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Abstract1

In the recent study of crossing numbers, drawings of graphs that can be extended to an2

arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a3

natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the4

pseudolinear drawings of Kn was found recently. We extend this characterization to all graphs, by5

describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization6

also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the7

pseudolines when it is possible.8
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1 Introduction9

Since 2004, geometric methods have been used to make impressive progress for determining10

the crossing number of (certain classes of drawings of) the complete graph Kn. In particular,11

drawings that extend to straight lines, or, more generally, arrangements of pseudolines, have12

been central to this work, spurring interest in such drawings for arbitrary graphs, not just13

complete graphs [2, 5, 6, 7, 12].14

In particular, for pseudolinear drawings, it is now known that, for n ≥ 10, a pseudolinear
drawing of Kn has more than

H(n) := 1
4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
crossings [1, 13]. The number H(n) is conjectured by Harary and Hill to be the smallest15

number of crossings over all topological drawings of Kn; that is, the crossing number cr(Kn)16

is conjectured to be H(n).17

A pseudoline is the image ` of a continuous injection from the real numbers R to the plane18

R2 such that R2 \ ` is not connected. An arrangement of pseudolines is a set Σ of pseudolines19
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Figure 1 Obstructions to pseudolinearity.48

such that, if `, `′ are distinct elements of Σ, then |`∩ `′| = 1 and the intersection is a crossing20

point. More on pseudolines and their importance for studying geometric drawings of graphs21

can be found in [10, 11].22

A drawing D of a graph G is pseudolinear if there is an arrangment of pseudolines23

consisting of a different pseudoline `e for each edge e of G and such that D[e] ⊆ `e.24

In the study of crossing numbers, restricting the drawing to either straight lines or25

pseudolines yields the rectilinear crossing number cr(Kn) or the pseudolinear crossing number26

c̃r(Kn), respectively. Clearly cr(Kn) ≥ c̃r(Kn) and the geometric methods prove that27

c̃r(Kn) > H(n), for n ≥ 10.28

A good drawing is one where no edge self-intersects and any two edges share at most29

one point—either a crossing or a common end point— and no three edges share a common30

crossing. One somewhat surprising result is from Aichholzer et al.: a good drawing of Kn31

in the plane is homeomorphic to a pseudolinear drawing if and only if it does not contain32

a non-planar drawing of K4 whose crossing is incident with the unbounded face of the K433

[2]. There are equivalent characterizations in [5, 6]. These conditions can be shown to be34

equivalent to not containing the B-configuration depicted as the third drawing of the first35

row of Figure 1.36

Twenty-five years earlier, Thomassen proved a similar theorem for drawings in which37

each edge is crossed only once [16]. The B- and W -configurations are shown as the third38

and fourth drawings in the first row of Figure 1. Thomassen’s theorem is: if D is a planar39

drawing of a graph G in which each edge is crossed at most once, then D is homeomorphic40

to a rectilinear drawing of G if and only if D contains no B- or W -configuration.41

Thomassen presented in [16] the clouds (first column in Figure 1) as an infinite family of42

drawings that are minimally non-pseudolinear.43

Shortly after Thomassen’s paper, Bienstock and Dean proved that if cr(G) ≤ 3, then44

cr(G) = cr(G) [8]. They also exhibited examples based on overlapping W -configurations to45

show the result fails for cr(G) = 4; such graphs can have arbitrarily large rectilinear crossing46

number.47

Despite the existence of infinitely many obstructions to pseudolinearity, we characterize49

them all.50

I Theorem 1. A good drawing of a graph G is pseudolinear if and only if it does not contain51

one of the infinitely many obstructions shown in Figure 1.52

The drawings in Figure 1 are obtained from the clouds (first column) by replacing at most53

two crossings by vertices. The formal statement of Theorem 1 is Theorem 15 in Section 6;54
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also a more general version of this statement, Theorem 2, is discussed below. That there is a55

result such as ours is somewhat surprising, because stretching an arrangement of pseudolines56

to a rectilinear drawing has been shown by Mnëv [14, 15] to be ∃R-hard. In particular,57

recognizing a drawing as being homeomorphic to a rectilinear drawing is NP-hard.58

The natural setting for our characterization is strings embedded in the plane. An arc σ59

is the image f([0, 1]) of the compact interval [0, 1] under a continuous map f : [0, 1]→ R2.60

Let S(σ) = {p ∈ σ : |f−1(p)| ≥ 2} be the set of self-intersections of σ. A string is an arc σ61

for which S(σ) is finite. If S(σ) = ∅, then σ is simple.62

An intersection point between of two strings σ and σ′ is ordinary if it is either an endpoint63

of σ or σ′, or is a crossing (a crossing is a non-tangential intersection point in σ ∩ σ′ that64

is not an end of σ or σ′). A set Σ of strings is ordinary if Σ is finite and any two strings65

in Σ have only finitely many intersections, all of which are ordinary. All the sets of strings66

considered in this paper are ordinary.67

If Σ is an ordinary set of strings, then its planarization G(Σ) is the plane graph obtained68

from Σ by inserting vertices at each crossing between strings and also at the endpoints of69

every string in Σ. To keep track of the information given by the strings, we will always70

assume that each string Σ has a different color and that each edge in G(Σ) inherits the color71

of the string including it.72

If Σ is an ordinary set of strings, then, for a cycle C in G(Σ) (which is a simple closed73

curve in R2) and a vertex v ∈ V (C), v is a rainbow for C if all the edges incident with v and74

drawn in the closed disk bounded by C (including the two edges of C at v) have different75

colours. The reader can verify that, for each drawing in Figure 1, if we let Σ be the edges76

of the drawing, then the unique cycle in G(Σ) has at most two rainbows. Our main result77

characterizes these cycles as the only possible obstructions:78

I Theorem 2. An ordinary set of strings Σ can be extended to an arrangement of pseudolines79

if and only if every cycle C of G(Σ) has at least three rainbows.80

Henceforth, we define any cycle C in G(Σ) with at most two rainbows as an obstruction.81

A set of strings is pseudolinear if it has an extension to an arrangement of pseudolines.82

Theorem 2 is our main contribution. In the next section, we show that the presence83

of an obstruction implies the set of ordinary strings is not pseudolinear. The converse is84

proved in Section 4 by extending, one small step at a time, the strings in Σ to get closer85

to an arrangement of pseudolines. After each extension, we must show that no obstruction86

has been introduced. This involves dealing with cycles in G(Σ) that have precisely three87

rainbows (that we refer as near-obstructions). In Section 3 we show the key lemma that if G88

has two such near-obstructions that intersect nicely at a vertex v, then G has an obstruction.89

In Section 5 we present a polynomial-time algorithm for detecting obstructions and we argue90

why the proof of Theorem 2 implies a polynomial-time algorithm for extending a pseudolinear91

set of strings. Finally, in Section 6, we show how Theorem 1 follows from Theorem 2 and we92

present some concluding remarks.93

2 A set of strings with an obstruction is not extendible94

Let us start by showing the easy direction of Theorem 2:95

I Lemma 3. If the underlying graph G(Σ) of a set Σ of strings has an obstruction, then Σ96

is not pseudolinear.97
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Suppose that C is a cycle of G(Σ) for some set of strings Σ. We define δ(C) as the set of98

vertices of C for which their two incident edges in C have different colours. In a set Σ of99

simple strings where no two intersect twice, |δ(C)| ≥ 3 for every cycle C of G(Σ).100

I Lemma 4. Let Σ be a set of simple strings where every pair intersect at most once. Suppose101

that C is an obstruction with |δ(C)| as small as possible. Let S = x0, x1, . . . , x` be a path102

of G(Σ) representing a subsegment of some string σ ∈ Σ such that x0x1 ∈ E(C), x1 ∈ δ(C)103

and x1 is not a rainbow of C. Then V (C) ∩ V (S) = {x0, x1}.104

Proof. By way of contradiction, suppose that there is a vertex xr ∈ V (C)∩V (S) with r ≥ 3.105

Assume that r ≥ 3 is as small as possible. Let P be the subpath of S connecting x1 to xr.106

Since x0x1 ∈ E(C) and x1 ∈ δ(C) and P ⊆ σ, x1x2 /∈ E(C). Because x1 is not a rainbow107

for C and no two strings tangentially intersect at x1, the edge x1x2 is drawn in the closed108

disk bounded by C. By choice of r, P is an arc connecting x1 to xr in the interior of C.109

Let C1 and C2 be the cycles obtained from the union of P and one of the two xy-subpaths110

in C. We may assume that x0x1 ∈ E(C1). Let ρ(C) be either δ(C) or the set of rainbows111

in C. For i = 1, 2, let Qi = V (Ci) \ V (P ). Then ρ(C) ∩ Qi = ρ(Ci) ∩ Qi. We see that112

ρ(C1) \Q1 ⊆ {xr} and ρ(C2) \Q2 ⊆ {x1, xr}.113

For ρ = δ, |δ(C2)| ≥ 3, so |δ(C) ∩ Q2| ≥ 1. Since x1 /∈ δ(C1), |δ(C1)| ≤ |δ(C1) ∩ Q2| +114

|{xr}| ≤ |δ(C)| − 2 + |{xr}| < |δ(C)|. Likewise, |δ(C) ∩ Q1| ≥ 2 and x1 ∈ δ(C) ∩ δ(C2).115

Therefore, |δ(C2)| ≤ |δ(C)| − 2 + |{xr}| < |δ(C)|. Thus, neither C1 nor C2 is an obstruction.116

Now taking ρ to be the set of rainbows, the preceding paragraph shows |ρ(C1)| ≥ 3 and117

|ρ(C2)| ≥ 3. Therefore, |ρ(C) ∩Q1| = |ρ(C1) ∩Q1| ≥ 2 and |ρ(C) ∩Q2| = |ρ(C2) ∩Q2| ≥ 1.118

Thus, |ρ(C)| ≥ 3, a contradiction. J119

Proof of Lemma 3. By way of contradiction, suppose that Σ is pseudolinear and that G(Σ)120

has an obstruction C.121

Consider an extension of Σ to an arrangement of pseudolines, and then cut off the two122

infinite ends of each pseudoline to obtain a set of strings Σ′ extending Σ, and in which every123

pair of strings in Σ′ cross once. In G(Σ′), there is a cycle C ′ that represents the same simple124

closed curve as C. Because C ′ is obtained from subdividing some edges of C and the colours125

of a subdivided edge are the same, C ′ has fewer than three rainbows. Therefore, we may126

assume that Σ = Σ′ and C = C ′. Now, the ends of every string in Σ are degree-1 vertices in127

the outer face of G(Σ).128

As every string in Σ is simple and no two strings intersect more than once, |δ(C)| ≥ 3.129

We will assume that C is chosen to minimize |δ(C)|.130

Since C is an obstruction, there exists x1 ∈ δ(C) such that x1 is not a rainbow in131

C. Consider a neighbour x0 of x1 in C. Let S = x0, x1, . . . x` be the path obtained by132

traversing the string σ extending x0x1, such that x` is an end of σ. By Observation 4,133

V (S) ∩ V (C) = {x0, x1}, and because x` is in the outer face of C, the segment of σ from x1134

to x` has its relative interior in the outer face of C.135

However, since x1 is not a rainbow, there exists a string σ′ ∈ Σ including two edges136

at x1 drawn in the disk bounded by C. Thus, σ and σ′ tangentially intersect at x1, a137

contradiction. J138

3 The key lemma139

In this section we present the key lemma used in the proof of Theorem 2.140

A plane graph G is path-partitioned if for m ≥ 1, there exists a colouring χ : E(G) →141

{1, . . . ,m} such that for each i ∈ {1, . . . ,m}, the edges in χ−1(i) induce a path Pi ⊆ G where142
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any two distinct paths Pi and Pj do not tangentially intersect. Indeed, every underlying143

planar graph G(Σ) of a set of simple strings Σ is path-partitioned. Moreover, every path-144

partitioned plane graph can be obtained by subdividing a planarization of an ordinary set of145

simple strings. To extend the previously introduced notation we refer to each Pi as a string.146

The concepts of rainbow and obstruction naturally extend to the context of path-partitioned147

plane graphs.148

Suppose that G is a path-partitioned plane graph. Given v ∈ V (G), a near-obstruction at149

v is a cycle C with at most three rainbows and such that v is a rainbow of C. Understanding150

how near-obstructions behave is the key ingredient needed in the proof of Theorem 2:151

I Lemma 5. Let G be a path-partitioned plane graph and let v ∈ V (G). Suppose that C1152

and C2 are two near-obstructions at v such that the union of the closed disks bounded by C1153

and C2 contains a small open ball centered at v. Suppose that one of the following two holds:154

1. no obstruction of G contains v; or155

2. the two edges of C1 incident with v are the same as the two edges of C2 incident with v.156

Then G has an obstruction not including v.157

Given a plane graph G, a cycle C ⊆ G and a vertex v ∈ V (C), the edges at v inside C are158

the edges of G incident with v drawn in the disk bounded by C.159

I Useful Fact. Let G be planar path-partitioned graph. Suppose that for two cycles C and160

C ′, v ∈ V (C)∩V (C ′) is a vertex such that the edges at v inside C ′ are also edges at v inside161

C. If v is a rainbow for C, then v is a rainbow for C ′.162

Proof of Lemma 5. By way of contradiction, suppose that G has no obstruction not includ-163

ing v. The “small ball” hypothesis implies that v is not in the outer face of the subgraph164

C1 ∪ C2.165

We claim that |V (C1) ∩ V (C2)| ≥ 2. Suppose not. Then C1 and C2 are edge-disjoint166

and V (C1) ∩ V (C2) = {v}. For i = 1, 2, let ei and fi be the edges of Ci at v and let ∆i167

be the closed disk bounded by Ci. From the “small ball” hypothesis it follows that (i) ∆1168

contains the edges e2 and f2; and (ii) the points near v in the exterior of ∆2 are contained169

in ∆1. These two properties imply that the path C2 − {e2, f2} intersects C1 at least twice,170

and hence, |V (C1) ∩ V (C2)| ≥ 2.171

From the last paragraph we know that C1 ∪ C2 is 2-connected, and hence the outer face172

of C1 ∪ C2 is bounded by a cycle Cout. We will assume that173

(*) the cycles C1 and C2 satisfying the hypothesis of Lemma 5 are chosen so that the number174

of vertices of G in the disk bounded by Cout is minimal.175

The Useful Fact applied to C = Cout and to each C ′ ∈ {C1, C2}, shows that every vertex176

that is a rainbow in Cout is also a rainbow in each of the cycles in {C1, C2} containing it.177

We can assume that Cout is not an obstruction or else we are done. We may relabel C1 and178

C2 so that two of the rainbows of Cout, say p and q, are also rainbows in C1. Neither p nor q179

is v because v /∈ V (Cout). Because C1 is a near-obstruction, p, q and v are the only rainbows180

of C1.181

Since v /∈ V (Cout), by following C1 in the two directions starting at v, we find a path182

Pv ⊆ C1 containing v in which only the ends u and w of Pv are in Cout (note that u 6= v183

because {p, q} ⊆ V (C1) ∩ V (Cout)). As v is in the interior face of Cout, Pv is also in the184

interior of Cout. Let Q1
out, Q2

out be the uw-paths of Cout. One of the two closed disks bounded185
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by Pv ∪Q1
out and Pv ∪Q2

out contains C1. By symmetry, we may assume that C1 is contained186

in the first disk. Since Cout ⊆ C1 ∪ C2, this implies that Q2
out is a subpath of C2.187

Our desired contradiction will be to find three rainbows in C2 distinct from v. We188

find the first: let C1 − (Pv) be the uw-path in C1 distinct from Pv. The disk bounded189

by (C1 − (Pv)) ∪ Q2
out contains the one bounded by C1. The Useful Fact applied to C =190

(C1 − (Pv)) ∪ Q2
out and C ′ = C1 implies that each vertex in C1 − (Pv) that is rainbow in191

(C1 − (Pv)) ∪Q2
out is also rainbow in C1. Since C1 has at most two rainbows in C1 − (Pv),192

namely p and q, (C1 − (Pv)) ∪ Q2
out has a third rainbow r1 in the interior of Q2

out (else193

(C1 − (Pv)) ∪Q2
out is an obstruction and we are done). Note that r1 is also a rainbow for C2.194

To find another rainbow in C2, consider the edge eu of C2 incident to u and not in Q2
out.195

We claim that either u is a rainbow in C2 or that eu is not included in the closed disk196

bounded by Pv ∪Q2
out. Seeking a contradiction, suppose that u is not a rainbow of C2 and197

that eu is included in the disk. Then we can find two edges in the rotation at u, included in198

the disk bounded by Pv ∪Q2
out, that belong to the same string σ. The vertex u is a rainbow199

in C1, as else, we would find a string σ′ with two edges inside Q1
out ∪ Pv, showing that σ and200

σ′ tangentially intersect at u. As p and q are the only rainbows of C1 in Cout, u is one of p201

and q. Therefore u is a rainbow in Cout, and hence, a rainbow in C2, a contradiction.202

If u is a rainbow in C2, then this is the desired second one. Otherwise, eu is not in the203

closed disk bounded by Pv ∪Q2
out. Let Pu ⊆ C2 be the path starting at u, continuing on eu204

and ending on the first vertex u′ in Pv that we encounter. Let Cu be the cycle consisting of205

Pu and the uu′-subpath uPvu′ of Pv.206

B Claim 6. If Pu does not have a rainbow of Cu in its interior, then either Cu is an207

obstruction not containing v or:208

(a) Cu and C2 are near-obstructions at v satisfying the same conditions as C1 and C2 in209

Lemma 5; and210

(b) the closed disk bounded by the outer cycle of Cu ∪ C2 contains fewer vertices than the211

disk bounded by Cout.212

Proof. Suppose that all the rainbows of Cu are located in uPvu′. If z is a rainbow of Cu,213

then z ∈ {u, v, u′}, as otherwise z is a rainbow of C1 distinct from p, q and v, a contradiction.214

Thus, if v /∈ V (Cu), then Cu is the desired obstruction. We may assume that v ∈ V (Cu).215

If u′ = w, then C2 = Pu ∪Q2
out, violating the assumption that v ∈ V (C2). Thus u′ 6= w.216

If u′ = v, then the rainbows of Cu are included in {u, u′}, and hence Cu is an obstruction.217

However, the existence of Cu shows that both alternatives (1) and (2) in Lemma 5 fail:218

condition (1) fails because Cu contains v and (2) fails because the edge of Pu incident with v219

is in E(C2) \ E(C1). Thus u′ 6= v.220

The previous two paragraphs show that Cu is a near-obstruction at v with rainbows u,221

v and u′. Since the interior of Cu near v is the same as the interior of C1 near v, the pair222

(Cu, C2) satisfies the “small ball” hypothesis. Thus, (a) holds.223

Let C ′out be the outer cycle of Cu ∪ C2. From the fact that Cu ∪ C2 ⊆ C1 ∪ C2 it follows224

that the disk bounded by Cout includes the disk bounded by C ′out.225

Since p, q ∈ V (Cout), p and q are in the disk bounded by Cout. If both p and q are in226

C2, then p, q and r1 are rainbows in C2, and also distinct from v, contradicting that C2 is a227

near-obstruction for v. If, say p /∈ V (C2), then p is not in the disk bounded by C ′out, which228

implies (b). J229

From Claim 6(b) and assumption (*) either Cu is the desired obstruction or Pu contains230

a rainbow r2 of C2 in its interior. We assume the latter as else we are done.231
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In the same way, the last rainbow r3 comes by considering the edge of C2 −Q2
out incident232

with w. It follows that v, r1, r2 and r3 are four different rainbows in C2, contradicting the233

fact that C2 is a near-obstruction. J234

4 Proof of Theorem 2235

In this section we prove that a set of strings with no obstructions can be extended to an236

arrangement of pseudolines.237

Proof of Theorem 2. It was shown in Observation 3 that the existence of obstructions238

implies non-extendibility. For the converse, suppose that Σ is a set of strings for which G(Σ)239

has no obstructions.240

We start by reducing to the case where the point set
⋃

Σ is connected: iteratively add a241

new string in a face of
⋃

Σ connecting two connected components of
⋃

Σ. No obstruction is242

introduced at each step (obstructions are cycles), and, eventually, the obtained set
⋃

Σ is243

connected. An extension of the new set of strings contains an extension for the original set,244

thus we may assume that
⋃

Σ is connected.245

Our proof is algorithmic, and consists of repeatedly applying one of the three steps246

described below.247

Disentangling Step. If a string σ ∈ Σ has an end a with degree at least 2 in G(Σ),248

then we slightly extend the a-end of σ into one of the faces incident with a.249

Face-Escaping Step. If a string σ ∈ Σ has an end a with degree 1 in G(Σ), and is250

incident with an interior face, then we extend the a-end of σ until it intersects some point251

in the boundary of this face.252

Exterior-Meeting Step. Assuming that all the strings in Σ have their two ends in253

the outer face and these ends have degree 1 in G(Σ), we extend the ends of two disjoint254

strings so that they meet in the outer face.255

Each of these three steps either increases the number of pairs of strings that intersect, or256

increase the number crossings (recall that a crossing between σ and σ′ is a non-tangential257

intersection point in σ ∩ σ′ that is not an end of σ or σ′). Moreover, these steps can be258

performed as long as not all the strings have their ends in the outer face and they are pairwise259

crossing (in this case we extend their ends to infinity to obtain the desired arrangement260

of pseudolines). Henceforth, we will show that, if performed correctly, none of these steps261

introduces an obstruction. The proof for each step can be read independently.262

I Lemma 7 (Disentangling Step). Suppose that σ ∈ Σ has an end a with degree at least 2 in263

G(Σ). Then we can extend the a-end of σ into one of the faces incident to a without creating264

an obstruction.265

Proof. A pair of different edges f and f ′ in G(Σ) incident with a are twins if they belong to266

the same string in Σ. The edge e ⊆ σ incident with a has no twin.267

The fact that no pair of strings tangentially intersect at a tells us that if (f1, f
′
1) and268

(f2, f
′
2) are pairs of twins, then f1, f2, f ′1, f ′2 occur in this cyclic order for either the clockwise269

or counterclockwise rotation at a. Thus, we may assume that the counterclockwise rotation270

at a restricted to the twins and e is e, f1, . . . , ft, f
′
1, . . . , f

′
t , where (fi, f ′i) is a twin pair for271

i = 1, . . . , t.272

To avoid tangential intersections, the extension of σ at a must be in the angle between ft273

and f ′1 not containing e. Let e1, . . . , ek be the counterclockwise ordered list of non-twin edges274
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e

f1

ft = e0

α0

e1

e2ek−1

ek

f ′1 = ek+1

f ′t

Figure 2 Substrings included in the disk bounded by C0.287

at a having an end in this angle (as depicted in Figure 2). We label e0 = ft and ek+1 = f ′1.275

If there are no twins, then let e0 = ek+1 = e.276

Let us consider all the possible extensions: for i ∈ {0, . . . , k}, let Σi be the set of strings277

obtained from Σ by slightly extending the a-end of σ into the face containing the angle278

between ei and ei+1. Let αi be the new edge at a extending σ in Σi (see α0 in Figure 2).279

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σi) contains an obstruction280

Ci. Since αi contains a degree-1 vertex, αi is not in Ci. Hence Ci is a cycle of G(Σ). Thus281

Ci is not an obstruction in G(Σ) that becomes one in G(Σi). This conversion has a simple282

explanation: in G(Σ), Ci has exactly three rainbows, and one of them is a. After αi is added,283

a is not a rainbow in Ci (witnessed by the edges e and αi included in the new version of σ).284

Recall from Section 3 that a near-obstruction at a is a cycle with exactly three rainbows,285

and one of them is a. Each of C0, C1,...,Ck is a near-obstruction at a in G(Σ).286

For a cycle C ⊆ G, let ∆(C) denote the closed disk bounded by C. Both e and α0 are in288

∆(C0). Thus, either ∆(C0) ⊇ {e, f1, f2, . . . , ft, e1} (blue bidirectional arrow in Figure 2) or289

∆(C0) ⊇ {ft, e1, . . . , ek, f
′
1, f
′
2, . . . , f

′
t , e} (green bidirectional arrow). We rule out the latter290

situation as the second list contains ft and f ′t , and this would imply that a is not a rainbow291

for C0 in G(Σ).292

We just showed that {e, e0, e1} ⊆ ∆(C0). By symmetry, {ek, ek+1, e} ⊆ ∆(Ck). Consider293

the largest index i ∈ {0, 1, . . . , k − 1} for which {e, e0, . . . , ei+1} ⊆ ∆(Ci). By the choice294

of i, and because {e, αi+1} ⊆ ∆(Ci+1), {e, f ′t , . . . , f ′1, ek, . . . , ei} ⊆ ∆(Ci+1). However, by295

applying Lemma 5 to the pair Ci and Ci+1, we obtain that G(Σ) has an obstruction, a296

contradiction. J297

I Lemma 8 (Face-Escaping Step). Suppose that there is a string σ that has an end a with298

degree 1 in G(Σ), and a is incident to an interior face F . Then there is an extension σ′ of299

σ from its a-end to a point in the boundary of F such that the set (Σ \ {σ}) ∪ {σ′} has no300

obstruction.301

Proof. Let W be the closed boundary walk (x0, e1, x1, e2, . . . , en, xn) of F such that x0 =303

xn = a and F is to the left as we traverse W (see Figure 3 for an illustration with n = 9).304

For i = 1, . . . , n we let mi be a point in the relative interior of ei, and let P be the list of305

non-necessarily distinct points m1, x1, m2, x2 . . . ,mn, which are the potential ends for all306

the different extensions. For each p ∈ P , let Σp be the set of strings obtained from Σ by307

extending the a-end of σ by adding an arc αp connecting a to p in F (see Figure 3). We308

assume that every two distinct arcs αp and αp′ are internally disjoint.309

Let fp be the edge e1 ∪αp in G(Σp); fp has ends x1 and p. Also, let σp = σ∪αp. Seeking310

a contradiction, suppose that each G(Σp) has an obstruction.311
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a

x1 = x8
x2

x3 = x5

x6

x4
x7

Figure 3 All possible extensions in the Face-Escaping Step.302

B Claim 9. Let p ∈ P . Then there exists an obstruction Cp in G(Σp) including fp. Moreover,312

(1) if p ∈ σ, then Cp can be chosen so that all its edges are included in σp; and313

(2) if p /∈ σ, then every obstruction includes fp.314

Proof. First, if p ∈ σ, then the string σp self-intersects at p; thus σp has a simple close curve315

including fp. In this case let Cp be the cycle in G(Σp) representing this simple closed curve316

without rainbows, and thus (1) holds.317

Second, assume that p /∈ σ and let Cp be any obstruction of G(Σp). For (2), we will show318

that fp ∈ E(Cp).319

Seeking a contradiction, suppose that fp /∈ E(Cp).320

If p = mi for i ∈ {1, . . . , n}, since mi is the only vertex whose rotation in G(Σ) differs321

from its rotation in G(Σmi), mi ∈ V (Cp). Consider the cycle C of G(Σ) obtained from Cp322

by replacing the subpath (xi−1, mi, xi) by the edge xi−1xi. For each vertex v ∈ V (C) the323

colors of the edges of G(Σ) at v included in the disk bounded by C are the same as in G(Σp)324

for the disk bounded by V (Cp). Thus, C is an obstruction for G(Σ), a contradiction.325

Suppose now that p is one of x1, . . . , xn−1. The only vertex in G(Σ) whose rotation is326

different in G(Σp) is p. Therefore, p is a point that is a rainbow for Cp in G(Σ), but not327

a rainbow in G(Σp), witnessed by two edges included in σp. Since at least one of the two328

witnessing edges is in G(Σ), p ∈ σ. This contradicts the assumption that p /∈ σ. Hence329

fp ∈ E(Cp). J330

Henceforth we assume that, for p ∈ P , Cp is an obstruction in G(Σp) as in Claim 9.331

More can be said about the obstructions in G(Σp), but for this we need some terminology.332

If we orient an edge e in a plane graph, then the sides of e are either the points near e that333

are to the right of e, or the points near e to the left of e. For any cycle C of G through e,334

exactly one side of e lies inside C. This is the side of e covered by C. For the next claim335

and in the rest of the proof we will assume that for p ∈ P , fp is oriented from x1 to p.336

B Claim 10. For p ∈ P with p /∈ σ, every obstruction in G(Σp) covers the same side of fp.337

Proof. Suppose that for p ∈ P there are obstructions Cp and C ′p covering both sides of fp.338

Let G′ be the plane graph obtained from G(Σp) by subdividing fp, and let v be the new339

degree-2 vertex inside fp.340

We consider the edge-colouring χ induced by the strings in Σp. Let χ′ be a new colouring341

obtained from χ by replacing the colour of the edge vp by a new colour not used in χ. It is a342
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routine exercise to verify that (i) χ′ induces a path-partition in G′ (defined in Section 3);343

and (ii) Cp and C ′p are near-obstructions for v with respect to χ′. By applying Lemma 5344

to C1 = Cp and C2 = C ′p, we obtain an obstruction in G′ not containing v. However, this345

implies the existence of an obstruction in G(Σ), a contradiction. J346

Recall that the boundary walk of F is W = (x0, e1, . . . , en, xn), with x0 = xn = a. Since347

x1 and xn−1 are in σ, the extreme obstructions Cx1 and Cx2 cover the right of fx1 and the348

left of fxn−1 , respectively. Thus, there are two consecutive vertices xi−1, xi in W − a, such349

that the interior of Cxi−1 covers the right of fxi−1 and the interior of Cxi covers the left of350

fxi
. Moreover, we may assume that the interior of Cmi

includes the left of fmi
(otherwise351

we reflect our drawing).352

The next claim (proved in the full version of this paper [4]) is the last ingredient to obtain353

a final contradiction.354

B Claim 11. Exactly one of the following holds:355

(a) xi−1 ∈ σ, mi /∈ σ and G(Σmi
) has an obstruction covering the side of fmi

not covered by356

Cmi ; or357

(b) xi−1 /∈ σ and G(Σxi−1) has an obstruction covering the side of fxi−1 not covered by Cxi−1 .358

Claims 10 and 11 contradict each other. Thus, for some p ∈ P , G(Σp) has no obstructions.359

J360

I Lemma 12 (Exterior-Meeting Step). If all the strings in Σ have their ends on the outer361

face of G(Σ) and the ends have degree 1 in G(Σ), then we can extend a pair disjoint strings362

so that they intersect without creating an obstruction.363

Proof. By following the outer boundary of
⋃

Σ, we obtain a simple closed curve O containing364

all the ends of the strings in Σ, but otherwise disjoint from
⋃

Σ.365

Suppose σ1, σ2 are two disjoint strings in Σ. For i = 1, 2, let ai, bi be the ends of σi;366

since σ1 and σ2 do not cross, we may assume that these ends occur in the cyclic order a1, b1,367

b2, a2. We extend the ai-ends of σ1 and σ2 so that they meet in a point p in the outer face,368

and so that all the ends of σ1 and σ2 remain incident with the outer face (Figure 4). Let Σ′369

be the obtained set of strings.370

O
σ1 σ2

p

a1

b1 b2

a2

Figure 4 Exterior-Meeting Step.371

Seeking a contradiction, suppose that G(Σ′) has an obstruction C. Since G(Σ) has no372

obstruction, p ∈ V (C). Our contradiction will be to find three rainbows in C. Note that373

p is a rainbow. To obtain a second rainbow, traverse C starting from p towards a1. Let374

d1 be the first vertex during our traversal that is not in the extended σ1, and let c1 be its375

neighbour in σ1, one step before we reach d1. Since b1 has degree one, c1 6= b1.376
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B Claim 13. The cycle C has a rainbow included in the closed disk ∆1 bounded by σ1 and377

the a1b1-arc of O disjoint from σ2.378

Proof. First, suppose that d1 /∈ ∆1. In this case, c1 is a rainbow because otherwise there379

would be a string σ that tangentially intersects σ1 at c1. Thus, if d1 /∈ ∆1, then c1 is the380

desired rainbow.381

Second, suppose that d1 ∈ ∆1. Let P1 be the path of C starting at c1, continuing on the382

edge c1d1, and ending at the first vertex we encounter in σ1. Since the cycle C ′ enclosed by383

P1 ∪ σ1 is not an obstruction, there is one rainbow of C ′ that is an interior vertex of P1; this384

is the desired rainbow of C. This concludes the proof of Claim 13. J385

Considering σ2 instead of σ1, Claim 13 yields a third rainbow in C inside an analogous386

disk ∆2 disjoint from ∆1, contradicting that C is an obstruction. Hence Lemma 12 holds. J387

We iteratively apply the Disentangling Step, Face-Escaping Step or Exterior-Meeting Step388

without creating obstructions. Each step increases the number of pairwise intersecting strings389

in Σ until we reach a stage where the strings are pairwise intersecting and all of them have390

their two ends in the unbounded face. From this we extend them into an arrangement of391

pseudolines. This concludes the proof of Theorem 2. J392

5 Finding obstructions and extending strings in polynomial time393

We start this section by describing an algorithm to detect obstructions. Henceforth, we394

assume that the input to the problem is the planarization G(Σ) of an ordinary set of s strings395

Σ. For the running-time analysis, we assume that n and m are the number of vertices and396

edges in G(Σ), respectively. Since G(Σ) is planar, m = O(n). Moreover, if Σ is pseudolinear,397

then n ≤
(
s
2
)

+ 2s =
(
s+2

2
)
− 1. At the end of this section we explain how to extend Σ (if398

possible) in polynomial time.399

Recall that each string in Σ receives a different colour; this induces an edge-colouring on401

G(Σ) where each string is a monochromatic path. An outer-rainbow is a vertex x ∈ V (G(Σ))402

incident with the outer face and for which the edges incident with x have different colours.403

Next we describe the basic operation in our obstruction-detecting algorithm.

x

Figure 5 From Σ to Σ − x.400

404

Outer-rainbow deletion. Given an outer-rainbow x ∈ V (G(Σ)), the instance G(Σ− x) is405

defined by: first, removing x and the edges incident to x; second, suppressing the degree-2406

vertices incident with edges of the same colour; and third, removing remaining degree-0407

vertices (Figure 5 illustrates this process). Edge colours are preserved.408

It is easy to verify that G(Σ− x) is the planarization of an arrangement of strings. The409

colours removed by this operation are those belonging to strings that are paths of length 1 in410

G(Σ) incident with x. Our obstruction-detecting algorithm relies on the following property:411
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(**) if x is an outer-rainbow of G(Σ), then there is an obstruction in G(Σ) not including x if412

and only if there is an obstruction in G(Σ− x).413

This property holds because cycles in G(Σ)− x and in G(Σ− x) are in 1-1 correspon-414

dence: two cycles correspond to each other if they are the same simple closed curve. This415

correspondence is obstruction-preserving.416

Let us now describe the two subroutines in our algorithm. For this, we remark that an417

outer-rainbow of G(Σ) is a rainbow for any cycle containing it.418

Subroutine 1. Detecting an obstruction through two outer-rainbows x and y.419

(1) Find a cycle C through x and y whose edges are incident with the outer face of G(Σ). If420

no such C exists, then output No obstruction through x and y. Else, go to Step 2.421

(2) Find whether there is a third outer-rainbow z ∈ V (C) \ {x, y}. If such z exists, update422

G(Σ)←− G(Σ− z) and go to Step 1. If no such z exists, output C.423

Correctness and running-time of Subroutine 1: If an obstruction through x and y exists, then424

x and y are in the same block (some authors use the term ‘biconnected component’). Since425

x and y are incident with the outer face, the outer boundary of the block containing x and y426

is the cycle C from Step 1. This C can be found by considering outer boundary walk W of427

G(Σ) and then by finding whether x and y belong to the same non-edge block of W . Finding428

W is O(m) and computing the blocks of W via a DFS takes O(m) time.429

In Step 2, if there is a third outer rainbow z in C, then no obstruction through x and y430

contains z. Property (**) justifies the update that takes O(m) time.431

A full run from Step 1 to Step 2 takes O(m). Moving from Step 2 to Step 1 occurs O(n)432

times. Thus, the total time for Subroutine 1 is O(mn) = O(n2).433

Subroutine 2. Detecting an obstruction through a single outer-rainbow x.434

(1) Find a cycle C through x whose edges are incident with the outer face of G(Σ). If no435

such C exists, output No obstruction through x. Else, go to Step 2.436

(2) Find whether there is an outer-rainbow y in V (C) \ {x}. If no such y exists, output C.437

Else, apply Subroutine 1 to x and y; if there is an obstruction C ′ through x and y, then438

output C ′. Else, update G(Σ)←− G(Σ− y) and go to Step 1.439

Correctness and running-time of Subroutine 2: If G(Σ) has an obstruction through x, then440

there is a non-edge block in G(Σ) containing x. The outer boundary of this block is a cycle441

C through x having all edges incident with the outer face. As in Subroutine 1, Step 1 takes442

O(m) time.443

Detecting the existence of y in Step 2 is O(m) because to detect rainbows in C, each edge444

incident with a vertex in V (C) is verified at most twice. The update in Step 2 is justified445

by Property (**). Since Step 2 may use Subroutine 1, Step 2 takes O(n2) time. As moving446

from Step 2 to Step 1 occurs O(n) times, the total running-time for Subroutine 2 is O(n3).447

We are now ready for the algorithm to detect obstructions.448

Algorithm 1: Detecting obstructions in G(Σ).449

(1) Find a cycle C having all edges incident with the outer face. If no such C exists, output450

No obstruction. Else, go to step 2.451

(2) Find whether there is an outer rainbow x ∈ V (C). If not, output C. Else apply Subroutine452

2 to x; if there is an obstruction C ′ through x, output C ′. Else, update G(Σ)←− G(Σ−x)453

and go to Step 1.454
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Correctness and running-time of Algorithm 1: If G(Σ) has an obstruction, then it has a455

non-trivial block whose outer boundary is a cycle C as in Step 1. As before, C and x as in456

Step 2 can be found in O(m) steps. If C has not outer rainbow x, then C is an obstruction;457

Property (**) justifies the update in Step 2.458

Since Step 2 may use Subroutine 2, a full run of Steps 1 and 2 takes O(n3) time. Since459

Step 2 goes to Step 1 O(n) times, the running-time of Algorithm 1 is O(n4).460

Algorithm 1 and the constructive proof of Theorem 2 imply the following result (proved461

in the full version of this paper [4]).462

I Theorem 14. There is a polynomial-time algorithm to recognize and extend an ordinary463

set of strings that are extendible to an arrangement of pseudolines.464

6 Concluding remarks465

In this work we characterized in Theorem 2 sets of strings that can be extended into466

arrangements of pseudolines. Moreover, we showed that the obstructions to pseudolinearity467

can be detected in O(n4) time, where n is the number of vertices in the planarization of the468

set of strings.469

An easy consequence of Theorem 2 is the following (presented before as Theorem 1). We470

prove this result in the full version of this paper [4].471

I Theorem 15. Let D be a non-pseudolinear good drawing of a graph H. Then there is a472

subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ′ ⊆ σ473

for which
⋃
σ∈S σ

′ is one of the drawings represented in Figure 1.474

Theorem 2 can also be applied to find a short proof that pseudolinear drawings of Kn475

are characterized by forbidding the B-configuration (see Theorem 2.5.1 in [3]). This implies476

the characterizations of pseudolinear drawings of Kn presented in [2, 5, 6].477

A drawing is stretchable if it is homeomorphic to a rectilinear drawing. There are478

pseudolinear drawings that are not stretchable. For instance, consider the Non-Pappus479

configuration in Figure 6. Nevertheless, as an immediate consequence of Thomassen’s main480

result in [16], pseudolinear and stretchable drawings are equivalent, under the assumption481

that every edge is crossed at most once.482

Figure 6 Non-Pappus configuration.483

I Corollary 16. A drawing D of a graph in which every edge is crossed at most once is484

stretchable if and only if it is pseudolinear.485

Proof. If a drawing D is stretchable then clearly it is pseudolinear. To show the converse,486

suppose that D is pseudolinear. Then D does not contain any obstruction, and in particular,487

neither of the B- and W -configurations in Figure 1 occurs in D. This condition was shown488

in [16] to be equivalent to being stretchable. J489
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One can construct more general examples of pseudolinear drawings that are not stretchable490

by considering non-strechable arrangements of pseudolines. However, such examples seem to491

inevitably have some edge with multiple crossings. This leads to a natural question.492

B Question 17. Is it true that if D is a pseudolinear drawing in which every edge is crossed493

at most twice, then D is stretchable?494

We believe that there are other instances where pseudolinearity characterizes stretchability495

of drawings. A drawing is near planar if the removal of one edge produces a planar graph.496

One instance, is the following result by Eades et al. that can be translated to the language497

of pseudolines:498

I Theorem 18. [9] A drawing of a near-planar graph is stretchable if and only if the drawing499

induced by the crossed edges is pseudolinear.500
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