the eigenvector belonging to the eigenvalue +1
of the Hermitian traceless operator σµ = nµ1σ1 + nµ2σ2 + nµ3σ3, so that σµ|eµ〉 = |eµ〉 and
〈eµ|σµ|eµ〉 = 1. Therefore, we have |eµ〉〈eµ| = (1/2)(12 + σµ).

Now, using Eq. (23), we propose to adopt the mapping

Hj → R3 : |eµ〉 7→ nµ =

nµ1nµ2
nµ3

 (24)

as the base of the usual three-dimensional perception of space. For instance, we have |0〉 7→
(0, 0, 1), |1〉 7→ (0, 0,−1), (|0〉 ± i|1〉)/

√
2 7→ (0,±1, 0) and (|0〉 ± |1〉)/

√
2 7→ (±1, 0, 0). In

particular, the principal direction |0〉 in the Hilbert space corresponds to the z-direction
(0, 0, 1) in R3.

In mathematics, a complex-valued number in C can be represented by a point in R2 so
that the set of general qubits of unit norm in C2 can be identified with a 3-sphere S3 in a
real-valued Euclidean space R4. Then, the mapping |eµ〉 7→ (nµi), Eq. (24), is a standard
“bundle” S3 → S2 with “fiber” S1, called “Hopf fibration”. The fiber S1 represents the group
U(1) while S2 ⊂ R3 is by definition the Bloch sphere.

Using this mapping, we propose to adopt the following assumption:

Assumption 9 (Geometry of space). Given the fundamental prior, Eq. (2), the geometry
of space is that of a Bloch sphere, generated from the uniform directional window group by
Hopf fibration.

Hints. Every source Boolean variable Xj is transcribed into a partial Bayesian theater
represented by the 2D-Hilbert space, Hj (see Ref. ([18]). Since the Nu source variables are
equivalent, the complex-valued Hilbert spaces Hj are identical as well. Irrespective of j,
a convenient real-valued representation is therefore a common Bloch sphere. Its topology
is different from that of the usual 3D-Euclidean geometry, but it depicts indeed the now
accepted symmetry of space, as stressed by R. Feynman [53]. In non-relativistic physics,
the shortcomings of the common Euclidean representation look rather subtle: For instance,
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it is often stated that the usual space rotational invariance of 2π should be replaced by 4π,
even if it actually requires some contortions. However, we will see that in fact the invariance
is not that of a simple rotation of 4π but the iteration of a rotation of 2π combined with
complex conjugation, Proposition (21). More conclusive, the SU(2) symmetry is proved by
the existence of topological insulators [54] and topological photonics [55]. 2

The orientation symmetry group. What are the basic symmetries of spacetime
given the fundamental prior ? We propose that they be constituted by the “transcription
gauge group” [18] of the orientation |eµ〉. Technically, in a Bayesian theater representing a
single degree of freedom, the transcription gauge group of a qubit is composed of unitary
and antiunitary operators.
Assumption 10 (Orientation symmetries). The exact symmetries of spacetime are those
of the transcription gauge group of the orientations |eµ〉.

Hints. By definition, the equivalent transcriptions of the qubit |eµ〉 are indistinguish-
able for the observer and therefore perceived as an exact symmetry. In other words, the
transcription gauge group gathers on its own the basic symmetries of spacetime given the
fundamental prior. 2

This induces a symmetry group in both the partial Hilbert spaces and the Bloch sphere,
which we will call the orientation symmetry group. In order to completely explicit this
symmetry structure it is necessary to consider both sides of the Bloch sphere. Technically,
this expresses a well known property of the morphism SU(2) → SO(3) but remains uncon-
ventional because the conjugation symmetry is usually ignored.
Proposition 21. The orientation symmetry of the partial directional window in Hj is gen-
erated by the gauge group KoU(1), that is the semi-direct product of the complex conjugation
group K with the phase group U(1).

Proof. The orientation is specified by a qubit, that is a pure state |eµ〉. In turn, from
Ref. [18], the qubit is the transcription in Hj of a Boolean variable whose effective transcrip-
tion gauge group is the semi-direct product K o U(1), where K is the complex conjugation
group and U(1) the phase group. 2

Convention. The complex conjugation operator expression depends on the observation
window. For definiteness, we assume throughout that this operator acting on Hj is expressed
in the principal window by the operator K× 12 = Diag(K,K), where K : C → C : z 7→ z∗ is
the standard complex conjugation on the complex field. For simplicity we will note also K
for K× 12 so that K = {12,K} when expressed in the principal window. 2

Let |eµ〉 = (α, β) ∈ Hj be the orientation of the window µ expressed in the principal
window λ. Omitting the index µ of its entries nµi for simplicity, the Bloch vector (nµ) reads
from Eq. (24),

nµ =

n1n2
n3

 =

 2 <e(αβ
∗)

2 =m(αβ∗)
|α|2 − |β|2

 . (25)

Proposition 22. Given the fundamental prior, the usual Euclidean space R3 is invariant
under the rotation group, U(1), around the principal direction, n3.

Proof. The gauge group U(1) corresponds to a multiplication by a phase factor eiφ
affecting identically α and β. This corresponds to the phase group of parameter φ. The
rotation axis n3 is specified by the initial choice of Pauli matrices used to construct the
Euclidean space. By Noether theorem, this will later lead to defining spins and angular
momentums. 2

Proposition 23. Given the fundamental prior, the usual Euclidean space R3 is invariant
under a mirror symmetry with respect to the plane (n1, n3), that is n2 7→ −n2.
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Proof. The gauge operator K : |eµ〉 7→ |e∗µ〉 that is i 7→ −i or =m(αβ∗) 7→ −=m(αβ∗)
represents a mirror symmetry with respect to the plane (n1, n3) on the Bloch sphere, that
is n2 7→ −n2. This will later lead to defining “time reversal”. 2

On the other hand, a phase factor eiφ on a single component, say β, induces a rotation of
φ in the plane perpendicular to n3. Let thus (θ, φ) denote the standard spherical coordinates
of nµ on the sphere S2.

Convention. For definiteness, we adopt the determination −π < φ ≤ π for the azimuthal
angle and 0 ≤ θ < π for the polar angle. 2

Now, we have n1 = sin θ cosφ, n2 = sin θ sinφ and n3 = cos θ, while the mirror symmetry
n2 7→ −n2 is obtained for φ 7→ −φ. Conversely, θ = arccosn3 and φ = arctan(n2/n1).

The two sides of the Bloch sphere. It turns out that the Bloch sphere is swept in
its entirety from the following series of qubits,

|eµ〉 = α |0〉+ β |1〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 ∈ Hj ,

with 0 ≤ θ < π and −π < φ ≤ π. Indeed, from Eq. (25), we recover n1 = sin θ cosφ,
n2 = sin θ sinφ and n3 = cos θ.

The factor 1/2 in the polar angle θ indicates that a single rotation in S3 corresponds
to a double rotation in S2. Technically, this expresses the well known 2 to 1 morphism
of SU(2) on SO(3), potentially covering two complete spheres. Usually, by ignoring the
conjugation gauge group, the two spheres are regarded as indistinguishable and the second
sphere is simply discarded. By contrast, in the current model, we must make explicit the
full orientation symmetry group, which requires distinguishing the two spheres. Therefore,
we propose that they represent respectively both sides of the Bloch sphere. To deal with, we
propose to adopt the following rule:
Assumption 11 (Correspondence between both sides of the Bloch sphere). Proper rotations
on R3 and unitary operators on Hj conserve the same side of the sphere while improper
rotations of R3 and antiunitary operators on Hj switch both sides.

Hints. Since from Eq. (25) the gauge subgroup U(1) is indifferent, the second sphere
must be generated by the conjugation gauge subgroup K. Then, the second side of the sphere
arises from the first side by complex conjugation on Hj , that is a antiunitary operator. As
a result, unitary operators acting on Hj conserve the same side. They also corresponds to
proper rotations of R3 and thus the side swap represents improper rotations. 2

However, we will see that an unconventional consequence is that parity and conjugation
cannot be distinguished.
Proposition 24. Every partial Hilbert space Hj is represented by the two sides of a Bloch
sphere up to a gauge group U(1). One side of the sphere is mapped pointwise to the sec-
ond side by antiunitary operators. Conversely, each point on one side of the Bloch sphere
represents a direction in every partial Hilbert space Hj.

Proof. Taking into account the transcription gauge group of qubits, switch both sides of
the Bloch sphere by the antiunitary operator iσ2K. We use iσ2 rather than σ2 because iσ2
is real and thus commutes with K. Then,

Hj → Hj : |eµ〉 =
[
α
β

]
7→ iσ2K|eµ〉

(def)
= |ψ∗

µ〉 =
[

0 1
−1 0

] [
α∗

β∗

]
=

[
β∗

−α∗

]
,

so that

nµ =

n1n2
n3

 =

 2 <e(αβ
∗)

2 =m(αβ∗)
|α|2 − |β|2

 7→ n∗µ =

−2 <e(αβ
∗)

−2 =m(αβ∗)
|β|2 − |α|2

 =

−n1−n2
−n3

 .
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This transformation S2 → S2 : nµ 7→ n∗µ = −nµ is an involutive improper orthogonal
transformation corresponding to the involutive antiunitary operator iσ2K. The residual
gauge group U(1) represents the fiber of the Hopf fibration.

The transformation of each partial statistical probability operator is obtained simply in
the principal window by exchanging pt and qt.

Πtj =

[
qt 0
0 pt

]
7→

(
iσ2K

)
×Πtj ×

(
− iσ2K

)
=

[
pt 0
0 qt

]
.

As a result, the antiunitary operator means an exchange of all Boolean variables with their
negation. This is nothing but a change of discrete Boolean gauge (Definition 4) in the
observer gauge (Definition 5). 2

The Fubini-Study metric. Actually, the Bloch sphere S2 can be roughly addressed as
a subset of Euclidean space but not completely. Its topology is different and strictly speaking
its natural metric [56] is in fact that of a complex projective space called Fubini-Study metric,
also known as Bures metric in quantum physics. This metric ds2FS with spherical coordinates
(θ, φ) is simply

ds2FS =
1

4
(dθ2 + sin2 θ dφ2). (26)

Compared to Euclidean metric, the Fubini-Study area of a Bloch sphere is π unstead of 4π.
It turns out that the factor 4, technically a Gaussian curvature, appears especially in the
entropy density expression of the standard Bekenstein black-hole “area law”.

Rescaled Bloch sphere. The standard Bloch sphere as such does not distinguish be-
tween snapshots. In order to represent the current snapshot of specific entropy St, we propose
to introduce a rescaled Bloch sphere whose Fubini-Study area is by definition normalized to
St and therefore its Euclidean area is normalized to 4× St.

Proposition 25. Given the fundamental prior, a snapshot St can be represented by a
rescaled Bloch sphere normalized to a Euclidean area A = 4St in natural entropy units.
Its Euclidean radius χt is thus

χt =

√
St

π
(27)

Its Fubini-study metrics ds2t with spherical coordinates (θ, φ) is

ds2t =
χ2
t

4
(dθ2 + sin2 θ dφ2) (28)

so that its Fubini-Study curvature Ct equal to its Fubini-Study square radius is

Ct =
4π

St
=

4

χ2
t

(29)

The entropy density is uniform and equal to 1 in Fubini-Study metric and 1/4 in Euclidean
metric. This defined a probability density of 1/St per nat.

Proof. Construct a rescaled Bloch sphere endowed with the standard Fubini-Study metric
and normalized to an area St. Let χt denote its radius. The usual Euclidean area is
A = 4πχ2

t = 4St and thus χt =
√
A/4π =

√
St/π. The entropy is uniform because the

von Neumann entropy does not depend on the observation window. Its density is St/St = 1
in Fubini-Study metric and St/A = 1/4 in Euclidean metric. The total probability of the
universe is 1 by definition over the St nats. As a result, the probability density is 1/St per
nat. 2
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In particular, the ultimate snapshot Smax is represented by a rescaled Bloch sphere of
Fubini-Study area Smax = Nu bits = Nu ln 2 nats and radius χmax =

√
Nu ln 2/π. The

initial snapshot S0 of zero entropy is reduced to a simple geometric point.

Proposition 26. Given the fundamental prior, Eq. (2), the universe evolution from the
initial snapshot S0 to the current snapshot St can be represented by a foliation of rescaled
concentric Bloch spheres of increasing radii, χt′ =

√
St′/π with St′ ∈ [0, St], constituting a

rescaled Bloch ball of Euclidean area 4St′ . For the ultimate universe of entropy Smax, the
radius is maximum but finite and equal to χmax =

√
Nu ln 2/π .

Proof. Construct the set of concentric rescaled Bloch sphere of area 4St′ . Clearly, the
radial distance χt′ increases with St′ bounded by St ≤ Smax. 2

Definition 28 (The ultimate Bloch ball). The ultimate Bloch ball is the complete set of
rescaled concentric Bloch spheres of maximum radius χmax =

√
Nu ln 2/π.

The Euclidean curvature of the rescaled Bloch sphere is trivially Ct = 1/χt and its
minimum is thus Cmin = 1/χmax = (ln 2/π)1/2 × 1/

√
Nu.

3.3 Geometric representation of the universe
The rescaled Bloch spheres are interpreted henceforth as the basis of the universe geometry
given the fundamental prior, Eq. (2). They are considered as double-sided surfaces. In
Assumption (14) below, the two sides are respectively referred to as inward and outward,
or equivalently, as internal and external.

Definition 29 (Universe-point). A universe-point is a point of the ultimate Bloch ball on
a particular side of a specific rescaled Bloch sphere.

Proposition 27. At any epoch, every universe-point is either in the past, in the present or
in the future. There is no “elsewhere”.

Proof. By hypothesis, the current observer contemplates the rescaled Bloch sphere of
area 4St and by definition every universe-point is located on a specific rescaled Bloch sphere
of area 4St′ . Therefore, any universe-point is either in the present for St′ = St, in the past
for St′ < St or in the future for St′ > St. This exhausts all possible universe-points and
there is no room for the “elsewhere”. 2

This contradicts standard physics in which there are extra universe-points located in the
conventional “elsewhere” and which are thus separated from the observer by a space-like
interval. As a result, they are not observable. They are nonetheless thought to exist at
every epoch.

By contrast, in a Bayesian theater, non-observable events are inconsistent and must
be ignored: they would have no probability and no entropy! Therefore, for the sake of
consistency, we will actually replace the standard “elsewhere” by the past universe-points
or rather by their current relics. Indeed, even if past events are not observable either, from
Proposition (13) their relics are so, and therefore located on some “episodic clock-hand” hk
with k < kt, Sec. (2.3.4) above. As a result, any standard space translation in the principal
direction is replaced in the present model by a simple shift of the episodic clock-hand. This
is of course valid in non-principal directions with some obvious adjustments.

A question arises for the cues of future events. Are they perceptible? In fact, they will be
compared to outgoing light rays in Assumption (14) below: their existence is acknowledged
but they are not perceptible as such. This will be clarified later (Assumption 29 below).

But what does the universe depict given the fundamental prior? For definiteness, we
simply propose that the fundamental prior be equated to the concept of “quantum vacuum”.

Assumption 12 (Quantum vacuum). The quantum vacuum is the representation of the
universe conditionally to the fundamental prior.
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Hints. This proposes a precise definition while the standard quantum vacuum is widely
puzzling. In any snapshot St, the void universe is subject to all physical “laws” and contains
potentially all particles and their interactions. Technically, it we will be identified later with
a so-called “sea of mono-episodic objects”, Sec. (4.3.1) 2

Correspondence between space time and Hilbert space. The current rescaled
Bloch sphere represents an image of the past, current and foreseeable episodes of the quan-
tum vacuum.

Assumption 13 (Light-cone). The complete set of all universe-points located on the current
snapshot St represents the standard light-cone of the observer.

Hints. The current snapshot St represents the universe-points of the current Bloch
sphere. From Proposition (3), these universe-points can only be on the standard light-cone
because they are neither in the past nor in the future. For simplicity, we will say that they
are connected by a “light-ray”. 2

We use the term “light-rays” for ease of presentation but at this stage, they are not
precisely defined. They correspond to the geodesics of the standard pseudo-Riemannian
metric of General Relativity. Using the Bousso’s terminology [26], any snapshot is a “light-
sheet”.

This assumption constitutes a non-standard definition of the “present universe”, which
is thus equated to the standard light-cone and excludes the conventional “elsewhere” of
standard physics. This is inevitable in a Bayesian framework because at every time non-
observable events have no entropy. A similar concept was previously conjectured by R. Pen-
rose in his “twistor theory” [57].

But with a little hindsight, this conception is actually very close to that of conventional
cosmology! The only difference is that we make explicit that past events as such no longer
exist and thus only their current relics are observable. In addition, for short distances, relics
are indistinguishable from the events proper in standard physics.

Universe symmetries. In standard physics, at a particular moment, the flat space
symmetry is generated by two groups, the group of rotation SO3 and the group of translation
R3. The other physical entities are generated by the so-called gauge groups.

In the present model, spatial rotations are generated by the directional window group of
the Hilbert space Hu, Definition (27), that is SU2. Other symmetries correspond to gauge
symmetries of Hu. Spatial translations are not exact symmetries but simply shifts of the
“episodic clock”, Definition (21) above, and behave similarly as gauge operators.

On the other hand, it is also necessary to characterize the two sides of the rescaled Bloch
sphere from the observer’s point of view. We propose that they depict the two standard half
light-cones.

Assumption 14 (Incoming and outgoing half light-cones). The internal side of the current
rescaled Bloch sphere represents the standard incoming half light-cone and the external side
the outgoing half light-cone.

Hints. The incoming light-rays are so in the past half light-cone and the outgoing light
rays in the future half light-cone. 2

The relics of past events are represented by incoming light rays located on the internal
half light cone and recorded on the episodic clock.
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Causality: Status of past, present and future. It turns out that causality is
widely different in the present model and in standard physics. In the current model, time
is identified with an increase in entropy, that is, an increase in uncertainty, and so the new
increments are unpredictable. This is incompatible with the strict determinism governing
standard physics. On the other hand, the events already occurred do limit the field of
the possible future. They are recorded by past episodes on the episodic clock. Given the
fundamental prior, there is no update and past episodes are summarized in the dominant
episode, which therefore corresponds to the initial conditions of standard physics.
Assumption 15 (Past episodes). When looking far into infinity the observer discovers the
current relics of the past.

Hints. This is clearly what common sense suggests. 2

Given the fundamental prior, the foreseeable future is represented by the future episodes
on the episodic clock. In terms of binary variables, they are symmetrical of the past episodes
with respect to the current episode, that is fewer truth values 1 compared to more truth
values 1 in past episodes.

This symmetry is surprising because in everyday life, past relics are perceived while
future cues are not. Acknowledging this difference, we propose that future episodes are
virtual in the sense of virtual particles in micro-physics. In addition, in the present model,
the concept of “perception” itself is not very clear and will be elucidated later, (in short, we
will propose that only “mediators” are observed).
Assumption 16 (Future episodes). Future episodes are virtual, that is, not really perceived.

Hints. Like outgoing light rays, future events point toward specific cues but are in fact
invisible. 2

Surprisingly enough, while past episodes represent pieces of ordinary matter, we will
propose that future episodes represent antimatter. See Assumption (27) below.

In summary, a snapshot St represents everything the observer grasps at a specific moment.
Past episodes hk with k < kt represent the relics of past events. The dominant episodes hkt

represent the present. Future episodes hk with k > kt are virtual.

Time reversal. Now, the exchange of incoming and outgoing light-rays can be identified
with the standard operation of time reversal. This has nothing to do with a very problematic
reversal of the cosmic time, but is in fact a reversal of the episodic clock.
Assumption 17 (Time reversal). The standard operation of time reversal corresponds to
an exchange of the incoming and outgoing half light-cones.

Hints. The incoming light-rays so travel in the past half light-cone and the outgoing
light rays in the future half light-cone. 2

In standard physics, time reversal is an antiunitary operator that reverses light rays. This
also corresponds to inversion of the arrows in Feynman’s standard diagrams. We propose
that this remains true in the present model. As already mentioned, a consequence is that
parity and conjugation cannot be distinguished.
Proposition 28. In every partial Hilbert space, Hj, time reversal is expressed in the prin-
cipal window by the antiunitary operator

T = iσ2K (30)

This means an exchange of all Boolean variables with their negation in the observer gauge
(Definition 5). The standard parity and conjugation symmetries, respectively, P and C in
isolation, are irrelevant but only their product CP = T makes sense. The CPT identity is
trivial and expresses the involutive property T2 = 1.
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Proof. Consider in R3 a standard “ray” incoming from the direction +nµ = (n1, n2, n3)
and therefore pointing towards the direction −nµ = (−n1,−n2,−n3). “Reversing time”
means changing this ray into a new ray, coming from the direction −nµ and therefore point-
ing towards the direction +nµ. In other words, times reversal must be identified with both
a reflection of the direction nµ into −nµ and a jump to the other side of the rescaled Bloch
sphere. From Proposition (24), this is obtained in particular by the antiunitary operator
T = iσ2K and means an exchange of all Boolean variables with their negation. Alone,
standard parity or conjugation symmetry would be incompatible with Assumption (11). 2

Remark. Since the topology induced by SU2 is not Euclidean, every direction is in fact
represented twice. For instance, given that space is isotropic in both half-cones, any direction
nµ of the internal half-cone can be associated with the same direction nµ of the other half-
cone.

At last, the common center of all Bloch spheres constitutes a particular universe-point of
zero entropy that represents the reset register with a zero truth value for all binary variables.
Its current relic is pointed by the episodic clock-hand of index k = 0, so that it is perceived
by the observer as the location of the origin of the universe.

Proposition 29. For the Bayesian observer, the geometric representation of the universe
starts from a unique point corresponding to the common center of all rescaled Bloch spheres.

Proof. The origin of the universe is defined by S0 = 0 and therefore χ0 = 0. 2

We propose to call “center of the universe” this common origin.

Definition 30 (Center of the universe). For the Bayesian observer, the center of the uni-
verse is the common center of all rescaled Bloch spheres.

On the other hand, the ultimate Bloch sphere represents a particular snapshot of maxi-
mum entropy and transition probability 1/2. Its current clue in the snapshot St is pointed
by the episodic clock-hand of index k = Nu/2.

We are now ready to precisely define the cosmic time t, that is, to propose a quantitative
correspondence with its standard counterpart.

3.4 Cosmic time
Standard cosmology is usually based on the Friedmann-Robertson-Walker (FRW) metric,
that is an exact solution of Einstein’s equations with maximum symmetry. Omitting the
details irrelevant to the current model, this solution essentially depends on a scale factor,
R(t), function of a parameter t called cosmic time. In dimensional analysis, the scale factor,
R(t), has dimension of length [58]. It is often represented by the dimensionless ratio, a(t) =
R(t)/R(t0) of value 1 at the present epoch.

Now, we propose to identify the radius χt of the current rescaled Bloch sphere of area
4St, Eq. (27), with the current cosmic time t of standard cosmology. Therefore, the cosmic
time is t =

√
St/π. Of course, this expression is extended beyond the fundamental prior.

Assumption 18 (Cosmic time).

StSt0

t0

t

0 Smax

tmax The cosmic time t of standard cosmology as-
sociated with a snapshot St is

t =

√
St

π
. (31)
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Hints. The ultimate Bloch ball is the collection of all rescaled Bloch spheres of entropy
St. Similarly, the standard scale factor R(t) defines a “foliation” of the FRW spacetime into
time slices, that is a collection of 3-dimensional spaces at cosmic times t, all identical except
by their scaling factor. Given the fundamental prior, this suggests to identify each slice at
time t with a rescaled Bloch sphere of Euclidean area 4St. No additional factor is needed
because the factor 4 has been precisely introduced to be consistent with the Bekenstein
bound in the ultimate rescaled Bloch sphere. At last, by convention, this expression is
dimensionless and uses Planck units. Restoring the dimensions, while still maintaining St

in nats, we have

t =

√
~GSt

c5π
. 2

Quantitatively at the present epoch t0, with t0 = 14.4 Gyrs, the current particle entropy
of the universe is St0 = 3.24× 10122 bits.

Remark. This departs by several orders of magnitude from the standard estimate St0 ∼
10106 bits but this latter estimation is highly uncertain and seems to miss most of the
black-holes [39]. One possible solution could be a review of the size of supermassive black
holes in galaxies. 2

Finally, the universe is not eternal and tmax =
√
Smax/π ' 633.3 Gyrs. In addition, with

a transition probability pt0 = 0.120× 10−7 (Definition 10), the current relaxation time can
be estimated as t0/pt0 = 109 Gyrs � tmax. The universe is in fact pretty stable and still in
its infancy!

By definition, the time flow results from a continuous creation of entropy (or equivalently
from a loss of information) of 2πt per unit time.

St = πt2 ;
dSt

dt
= 2πt. (32)

It is convenient to assign a special name to the time increment τt corresponding to dSt = st,
the entropy increment st, Eq. (8).
Definition 31 (Time increment). At cosmic time t, the time increment τt is

τt =
st
2πt

(33)

where st is the entropy increment, Eq. (8).

Quantitatively, at the current epoch t0, the time increment is τt0 = 3.43× 10−61 Planck
time units = 1.85× 10−104 s.

Continuous or discrete? By simple inspection, even though we have defined a time
increment τt, no discreteness appears in Eqs. (31, 32).

By contrast, the episodic clock stores especially discrete past states of the universe.
Indeed, from Eq. (20), the current snapshot of entropy St = Skt is associated with a discrete
location kt = pkNu ∈ J0, Nu/2K of the episodic clock-hand, depicting kt truth value of 1 in
the corresponding Boolean variable pattern. From Proposition (30), the time increment τt,
Eq. (33), corresponds to an additional truth value of 1 in this pattern. It is completely
negligible compared to the standard deviation of ςt0 = 5.8 × 10−56 s = 10−12 Planck unit
of time (see above, just before Proposition 11) and is thus unfalsifiable, that is to say, not
perceptible.

The episodic discreteness itself remains nevertheless a fundamental feature and was in-
deed the basis of Planck’s derivation of the black-body radiation law [34] as well as the origin
in the present model of the standard concept of “particles” in physics.
Proposition 30. The cosmic entropy St can be represented by a sum of discrete entropic
increments sk for k ∈ J1, Nu/2K with sk = ln(qk/pk), pk = k/Nu and qk = 1− pk.
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Proof. From Proposition (16), the episodic snapshots St form a discrete set Sk, with
k ∈ J0, Nu/2K. Let pk = k/Nu, qk = 1− pk and Sj(pk)

(def)
= −pk ln pk − qk ln qk. Then, from

Eq. (21), Sk = NuSj(pk). As a result, for k > 0,

dSk

dk
=

dSk

dpk
× dpk

dk
= Nu

dSj(pk)

dpk
× 1

Nu
= ln

1− pk
pk

.

The actual increment Sk+1 − Sk ' dSk is about (dSk/dk)× dk with dk = 1, and thus from
Eq. (8) is precisely equal to the so called “entropic increment”, say sk = st, for pt = pk,

Sk+1 − Sk ' dSk

dk

∣∣∣
dk=1

= ln
qk
pk

= sk. 2

Quantitatively, at the present epoch, st0 = 18.235 nats compared to St0 = 2.248 × 10122

nats. From Eq. (33), this corresponds to a completely negligible time lapse of τt0 =
st0/(2πt0) = 3.43 × 10−61 Planck units. Also, two adjacent indexes k = kt ± 1 correspond
to this episodic time lapse τt0 .

3.5 Definition of dark matter and black-holes
At this stage, it is possible to propose a very simple definition of dark matter and black-holes.

The universe begins from the center of the universe, that is a rescaled Bloch sphere of
radius χ0 = 0 and entropy S0 = 0. It ends in the ultimate rescaled Bloch sphere of radius
χmax = tmax and maximum entropy Smax = Nu ln 2.

Since S0 = 0, the initial sphere of radius zero is simply invisible! In standard physics,
this is the characteristic of dark matter. The universe is then only composed of pure states,
that is deterministic Boolean variables.

Since Smax means a completely random system, the final sphere, in the usual jargon, has
no hairs anymore. In standard physics, this is the characteristic of black-holes and even of
a Schwarzschild black-hole, that is a pure black-hole, devoid of any additional feature like
charge or momentum. The universe is then only composed of completely random Boolean
variables.

For consistency, we therefore propose to define dark matter and black-holes accordingly.

Assumption 19 (Dark matter). Dark matter is composed of deterministic degrees of free-
dom

Assumption 20 (Black-holes). Black-holes are composed of completely random degrees of
freedom.

With this terminology, we get the (tautological) proposition:

Proposition 31. The universe begins as a block of dark matter and ends as a Schwarzschild
black-hole.

Note that given the fundamental prior, there are no exact black-holes for t 6= tmax and
no exact dark matter for t 6= 0. Of course, approximate black holes and dark matter remain
possible and are even ubiquitous when the finite precision is taken into account.

3.6 Expansion of the universe
When the area 4St of the rescaled Bloch sphere increases, its radius, that is the “distance”
between the universe center and the observer increases likewise.

Proposition 32. The universe is expanding over time.

However, the “distance” to the universe center is defined in the Bloch representation
and at this stage has no connection with the usual distance of the physical world. Let us
interpret the universe radius in standard physics.
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Comoving distance. By definition, the radius χt = t is both the cosmic time t and
the geometric radius of the universe in the Bloch representation. Therefore, we propose to
identify this interval χt with its so-called “comoving distance” that is the distance used in
the standard FRW metric to express the scale factor.

Assumption 21 (Comoving distance). The radius χt = t of the rescaled Bloch sphere is
the comoving distance between the universe center and the observer.

Hints. Tautologically, the observer who contemplates the snapshot St is indeed comoving
with the universe radius. 2

Proposition 33. The comoving radius χt of the universe is equal to the cosmic time t.

Proof. This is another wording of Assumption (21). 2

Proposition 34 (Rate of expansion). The FRW universe rate of expansion is constant and
equal to 1 at any epoch.

Proof. From Proposition (33) the comoving distance χt = t expands linearly. By defini-
tion, the FRW scale factor is R(t) = t and the expansion rate a(t) = dR/dt is thus constant
and equal to 1. 2

Comparison with standard physics. Proposition (34) contradicts the standard
model of cosmology in which the rate of expansion depends on the cosmic time.

For example, in the standard early universe, in the so-called radiation dominated era,
R(t) ∝ t1/2, while in the following matter-dominated era, R(t) ∝ t2/3. Finally, the standard
model supposes that the expansion is accelerating in the so-called dark-energy-dominated
era that holds at the present epoch, with a(t0) > 1. This conjecture was supported by
experimental results dating back to 1998 [59, 60] and awarded with a Nobel Prize in 2011.

However, this conclusion is challenged by a more recent update in 2015 by J. T. Nielsen
et al [61] recording that data are actually better suited to a constant rate of expansion. In
addition, while these results are obtained by observing the late universe (Ia supernovae),
observation of the early universe leads to different conclusions [62, 63]. Therefore, Proposi-
tion (34) is in fact compatible with experiment at least at present.

This was previously conjectured by F. Melia [64].

Definition of light velocity. From Proposition (34), it is possible to assign a new an
especially elegant definition to the light velocity.

Assumption 22 (Light velocity). The standard speed of light is the universe expansion
velocity.

Hints. By construction, dχt/dt = 1 is also the normalized light velocity. Turning the
logic around, this is a definition of the light velocity, while in reality “light” itself is not
defined at this stage. 2

Proposition 35. The speed of light is constant at any epoch.

Proof. This is a tautological consequence of Assumption (22) and Proposition (34). 2

Turning again the logic around, light-rays are actually located on the episodic clock and
thus immobile with respect to the center of the universe, so that it is rather the observer
who recedes at light velocity!

Remote episodes. Bloch’s representation aims to represent the universe geometry but
up to now, spatial translations have been left out.

Let us first define precisely what a remote point is in the present model. Recall that
each cosmic time t is associated with an entropy St, a transition probability pt and a clock-
hand hkt ⊂ Hu with kt = Nupt. As a result, irrespective of t, from Eqs. (20) and (21), a
clock-hand hk′ or an index k′ alone, represents also a transition probability p′ = k′/Nu, an
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entropy Sk′ = −Nu

(
p′ ln p′ + (1− p′) ln(1− p′)

)
and a past cosmic time tk′ =

√
Sk′/π. For

ease of presentation, we will write indifferently t′ or tk′ .

Definition 32 (Remote episode). At time t, a past point γ′ is a triple (k′, θ′, φ′) with
k′ < Nupt. It depicts a relic whose image is located on the internal side of the rescaled Bloch
sphere St in the direction (θ′, φ′). In the Hilbert space Hu, it is represented by a clock-hand
hk′ and observed from a particular uniform direction window µ′ specified by the Bloch vector
of spherical coordinates (θ′, φ′).

Future episodes are represented similarly on the future half light-cone with k′ > kt. We
need now to specify the physical distance between the observer and a remote episode.

Comoving distance of a remote episode. From Proposition (15), a remote episode
(k′, 0, 0) in the principal window is the relic of an event occurring in the past snapshot
Sk′ = −k′ ln(k′/Nu)−(Nu−k′) ln(1−k′/Nu) and therefore at the cosmic time t′ =

√
Sk′/π.

By definition, its comoving distance from the observer measured in the rescaled Bloch sphere
at time t is thus t− t′.

Proper distance of a remote episode. By contrast, the proper distance is measured
in the physical world, as opposed to the comoving distance expressed in Bloch’s represen-
tation. In standard cosmology, the “proper distance” D is measured along a light-ray by a
series of variable rulers of unit length `(t) undergoing the universe expansion and normalized
to unity at the present epoch t0 [58], so that `(t0) = 1. The ruler unit length at the cosmic
time t ≤ t0 is thus `(t) = `(t)/`(t0) = R(t)/R(t0).

In the current model, we propose to assign the proper distance of a remote episode ac-
cording to the same rule with `(t) = t/t0, that is to integrate the fact that the corresponding
episode took place in an older and therefore smaller universe.

Definition 33 (Proper distance). At the cosmic time t2 and in the principal window, the
proper distance D21 of a remote episode happened at time t1 < t2 is the length that would
be measured along the radius of the rescaled Bloch sphere with a ruler of variable unit length
`(t) = t/t0

D21
(def)
=

∫ t2

t1

dt

`(t)
= t0

∫ t2

t1

dt

t
= t0(ln t2 − ln t1). (34)

In standard physics, the wavelength of light is assumed to exactly follow the universe
expansion. Therefore, light undergoes a redshift z = R(t0)

R(t) − 1. It turns out that this is
only an approximation in the present model only valid for relatively small intervals t0 − t.
Therefore, we will call this ratio “marginal redshift”.

Proposition 36. The marginal redshift z of a remote episode occurring at the cosmic time
t is

z =
t0
t
− 1 (35)

z is positive for t < t0 and negative for t > t0. Therefore, this is genuine “redshift” for
t < t0 and in fact a “blueshift” for t > t0.

Proof. By definition, z = [`(t0)− `(t)]/`(t) and `(t) = t/t0. 2

At the current time t0, consider in particular the relic of a past remote episode

Proposition 37. In the principal window and at the current time t0, the proper distance
of a past episode (k, 0, 0) from the observer is Dk = t0(ln t0 − ln tk).

Proof. By definition, tk =
√
Sk/π where from Proposition (15), Sk = −k ln(k/Nu) −

(Nu − k) ln(1− kNu). Now, just apply Eq. (34) for t1 = tk and t2 = t0. 2
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Hubble’s radius. In standard cosmology, Hubble’s radius is the distance traveled by
light since the origin of time in the absence of expansion of the universe. This formulation
is perhaps confusing because it calls for the inconsistent question, what kind of distance?
For clarity, we propose therefore the following definition based on Assumption (22):

Definition 34. The Hubble radius is the current comoving universe radius χt = t.

Finite or infinite? At last, a popular question is how big is the universe? From As-
sumption (34), this refers to the radius of the universe expressed in proper distance. In
standard cosmology, the universe is infinite and flat. Its observable radius is about 60× 109

light-years [58], but it is taken for granted that beyond that, there would be an infinite
unobservable universe. However, this conclusion remains still debated [63].

By contrast, in a Bayesian theater, any unobservable event is problematic and nay nonex-
istent. Now, from Eq. (34) with t1 = 0 and irrespective of t2, the center of the universe is
at an infinite proper distance from the observer. As a result:

In comoving distance, the universe radius is finite at any time. In proper distance it is
infinite at any time. That’s all!

3.7 The holographic principle
The limits of the observable universe are usually depicted in terms of “horizons”.

Horizons. From V. Rindler [38], “a horizon is a frontier between things observable and
things unobservable”. A horizon is thus a surface, often characterized by its proper distance
from the observer. In the Bayesian theater, there is no unobservable event, but there are
two limits, respectively the center of the universe and the ultimate Bloch sphere. Therefore,
in principle there are two horizons.

The first horizon called particle horizon or cosmological horizon, is the limit towards the
past and represents the interval between the observer and the center of the universe. Its
comoving distance is thus the radius χt = t of the rescaled Bloch sphere St, and its proper
distance is infinite at any time.

The second horizon called event horizon, is the limit towards the future and corresponds
to the ultimate Bloch sphere whose comoving distance from the observer is thus χmax−χt =
tmax − t and therefore from Eq. (34), its proper distance is t0 × (ln tmax − ln t).

However, these two horizons are also specified by their characteristic entropies namely
St and Smax, that is to say the particle entropy and the event entropy. From this point
of view and for consistency, the particle horizon must rather be identified with the current
Bloch sphere St instead of the center of the universe. We propose to adopt this conception.

Assumption 23 (Horizons). The particle horizon is the the current Bloch sphere St. The
event horizon is the ultimate Bloch sphere Smax.

Then, the horizons are in fact nothing but the two snapshots at the present time t and
at the ultimate time tmax respectively. From assumption (13), they are in fact light-sheets.
It turns out they can also be viewed as screens in the holographic theory of L. Susskind [27]
and G. ’t Hooft [28].

The World as a Hologram. According to the holographic theory, the entropy in the
universe is distributed proportionally to the area of a two-dimensional screen. Remarkably,
this is a natural result of the present model.

Proposition 38 (Holographic screen). The entropy of the universe at time t is distributed
proportionally to the area of the rescaled Bloch sphere St.

Proof. The holographic screen is the current the rescaled Bloch sphere St. From Propo-
sition (25), given the fundamental prior, its entropy distribution is uniform and its density
equal to 1/4. 2
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This is both the Bekenstein entropy density of the Schwarzschild black-hole horizon and
that of the Bousso’s “covariant entropy bound” [26] attained here for every snapshot (or
light-sheet or holographic screen).

Proposition 39 (Covariant entropy bound). The density entropy of any light-sheet St is
St/A = 1/4 (in nats) where A is the Euclidean area of the rescaled Bloch sphere.

Proof. From Proposition (25), this characterizes a snapshot. The Bousso’s covariant
entropy bound appears thus in the current model as a general law of physics. 2

4 Energy
The notion of energy is fundamental in both standard physics and thermodynamics, as
it has proved to be the pivot of the most significant properties and phenomena. In the
current model, this remarkable role stems from the combination of the concept of probability
with that of the size of the universe. It turns out that every significant quantities can
be introduced through their effects on energy. Technically, we have just to compute the
differential of energy with respect to the relevant parameters. For instance the concept
of temperature is introduced when the relevant parameter is entropy, the concept of force
when the relevant parameter is distance. Other major concepts, like especially fields, are
introduced by combination of these and will be elaborated in the next section.

Let us first define energy as being an observable.

4.1 Definition of energy
In standard physics, according to the first principle of thermodynamics, the universe is
endowed with an observable called “energy”, or equivalently “mass”, whose characteristic
feature is to be conserved. It cannot be created nor destroyed. We propose to keep this
view.

Assumption 24 (Energy). Energy in the universe is an observable Hu whose value Uu is
independent of the current state.

Hints. Technically, conservation of energy means that energy does not depend on the
current state. 2

As a result, the total mass Uu can only depend on the number of variables, Nu. In
fact, it explicit value is in part a matter of convention. In order to meet the standard
convention, it turns out that we must take gravity into account. This will be achieved latter
in Proposition (64) below. At this stage, we leave open its exact expression.

This observable Hu is traditionally given the name of “Hamiltonian”. Since we will
encounter a number of variants, we will name this operator “universal Hamiltonian”.

Proposition 40 (Universal Hamiltonian of the cosmos). The universal Hamiltonian of
the whole universe is a homothety operator Hu = Uu(Nu) × 1du , where 1du is the identity
operator of dimension du = 2Nu and the function Uu(Nu) only depends on the number of
degrees of freedom, Nu.

Proof. The Hilbert space Hu associated with the universe only depends on the number
of degrees of freedom, Nu. By hypothesis, Uu does not depend on the statistical operator
Πt and thus only depends on Nu, so that we can compute Uu with different operators Πt.
In a basis where Hu is diagonal, select successively for Πt the projection operators on the
basis vectors. This computes the successive diagonal components of Hu which are all equal
to Uu by hypothesis. Conversely, assume that Hu = Uu × 1du . Then

Uu
(def)
= 〈Hu〉 = Tr(ΠtHu) = Uu × Tr(Πt) (36)

does not depend on Πt because Tr(Πt) = 1. 2
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The universal Hamiltonian is constant over time and hardly ever used in standard physics.
From Proposition (40), it commutes with the statistical operator.

Basically, Nu is integer but since it is a gigantic number, it is helpful to treat it as a real
valued parameter and Uu(Nu) as a continuous derivable function. Its differential is

dUu = U ′
u dNu. (37)

U ′
u(Nu) = dUu/dNu plays the role of chemical potential of the dichotomic variables. By

construction, U ′
u is independent of the particular statistical operator Πt.

Energy density. By extension, an energy density per unit of entropy can also be defined
on the rescaled Bloch spheres.
Proposition 41. Given the fundamental prior, the total universe energy Uu generates a
uniform energy density Uu/4St of sum Uu on the rescaled Bloch sphere.

Proof. From Proposition (40), the universal Hamiltonian commutes with any window
operator. Given the fundamental prior, the orientation windows are defined independently
of the statistical operator so that the energy Uu is independent of the orientation. Therefore,
its density is evenly distributed on the rescaled Bloch sphere of Euclidean area 4St and is
thus equal to Uu/4St at the cosmic time t. 2

Obviously, beyond the fundamental prior, updates can lead to a non-uniform energy
density distribution on the sphere.

4.2 Distribution of energy in the universe
From Proposition (40), energy is the observable defined by the operator Hu ∝ 1du , so that
irrespective of the statistical operator energy and probability distributions are proportional.
Energy is simply a variant of probability but normalized to Uu instead of 1. Therefore,
everything that has a probability has a mass and vice versa.

4.2.1 Energy of parts of the universe
Let Πt denote the statistical operator acting on Hu given some particular prior. In the
du-dimensional Hilbert space, a relevant partition of the universe is conveniently depicted
by a resolution of the identity, that is technically by a standard positive operator-valued
measure (POVM). For the sake of generality, it is possible extend the definition to weak
POVMs (see Ref. [18]), i.e., sets of observables Qι indexed by ι (iota), not necessarily
positive but with positive expectation value, 〈Qι〉

(def)
= Tr(QιΠt) ≥ 0 whose total expectation∑

〈Qι〉 sums to 1. Of course, a strict POVM is also a weak POVM. Let I = {ι} be the
finite ensemble of indexes, with ι ∈ I .

∀ι ∈ I : 〈Qι〉 ≥ 0;
∑
ι∈I

〈Qι〉 = 1 where 〈Qι〉
(def)
= Tr(QιΠt)

so that we obtain the weak POVM probability distribution, pι as

I → R : ι 7→ P(Qι)
(def)
= P(Hu)× Tr(QιΠt) = pι (38)

where by definition P(Hu) = 1.
Proposition 42 (POVM energy distribution). Any weak POVM probability distribution on
the cosmic Bayesian theater Hu, Eq. (38), determines a distribution of the total energy Uu

at time t as
I → R : ι 7→ U(Qι)

(def)
= Uu × Tr(QιΠt) = Uι. (39)

Proof. Just replace in Eq. (38) the total probability p(Hu) = 1 by the total energy Uu.
2
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4.2.2 Energy of classical states
Any standard measurement in quantum information can be reduced to a POVM. In partic-
ular, a von Neumann measurement in the Hilbert space Hu results from the partition of the
identity into the du basic projectors |γi〉〈γi| with i ∈ J1, duK in correspondence with the set
of classical states γi ∈ Γu, where Γu is the sample set of the current observation window. In
the principal window, given the fundamental prior, the energy at time t of a classical state
γi is

U(γi) = Uuλi

where λi is the corresponding eigenvalue of the statistical operator Πt. Let k be the Hamming
weight of the classical state γi ∈ Γu. Then, from Proposition (12), |γi〉 ∈ hk and λi = αk.

4.2.3 Energy of Boolean functions
In the principal observation window, any Boolean function of the binary variables can be
regarded as an element of the sigma algebra over the current sample set Γu (see Ref. [18]).
As a result, the probability of a Boolean function is well defined and equal to a sum of
classical state probabilities and therefore its mass is the sum of their individual mass.

Binary variables. In particular, each binary variable Xj is a Boolean function. Given
the fundamental prior, the probabilities of the Nu variables in the principal window are
equal. Although independent, they are obviously overlapping events. Irrespective of its
index j, the probability of Xj at time t is pt and that of its negation Xj is qt. Therefore,
their masses are respectively

U(Xj) = ptUu ; U(Xj) = qtUu. (40)

General Boolean formula. More generally, from standard Boolean theory, any Boolean
function, say Y, expressed in the principal observation window, can be expanded as a dis-
junction of mutually exclusive classical states as

Y =
∑
`

γ`

Therefore, its energy is well defined and equal to

U(Y) =
∑
`

U(γ`) = Uu

∑
`

λ`

Beyond Boolean functions, it is possible to define the concept of “massive objects”.

4.3 Massive objects
We propose to represent an object by a weak effects, i.e., an observable, say Q, acting on the
Hilbert space Hu with a bounded positive expectation with respect to the current statistical
operator Πt, that is, 〈Q〉 = Tr(QΠt) ≤ 1. This expectation value is therefore a probability.
In turn, it is possible to equate the probability with a mass (up to the factor Uu).
Definition 35 (Massive object). In the cosmic Bayesian theater Hu, a massive object is
described by a weak effect Q, i.e., an observable with a positive expectation value 〈Q〉 bounded
by 1, that is 〈Q〉 ≤ 1.

For ease of presentation, we will identify throughout the object with its observable Q.
Proposition 43. The energy of an object Q is positive and equal to

Q 7→ U(Q) = UQ = Uu × Tr(QΠt) (41)

Proof. Complement Q by Q′ = 1du
− Q. Then 0 ≤ 〈Q′〉 ≤ 1 and 〈Q〉+ 〈Q′〉 = 1 so that

the pair {Q,Q′} forms a weak POVM. 2
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4.3.1 Episodic objects
Among the massive objects, we are particularly interested in those that can be localized
on the episodic clock. Technically, they commute with the statistical operator Πt. We will
look more specifically at the projectors on eigensubspaces of Πt, which we propose to call
“episodic objects”. A precise definition is provided below (Definition 37). As a first step, let
us define the concept of “mono-episodic projector”.

Definition 36 (Mono-episodic projector). A mono-episodic projector Qk is an orthogonal
projection operators acting on a single clock hand hk.

We will later complement this definition with a particular evolution rule, Proposition (53)
below. Let rQ denote the rank of Qk. Then, from Proposition (12), by reverse transcription
in the principal window, Qk represents a Boolean disjunction of rQ distinct classical states
of same Hamming weight k. Clearly, there is a vast number of mono-episodic projectors in
the universe, a kind of “sea”.

Proposition 44. Given the fundamental prior, the quantum vacuum can be regarded as a
“sea” of mono-episodic projectors.

Proof. Regard the universe as a massive object, Qu. At cosmic time t, given the fun-
damental prior, its is possible to decompose Qu in a vast number of ways into a set of
mono-episodic projectors. From Assumption (12), this “sea” represents the standard quan-
tum vacuum. 2

As physical objects, the mono-episodic projectors remain potential until the observer
updates the Bayesian prior. By contrast, the current universe corresponds to a particular
update of the prior obtained especially by astronomical observations.

Whether they are only potential or not, let us now define specific episodic objects as
composed of mono-episodic projectors.

Definition 37 (Episodic object). At time t, an episodic object Q on the trajectory (k1, k2)
is a cluster of mono-episodic projectors Qk of same rank, rQ, for each k ∈ Jk1, k2K

Q =

k2∑
k=k1

Qk. (42)

At the cosmic time t, the mapping k → Qk is thought as the trajectory of a mono-
episodic projector of rank rQ as a function of the episodic index k. In the current snapshot
of dominant index kt, the most interesting episodic objects are those that exist at the current
time, that is when kt ∈ [k1, k2]. Then, the pair (k, kt) delimits both a cosmic time lapse
and a comoving distance. Thus, on the one hand, the mono-episodic projectors Qk can be
viewed as past relics for k < kt, the current appearance of the object itself for k = kt and
future cues for k > kt. On the other hand, the trajectory describes an extended object
with a perceptible part for k ≤ kt and a virtual part for k > kt (see Assumption 29 below).
Obviously, for a definite episodic object these distinctions slide over time in other snapshots.

Now, we propose that every massive object of the physical universe be represented by
an episodic object.

Assumption 25 (Massive objects in space-time). Physical massive objects that can be
localized in space-time are represented by episodic objects.

Hints. This includes macro objects and particles. Particles include fermions and compos-
ite bosons of the standard model but in the present theory, we will see that it is convenient to
treat separately mediators, that is massless field bosons. Basically, this assumption asserts
that the properties of particles can be deduced in the context of the fundamental prior. 2
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Interestingly, note also that the usual concept of massive object corresponds to Boolean
formulas.

Proposition 45. Episodic objects depict the Boolean functions of binary variables in the
principal window.

Proof. In Bayesian theaters, orthogonal projection operators on eigensubspaces acting
on the Hilbert space are the transcription of a Boolean formula (see Ref. [18]). 2

Energy of episodic objects. From Eq. (41), the mass of the episodic object Q can
be easily computed at the cosmic time t.

Proposition 46. Given the fundamental prior, the energy UQ of the episodic object Q of
rank rQ on the trajectory (k1, k2) at the cosmic time t is equal to

UQ(t) = UuTr(QΠt) = UurQ ×
qtαk1(pt)− ptαk2(pt)

qt − pt
(43)

where qt = 1− pt.

Proof. Expand Q expressed in the principal window, Eq. (42), with αk(pt) = pkt q
Nu−k
t ,

Eq. (4).

UQ =

k2∑
k=k1

UuTr(QkΠt) = UurQ

k2∑
k=k1

αk(pt) = UurQ × qNu
t ×

k2∑
k=k1

(pt
qt

)k

.

The sum of the geometric sequence leads to Eq. (43). 2

Remarkably, the mass of episodic objects always varies over time.

4.3.2 Comoving objects.
From Sec. (2.3.3), the “thickness of the present” is represented by a minuscule time lapse
ςt. For example, ςt is about 10−12 Planck time unit at the present epoch. This is far too
fleeting to be perceived. By contrast, perceptible objects must remain in the range of the
observer for a sufficient time lapse. Therefore, they are approximately comoving with the
observer. Precisely, we propose that their mass be stationary.

Assumption 26 (Comoving objects). Comoving massive objects are those whose mass is
stationary in time.

Hints. Technically, stationarity means that the derivative of the mass with respect to t
or pt is zero at the moment of observation. 2.

Comoving objects must remain comoving for a sufficient time interval. How is it possible?
Indeed, given the fundamental prior, mono-episodic projectors Qk are fixed on the episodic
clock and, from Eq. (17), their masses are not stationary except in the dominant eigensub-
space, that is for k = kt. Therefore, a comoving object must be composed of mono-episodic
projectors which follow the expansion of the universe.

Proposition 47. A comoving object at time t is a permanently rebuilt cluster of mono-
episodic projectors driven by the universe expansion so that its energy remains stationary.

Proof. A comoving object is necessarily a set of mono-episodic projectors permanently
rebuilt, thanks to a mechanism described below. This reconstruction is driven by the cosmic
time that is to say the universe expansion. 2
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At time t, consider a comoving object Q, composed of mono-episodic projectors Qk of
same rank rQ, Eq. (42), with k1 ≤ kt ≤ k2,

Q =

k2∑
k=k1

Qk.

It is convenient to regard Q as a sum Q−, Qkt
and Q+, where Q− is the past episodic

section and Q+ the future episodic section, kt being the dominant index.

Q−
(def)
=

∑
k<kt

Qk ; Q+
(def)
=

∑
k>kt

Qk so that Q = Q− + Qkt + Q+

Proposition 48. A comoving object is made up of three sections, Q−, Qkt and Q+ of masses
UQ− , UQkt

and UQ+
respectively. The derivative of UQkt

with respect to pt is zero while the
derivatives of UQ− and UQ+

are opposite.
Proof. Since the object is comoving, the derivative of the total energy UQ with respect

to t (or pt) is zero. UQ is the sum of the energies UQ− , UQkt
and UQ+

of the three sections.
From Eq. (17), the derivative of UQkt

with respect to pt is zero so that the derivatives of
UQ− and UQ+

are opposite. 2

4.3.3 Matter and antimatter
It is now possible to formally introduce the concept of “antimatter”. We simply propose that
the antimatter be composed at cosmic time t of mono-episodic projectors whose indexes k
are greater than the current dominant index kt.
Assumption 27 (Matter and antimatter). At time t, matter is made up of mono-episodic
projectors Qk with indexes k ≤ kt while antimatter is made up of mono-episodic projectors
with indexes k ≥ kt.

Hints. The standard definition of antimatter is that it is the time reversal of matter.
Every mono-episodic projector Qk alone is obviously a particular episodic object. It can be
associated with another mono-episodic projector Qk′ where k′ is chosen to be symmetrical
of k with respect to the dominant index kt. Now, each mono-episodic antimatter projector
Qk with k ≥ kt is therefore the time reversal of another mono-episodic projector of matter
Qk′ with k′ ≤ kt. 2

Incidentally, let us recall that in Special Relativity, “Majorana particles” [65, 66] are
hypothetical objects (actually “fermions”), identical to their own antiparticles and therefore
invariant by time reversal. According to the present model, a Majorana particle is composed
of a single mono-episodic projector.
Definition 38 (Majorana particles). Majorana particles are episodic objects identical to
their own antiparticles.
Proposition 49. At time t, Majorana particles are made up of a single mono-episodic
projector whose index is the dominant index kt.

Proof. From Assumption (27), their index k is subject to both k ≤ kt and k ≥ kt. 2

Proposition 50. At time t, the mass of a Majorana particle of rank rQ is

UQ = UurQe
−St , (44)

Proof. This is Eq. (43) for k1 = k2 = kt, using αkt(pt) = e−St , Eq. (20). 2

Proposition 51. Given the fundamental prior, every (potential) comoving object is com-
posed of a pair matter-antimatter, namely Q− and Q+, and a Majorana particle, Qkt , all
three of the same rank rQ.

Proof This is a trivial consequence of Proposition (27). Except for the Majorana object
Qkt

, this result essentially joins the standard conception of the quantum vacuum. 2
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4.3.4 Dragging comoving objects
The permanent reconstruction of comoving object is in fact due to the jumps of the binary
variables Xj .
Proposition 52. Comoving objects are dragged by the jumps of binary variables Xj from
0 → 1.

Proof. In the principal window, mono-episodic projectors Qk gather distinct classical
states of same Hamming weight k, meaning that they depict the conjunction of a number
of k binary variables Xj with a valid truth value (equal to 1) and hence Nu − k with an
invalid truth value (equal to 0). Therefore, each time that the mean number of valid truth
values in the universe increases by 1, all states of the mono-episodic projectors Qk slip by
definition to states of Qk+1. This drag is triggered by the jump of just one binary variable
Xj from 0 → 1. As a result, it can be viewed as driven by the universe expansion. From
Proposition (30), this increment of 1 for k → k + 1 corresponds to an entropy increment of
st, Eq. (8), and a time increment of τt, Eq. (33). 2

In other word, a comoving object is a kind of “strobe entity”. It can be compared to a
rainbow or interference fringes in a standard wave continuum. Here, the continuum involved
is the sea of fixed mono-episodic projectors and the equivalent of phase matching is the mass
stationarity of the cluster.

4.3.5 Mediators
In order to formally describe the drag mechanism involved in the permanent reconstruction
of the mono-episodic projectors, let us introduce the concept of “mediator”, used in standard
physics of particles.

By definition (Definition 47), the drag can be expressed by slip operators Bk,k+1 mapping
hk → hk+1. Technically, a specific operator is so attached to each particular mono-episodic
projector. Let us call it “mediator emitted by the mono-episodic projector”. For the sake
of generality, we consider also inverse operators, so that mediators can operate forward or
backward.
Definition 39 (Mediator). At time t, a mediator k → k ± 1 emitted by a particular mono-
episodic projector Qk is a slip operator,

Bk,k±1 : hk → hk±1

mapping the episodic clock hand of index k into the clock hand of index k±1. For k → k+1,
the mediator is called “forward”. For k → k − 1, the mediator is called “reversed”.
Proposition 53. Every jump from 0 → 1 or 1 → 0 of any binary variable Xj generates a
discrete mediator Bk,k±1 emitted by each mono-episodic projector Qk.

Proof. Every eigensubspaces hk represents the pattern of Boolean occurrences with
exactly k truth values equal to 1. Since the probability of double jumps, e.g., 0 → 1 → 0, is
negligible, the mediator expresses a simple jump of just one binary variable from 0 → 1 or
1 → 0. 2

Mediators represent radiation. While episodic observables represent massive ob-
jects, what can mediators represent in the physical world? In accordance with standard
physics, we propose that they represent “radiation”. In addition, from the point of view of
the Bayesian observer, we propose to distinguish incoming and outgoing radiation.
Assumption 28 (Physical counterparts of mediators). Mediators represent radiation. At
time t,

-Incoming radiation is represented either by forward mediators emitted by past mono-
episodic projectors, or by reverse mediators emitted by future mono-episodic projectors.

-Outgoing radiation is represented either by reverse mediators emitted by past mono-
episodic projectors, or by forward mediators emitted by future mono-episodic projectors.
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Hints. The outgoing radiation is so the time reversal of the incoming radiation. This
assumption is consistent with the geometric representation of space time, Assumption (13).

On the other hand, this joints the usual representation of bosons in Feynman diagrams,
but an apparent difference is that the mediators are in principle assumed here to be either
forward or reversed. In fact, this corresponds to a single interpretation of each diagram,
whereas they are usually compatible with both interpretations. However, in practice the
distinction does not hold because it would suppose that the episodic clock hands hk−1, hk
and hk+1 are separated which never happens. 2

The observer is unable to perceive the mono-episodic projectors. So what does the observer
perceive? We propose that the only phenomena directly perceived by the observer are the
incoming radiation.
Assumption 29 (The observer perception). The observer does not directly perceive massive
objects but only the incoming radiation they emit.

Hints. Mono-episodic projectors are fixed on the episodic clock and cannot be perceived
because they are too fleeting. To join the everyday experience, we propose that only incoming
radiation, for example incoming light rays, is perceived. By contrast, outgoing radiation is
not directly perceived. 2

Proposition 54. When the transition probability is small enough, pt � 1, the vast majority
of mediators occurring during a certain time lapse are forward. In particular, during one
time increment τt, Eq. (33), there is on average only one forward and no reversed mediator.

Proof. At the origin of time, i.e., in the initial snapshot S0, pt = 0, all truth values are
“0” and there is no “1”. Therefore, at time t, for pt � 1 there is still only a negligible number
of “1”. From Proposition (4), the probability of jump is independent of the truth value but
the vast majority of truth values are “0”. As a result, the vast majority of jumps are forward.
In the very short time lapse τt, Eq. (33), this number is integer and by definition about 1,
that in fact 1. 2

Proposition 55 (Ratio matter-antimatter). When the transition probability is small enough,
the vast majority of objects perceived by the observer are made up of matter, as opposed to
antimatter.

Proof. From Proposition (51), matter and antimatter come by pairs. However, from
Assumption (28), they are only perceived through the radiation they emit towards the
observer, that is, still from Assumption (28), forward mediators for matter and reverse
mediators for antimatter. Indeed, this is actually the ratio of forward/reverse mediators,
which follows Proposition (54). 2

This result is very mysterious in standard physics whereas it is a simple platitude in the
present model.

To go on and address the standard concept of particle, we need first to investigate the
notion of temperature.

5 Temperatures
In standard thermodynamics, temperature expresses the differential link between energy and
entropy specified by some parameters that may vary. In the cosmic Bayesian theater, global
entropy is a variant of cosmic time and thus indicates the arrow of evolution. Therefore,
the cosmic temperature of massive objects, that is to say the derivative of their energy with
respect to the global entropy is the indispensable step to introduce all significant quantities,
like forces and fields.
Definition 40 (Cosmic temperature). The cosmic temperature of a massive object is the
partial derivative of its energy with respect to the universe entropy.
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A certain number of distinct cosmic temperatures must be distinguished, depending on
the object and the phenomenon under investigation, that is to say, technically, the spe-
cific parameters involved beyond energy and entropy. We are particularly interested in the
characterization of forces and fields by moving massive objects.

Assumption 30 (Movements). Given the fundamental prior, the only movements are those
produced by the expansion of the universe.

Hints. Given the fundamental prior, this seems the only possibility. 2

Definition 41 (Force). A force applied to a massive object is a specific way to increase its
energy by moving it.

Definition 42 (Field). A field is a specific way to generate forces.

As a result, beyond entropy, a second indispensable parameter is distance. Possibly, a
third parameter of interest may be necessary, according to the particular field involved.

Global versus local temperature. A real variation of energy is impossible for the
full universe because the global energy is constant, thanks to the first principle. Therefore,
two domains must be distinguished. The first concerns the universe as a whole and demands
virtual variation of energy. It depicts the expansion of space and leads to the emergence
of gravity. The second concerns local objects. It describes both the cosmic microwave
background and the particles of microphysics, thus leading to the standard fields of physics.

Convention. As far as temperature is concerned, unless otherwise stated, we express
entropy in nats (as opposed to bits) to conform to standard physical conventions. 2

5.1 Temperatures of the universe as a whole
Consider the entire universe at time t specified by Nu dichotomic variables. In the follow-
ing, we will investigate different temperatures characterized by different partitions of the
universe.

5.1.1 Information temperature
First, a global environment is defined by the pair (St, It) of independent parameters where
It is the negentropy, Definition (15) above. This means partitioning the universe into a pair
of coarse-grains, namely its entropic phase and the complement, its negentropic phase. This
corresponds to the so-called information representation of the universe, Definition (16).

Starting from Smax = Nu ln 2 = St + It, we can rewrite Eq. (37) as

dUu = U ′
udNu =

U ′
u

ln 2
(dSt + dIt) (45)

Now, it is possible to define the temperature of the universe as a whole at constant infor-
mation.

Definition 43 (Information temperature of the universe). The information temperature
characterizes the partition of the universe into entropic and negentropic phases.

These two phases corresponds to the standard “heat” and “work” of conventional ther-
modynamics, but paradoxically, in cosmology “heat” is generally cold and “work” is mostly
hot8!

8Although it is isolated as a whole, the universe cannot be identified with a microcanonical ensemble because
its basic constraint, Eq. (2) is by no means conventional. In particular, the so-called “third principle” or Nernst’s
theorem, asserting that temperature is minimum for minimum entropy is dramatically flawed. As a result, the
standard thermodynamic term “heat” is especially inaccurate
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Proposition 56. The information temperature of the universe Tu is constant over time and
equal to

Tu
(def)
=

∂Uu

∂St

∣∣∣
It

=
U ′
u

ln 2
(46)

Irrespective of the mass distribution, it only depends on the universe storage capacity Nu.
Proof. This is a direct consequence of Eq. (45). Since Uu(Nu) is a function of the sole

universe storage capacity Nu, U ′
u

(def)
= dUu/dNu only depends on Nu. 2

Quantitatively, we will see later that Tu = 4.87× 10−31 K = 4.2× 10−35 eV.

Meaning of the information temperature. At a definite storage-capacity Nu, it
turns out that this uniform temperature specifies the minimum expansion temperature in
the universe regardless of the mass distribution (Sec. 5.1.2 just below). The existence of
such a minimum is a prominent result that we will take advantage of under Assumption (33)
below. At last, Tu can be interpreted as another expression of the storage capacity of the
cosmic Bayesian theater in the same way that Nu or Uu do.

5.1.2 Expansion temperature
Given the fundamental prior, it turns out that the independent parameters (St, Stj), i.e.,
global entropy and binary entropy, introduce the universe expansion. Indeed, an infinitesimal
increase dSt of entropy at constant Stj demands both an increase dχt of the radius of the
rescaled Bloch sphere and a (virtual) increase dNu of the number of variables. This defines
a temperature that we propose to call “expansion temperature”.

Definition 44 (Expansion temperature). The expansion temperature Tt
(def)
= ∂Uu/∂St

∣∣
Stj

is the derivative of the universe energy Uu with respect to the overall entropy St at constant
binary entropy Stj.
Proposition 57. The expansion temperature, Tt, is equal to

Tt
(def)
=

∂Uu

∂St

∣∣∣
Stj

=
Smax

St
Tu, (47)

where Tu is the information temperature. The product StTt = SmaxTu is constant over time
and only depends on the storage capacity of the universe Nu.

Proof. From Eq. (10) we have ∂Nu/∂St

∣∣
Stj

= 1/Stj , from Eq. (46), Tu = U ′
u/ ln 2 and

by definition U ′
u = dUu/dNu. Then, using Smax = Nu ln 2 and St = Nu × Stj ,

Tt =
∂Uu

∂St

∣∣∣
Stj

=
dUu

dNu
× ∂Nu

∂St

∣∣∣
Stj

= U ′
u × 1

Stj
=

ln 2Tu
Stj

=
Nu × ln 2Tu
Nu × Stj

=
Smax

St
Tu. 2

Proposition 58. The expansion temperature of the universe is infinite at the origin of time
and decreases monotonously over time as

Tt = Tu ×
( tmax

t

)2

≥ Tu (48)

The minimum expansion temperature is obtained at time tmax to reach the information
temperature Tu.

Proof. Use Eq. (31), St = πt2. 2

Quantitatively, at the present epoch, Tt0 = 9.34× 10−28 K = 8.05× 10−32 eV.

Remark. This does not conform to the standard model of cosmology in which there is
only one form of “temperature” depending on the era. For instance, it scales as T ∝ t−1/2

in the radiation-dominated era. 2
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5.1.3 Expansion force
From Assumption (30), given the fundamental prior, any movement is caused by the expan-
sion of the universe. The rescaled Bloch sphere recedes as a whole from the center of the
universe.

In classical physics, movements are governed by gravity and inertia. Since there is only
a single cause of motion given the fundamental prior, gravity and inertia cannot be distinct
phenomena in the present model. This joins the standard equivalence principle of General
Relativity.
Proposition 59 (Equivalence principle). Gravity and inertia are equivalent.

Proof. This is another wording of Assumption (30). 2

This principle is naturally valid beyond the fundamental prior. Then, differential defor-
mations of the rescaled Bloch sphere can lead to local relative movements.

Now, we aim to explain the universe expansion by an entropic force. To this end, let
us use the expansion representation of the universe, Eq. (10). From Eq. (37), the virtual
increase dNu of the number of variables at constant Stj generates an increase of the overall
energy dUu = U ′

udNu = TtdSt, where from Eq. (47), Tt = (Smax/St)Tu is the expansion
temperature at the cosmic time t.

The increase of energy dUu can be identified with a standard thermodynamic work pro-
duced by the deformation of the rescaled Bloch sphere. Work is the product of a displacement
and a force. Here, the displacement is the infinitesimal increase dχt so that the expansion
at constant Stj defined a “force”, say Ft, by

dUu = Ft dχt. (49)

However, since the displacement dχt expresses the differential expansion of the rescaled
Bloch sphere, the work dUu concerns a radial displacement of the totality of the Bloch sphere.
Although this concept comes naturally in this context, this is not exactly the standard
definition of a force, which is usually unidirectional and not radial.
Definition 45 (Radial expansion force). The radial expansion force is an isotropic force
applied to the entire mass of the universe to produce the isotropic expansion of the Bloch
sphere.

Proposition 60. Given the fundamental prior, the radial expansion force ft at time t is

ft
(def)
=

1

2

∂Uu

∂χt

∣∣∣
Stj

(50)

where χt = t is the radius of the rescaled Bloch sphere.

Proof. Since the Bloch sphere is double-sided, each direction is in fact counted twice.
Suppressing this duplication involves dividing Ft in Eq. (49) by a factor of 2. Let ft

(def)
= 1

2Ft

denote this single radial force. 2

Proposition 61. The radial expansion force is equal to

ft =
√
TtTu ×

√
πSmax (51)

Proof. The radius χt of the rescaled Bloch sphere increases necessarily with the global
entropy St = πχ2. Then from Eq. (47), Tt =

(
∂Uu/∂St

)
Stj

= TuSmax/(πχ
2
t ) so that

2ft =
∂Uu

∂χt

∣∣∣
Stj

=
∂Uu

∂St

∣∣∣
Stj

× dSt

dχt
= Tt × 2πχt =

TuSmax

πχ2
t

2πχt =
2TuSmax

χt

and finally

ft = (πTt)× χt =
TuSmax

χt
or ft =

√
(πTt)× χt ×

TuSmax

χt
=

√
TtTu ×

√
πSmax. 2 (52)
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5.1.4 Gravitational field
The expansion force is global. We propose to identify gravity with its local expression.
Assumption 31 (Gravity). Given the fundamental prior, gravity is the force produced
locally on massive objects by the radial expansion force, Eq. (51).

Hints. Massive objects have been defined independently of gravity (Definition 35). They
move because of the expansion of the universe. 2

Precisely, let us define the gravitational field as the force per unit mass.
Definition 46 (Gravitational field). Given the fundamental prior, the gravitational field κt
is the radial expansion force applied to a unit of mass.

Since the deformation of the rescaled Bloch sphere Eq. (49), concerns the displacement
of the totality of the universe mass Uu, introduce a second parameter κt

(def)
= ft/Uu or

ft = Uuκt. In classical mechanics, from the second Newton law of motion, κt represents the
acceleration of the mass Uu subject to the force ft. In the present model, we propose to use
this classical law to compute the “gravitational field”.
Proposition 62. The gravitational field κt is

κt =
ft
Uu

. (53)

Proof. Use Assumption (31) and Proposition (59). 2

Proposition 63. At the cosmic time t, the gravitational field κt is equal to

κt =
√
TtTu × 1

Uu

√
πSmax. (54)

Proof. Obvious from Eqs. (51) and (53). 2

5.1.5 Calibrating the total mass of the universe
So far, the expression of the total mass Uu, (Definition 24), has not been precisely calibrated
in Sec. (4.1) above, meaning that it is partly a matter of convention. We can take advantage
of this freedom to obtain the simplest formula for the gravitational field κt. The correspond-
ing value of Uu will next be calculated in Proposition (64) just below. Now, starting from
Eq. (54), we propose to adopt the following expression for κt:
Assumption 32 (Calibrating the total mass of the universe). By convention, the mass Uu

of the universe as a whole is adjusted so that

κt = 2π
√
TuTt (55)

Hints. The factor 2π is somehow arbitrary but we choose to recover the standard surface
temperature of the Schwarzschild black hole at the ultimate time tmax (see below, Proposi-
tion 71). Indeed, at time t = tmax, we so obtain κu

(def)
= κtmax

= 2πTu. 2

Restoring the dimension, we have

κt =
2πckB

~
√
TuTt

We can now calibrate the universe mass Uu.
Proposition 64 (Mass of the universe). The energy Uu of the universe is proportional to
the square root of the number of degrees of freedom, Nu, as

Uu =

√
Smax

4π
= ε

√
Nu where ε =

( ln 2
4π

)1/2

' 0.235. (56)

Proof. From Eq. (54), take into account Eq. (55). 2
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Restoring the dimension in Eq. (56), we obtain

Uu =

√
Nu ln 2

~c
4πG

. (57)

Since Uu, Nu and c do not depend on the epoch, so is the ~/G ratio. An expression similar
to Eq. (57) was previously proposed by I. Haranas and I. Gkigkitzis [67].

Quantitatively, irrespective of the epoch, Uu = 4.03× 1054 kg.

From Eq. (55), it is possible to interpret the gravitational field as resulting from the
convergence of the information and expansion temperatures. As a result, since the expansion
temperature depends on the age of the universe, so is the gravitational field.

Proposition 65. The gravitational field decreases proportionally to the cosmic time as

κt = 2πTu × tmax

t
(58)

Proof. Replace Tt in Eq. (55) by its expression Eq. (48). 2

Quantitatively, at the present epoch we have κt0 = 0.21× 10−6 m/s2.

5.1.6 Unruh’s temperature
In standard physics, the Unruh effect [23] establishes a close relationship between accelera-
tion and temperature, namely that an observer subject to a gravitational field κt experiences
a temperature TUnruh = κt/2π. Now, by reversing the logic, we propose that the Unruh tem-
perature generates gravity. Therefore,

TUnruh =
√
TuTt = κt/2π = Tu × tmax

t
(59)

This leads to the following definition:

Definition 47 (Gravitational temperature). The gravitational temperature is the Unruh
temperature, TUnruh = κt/2π, where κt is the gravitational field.

Proposition 66. The gravitational temperature is TUnruh =
√
TuTt, where Tu and Tt are

respectively the information and the expansion temperatures.

Quantitatively, at the present epoch, we obtain TUnruh = 8.42 × 10−28 K, which corre-
sponds to κt0 = 0.21×10−6 m/s2. By construction, this value is computed from the Newton
gravitational constant G.

Proposition 67 (Information temperature). The information temperature of the universe
is equal to

Tu =
1

8πUu
=

1

4

√
1

πSmax
=

1

4

√
1

πNu ln 2
. (60)

Proof. From Eq. (46), Tu = U ′
u/ln 2. Now, from Eq. (56), we have Uu = ε

√
Nu so that

U ′
u = ε/(2

√
Nu) = ε2/(2Uu) = ln 2/(8πUu). 2

Restoring the dimension, we have

Tu =
1

4

√
~c5

πGk2BNu ln 2
.

Quantitatively, irrespective of the epoch, Tu = 4.87× 10−31 K.

49



5.1.7 Milgrom’s acceleration
From Proposition (58), while temperature is not limited above, irrespective of the prior,
there is a minimum expansion temperature, namely the information temperature Tu. The
fact that Tu > 0 is another expression of the finitude of the universe, i.e., Nu < +∞.

It turns out that it is possible to determine experimentally the value of Tu, thus allowing
to compute Nu from Eq. (60). Indeed, it is known that the velocity of stars in spiral
galaxies does not exactly follow General Relativity. A number of remedies has been proposed,
including introduction of “dark matter” or more fundamentally, the search for a refinement of
General Relativity and Newton dynamics. One of these theories, called “Modified Newtonian
dynamics” (MOND), developed by Mordehai Milgrom [25], conjectures the existence of a
minimum acceleration. This coincides with the minimum gravitational temperature of the
present model. We therefore propose to adopt the Milgrom’s interpretation.

Proposition 68. There is a universal minimum acceleration κu, corresponding to the in-
formation temperature of the universe Tu.

Proof. The minimum expansion temperature, Eq. (48) induces a minimum Unruh
temperature, which in turn induces a minimum acceleration κu. 2

Assumption 33 (Milgrom’s acceleration). The universal minimum acceleration κu, corre-
sponds to the standard Milgrom’s acceleration of MOND theory.

Hint. The Milgrom’s acceleration explains the shift compared to both Newton’s law and
General Relativity observed on the velocities of stars in spiral galaxies. 2

Proposition 69. The Milgrom acceleration is equal to κu = 2πTu = 1/(4Uu).

Proof. Apply Eq. (55) for t = tmax and use Eq. (60). 2

Now, the Milgrom acceleration, that is the information temperature Tu specifies the num-
ber of variables Nu.

Proposition 70 (Storing capacity of the Bayesian theater). The number of binary variables
in the universe is Nu = 6.23 × 10125 corresponding to the Milgrom’s acceleration κu =
1.20× 10−10 m/s2 or the information temperature Tu = 4.87× 10−31 K.

Proof. From the experimental value of the velocities of stars in spiral galaxies measured
by S. S. McGaugh et all [68], κu = 1.2× 10−10 m/s2, we can compute the number of binary
variables in the universe as Nu = 6.23× 10125. 2

This is much higher than the value 10122 derived from the standard estimate of the event
entropy [39].

Consider the ultimate fate of the whole universe. The universe of mass Uu collapses in
totality into a Schwarzschild black-hole, as conjectured by Gibbon and Hawking in 1977 [69].

Proposition 71 (Ultimate Schwarzschild black hole). In the present model, the normalized
parameters of the ultimate Schwarzschild black hole are the following:

Ultimate Schwarzschild black hole value
number of bits Nu 6.23× 10125

entropy Smax = Nu ln 2 4.32× 10125 nats

mass Uu = ε
√
Nu (ε =

√
ln 2/4π) 4.03× 1054 kg

comoving radius χmax = tmax = 2Uu 633× 109 light yrs
temperature Tu = 1/(8πUu) 4.87× 10−31 K

acceleration κu = 1/(4Uu) 1.20× 10−10 m/s
2

Proof. Apply the propositions just above. 2
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In addition, we find the expression of the so-called “Bekenstein bound” [70], which is the
limit Smax of the entropy that can be contained in a physical system to which the total
energy is given.

Proposition 72 (Bekenstein bound). The event entropy is the Bekenstein bound of the
entire universe.

Proof. By simple inspection, the standard entropy of a Schwarzschild black-hole of mass
Uu, known as “Bekenstein bound” is Smax = 4πU2

u nats. 2

5.2 Temperatures of parts of the universe
So far we have dealt with the universe as a whole, regarded as a single massive object.
We now approach parts of the universe, also considered as massive objects. Their energy
depends on the cosmic time t or equivalently the global entropy St. We can therefore address
this dependence at constant storage capacity Nu so that the convenient representation is
here the “basic representation”, (Nu, St), Eq. (9).

In a further version of this paper, we will investigate the different temperatures of comov-
ing objects. We expect them to recover both the standard fields of micro-physics and the
CMB temperature.

6 Provisional conclusion
In this preliminary version, we have shown that physics can be based on information. This
requires a completely new vision of what the universe is and even of what determinism is.
At this stage, such a vision can therefore only be conjectural. In a later version, we will
investigate the basics of micro-physics in order to find quantitative consistency with the
experimental results.
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