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Abstract

In this work a semi analytical finite element formulation usingNon-UniformRational B-Splines (NURBS)
basis function is presented for modeling the dispersed wave propagation in heterogeneous waveguides.
Convergence studies are carried out by considering a 2D constant-thickness isotropic elastic plate. The
results were compared with the ones obtained by analytical methods and by conventional SAFE method.
For all of cases, the dispersion curves evaluated by using enriched-NURBS basis have a significant better
precision than using conventional Lagrangian elements (for the same number of degrees of freedom).

Keywords : Isogeometric analysis (IGA), NURBS basis, Semi analytical
nite element (SAFE), Guided waves, Dispersion, Elastic plate

1 Introduction
Ultrasonic guided wave (UGW) technologies are powerful nondestructive testing techniques to charac-
terize near surface materials and evaluate integrity of materials or structures. Due to the presence of
boundaries, the guided waves show a strong dispersive behavior, i.e. the phase velocity and attenuations
vary with frequency-content of wave package. One of major issue in this problem is how to calculate
efficiently the dispersion curves of all modes in the studied frequency range which will serve later to
the inversion task. The Semi-Finite Element Method (SAFE) is one of most popular technique for com-
puting the dispersion of guided waves in structures thanks to its effectiveness in studying functionally
graded or coupled fluid/solid multilayer plates [1, 2]. However, at very high frequency, using conventio-
nal high-order Lagrangian interpolation function does not allow to improve the situation because it may
lead to numerical issues when solving eigenvalue problems.

The Isogeometric Analysis (IGA) is a recently introduced concept that uses most commonly the NURBS
basis functions as a powerful tool from the Computer Aided Design (CAD) to represent not only the
complex geometries but also to construct shape functions for finite element analysis. In particular, the use
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of NURBS basis functions for spectrum and dissipation analyses shows that this method is more accurate
compared to the classical finite element analysis (FEA) for a fixed number of degrees of freedom [3, 4].
The objective of this paper is to study the effectiveness of using NURBS basis functions in the context
of SAFE method for analyzing the wave propagation in homogeneous waveguides.

2 Governing Equation
A two dimensional solid layer of thickness h having infinite extent along the horizontal direction x1

represented by the domain Ω = [−h, 0] × [−∞,∞] as shown in Fig. 1. The equations of motion in Ω

and the constitutive relation describing elastic behavior of the solid are given by :

ρü− LTσ = 0, (1)

σ = Cε, ε = Lu (2)

where the ρ is the mass density ; σ = {σ11, σ22, σ12}T and ε = {ε11, ε22, 2ε12}T are the vectors contai-
ning the components of the stress and strain tensors, respectively ; C is the is the matrix containing the
components of the elasticity tensor using Voigt’s notation ; the operator L is defined by :

L = L1∂1 +L2∂2, L1 =


1 0

0 0

0 1

 ,L2 =


0 0

0 1

1 0

 (3)

Free-surfaces boundary conditions interfaces are assumed at the upper and lower surfaces of the plate,
implying LT2 σ = {σ12, σ22}T = 0.

By noting that that all material properties are homogeneous in x1-direction (ρ = ρ(x2),C = C(x2)),
we look for solution of harmonic waves propagating along the axial x1 direction in the following form :

u(x1, x2, t) = ũ(x2)ei(k1x1−ωt) (4)

where i2 = −1, ω is the angular frequency and k1 is the wave number in the x1 direction, ũ(x2)

represents the amplitudes of the displacement vector. By substituting Eq. (4) into Eq. (2), we obtain
the following equation in the frequency-wavenumber domain for each values of (ω, k1) :

(−ω2A1 + k2
1A2)ũ− ik1(A3 +AT

3 )∂2ũ−A4∂
2
2ũ = 0 (5)

in which the matricesA1,A2,A3,A4 are defined by :

A1 = ρI, A2 = LT1CL1, A3 = LT2CL1, A4 = LT2CL2 (6)

The weak form or variational form of the Eq. (5) is obtained by introducing a test function δũ∗ which
is the conjugate transpose of δũ and integrate by parts. By using the free-surfaces boundary conditions.
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The resulting weak form of the problem is : Find ũ(x2) such that :∫ h

0
δũ∗(−ω2A1 + k2

1A2 − ik1A
T
3 ∂2)ũdx2 +

∫ h

0
∂2δũ

∗(ik1A3 +A4∂2)ũdx2 = 0, ∀δũ ∈ Cad

(7)

3 Discretization by NURBS
A B-spline basis functions of order p is determined in a parameter domain Ω̂ using a knot vector Ξ =

{ξ1, ξ2, ξ3, ..., ξi+p+1}, and polynomial order p = 1, 2, 3, ... as :

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (8)

where ξi ∈ R is the ith knot, i is the knot index (i = 1, 2, ..., n + p + 1), and n ∈ N is the number
of basis functions used to construct the B-spline curve. Non-uniform rational B-spline (NURBS) basis
functions are built from the B-spline functions by multiplying weighting functions wi for each basis

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

(9)

Given n basis functions Ri,p(ξ), and corresponding set of control points Pi ∈ Rd(i = 1, 2, 3, ..., n) the
NURBS geometry in 1D is defined as a mapping from parameter domain to the physical domain as :
C(ξ) =

∑n
i=1Ri,p(ξ)Pi. Fig. 1 (right) shows an example of the discretization of plate thickness and its

corresponding basis functions. According to the isogeometric concept we use the same basis functions
as for geometric represention in order to approximate the solution fields.

Discretizationh

Free Interface Γ1
x2

Free Interface Γ2
x2

O

ξ

N
i,
3

x1

x2

Figure 1 – Geometry description of infinite plate layer and the discretization in the direction of plate
thickness (left). The cubic basis functions over the corresponding knot vector (right)

The functions defined on each element are calculated using the isoparametric NURBS basis as δũ(ξ) =

ReδUe and ũ(ξ) = ReUe. Where Re are the NURBS basis functions, Ue and δUe are the vector of
control varibles of ue and δue respectively. Replacing these functions into the weak formulation (7) and
assembling the elementary matrices lead to a quadratic system of eigenvalue equations :

(−ω2K1 +K4 + k2
1K2 + ik1K3)U = 0, (10)
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whereU is the vector of amplitudes of global displacement field ; the matricesK1,K2,K3 andK4 are
defined by

K1 =
⋃
e

∫
Ωe

(Re)
TA1(Re)JaJξ̃dξ̃, K2 =

⋃
e

∫
Ωe

(Re)
TAe

2(Re)JaJξ̃dξ̃, (11)

K3 =
⋃
e

∫
Ωe

2{(Be)
TAe

3(Re)}aJaJξ̃dξ̃, K4 =
⋃
e

∫
Ωe

(Be)
TAe

4(Be)JaJξ̃dξ̃, (12)

where Ja refers to the jacobian transformation from physical domain to parameter domain (x,ξ(ξ) =
∂x
∂ξ = Ja) ; Jξ̃ refers to the jacobian transformation between parent domain and parametric domain
(dξ
dξ̃

= Jξ̃). In this study, Gauss quadrature rule has been used for computing the integrations over the
elements. By fixing the angular frequency ω and solving (Eq. 10), one may determine the eigenvalues
k1 and their associated eigenvectors V (ω, k1), which represent the wavenumber and the wave structure
of guided modes.

The frequency-dependent phase velocity (Cp) and attenuation (att) of a guided mode are obtained from
k1 using the following relationships

cph =
ω

Re[k1]
(m s−1), att = Im[k1] (Np m−1). (13)

where Re() and Im() are the real and imaginary parts of a complex quantity.

4 Numercial results
A numerical example using the proposed SAFE based IGA formulation is presented in this section to
demonstrate its validity and accuracy for the analysis of guided wave in elastic free plate problem. First,
an isotropic homogeneous plates is considered and the validation is performed by comparing our results
to the numerical ones obtained using conventional SAFE method and to analytical ones obtained using
the software DISPERSE. Then the convergence analysis is carried out.

The IGA-based SAFE formulation is validated for the case of a 4mm thickness of homogeneous alu-
minum plate which is assumed to have a isotropic elastic properties with the density ρ = 2700kg/m3,
longitudinal wave velocity cL = 2344m/s and shear wave velocity cT = 953m/s. For IGA-based SAFE
analysis, we used NURBS basis functions over uniform knot vector with a fixed number of degree of
freedom (Ndof = 26), regardless of their polynomial degree.

The dispersion of phase velocities calculated with quadratic NURBS basis functions is shown in Fig.
2(a). By comparing with the results of conventional SAFE using 6 quadratic elements (nel = 6 and
(Ndof = 26)), the IGA-based SAFE formulation using quaratic NURBS (nel = 11 and the same degree
of freedom (Ndof = 26)) shows better results, particularly for the higher modes (e.g A7, S7) at high
frequencies (greater than 2.5 MHz). The results using a cubic basis functions ((p = 3)) are presented
in Fig. 2(b) and are compared with the conventional FE results using the same order of basis functions.
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Figure 2 – Dispersion curves of homogeneous isotropic aluminum plate obtained using SAFE based
IGA (red marker), conventional SAFE (blue marker) and Disperse software (green dashed line) for qua-
dratic basis function and same degree of freedom (Ndof = 26)

Similar statement on the effectiveness of using IGA basis may be done. Thus the IGA method allows
us to increase the degree of basis functions and obtain the better agreement of the results compare with
analytic solution.

Convergence Analysis In order to carry out a convergence analysis of the proposed method, we intro-
duce a parameter Lpmode = Re[k1] which is the corresponding value of wavenumber at a specific mode.
Then the relative error of the numerical methods at a point x is estimated by

e =

∣∣∣∣∣Lpmode(x)− Lref

Lref

∣∣∣∣∣ (14)

where Lref is the reference analytical value obtained from the DISPERSE. The normalized dispersion
errors of the first mode (A0) with respect to the polynomial order are depicted in Fig. 3 for both numerical
methods. It was shown that these errors decrease faster for the NURBS order p.

5 Conclusion

Due to the strong frequency dependency of dispersion properties, determination of guided wave in plate
at high frequency range may require high computational cost. The dispersion curves calculated with the
IGA-based SAFE shows a better accuracy results compared to conventional SAFE method. The compu-
tational time also reduced using the proposed method. The convergence analysis shows that increasing
the order of NURBS basis function leads to a much faster convergence rate in comparing with a similar
procedure allying to Lagrange polynomials basis functions. For example, increasing the order of NURBS
basis functions from p = 3 to p = 4 leads to an improvement of the error e = 0.03% (for Ndof = 26)
whereas when using Lagrange polynomials this improvement is e = 0.27%. In addition, it has been
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Figure 3 – Convergence analysis of isotropic plate for IGA-based SAFE and conventional SAFE refering
to analytical results obtained by using DISPERSE

shown that the proposed approach gives more accuracy results for studying multilayer anisotropic plates
(data not shown). This model can be developed to deal with other problems such as studying guided
waves in 3D structures or in poroelastic materials [5].
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