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ABSTRACT 

Battery Management System (BMS) is an essential 

component for lithium-ion battery-based devices. It 

provides a variety of functionalities that help improve the 

overall lifespan of the battery, including states estimation 

algorithms. An accurate estimation of the battery State 

Of Health (SOH) and State Of Charge (SOC) is a crucial 

task that an advanced battery management system should 

perform.   

This paper aims to outline the most relevant battery 

model types that were used in literature for Electric 

Vehicle (EV) applications. An overview of the 

estimation algorithms that estimate the battery state of 

charge and state of health are presented and simulations 

of some methods are also illustrated in order to test their 

accuracy. 

 

Keywords: Battery management system, State Of 

Health, State Of Charge, Lithium-ion. 

 

1. INTRODUCTION 

The global need for a clean and renewable energy 

sources that can replace fossil energy is essential to 

create a more sustainable planet. This global shift favours 

the use of electric vehicles as a safe and clean alternative 

of fossil fuels in transportation to help reduce air 

pollution. Due to their high power and energy density, 

Li-ion batteries are widely used to power electric cars. 

However, to ensure a long-life cycle and avoid any risk 

of explosion, a Battery Management System (BMS) is 

needed to boost the efficiency and guarantee a safe usage 

of the battery.  

A smart battery management system uses the required 

data to estimate the battery states, whether it's the battery 

state of charge (SOC), state of health (SOH), or any other 

battery state that can help improve the performance. 

The ability to predict the instantaneous battery state and 

conditions is a crucial task a BMS should perform with 

accuracy. The SOC indicates the battery available 

capacity to help avoid overcharging/discharging the 

battery pack.  An accurate SOC can be achieved using 

the proper battery model and estimation algorithm. 

Different estimation approaches were introduced in 

literature in the aim of predicting this parameter, in 

(Chang, 2013) Wen-Yeau Chang presented a 

classification of the different mathematical methods that 

were used in literature to predict the battery SOC. 

However, this variable only is not enough for proper 

utilization of the battery, since the battery is subject to 

different ageing mechanisms, it’s important to track of 

the battery health. The battery ageing results in an 

increment in internal resistance and a decrease in 

capacity, which affects the performance and the ability to 

provide the same energy decreases. Therefore, 

estimation of the battery SOH can be achieved by 

tracking the change of one of these two metrics. This 

battery state was the subject of research of different 

authors who used different estimation algorithms with 

different battery models to provide an accurate 

estimation. (Ungurean, Cârstoiu, & Groza, 2016), 

presented a detailed review of the most relevant models, 

algorithms and commercial devices that were used in 

literature to estimate the battery Remaining Useful Life 

(RUL) and SOH.   

This paper outlines the most relevant methods that were 

used in literature to estimate the battery SOC and SOH. 

First, we present the battery model categories that were 

used for EV applications. Then an overview of battery 

state of health and state of charge estimation algorithms, 

in particular, the coulomb counting method, internal 

resistance method, voltage-based method, Kalman 

filtering based methods, sliding mode observer, fuzzy 

logic and least squares-based method are presented. an 

equivalent circuit model with 2 RC networks is used to 

test the accuracy of some methods to determine the 

battery SOC and internal resistance. 

 

2. BATTERY MODELING FOR EVS 

Building a proper battery model that suits better the 

target application is a crucial task during BMS design; it 

helps capture the battery electric and thermal behaviors 



under different operating conditions, to ensure safe and 

fast charging for optimal utilization and secure 

discharging of the battery (Kailong, Kang, Qiao, & 

Cheng, 2019).  

Literature has presented numerous battery models with 

different complexity and fidelity scales. For EV 

applications the battery model needs to be simple, 

computationally efficient and suitable for high discharge 

rates. Therefore, two main groups of EV battery models 

were presented: Equivalent Circuit Models (ECM) and 

Reduced Order Models (ROM) (A., J., K., & Longo S. 

and Wild, 2016). 

 

2.1. Equivalent Circuit battery Model 

Equivalent circuit models on the other hand are widely 

used when developing a BMS for EV application thanks 

to their speed, simplicity and reasonable accuracy 

(Rincon-Mora, 2006). 

The model uses a combination of resistors, capacitors 

and voltage sources, to describe the battery behavior 

under load. Starting by the most basic model that 

represents the battery as an ideal voltage source mounted 

on series with internal resistance to describe the voltage 

polarization, researchers have include different electrical 

components, in the interest of building improved 

versions which take into account the dependence of the 

battery cell on state of charge, temperature, and other 

characteristics (Kempera, Li, & Kum, 2015). 

Figure 2 illustrates a typical ECM that was widely used 

in literature for battery states estimation. The resistor-

capacitor networks are used to describe the battery 

charge transfer or diffusion processes (Kailong, Kang, 

Qiao, & Cheng, 2019). 

 

2.2. Reduced-Order battery Model 

Reduced-order models are simplified version of 

electrochemical battery model (A., B., & M., 2016) . The 

governing Partial Differential Equations (PDE) 

equations that describe the electrochemical reactions 

inside the battery are approximated into low order 

systems of ODEs equations using a set of Model Order 

Reduction (MOR) techniques (Fan & Canova, 2017).  

The most basic electrochemical model is known as 

Single Particle Model (SPM) (Figure 1), it represents 

each electrode of the battery by a single spherical particle 

ignoring thermal effects, approximating spatial and time 

characteristics at the separator region to 0 and assuming 

all unknown states to be scalar and uniform Figure 1. 

SPM are simple and they can be adopted for real time 

applications, however, they lack accuracy at high C-rate. 

To overcome this limitation an extended version of these 

model that incorporates the electrolyte dynamics has 

been developed and they were proved to maintain a high 

accuracy prediction even at high C-rates conditions 

(Moura, Argomedo, Klein, & Krstic, 2016). 

 

  

Another version that aims to reduce the computational 

burden of the P2D model was presented in the literature 

as the Simplified P2D model (SP2D), it describes the 

dynamic concentration profiles derived from the P2D 

model to help improve the accuracy of the BMS (G., X., 

& M., 2018). 

Once the battery model has been decided, it can be used 

as an input for the states estimation algorithms whether 

it is the SOC, SOH or any other state. 

 

3. BATTERY SOC AND SOH ESTIMATION 

 

3.1. Coulomb Counting 

Coulomb counting, also known as Ampere-hour method 

is one of the most common techniques that were used to 

estimate the battery states and especially the battery state 

of charge. As the name suggests, this method calculates 

the accumulated current that flows in or out during the 

charge-discharge process to determine the battery state 

of charge (equation 1) (Fleischer, W., Z., & D.U., 2013) 

or state of health (equation 2) (Ungurean, Cârstoiu, & 

Groza, 2016). 

 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) −  
1

𝑄𝑟𝑎𝑡𝑒𝑑

 ∫ 𝜂(𝑡)𝐼𝑏𝑎𝑡𝑑𝑡
𝑡

𝑡0

 (1) 

Figure 2 : Second order equivalent circuit model 

 

Figure 1: P2D and single particle battery model 



 

Where 𝑆𝑂𝐶(𝑡0) represents the initial SOC, 𝑄𝑟𝑎𝑡𝑒𝑑  is the 

rated capacity and 𝐼𝑏𝑎𝑡  is the battery current. 

 

𝑆𝑂𝐻(𝑡) =  
1

𝑄𝑟𝑎𝑡𝑒𝑑

 ∫ 𝐼(𝑡)𝑑𝑡
𝑡

𝑡0

 
(2) 

  

Where I is the discharge current. 

Coulomb counting method requires an accurate 

estimation of the initial SOC and a precise measurement 

of the battery current to be able to estimate the battery 

states as correctly as possible. However, in reality, the 

measured current includes sensor noise, and it doesn't 

take into consideration the self-discharge current and 

current losses during charging and discharging, which 

makes the measured current different from the true cell 

current.  

To overcome those limitations, several researchers have 

proposed modified versions of the coulomb counting 

method. For example, in (Berecibar, et al., 2016) The 

initial value of the state charge was first estimated using 

a SOC-OCV mapping function, and then a periodic re-

calibration of the capacity was performed. The measured 

results have shown a reliable estimation. 

 

3.2. Direct Resistance Estimation Algorithm 

The life evolution of Li-ion battery cells is affected by 

different degradation mechanisms that can be 

represented by two measurable quantities: Capacity loss 

and increment of internal resistance. Consequently, we 

can estimate the battery state of health by observing the 

changes of these two parameters.  

By observing the step change in the voltage curve during 

the discharge process, the battery internal resistance can 

be approximated using the following equation (Yu, et al., 

2017): 

 

𝑅 =  
Δ𝑈

Δ𝐼
 

(3) 

  

Where Δ𝐼 represents the current step-change and Δ𝑈 is 

the corresponding voltage to the same step-change. 

The estimation of the battery internal resistance using the 

DRE algorithm gives noisy results due to noise in the 

measurement reading. Therefore, Lievre et al. (2016) 

have used an Exponentially Weighted Moving Average 

(EWMA)(equation 4) filter to reduce the noise while 

maintaining the efficiency of the algorithm. 

 

𝐸𝑊𝑀𝐴𝑘 =  𝜆 × 𝑅𝑠 + (1 − 𝜆) × 𝐸𝑊𝑀𝐴𝑘−1 (4) 

 

Where, 𝐸𝑊𝑀𝐴𝑘 represents the current filtered resistance 

estimate, 𝜆 is a tunable constant that represents the depth 

of memory, 𝐸𝑊𝑀𝐴𝑘−1 is the previous value of the 

filtered resistance estimate and 𝑅𝑠 is the raw ohmic 

resistance. 

 

Figure 3 : Internal resistance estimation using DRE 

approach 

 

 

Figure 3 shows the implementation of this approach 

using the same battery model as 3. The estimated results 

slightly converge to the true value of the battery internal 

resistance. The implementation of this method requires a 

smaller memory space since no training data or initial 

battery characterization are needed. Also, it does not 

require complex matrix calculation, which makes it 

suitable for an embedded system (Mathew, Janhunen, 

Rashid, Long, & Fowler, 2018). 

 

3.3. Open Circuit Voltage (OCV)  

Another simplistic approach to estimate the battery states 

is by measuring the open circuit voltage (OCV) of the 

cell. Literature has proven a strong dependence between 

OCV and SOC of the battery cell. This voltage-based 

method gives the equivalent SOC value of the given 

voltage value using the OCV vs. SOC discharge curve of 

the battery. 

 

Based on a simplified electrical model we can define the 

battery OCV as follow: 

 

𝑈𝑂𝐶𝑉(𝑆𝑂𝐶(𝑡)) = 𝑈(𝑡) −  𝑅0𝐼(𝑡) (5) 

 

Where 𝑈𝑂𝐶𝑉  is the battery OCV, 𝑈(𝑡)  is the battery 

terminal voltage, 𝑅0 is the internal resistance and I(t) is 

the battery current. 

Using the same equivalent circuit model previously 

discussed, we can implement this method in MATLAB. 

The estimated SOC was filtered using the EWMA 

approach to reduce noises (see Figure 4). 

 



 

Figure 4 : SOC estimation using OCV 

 

Figure 4 illustrates the estimate and the true SOC curve 

of the Li-ion battery cell, and by observing these curves 

we notice that the predicted values are noisy and that can 

be explained by the fact that this voltage-based method 

doesn't take into consideration the diffusion voltage and 

the hysteresis. 

OCV has been used also to estimate the battery SOH. By 

knowing the SOC/OCV relation the estimation of the 

internal resistance can be easily conducted. (Mathew, 

Janhunen, Rashid, Long, & Fowler, 2018) used a 

combination of OCV and Coulomb counting approach to 

estimate the battery SOH. However, others considered 

this voltage-based method unsuitable for estimating 

SOH, (A., et al., 2016) present some disadvantages of 

using this method and tried to eliminate the OCV from 

the equations to simplify the computation of the battery 

SOH. 

 

3.4. Kalman filtering 

Kalman filter is a model-based algorithm that uses the 

mathematical representation of a linear system to 

determine its states. The literature defines this approach 

as a sturdy algorithm that operates in two fundamental 

steps (Ungurean, Cârstoiu, & Groza, 2016): 

• Prediction phase: the system state is estimated 

using the following equations: 

 

𝑥̂(𝑡|𝑡−1) =  𝐹𝑡𝑥̂(𝑡−1|𝑡−1) +  𝐵𝑡𝑢𝑡 (6) 

  

𝑃(𝑡|𝑡−1) =  𝐹𝑡𝑃(𝑡−1|𝑡−1) + 𝑄𝑡  (7) 

  

  

• Update phase: the algorithm updates the 

prediction based on the system errors as follow: 

 

𝑥̂(𝑡|𝑡) =  𝑥̂(𝑡|𝑡−1) + 𝐾𝑡(𝑦𝑡 − 𝐻𝑥̂(𝑡|𝑡−1) ) (8) 

𝐾𝑡 = 𝑃(𝑡|𝑡−1) 𝐻𝑡
𝑇  (𝐻𝑡𝑃(𝑡|𝑡 − 1)𝐻𝑡

𝑇 + 𝑅𝑡)−1 (9) 

𝑃(𝑡|𝑡)  =  𝑃(𝑡|𝑡−1) − 𝐾𝑡𝐻𝑡𝑃(𝑡|𝑡−1)  (10) 

 

Where 𝑥̂ is the estimated state, F is the state transition 

matrix, B is the control matrix, u is the input vector, P 

and Q are respectively the state and the process variance 

matrix, y is the output measurement, K is the Kalman 

gain, H is the measurement matrix and R is the 

measurement variance matrix.  

Since the Kalman filter is limited for linear systems and 

has proven a reliable estimation of the states of a process, 

researchers have developed different extensions of this 

model-based algorithm to adapt it for nonlinear systems. 

The extended Kalman Filter is one of the enhanced 

versions that deals with non-linear systems such as 

battery state estimation. This model-based approach was 

widely used to estimate the battery SOC.  The process of 

estimation starts by choosing the battery model that 

describes its response in discrete-time, then the algorithm 

is applied to estimate the state. The state description of 

the battery model has to include the wanted unknown 

quantities that should be determined. For this paper, a 

second-order ECM (Figure 2) will be used to test the 

performance of this approach to estimate the battery state 

of charge.   

The authors of (E. Kamal, 2015) and (Sepasi, Ghorbani, 

& Liaw, 2014) used the same battery model to estimate 

the battery SOC. The nonlinear system is first 

represented using equations 11 and 12, to represent 

respectively the system dynamics expressed in state 

equations and the output equation of the system (O., P., 

S., & Molinas, 2017). 

 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) +  𝑤𝑘 (11) 

 

𝑦𝑘+1 = 𝑔(𝑥𝑘 , 𝑢𝑘) +  𝑣𝑘  (12) 

  

 

Where 𝑓(𝑥𝑘 , 𝑢𝑘) represents the nonlinear transition 

function, 𝑔(𝑥𝑘 , 𝑢𝑘) represents the nonlinear 

measurement function, 𝑤𝑘  and 𝑣𝑘 denote respectively 

the process and the measurement noise. 

To apply the EKF 𝑓(𝑥𝑘 , 𝑢𝑘) and 𝑔(𝑥𝑘 , 𝑢𝑘) are linearized 

at each time step using the first order of Taylor-series. 13 

and equation 14 can be rewritten as follows (E. Kamal, 

2015): 

 

𝑥𝑘+1 =  𝐴𝑘𝑥𝑘 + 𝐵𝑘 𝐼𝐿,𝑘 + 𝑤𝑘 (13) 

 

𝑦𝑘 =  𝐶𝑘𝑥𝑘 + 𝐷𝑘𝐼𝐿,𝑘 +  𝑣𝑘  (14) 

 

 

Where 𝐴𝑘 =
𝜕𝑓(𝑥𝑘,𝑢𝑘)

𝜕𝑥𝑘
|

𝑥𝑘,𝑢𝑘

, 𝐵𝑘 =
𝜕𝑓(𝑥𝑘,𝑢𝑘)

𝜕𝑢𝑘
|

𝑥𝑘,𝑢𝑘

,  

𝐶𝑘 =
𝜕𝑔(𝑥𝑘,𝑢𝑘)

𝜕𝑥𝑘
|

𝑥𝑘,𝑢𝑘

 and 𝐷𝑘 =
𝜕𝑔(𝑥𝑘,𝑢𝑘)

𝜕𝑢𝑘
|

𝑥𝑘,𝑢𝑘

. 



 

 
Figure 5 : SOC estimation using EKF 

 

EKF was proven to give accurate results even with noisy 

input data, the algorithm is much lighter and can be 

implemented for real-time application. However, when 

the system is highly non-linear, linearization error would 

lead to highly unstable filters because of uncertainties in 

the first order Taylor series (Sun, Hu, Zou, & Li, 2011). 

Many authors have used dual extended Kalman filter to 

provide an online estimation of both battery SOH and 

SOC. As the name suggested, this approach uses two 

extended Kalman filters to predict the battery states and 

update its parameters to give more reliable results. In 

(Wassiliadisa, et al., 2018) the authors provide an 

outstanding investigation of the DEKF performance for 

SOC and SOH estimation under different dynamics and 

degradation stages. Compared to a simple EKF, the 

DEKF was proven to improve the accuracy of the SOC 

over battery lifetime, while the battery internal resistance 

and capacity become inaccurate with advanced 

degradation. 

 

3.5. Sliding Mode Observer 

Another model-based approach that was used to estimate 

the internal states of the battery is known as the sliding-

mode observer (SMO). This algorithm has the advantage 

of compensating the modelling errors caused by 

parameters variation of circuit model and can help 

overcome some drawbacks that other model-based 

methods present. Introduced by Emel'yanov (1959) the 

SMO algorithm was adopted to estimate the battery SOC. 

A combination of an improved ECM and a SMO were 

used by different authors to provide an accurate 

estimation of the battery SOC (Chen, X., Z., & A., 2012) 

(Nacer, Ahmed, & Naamane, 2012). 

In (Ning, Xu, Cao, Wang, & Xu, 2016 ), the authors used 

SMO to estimate the battery SOC based on a parameter 

adaptive battery model to reduce the systematic errors.  

The estimation result shows a rapid convergence of SOC 

curve with an estimation error of less than 2%, which 

reflects the robustness of the algorithm. 

 

3.6. Fuzzy Logic 

Fuzzy logic is a useful mathematical concept that allows 

modelling non-linear and complex systems using the 

appropriate training dataset. It's a non-monotonic logic 

that uses crisp sets to categorize the measured data. The 

relationship between a member of a set and its degree of 

membership is defined using a membership function. In 

the case of SOH, the membership function outputs can 

be set as healthy, tolerable and not healthy. 

Jonghoon Kim ( 2014),  used a fuzzy logic-controlled 

methodology to predict the battery SOH, first the cell 

resistance and maximum capacity were determined 

based on voltage, current, temperature and time, then 

fuzzy logic approach was applied to estimate the battery 

SOH using the resistance and the maximum capacity 

values. 

Burgos et al. proposed a novel fuzzy logic algorithm to 

predict the battery SOC. A fuzzy model that 

characterizes the relationship between the battery open-

circuit voltage, SOC and the discharge current was used 

in combination with an EKF to predict the battery SOC 

(Burgos, Saez, Orchard, & Cardenas, 2015). 

3.7. Least squares 

The least square algorithm is a widely used approach that 

identifies the best fit function that minimizes the sum of 

quadratic errors between measured output and system 

response.  

In (L, 2011), Gregory L.Pett proposed an enhanced 

version of the LS algorithm called Weighted Total Least 

square to estimate the battery capacity. Since the 

standard least square approach doesn’t consider the 

uncertainties that the input measurement includes, the 

author used the WTLS algorithm that takes into account 

the noises of the accumulated ampere-hour 

measurements and the battery SOC. The estimation 

results are more accurate than a standard least squares 

approach, and the algorithm can be used for real-time 

applications. 

 

4. CONCLUSION 

SOC and SOH estimation is of a great importance when 

developing a battery management system, they provide 

an overview of the short- and long-term state of the 

battery. 

The main goal of this paper is to provide a basic 

understanding of the different algorithms, the advantages 

and shortcomings of each to help build an advanced BMS 

for EV application. The review shows that there is no 

perfect approach to estimate the battery states, and the 

choice should be made based on the complexity of the 

system and the target application. 

The battery model types that are used for EV applications 

are first presented. Then the most relevant estimation 

algorithms that were used in literature to predict the 

battery SOC and SOH are outlined. Certain algorithms 

were tested using a second order equivalent circuit 

battery model to test out their accuracy. 
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