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MAXIMUM TIME STEP FOR THE BDF3 SCHEME APPLIED

TO GRADIENT FLOWS

MORGAN PIERRE

Abstract. For backward differentiation formulae (BDF) applied to gradi-
ent flows of semiconvex functions, quadratic stability implies the existence
of a Lyapunov functional. We compute the maximum time step which can
be derived from quadratic stability for the 3-step BDF method (BDF3). Ap-
plications to the asymptotic behaviour of sequences generated by the BDF3
scheme are given.

Keywords: gradient system, BDF method, semiconvex function, Kurdyka–
 Lojasiewicz property, multivalued dynamical system.

1. Introduction

In this paper, we focus on the 3-step backward differentiation formula (BDF3)
applied to the gradient flow of a semiconvex function in finite dimension. It is
known that if the time step is small enough, the BDF3 scheme is a gradient
system, which means that it is possible to find a Lyapunov function for the
discrete-in-time dynamical system [19]. A fundamental consequence is that the
time discrete model mimics the asymptotic behaviour of the gradient flow.

The construction of the Lyapunov function for the BDF3 scheme involves
quadratic forms. A similar construction is also well-known for the BDF1 and
BDF2 methods [19]. It was successfully generalized into the notion of “qua-
dratic stability” for BDFk schemes in [10]. In particular, the BDF schemes of
order 4 and 5 were proved to be gradient systems (or “gradient stable”). BDF
methods of order k ≥ 7 are not zero-stable [14], so they cannot be gradient sys-
tems, but it is still not known whether the BDF6 scheme is a gradient system
or not.

For BDFk methods (1 ≤ k ≤ 5) applied to the gradient flow of a convex
function, gradient stability holds without any restriction on the time step.
However, for a semiconvex function, it is easily seen that a restriction on the
time step is required.

Since quadratic stability implies gradient stability, it is interesting to com-
pute the maximum time step which can be obtained from quadratic stability.
This is easily obtained for the BDF1 and BDF2 schemes [10]. In this paper,
we compute the maximum time step for the BDF3 scheme. Surprisingly, this
allows the dynamical system associated to the BDF3 scheme to be multivalued
and gradient stable if the time step is near the optimal value.
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Using the gradient stability, we are then able to prove that a bounded se-
quence generated by the BDF3 scheme converges to a single equilibrium for a
large class of functions. For this purpose, we apply a general result on descent
methods due to Attouch, Bolte and Svaiter [5] (see also [2, 12]), and we assume
a Kurdyka- Lojasiewicz type condition on the Lyapunov function associated to
the scheme. Our regularity assumptions on the nonlinearity are weaker than
in the references [10, 19]: our framework includes also non-differentiable func-
tions.

Our paper is organized as follows. We first compute in Section 2 the maxi-
mum value for the time step of the BDF3 scheme based on quadratic stability.
Then, in Section 3, we prove the gradient stability of the BDF3 scheme for this
maximal value and we derive some consequences on the asymptotic behaviour
of sequences generated by the BDF3 scheme.

2. Optimal constant for the quadratic stability of the BDF3

scheme

We consider the following quadratic form on R
3, which will be related to the

BDF3 scheme in Section 3.3:

γ3(x1, x2, x3) =
11

6
x2
1 −

7

6
x1x2 +

1

3
x1x3. (2.1)

We have

Proposition 2.1. The BDF3 scheme is quadratically stable, namely there exist
a positive definite quadratic form q3 on R

2 and a positive definite quadratic form
r3 on R

3 such that

γ3(x1, x2, x3) = q3(x1, x2) − q3(x2, x3) + r3(x1, x2, x3), (2.2)

for all (x1, x2, x3) ∈ R
3.

Proof. It is easy to check (see [19, p. 423] or [10, Formula (17)]) that (2.2)

holds with q3(x1, x2) =
5

12
x2
1 +

1

6
(x1 − x2)

2 and

r3(x1, x2, x3) =
5

6
x2
1 +

1

4
(x1 − x2)

2 +
1

6
(x1 − x2 + x3)

2. (2.3)

�

We note that the quadratic forms q3 and r3 in (2.2) are not uniquely defined.
Indeed, if q3 and r3 are positive definite forms which satisfy (2.2), then for a
quadratic form qε3 close enough to q3, q

ε
3 is positive definite and the quadratic

form rε3 defined by (2.2) is also positive definite (use for instance Sylvester’s
criterion).

We define β3 as the supremum of real numbers β > 0 such that

γ3(x1, x2, x3) = q3(x1, x2) − q3(x2, x3) + r̃3(x1, x2, x3) + βx2
1 (2.4)
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where q3 is a positive definite quadratic form on R
2 and r̃3 is a positive definite

quadratic form on R
3. Formula (2.3) shows that β3 ≥ 5/6. The remainder of

this section is devoted to the proof of the following

Theorem 2.2. We have β3 = 95/96 and

γ3(x1, x2, x3) = q⋆3(x1, x2) − q⋆3(x2, x3) + r̃⋆3(x1, x2, x3) + β3x
2
1 with

q⋆3(x1, x2) =
1

6
(x2 −

7

4
x1)

2 +
1

6
x2
1 and r̃⋆3(x1, x2, x3) =

1

6
(x3 −

7

4
x2 + x1)

2.

We note that r̃⋆3 is positive semidefinite, but not positive definite.

Proof. Let q3 be a positive definite quadratic form on R
2. Then (x1, x2) 7→

q3(x2, x1) is also positive definite, and using its Cholesky decomposition, we
obtain that

q3(x1, x2) = a2x2
2 + 2acx2x1 + (b2 + c2)x2

1

for some unique real numbers a > 0, b > 0 and c ∈ R. Thus,

r3(x1, x2, x3) = γ3(x1, x2, x3) − q3(x1, x2) + q3(x2, x3)

reads

r3(x1, x2, x3) =
11

6
x2
1 −

7

6
x1x2 +

1

3
x1x3 − (ax2

2 + 2acx2x1 + (b2 + c2)x2
1)

+(ax2
3 + 2acx3x2 + (b2 + c2)x2

2).

Next, we perform a Gauss reduction of r3. We obtain

r3(x1, x2, x3) = (ax3 + cx2 +
1

6a
x1)

2

+(b2 − a2)

(

x2 −
1

2(b2 − a2)

(

7

6
+ 2ac +

c

3a

)

x1

)2

+f(a, b, c)x2
1, (2.5)

where

f(a, b, c) =
11

6
− 1

4(b2 − a2)

(

7

6
+ 2ac +

c

3a

)2

−
(

b2 + c2 +
1

36a2

)

. (2.6)

Thus, r3 is positive definite if and only if a > 0, b2 − a2 > 0 and f(a, b, c) > 0.
Moreover, it is clear from (2.5) that β3 is the supremum f(a, b, c) over the set
of real numbers such that a > 0, b > a and c ∈ R. In Lemma 2.3, we show
that this supremum is equal to 95/96. �

Lemma 2.3. Let Ω = {(a, b, c) ∈ R
3 : a > 0 and b > a}. Then

β3 = sup
Ω

f =
95

96
.

Moreover, for any sequence (an, bn, cn) in Ω such that f(an, bn, cn) → β3, we

have (an, bn, cn) → (
1√
6
,

1√
6
,− 7

4
√

6
).
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Proof. We define f : Ω → R ∪ {−∞} as the lowest upper semicontinuous
function above f on the closure Ω of Ω. Namely, for each (a, b, c) ∈ Ω,

f(a, b, c) = sup

{

lim sup
n→+∞

f(an, bn, cn) | (an, bn, cn) ∈ Ω, (an, bn, cn) → (a, b, c)

}

.

Then f is upper semicontinuous on Ω and supΩ f = supΩ f (see, e.g., [13,
Section 1.1.1]).

Now, let (an, bn, cn) be a sequence in Ω such that f(an, bn, cn) → β3 = supΩ f .
Since β3 > 0 by Proposition 2.1, for n large enough we have f(an, bn, cn) > 0
and since bn > an, the definition (2.6) of f yields b2n + c2n < 11/6 and 11/6 >
1/(36a2n). In particular, (an), (bn) and (cn) are bounded and an ≥ 1/

√
66.

Thus, up to a subsequence, (an, bn, cn) converges in Ω to a point (a⋆, b⋆, c⋆)
such that b⋆ ≥ a⋆ ≥ 1/

√
66 > 0. Since f = f on Ω, the definition of f yields

f(a⋆, b⋆, c⋆) = sup
Ω

f = β3.

Since a⋆ > 0, then (a⋆, b⋆, c⋆) either belongs to Ω or to its boundary with
b⋆ = a⋆ > 0.

We first assume that (a⋆, b⋆, c⋆) ∈ Ω. Then ∇f(a⋆, b⋆, c⋆) = (0, 0, 0). A

calculation (with Maple) yields ∇f . We first use that
∂f

∂b
(a⋆, b⋆, c⋆) = 0. Since

∂f

∂b
(a, b, c) = 2b

δ2

η2
− 2b with

δ =

(

7

6
+ 2ac +

c

3a

)

and η = 2(b2 − a2),

this yields δ⋆ = εη⋆ with ε ∈ {−1, 1}, at the critical point. Next, we use
∂f

∂c
(a⋆, b⋆, c⋆) = 0 with

∂f

∂c
(a, b, c) = −2δ(a + 1/(6a))

η
− 2c. This yields

c⋆ = −ε

(

a⋆ +
1

6a⋆

)

. (2.7)

We plug this into δ⋆ and we use η⋆ = εδ⋆. We obtain

η⋆ = ε
7

6
− 2a⋆2 − 2

3
− 1

18a⋆2
.

We must have η⋆ > 0, because b⋆ > a⋆. For ε = −1, this is not possible. For
ε = +1, we find that it is also not possible. Indeed, in the latter case, we have

η⋆ =
1

2
− 2a⋆2 − 1

18a⋆2
= − 1

18a⋆2
(−9a⋆2 + 36a⋆4 + 1),

and the discriminant of the equation is ∆ = 92 − 4 × 36 < 0, so this quantity
η⋆ is (strictly) negative for all values of a⋆.

Thus, the point (a⋆, b⋆, c⋆) necessarily belongs to the boundary of Ω, with
b⋆ = a⋆ > 0. We compute f at (a⋆, a⋆, c⋆). Since bn → a⋆ with bn > an, from
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the expression (2.6) of f we see that

7

6
+ 2a⋆c⋆ +

c⋆

3a⋆
= 0, (2.8)

otherwise we would have f(an, bn, cn) → −∞, a contradiction. We note that
in the right hand-side of (2.6), the second term is nonpositive. Thus, the value
f̄(a⋆, a⋆, c⋆), which is a supremum of f , is best reached by a sequence which
tends to (a⋆, a⋆, c⋆) and satisfies the constraint (2.8). We obtain that

f̄(a⋆, a⋆, c⋆) =
11

6
−

(

a⋆2 + c⋆2 +
1

36a⋆2

)

,

with the constraint (2.8). It remains to solve this constrained optimization
problem. From (2.8) we find the value of c⋆ = −7/(6(2a⋆ + 1/3a⋆)) in terms of
a⋆. We introduce the function

g(a) =
11

6
− a2 − 49

36
(

2a + 1

3a

)2
− 1

36a2
,

so that f(a⋆, a⋆, c⋆) = g(a⋆). We seek the maximum of g on (0,+∞). A
calculation yields

g′(a) = −(6a2 − 1)(36a4 + 33a2 + 1)(36a4 − 9a2 + 1)

18(6a2 + 1)3a3
.

The only positive root of g′ is a⋆ = 1/
√

6. From the variations of g, we
see that a⋆ is the unique maximum of g on (0,+∞). A computation yields
g(a⋆) = 95/96. The uniqueness of the maximizer of f̄ implies the convergence
of the whole sequence. This concludes the proof. �

3. Gradient stability of the BDF3 scheme

3.1. Assumptions. Let F : RM → R ∪ {+∞} be a proper lower semicontin-
uous function. We assume that F is semiconvex, i.e. there exists cF ≥ 0 such
that

the function F̃ : V 7→ F (V ) +
cF
2
‖V ‖2 is convex. (3.1)

Here, ‖ · ‖ is the euclidean norm and 〈·, ·〉 will be the scalar product in R
M .

It is easily seen that if (3.1) holds for some constant cF ≥ 0, there exists a
minimal value c⋆F ≥ 0 for which (3.1) is true, and we denote cF this optimal
value. In particular, if F is convex, we have cF = 0.

The domain of F is the convex set

dom(F ) = {V ∈ R
M : F (V ) < +∞}( 6= ∅)

and we assume that

F is continuous on dom(F ). (3.2)

Finally, we assume that

inf
RM

F > −∞. (3.3)
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Since F̃ is convex, we may define its subdifferential [11, 18] as a set-valued
map ∂F̃ : RM ⇒ R

M . The subdifferential of F is defined accordingly as the
set-valued map ∂F : RM ⇒ R

M through ∂F (V ) = ∂F̃ (V ) − cFV , that is

W ∈ ∂F (V ) ⇐⇒ ∀V ′ ∈ R
M , F (V ′) ≥ F (V ) + 〈W,V ′ − V 〉 − cF

2
‖V ′ − V ‖2.

(3.4)
We note that dom(∂F ) ⊂ dom(F ), where

dom(∂F ) = {V ∈ R
M : ∂F (V ) 6= ∅}.

3.2. BDF methods for gradient flows. First consider the gradient flow

U ′(t) ∈ −∂F (U(t)), t ≥ 0, (3.5)

in R
M , where U : [0,+∞) → R

M is continuous. Since ∂F̃ (cf. (3.1)) is a
maximal monotone operator in R

M , for every U0 ∈ dom(F ), there exists a
unique strong solution U to (3.5) such that U(0) = U0 [11]. Moreover, t 7→
F (U(t)) is nonincreasing and several consequences on the asymptotic behaviour
of U(t) can be derived [11, 15].

Here, we focus on the time discretization of (3.5) by backward differentiation
formulae (BDF). Let ∆t > 0 be the time step. The general k-step BDF scheme
for (3.5) is defined by

k
∑

j=1

1

j
∂jUn+k ∈ −∆t∂F (Un+k), n ≥ 0, (3.6)

where, for a sequence (Un)n≥0, the backward difference operator ∂j is defined
recursively by ∂jUn = ∂j−1(Un − Un−1) (j ≥ 2, n ≥ j). When j = 1, we have
∂Un = Un − Un−1.

The one-step BDF method is the backward Euler scheme:

Un+1 − Un ∈ −∆t∂F (Un+1), n ≥ 0. (3.7)

Any solution to the proximal algorithm solves the BDF1 scheme, but the con-
verse is true only if ∆t is small enough (Proposition 3.1). The two-step BDF
method reads

3

2
Un+2 − 2Un+1 +

1

2
Un ∈ −∆t∂F (Un+2), n ≥ 0, (3.8)

and the three-step BDF method reads

11

6
Un+3 − 3Un+2 +

3

2
Un+1 − 1

3
Un ∈ −∆t∂F (Un+3), n ≥ 0. (3.9)

If F ∈ Ck+2(RM ,R) (k ≤ 6) and if the initial conditions are well chosen, the
error between the solution U of (3.5) and its approximation given by the BDF
scheme (3.6) is of order O(∆tk) on finite time intervals [19, Theorem 3.5.7].
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Let k be a positive integer. We denote

αk =
k

∑

j=1

1/j > 0. (3.10)

The assumptions on F imply [10]:

Proposition 3.1. Let U0, . . .Uk−1 be given in R
M . For all ∆t > 0, there

exists a least one sequence (Un)n≥0 in R
M with initial values U0, . . .Uk−1

which complies with (3.6). If cF∆t < αk, this sequence is unique.

Remark 3.2. If cF∆t ≥ αk, then there may be more than one solution to the
BDFk scheme, for a given set of initial values (cf. example below).

Example 3.3. Let F : R → R be a function of class C∞ such that F ′′(v) =
−αk on [−1, 1], F ′′(v) ≥ −αk on R and F (v) → +∞ as |v| → +∞, then
cF = αk and for ∆t = 1, the BDFk scheme (3.6) reads

F ′(un+k) + αkun+k − ln = 0, n ≥ 0,

where ln = ln(un+k−1, . . . , un). If ln = F ′(0) then un+k may take any value in
[−1, 1].

3.3. Quadratic stability of the BDF3 method. Following the approach
in [10, 19], we multiply the left-hand side of (3.6) by ∂Un+k, and we consider
the quantity

Γk =
k

∑

j=1

1

j
〈∂jUn+k, ∂Un+k〉. (3.11)

For k = 3, we consider Γ3 as a quadratic form depending on the variables
(∂Un+3, ∂Un+1, ∂Un+1). Namely,

Γ3 =
11

6
‖∂Un+3‖2 − 7

6
〈∂Un+3, ∂Un+2〉 +

1

3
〈∂Un+3, ∂Un+1〉. (3.12)

The results from the previous section can be used for Γ3. More precisely, if

q(x1, . . . , xd) =

d
∑

i=1

d
∑

j=1

aijxixj

is a quadratic form on R
d, associated to the symmetric matrix A = (aij)1≤i,j≤d,

we define the following quadratic form on (RM)d:

Q(V1, . . . , Vd) =

d
∑

i=1

d
∑

j=1

aij〈Vi, Vj〉.

Then Q inherits the properties of q. In particular, if q is positive definite, then
so is Q [10, Section 3.1].
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By comparing (3.12) to (2.1), we see that the quadratic form in (RM)3 asso-
ciated to γ3 is precisely Γ3. Theorem 2.2 shows that for each β < β3 = 95/96,

there exist positive definite quadratic forms qβ3 on R
2 and r̃β3 on R

3 such that

γ3(x1, x2, x3) = qβ3 (x1, x2) − qβ3 (x2, x3) + r̃β3 (x1, x2, x3) + βx2
1.

We denote Qβ
3 and R̃β

3 the corresponding quadratic forms on (RM)2 and (RM)3.
There are positive definite and we have

Γ3(V1, V2, V3) = Qβ
3 (V1, V2) −Qβ

3 (V2, V3) + R̃β
3 (V1, V2, V3) + β‖V1‖2. (3.13)

We note that Qβ
3 and R̃β

3 depend on β.

3.4. Gradient stability of the BDF3 scheme. We use the positive semi-
definite quadratic forms Qβ

3 and R̃β
3 defined in (3.13). For V̂ = (V0, V1, V2) ∈

(RM)3, we define

F̂ β
3 (V̂ ) = F (V0) +

1

∆t
Qβ

3 (V1, V2). (3.14)

For a sequence (Un)n≥0 in R
M , we denote

Ûn+3 = (Un+3, ∂Un+3, ∂Un+2),

so that

F̂ β
3 (Ûn+3) = F (Un+3) +

1

∆t
Qβ

3 (∂Un+3, ∂Un+2). (3.15)

By setting k = 3 in (3.6), the BDF3 methods reads: for each n ∈ N,

∃W n+3 ∈ ∂F (Un+3) such that W n+3 = − 1

∆t

3
∑

j=1

1

j
∂jUn+3. (3.16)

The following result shows the gradient stability of the BDF3 scheme.

Theorem 3.4. Let (Un) be a sequence in R
M which complies with the BDF3

scheme (3.9). Assume that cF∆t < 2β3 and let β be chosen arbitrarily in
[cF∆t/2, β3). Then for each n ≥ 0 we have

F̂ β
3 (Ûn+3) +

1

∆t
R̃β

3 (∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂ β
3 (Ûn+2). (3.17)

Proof. Let n ≥ 0 and W ∈ ∂F (Un+3). We apply the definition (3.4) of ∂F
with V = Un+3 and V ′ = Un+2. This yields

F (Un+2) ≥ F (Un+3) − 〈W, ∂Un+3〉 − cF

2
‖∂Un+3‖2. (3.18)

We choose W = W n+3 from the BDF3 scheme (3.16) in this estimate and we
use the definition (3.11) of Γ3. We obtain

F (Un+2) ≥ F (Un+3) +
1

∆t
Γ3(∂U

n+3, ∂Un+2, ∂Un+1) − cF

2
‖∂Un+3‖2.

From (3.13), (3.15) and β ≥ cF∆t/2, we deduce (3.17). �
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If (Un)n is a sequence in R
M , we denote

ω((Un)n) =
{

U⋆ ∈ R
M : ∃np → +∞ such that Unp → U⋆

}

its ω-limit set. The set of critical points of F is

S =
{

V ∈ R
M : 0 ∈ ∂F (V )

}

.

As a consequence of gradient stability, we have:

Corollary 3.5. Let (Un) be a bounded sequence in R
M which complies with the

BDF3 scheme (3.9). If cF∆t < 2β3, then ∂Un → 0 and ω((Un)n) is a compact
and connected subset of RM included in S.

Proof. Let β ∈ [cF∆t/2, β3). By (3.17), the sequence (F̂ β
3 (Ûn+3))n is nonin-

creasing. It is also bounded from below thanks to the positivity of Qβ
3 and

assumption (3.3). By induction, we obtain from (3.17) that for all N ≥ 1,

F̂ β
3 (Ûn+3) +

1

∆t

N
∑

n=1

R̃β
3 (∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂ β

3 (Û3). (3.19)

Letting N → +∞ yields

1

∆t

+∞
∑

n=1

R̃β
3 (∂Un+3, ∂Un+2, ∂Un+1) ≤ F̂ β

3 (Û3) − inf F < +∞.

We note here that F̂ β
3 (Û3) < +∞ since U3 ∈ dom(∂F ) ⊂ dom(F ). Since R̃β

3

is positive definite, we have

(∂Un+3, ∂Un+2, ∂Un+1) → (0, 0, 0).

Therefore, the bounded sequence (Un) satisfies Un+1−Un → 0 and a standard
argument shows that ω((Un)n) is a compact and connected subset of RM .

Let U⋆ = limp→+∞ Unp be an element of ω((Un)n). Then from (3.19) we

deduce that F̂ β
3 (Ûnp+3) ≤ F̂ β

3 (Û3) and since F is lower semicontinuous, we see
that

F (U⋆) ≤ lim inf
p

F̂ β
3 (Ûnp+3) < +∞.

Thus, U⋆ ∈ dom(F ). Now, since ∂Un+1 → 0, we have W n+3 → 0 in (3.16). By
letting n = np tend to +∞ in (3.16), we obtain 0 ∈ ∂F (U⋆). This can easily
be seen by choosing V = Unp+3 and W = W np+3 in (3.4), for an arbitrary
V ′ ∈ R

M , and by letting p tend to +∞. The continuity of F on its domain
yields F (Unp+3) → F (U⋆). �

Remark 3.6. Since 2β3 = 95/48 > α3 = 11/6, if cF∆t ∈ [α3, 2β3), there may
be several sequences (Un) which comply with the BDF3 scheme for the same
choice of initial conditions. Each one of these sequences is gradient stable.
The previous known estimate 2β3 ≥ 5/3 did not allow this non-uniqueness
phenomenon [10].



10 M. PIERRE

Remark 3.7. Assume that F is coercive, i.e. lim‖V ‖→+∞ F (V ) = +∞. If
(Un) is a sequence in R

M which complies with the BDF3 scheme (3.9) with
cF∆t < 2β3, then by (3.19), the sequence (F (Un))n is bounded, so (Un)n is
bounded as well.

In general, the ω-limit set in Corollary 3.5 is not reduced to a single point
(see [1] for related counter-examples). However, there are many situations
where this happens. In the next result, we use the definition of the Kurdyka-
 Lojasiewicz (KL) property as given, e.g., in [5, 6]. To the class of KL functions
belong real analytic, semi-algebraic, real sub-analytic, uniformly convex and
convex functions satisfying a growth assumption [4, 7, 8, 9, 16].

Corollary 3.8. Assume that the hypotheses of Corollary 3.5 are satisfied and
let β ∈ [cF∆t/2, β3). If the function F̂ β

3 : (RM)3 → R has the KL-property at
some point (U⋆, 0, 0) in (RM)3 where U⋆ ∈ ω((Un)n), then the whole sequence
(Un)n converges to U⋆.

Proof. We apply [5, Theorem 2.9] to the sequence (Ûn+3)n in (RM)3. The

function F̂ β
3 is proper and lower semicontinuous on (RM)3. It is also semiconvex

with constant cF . We only need to check assumptions H1, H2 and H3 in [5].
Estimate (3.17) shows that H1 is satisfied. Corollary 3.5 shows that for some

subsequence, we have Ûnp+3 → (U⋆, 0, 0) and

F̂ β
3 (Ûnp+3) → F̂ β

3 (U⋆, 0, 0) = F (U⋆),

so that H3 is also satisfied. Next, we turn to H2. By definition, the positive
definite quadratic form Qβ

3 reads

Qβ
3 (V1, V2) = a‖V1‖2 + 2b〈V1, V2〉 + c‖V2‖2,

with a > 0 and ac− b2 > 0. Thus,

∂Qβ
3

∂V1

(V1, V2) = 2aV1 + 2bV2 and
∂Qβ

3

∂V2

(V1, V2) = 2bV1 + 2cV2.

For each n, the vector

Ŵ n+3 = (W n+3, 2a∂Un+3 + 2b∂Un+2, 2b∂Un+3 + 2c∂Un+2)

where W n+3 solves (3.16) belongs to ∂F β
3 (Ûn+3). Moreover, using (3.16) again,

we see that

‖Ŵ n+3‖ ≤ c1‖(∂Un+3, ∂Un+2, ∂Un+1)‖ ≤ c2‖Ûn+3 − Ûn+2‖,
for some positive constants c1, c2 independent of n. This proves H2 and
concludes the proof. �

Example 3.9. The convergence result of Corollary 3.8 can be applied to the
time and space discretization of the Allen-Cahn equation with polynomial non-
linearity considered in [10, Section 6]. In this case, the function F is polynomial

on R
M , so F̂ β

3 is polynomial as well. Thus, it satisfies the classical  Lojasiewciz
inequality [16].
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3.5. A barrier to gradient stability. We consider a counter-example to
gradient stability in the one-dimensional case. For k ∈ {1, 2, 3}, we define
λk > 0 such that the sequence un = (−1)n solves the BDFk scheme

k
∑

j=1

1

j
∂jun+k = −λku

n+k.

Using (3.7)-(3.9), we see that this holds for λ1 = 2, λ2 = 4 and λ3 = 20/3.
Let now ∆t > 0 and cFk

= λk/∆t. It is easy to build a function Fk of
class C∞ on R such that F ′

k(v) = −cFk
v on [−1, 1], F ′′

k (v) ≥ −cFk
on R and

Fk(v) → +∞ as |v| → +∞. This function satisfies assumptions (3.1)-(3.3),
and by construction the sequence un = (−1)n is bounded and complies with the
BDFk scheme (3.6) for Fk. However, for this time step, the BDFk scheme does
not satisfy the conclusions of Corollary 3.5 because ±1 are not critical points
of Fk. Thus, the number λk appears as a “barrier” to the gradient stability of
the BDFk scheme.

The results are summarized in Table 1. The values β1 = β2 = 1 are easy
to find [10, Section 3.4]. For k = 1, we have λ1 = 2β1 = 2, so that quadratic
stability gives the optimal time step for gradient stability. For k ≥ 2, we have
λk > 2βk, so there is a gap between quadratic stability and gradient stability.
It could be interesting to understand the asymptotic behaviour of sequences
when cF∆t belongs to the interval [2βk, λk).

No restriction on the time step is required if the BDF1 scheme is replaced
by the proximal algorithm. Moreover, for the proximal algorithm, the semi-
convexity assumption on F can be removed [3, 17].

k 1 2 3
αk 1 3/2 11/6
2βk 2 2 95/48
λk 2 4 20/3

Table 1. Uniqueness and stability numbers for BDFk methods
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