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Abstract. Existence (resp. uniqueness) of global (resp. local) in time continuous solutions to the
Vlasov-Poisson system is proven in a one-dimensional bounded domain, with direct reflection boundary
conditions. Generalized characteristics are used. Electroneutrality is obtained in the limit.

1 Introduction and main results
We consider the Vlasov-Poisson system

∂tf + v∂xf + E∂vf = 0, t > 0, (x, v) ∈ ]0, 1[×R, (1.1)
∂tg + v∂xg − E∂vg = 0, t > 0, (x, v) ∈ ]0, 1[×R, (1.2)

ε∂xE =

∫
R
f dv −

∫
R
g dv, t > 0, x ∈]0, 1[, (1.3)

f(0, x, v) = f0(x, v), (x, v) ∈]0, 1[×R, (1.4)

g(0, x, v) = g0(x, v), (x, v) ∈]0, 1[×R. (1.5)

This is a well-known model describing the dynamics of particles in a collisionless, electrostatic and non-
relativistic plasma composed of ions and electrons. f and g respectively denote the ionic and electronic
distribution functions. The electric field E = −∂xφ derives from the potential φ. The parameter ε > 0
is equal to the square of the ratio between the Debye and the characteristic observation lengths. The
Debye length is a physical length below which charge separation occurs. In many physical situations, ε is
small. The distribution functions f and g satisfy direct reflection boundary conditions at the boundary
x ∈ {0, 1}, and E is given and constant at x = 0,

f(t, x, v) = f(t, x,−v), t > 0, x ∈ {0, 1}, v ∈ R, (1.6)
g(t, x, v) = g(t, x,−v), t > 0, x ∈ {0, 1}, v ∈ R, (1.7)
E(t, 0) = E0, t > 0. (1.8)

Many works have already been done on the Vlasov-Poisson system. C. Bardos and P. Degond [BAR1985]
proved global in time existence and uniqueness of classical solutions to the Cauchy problem related to the
Vlasov-Poisson system in the whole three-dimensional space for small initial data. Using characteristics,
K. Pfaffelmoser [PFA1992] proved existence of classical solutions to the Vlasov-Poisson system for general
initial data. Together with the study of propagation of moments

∫
|v|mf(t, x, v) dxdv with m > 3, P.-L.

Lions and B. Perthame [LIO1991] proved existence and uniqueness of an L1 ∩ L∞ weak solution to the
Vlasov-Poisson system in the whole space. C. Pallard [PAL2012] proved an analogous result for m > 2.
Using optimal transport, G. Loeper [LOE2006] proved the uniqueness of weak solutions with bounded
mass density. A key point in their proofs is the boundedness of the mass density ρ(t, x) =

∫
f(t, x, v) dv.

In a domain with boundaries, the treatment of the Vlasov-Poisson system is more complex. Existence
of weak solutions to the Vlasov-Poisson system in a bounded domain and given indata were proven by
N. Ben Abdallah [BEN1994]. For the Vlasov equation, S. Mischler [MIS1999] extended his result
by considering other types of boundary conditions such as specular reflection, proving existence and
uniqueness of weak solutions, and studying their traces. On a half-line, H.J. Hwang and J. Schaeffer
[HWA2008] proved uniqueness of weak solutions to the one-species Vlasov-Poisson system with specular
reflection for the distribution function and given constant electric field at the boundary, pointing inward
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of the domain, using an approach with characteristics. Considering the Vlasov-Poisson system for two
species as it is done in this paper, the electric field points inward (resp. outward) of the domain for
one (resp. the other) species. It is known from a counterexample by Y. Guo [GUO1995] that there
is in general no C1 solution to the Vlasov-Maxwell system with direct reflection boundary conditions
on a half-line. This counterexample can be adapted to the Vlasov-Poisson system with direct reflection
boundary conditions in a bounded domain. In this paper, we prove global in time existence and local in
time uniqueness of continuous (resp. continuous in time and C1 in space) ionic and electronic distribution
functions f and g (resp. electric field E).
If the spatial domain in (1.1)–(1.8) were R instead of ]0, 1[, classical characteristics for (1.1) would be
defined by X ′ = V, V ′ = E(t,X). In the frame of this paper, bounces may occur at the boundary
{0, 1} of the spatial domain. When a characteristics intersects x = 0 (resp. x = 1) with a zero velocity
at a time s > 0, it can be seen that it stays in the domain without any discontinuity. And so, it is
still considered as a classical characteristics. Bounces at the boundary of the domain occur when a
characteristics intersects the boundary with a non zero velocity. Generalized characteristics involving
possible bounces [GUO1995, HWA2008] and continuous solutions to (1.1) and (1.6) are defined as
follows.

Definition 1.1
Let E ∈ C([0,+∞[;C1([0, 1])).
The generalized backward characteristics (X,V ) from (t, x, v) ∈]0,+∞[×]0, 1[×R related to (1.1) and (1.6)
is defined as the union of the classical characteristics which connect (t, x, v) to (t1, x1, v1), (t1, x1,−v1)
to (t2, x2, v2), . . . , (tn, xn,−vn) to (tn+1, xn+1, vn+1), . . ., where xn ∈ {0, 1}, |vn| > 0 and tn > tn+1 ≥ 0.

This gives a set P ⊂ N∗ counting the number of bounces, and a sequence of bouncing times (tn)n∈P such
that,

X(tn; t, x, v) = 0 and V (t+n ; t, x, v) = −V (t−n ; t, x, v) > 0,

or

X(tn; t, x, v) = 1 and V (t+n ; t, x, v) = −V (t−n ; t, x, v) < 0, n ∈ P.

Definition 1.2
Let E ∈ C([0,+∞[;C1([0, 1])). A continuous solution f to (1.1), (1.4) and (1.6) is a function
f ∈ C([0,+∞[×[0, 1]× R) such that

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)), t > 0, (x, v) ∈ [0, 1]× R, (1.9)

where (X(·; t, x, v), V (·; t, x, v)) is the generalized characteristics from (t, x, v) as in Definition 1.1.

The main results of this paper are the following.

Theorem 1.1
Let ε > 0. Let f0, g0 ∈ C([0, 1]×R) be nonnegative even functions w.r.t. the v variable, with finite kinetic
energy, and such that for any R > 0,

sup
(x,w)∈[0,1]×R;|w−v|<R

f0(x,w) ∈ L1(Rv), sup
(x,w)∈[0,1]×R;|w−v|<R

g0(x,w) ∈ L1(Rv). (1.10)

Let E0 ∈ R \ {0} such that

E0 6= ε−1

∫
(g0 − f0)(x, v)dxdv. (1.11)

There exists a solution (f, g, E) ∈
(
C([0,+∞[×[0, 1]×R)

)2 ×C([0,+∞[;C1([0, 1])) of (1.1)–(1.8) in the
sense of Definition 1.2. Moreover, f and g are nonnegative.

Remark 1.1 Due to the mass conservation, E(·, 1) is also a constant function. Assumption (1.11) is
satisfied if E0 6= 0 and electroneutrality holds at t = 0. It is done for E(·, 1) to be different from zero.

Remark 1.2 As will be seen in Property 3.1, t 7→ E(t, 0) is assumed to be a constant function in order
to ensure the conservation of total energy.
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Theorem 1.2
Let f0, g0 be nonnegative Lipschitz functions satisfying (1.10), even w.r.t. the v variable, and such that
for some c0 > 0 and V0 > 0,

f0(x, v) = g0(x, v) = 0, x ∈ [0, 1], |v| ≤ c0 or |v| ≥ V0.

Let E0 ∈ R \ {0} satisfying (1.11).
There is a time T0 > 0 such that the continuous solution to (1.1)–(1.8) is unique on [0, T ].

The use of generalized characteristics enlightens the solution. The main difficulties to use them are
to discard infinitely many bounces accumulating at some boundary point, and to get continuity of the
distribution functions f and g from (1.9).
The paper organizes as follows. In Section 2, generalized characteristics are studied, taking into account
possible bounces. Theorem 1.1 (resp. Theorem 1.2) is proven in Section 3 (resp. Section 4). The
quasineutrality equation is obtained when ε→ 0 at the end of Section 3.

2 Generalized characteristics
In this section, T > 0 and E ∈ C([0, T ];C1([0, 1])) are given. We consider the Cauchy problem for the
Vlasov equation,

∂tf + v∂xf + E∂vf = 0, t ∈ [0, T ], (x, v) ∈]0, 1[×R, (2.1)

f(0, x, v) = f0(x, v), (x, v) ∈]0, 1[×R, (2.2)
f(t, x, v) = f(t, x,−v), t ∈ [0, T ], (x, v) ∈ {0, 1} × R. (2.3)

As recalled above, existence and uniqueness of weak solutions to the problem have been proven by S.
Mischler in [MIS1999], using a variety of test functions. Our approach differs from his by considering
generalized characteristics and continuous distribution functions. Excluding the case where infinitely
many bounces would accumulate at a boundary point, we prove in Propositions 2.1 and 2.2 that the
backwards in time generalized characteristics from any (t, x, v) ∈ [0, T ]× [0, 1]× R,

s 7→ (X(s; t, x, v), V (s; t, x, v)),

has a finite number of bounces at the boundary, hence reaches time zero. Example 2.1 exhibits a case
where the map (t, x, v) 7→ V (0; t, x, v) is discontinuous. In Proposition 2.3, the continuity of the map
(x, v) 7→ (X(0; t, x, v), | V (0; t, x, v) |) is proven, for any t > 0.

Lemma 2.1 For t > 0 and (x, v) ∈ [0, 1]×R, the second component V of the generalized characteristics
from (t, x, v) satisfies

|V (s; t, x, v)| ≤ |v|+ T‖E‖∞, (2.4)

for s ∈ [0, t] if P is finite (resp. s ∈ [t1, t] ∪n∈P [tn+1, tn] if P is not finite).

Proof of Lemma 2.1. The case where P is finite is classical. Assume P = N∗. Denote by t0 = t and prove
by induction on n ∈ N that∣∣|v| − |V (s; t, x, v)|

∣∣ ≤ (t− s)‖E‖∞, s ∈ [tn+1, tn]. (2.5)

For n = 0 and s ∈ [t1, t], the equation ∂sV (s; t, x, v) = E(s,X(s; t, x, v)) yields

∣∣|v| − |V (s; t, x, v)|
∣∣ ≤ ∫ t

s

|E(r,X(r; t, x, v))|dr ≤ (t− s)‖E‖∞.

Assuming that
∣∣|v| − |V (s; t, x, v)|

∣∣ ≤ (t− s)‖E‖∞ for s ∈ [tn, tn−1] and n ≥ 1, it holds∣∣|v| − |V (s; t, x, v)|
∣∣ ≤ ∣∣|v| − |V (t+n ; t, x, v)|

∣∣+
∣∣|V (t−n ; t, x, v)| − |V (s; t, x, v)|

∣∣
≤ (t− tn)‖E‖∞ +

∫ tn

s

|E(r,X(r; t, x, v))|dr

≤ (t− s)‖E‖∞, s ∈ [tn+1, tn].
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Given (t, x, v) ∈ [0, T ]× [0, 1]× R, either the backwards in time generalized characteristics from (t, x, v)
reaches {0} × [0, 1] × R at (X(0; t, x, v), V (0; t, x, v)) without any bounce. This is the easy case where
P = ∅. Or bounces occur at x = 0 or x = 1. We first prove that there is a finite number of them. This is
strongly linked with the sign of the electric field at the boundaries. The following analysis distinguishes
two cases. We first deal with the case of a negative value of t 7→ E(t, 1). The case of a positive value of
t 7→ E(t, 0) can be treated analogously.
In the case of a negative value of E(t, 1) on [0, T ], let δ ∈]0, 1[ be such that

E(t, x) < 0, (t, x) ∈ [0, T ]× [1− δ, 1]. (2.6)

Let
∆(v) :=

1

‖E‖∞

(√
(|v|+ T‖E‖∞)

2
+ 2δ‖E‖∞ − (|v|+ T‖E‖∞)

)
, v ∈ R. (2.7)

A bound of the number of possible bounces on the generalized characteristics from
(t, x, v) ∈ [0, T ]× [0, 1]× R is given in the following proposition.

Proposition 2.1
Assume t 7→ E(t, 1), t ∈ [0, T ], constant and negative.
The number of bounces occuring at x = 1 along the backwards in time generalized characteristics from
(t, x, v) ∈ [0, T ]× [0, 1]× R is finite and bounded by T

∆(v) .

Proof of Proposition 2.1. Let (X,V ) be a backwards in time generalized characteristics from (t, x, v) with
at least two bounces at x = 1, occuring at times t1 and t2, with t2 < t1 < t. In order to prove the result,
it is sufficient to bound t1 − t2 from below.
It holds that V (t−1 ; t, x, v) > 0. As V (·; t, x, v) is decreasing when X(·; t, x, v) is in the interval [1−δ, 1], X
leaves the interval [1− δ, 1] at a time s1 ∈]t2, t1[, and X(s; t, x, v) ≥ 1− δ for s ∈ [s1, t1]. The integration
between s and t1 along the classical characteristics (X(·; t, x, v), V (·; t, x, v))

∣∣
[t+2 ,t−1 ]

yields

X(s)− 1 + (t1 − s)V (t−1 ) ≥ −‖E‖∞
2

(t1 − s)2, s ∈ [s1, t1],

so that
‖E‖∞

2
(t1 − s1)2 + (t1 − s1)V (t−1 )− δ ≥ 0.

This implies that

t1 − t2 ≥ t1 − s1 ≥

√
V (t−1 )2 + 2δ‖E‖∞ − V (t−1 )

‖E‖∞
.

And so, by Lemma 2.1,

t1 − t2 ≥
1

‖E‖∞

(√
(|v|+ T‖E‖∞)

2
+ 2δ‖E‖∞ − (|v|+ T‖E‖∞)

)
.

The number of bounces at x = 1 on [0, T ] is thus smaller than T
∆(v) .

The opposite case where E(t, 1) > 0, t ∈ [0, T ], is more complicated. It corresponds to an electric
field pointing outward of the domain ]0, 1[ at the boundary. It cannot be directly expected that the time
between two bounces is bounded from below. An infinite number of bounces is a priori not impossible.
The distance to the boundary of the X component of the characteristics between two bounces could be
arbitrarily small. It is proven in the following proposition that this does not occur. We first prove a
preliminary lemma.

Lemma 2.2
For any (t, x, v) ∈ [0, T ]× [0, 1]× R, the series

∑
n∈P |V (t+n ; t, x, v)| converges.

Proof of Lemma 2.2. Assume P = N∗, and first prove that the number of consecutive bounces between
x = 0 and x = 1 is finite. Integration along the classical characteristics on [tk+1, tk], with (k, k+ 1) ∈ P 2,
yields

X(tk)−X(tk+1) = (tk − tk+1)V (t+k+1) +

∫ tk

tk+1

(tk − r)E(r,X(r))dr.
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It holds that |X(tk)−X(tk+1)| = 1. Hence

1 ≤ (tk − tk+1)|V (t+k+1)|+ ‖E‖∞
2

(tk − tk+1)2,

so that

tk − tk+1 ≥
1

‖E‖∞

(√
V (t+k+1)2 + 2‖E‖∞ − |V (t+k+1)|

)
.

It follows from Lemma 2.1 that

tk − tk+1 ≥
1

‖E‖∞

(√
(|v|+ T‖E‖∞)2 + 2‖E‖∞ − (|v|+ T‖E‖∞)

)
.

This implies a finite number of consecutive bounces between x = 0 and x = 1 on [0, T ]. Consequently we
can assume X(tk) = 0 for k ≥ n0 for some n0 ∈ N∗, the other case X(tk) = 1 for k ≥ n0 being analogous.
It holds that

2

n∑
k=1

|V (t+k )| = 2

(
n0−1∑
k=1

|V (t+k )|

)
+ V (t+n0

) + V (t+n ) +

n−1∑
k=n0

(|V (t+k+1|+ |V (t+k )|)︸ ︷︷ ︸
=V (t+k+1)−V (t−k )

= 2

(
n0−1∑
k=1

|V (t+k )|

)
+ V (t+n0

) + V (t+n )−
∫ tn0

tn

E(s,X(s))ds, n ≥ n0 + 1.

By (2.4) applied to s = t+n ,

n∑
k=1

|V (t+k )| ≤
n0−1∑
k=1

|V (t+k )|+
V (t+n0

) + |v|
2

+ T‖E‖∞, n ≥ n0.

Proposition 2.2
When E(t, 1) takes a constant value E1 > 0 on [0, T ], the number of bounces occuring at x = 1 along the
backwards in time generalized characteristics from (t, x, v) ∈ [0, T ]× [0, 1]× R is finite.

Proof of Proposition 2.2. It is a proof by contradiction. Assume infinitely many bounces at (tn, 1)n∈N
along the backwards in time generalized characteristics from (t, x, v) ∈ [0, T ] × [0, 1] × R. (tn)n∈N being
a decreasing sequence in [0, T ], converges to a time t∗ ≥ 0 when n→ +∞. Denote by

Vn = V (t−n ) > 0, sn ∈]tn+1, tn[ such that sn = min
s∈[tn+1,tn]

X(s), yn = 1−X(sn).

It holds that limn→+∞ sn = t∗, limn→+∞ Vn = 0 by Lemma 2.2, and limn→+∞ yn = 0. Indeed, if for a
subsequence (ynk

)k∈N of (yn), limk→+∞ ynk
= y∗ > 0, then

‖ E ‖∞
2

(tnk
− snk

)2 + (tnk
− snk

)− y∗

2
≥
∫ tnk

snk

(tnk
− r)E(r,X(r))dr + V (snk

)(tnk
− snk

)− y∗

2

= X(tnk
)−X(snk

)− y∗

2
= ynk

− y∗

2
≥ 0,

for k large enough. Consequently,

tnk
− snk

≥
√

1 + y∗ ‖ E ‖∞ − 1

‖ E ‖∞
,

for k large enough. This would contradict the infinite number of bounces at x = 1.
By the continuity of E, there is δ1 > 0 such that

E(t, x) ≥ E1

2
, (t, x) ∈ [0, T ]× [1− δ1, 1].
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It follows from

0 =

∫ tn

tn+1

V (s)ds = (tn − tn+1)Vn −
∫ tn

tn+1

(r − tn+1)E(r,X(r))dr,

that
tn − tn+1 ≤

4

E1
Vn, (2.8)

for n large enough. Moreover,

yn = 1−X(sn) =

∫ tn

sn

V (s)ds

= (tn − sn)Vn −
∫ tn

sn

(r − sn)E(r,X(r))dr

≤ (tn − sn)Vn,

for n large enough. And so,

yn ≤
4

E1
V 2
n . (2.9)

In a neighborhood of (t∗, 1), E(s,X(s)) expresses as

E(s,X(s)) = E1 + (X(s)− 1)∂xE(t∗, 1) + (X(s)− 1)ε(s), (2.10)

with
lim
s→t∗

ε(s) = 0. (2.11)

Indeed, the function ε introduced in (2.10) satisfies

ε(s) =
1

X(s)− 1

∫ X(s)

1

(∂xE(s, y)− ∂xE(t∗, 1))dy,

which tends to zero when s tends to t∗, by the uniform continuity of ∂xE on [0, T ] × [0, 1]. The case
∂xE(t∗, 1) < 0, i.e. ∂xE(t∗, 1) = −α2 with α > 0, is treated here. α is taken as 1 for the sake of simplicity.
By definition of the characteristics (X,V ) and (2.9)–(2.11), s 7→ (X(s; t, x, v), V (s; t, x, v)) satisfies

X ′′(s) +X(s) = E1 + 1 + g(s), s ∈ [tn+1, tn],

V (s) = X ′(s), s ∈]tn+1, tn[,

X(tn) = 1, X ′(t−n ) = Vn,

where

g(s) := (X(s)− 1)ε(s) = o(V 2
n ), s ∈ [tn+1, tn].

Here, o(V 2
n ) means that limn→+∞

o(V 2
n )

V 2
n

= 0. Hence,

X(s) = E1(1− cos(s− tn)) + Vn sin(s− tn) + 1 + o(V 3
n ), s ∈ [tn+1, tn],

V (s) = E1 sin(s− tn) + Vn cos(s− tn) + o(V 2
n ), s ∈]tn+1, tn[,

or

X(s) =
E1

2
(s− tn)2 + Vn(s− tn) + 1 + o(V 3

n ), s ∈ [tn+1, tn], (2.12)

V (s) = E1(s− tn) + Vn + o(V 2
n ), s ∈]tn+1, tn[. (2.13)

Since tn+1 is a solution to X(tn+1) = 1, tn − tn+1 satisfies

E1(tn − tn+1)2 − 2Vn(tn − tn+1) + o(V 3
n ) = 0,
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i.e.

E1(tn − tn+1) = Vn ±
√
V 2
n + o(V 3

n ).

By definition of Vn+1,
Vn+1 = −V (t+n+1) = E1(tn − tn+1)− Vn + o(V 2

n ).

Given the positive sign of Vn and Vn+1, it results

E1(tn − tn+1) = Vn +
√
V 2
n + o(V 3

n ) = 2Vn + o(V 2
n ) and Vn+1 = Vn + o(V 2

n ).

Thus, for some n0 large enough,

Vn+1 ≥ Vn(1− Vn), n ≥ n0.

Denote by h : x 7→ x − x2 and hp = h ◦ · · · ◦ h︸ ︷︷ ︸
p times

, p ∈ N∗. Let n1 ≥ n0 be such that Vn ≤ 1
2 , n ≥ n1. It

holds that
Vn1+p ≥ hp(Vn1), p ∈ N. (2.14)

Moreover, it can easily be proven by induction that

hp(x) ≥ x

p+ 1
, p ≥ 1, x ∈

[
0,

1

2

]
. (2.15)

It results from (2.14)–(2.15) that

n∑
p=n1+1

Vp ≥
n−n1∑
p=1

hp(Vn1) ≥ Vn1

n−n1∑
p=1

1

p
, n ≥ n1 + 1,

which contradicts the statement of Lemma 2.2. Hence the number of bounces at x = 1 is finite. The case
∂xE(t∗, 1) > 0 (resp. ∂xE(t∗, 1) = 0) is similar and also leads to (2.12)-(2.13) (see [GIO2019]).

Proposition 2.2 can similarly be extended to the case where t 7→ E(t, 1) is not a constant function.

We now consider the continuity of the function f defined by (1.9). Despite the continuity of f0, f may
be discontinuous. Actually, issues arise when X(0; t, x, v) is exactly zero (or one). This is illustrated in
the following example.

Example 2.1
Let the field E be a positive constant. Let t ∈]0, T ] and x > Et2

2 .
The map v 7→ V (0; t, x, v) is discontinuous at v = x

t + E
2 t and continuous elsewhere.

Proof of Example 2.1. The backward in time characteristics from (t, x, v) before any bounce at x = 0 is
given by

X(s) = x− v(t− s) +
E

2
(t− s)2, V (s) = v − E(t− s), s ∈ [0, t].

For v = x
t + E

2 t, there is no bounce on ]0, t], X(0; t, x, v) = 0 and V (0; t, x, v) > 0. For ṽ < v, the
backward in time characteristics from (t, x, ṽ) has no bounce and

V (0; t, x, ṽ) = ṽ − tE.

For ṽ > v, the backward in time characteristics from (t, x, ṽ) encounters a bounce at time

t1 = t− ṽ −
√
ṽ2 − 2xE

E
> 0, and V (0; t, x, ṽ) = ṽ − tE − 2

√
ṽ2 − 2xE.

Thus,

lim
ṽ→v−

V (0; t, x, ṽ) = v − tE, lim
ṽ→v+

V (0; t, x, ṽ) = −(v − tE).

Hence the map v 7→ V (0; t, x, v) is discontinuous at v = x
t + E

2 t.
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Proposition 2.3
The map (t, x, v) 7→ (X(0; t, x, v), |V (0; t, x, v)|) is continuous on [0, T ]× [0, 1]× R.

Proof of Proposition 2.3. Let (t̃, x̃, ṽ) be given. If the backwards characteristics from (t̃, x̃, ṽ) reaches t = 0

at X(0; t̃, x̃, ṽ) ∈]0, 1[, then analogous arguments as for classical characteristics imply that

lim
(t,x,v)→(t̃,x̃,ṽ)

(
X(0; t, x, v), V (0; t, x, v)

)
=
(
X(0; t̃, x̃, ṽ), V (0; t̃, x̃, ṽ)

)
.

What remains to be proven is the continuity of (t, x, v) 7→ (X(0; t, x, v), |V (0; t, x, v)|) at (t̃, x̃, ṽ) such
that its backwards characteristics reaches t = 0 at X(0; t̃, x̃, ṽ) ∈ {0, 1}. Assume X(0; t̃, x̃, ṽ) = 0.
Consider (t, x, v) such that the backwards characteristics (X,V )(·; t, x, v) has an earliest bounce at time
t1(t, x, v) > 0. For (t, x, v) close enough to (t̃, x̃, ṽ), there is no bounce of the backwards characteristics
from (t̃, x̃, ṽ) on the interval [0, t1(t, x, v)]. Define the extended electric fiel Ee on [0, T ]× R by

Ee(t, x) = E(t, x), t ≥ 0, x ∈ [0, 1],

Ee(t, x) = E(t, 0), t ≥ 0, x < 0, Ee(t, x) = E(t, 1), t ≥ 0, x > 1,

and the extended classical characteristics (Xe, V e) from (t, x, v) ∈ [0, T ]× [0, 1]× R by

∂sX
e = V e, Xe(t; t, x, v) = x, ∂sV

e = Ee(s,Xe), V e(t; t, x, v) = v.

First consider the case where E0 < 0. There is no restriction to consider ṽ > 0, and (t, x) (resp. (t̃, x̃))
in the strip close to x = 0 where E < 0.
Let ε > 0 be given, and v ∈] ṽ2 ,

3ṽ
2 [. For (t, x, v) in an appropriate neighborhood of (t̃, x̃, ṽ), it holds that

|Xe(s; t, x, v)−Xe(s; t̃, x̃, ṽ)|+ |V e(s; t, x, v)− V e(s; t̃, x̃, ṽ)| ≤ ε, s ∈ [0, t̃]. (2.16)

It follows from

V e(t1; t, x, v) ≥ v, Xe(t1; t, x, v) = 0,

Xe(s; t, x, v) = V e(t1; t, x, v)(s− t1) +

∫ t1

s

(r − s)Ee(r,Xe(r; t, x, v))dr,

that

Xe(s; t, x, v) ≤ −2ε, s ≤ t1 −
4ε

ṽ
.

Together with (2.16) and X(0, t̃, x̃, ṽ) = 0, this implies that t1 < 4ε
ṽ . Consequently,

|V (t−1 ; t, x, v)− V (0; t, x, v)|+ |V (t1; t̃, x̃, ṽ)− V (0; t̃, x̃, ṽ)| ≤ 2‖E‖∞t1 ≤ cε,

and

|V (0; t, x, v) + V (0; t̃, x̃, ṽ)|
≤ |V (0; t, x, v)− V (t−1 ; t, x, v)|+ |V (0; t̃, x̃, ṽ)− V (t1; t̃, x̃, ṽ)|+ |V (t1; t̃, x̃, ṽ)− V (t+1 ; t, x, v)|
≤ cε.

The inequality
|X(0; t, x, v)−X(0; t̃, x̃, ṽ)| ≤ cε,

can be proven by bounding |X(0; t, x, v)−X(0; t̃, x̃, ṽ)| from above by

|X(0; t, x, v)−X(t1; t, x, v)|+ |X(0; t̃, x̃, ṽ)−X(t1; t̃, x̃, ṽ)|+ |X(t1; t̃, x̃, ṽ)−X(t1; t, x, v)|.

Consider the case where E0 > 0 and (t, x, v) (resp. (t̃, x̃, ṽ)) such that the backwards characteristics
(X,V )(·; t, x, v) (resp. (X,V )(·; t̃, x̃, ṽ)) has an earliest bounce at time t1(t, x, v) > 0 (resp. has no
bounce on [0, t1(t, x, v)] and is such that X(0; t̃, x̃, ṽ) = 0). There is no restriction to consider ṽ > 0, and
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(t, x) (resp. (t̃, x̃)) in the strip close to x = 0 where E > E0

2 . Let ε > 0 be given. It holds that for (t, x, v)
in an appropriate neighborhood of (t̃, x̃, ṽ),

|Xe(s; t, x, v)−Xe(s; t̃, x̃, ṽ)|+ |V e(s; t, x, v)− V e(s; t̃, x̃, ṽ)| ≤ ε, s ∈ [0, t̃].

Consider the extreme case where V (t1(t, x, v); t, x, v) = 0. Then 0 ≤ V (s; t̃, x̃, ṽ) ≤ ε, for s ∈ [0, t1(t, x, v)].
And so,

E0

2
t1 ≤

∫ t1

0

E(r,X(r; t̃, x̃, ṽ))dr = V (t1; t̃, x̃, ṽ)− V (0; t̃, x̃, ṽ) ≤ cε.

From here the proof is analogous to the case where E0 < 0.

Consequently, taking f0 continuous and even w.r.t. the v variable and defining

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)), (t, x, v) ∈ [0,+∞[×[0, 1]× R,

as in (1.9), makes f continuous.

3 Proof of the existence Theorem 1.1
Up to Property 3.1 in this section, the parameter ε in (1.3) is taken as one for the sake of simplicity. Let
T > 0 be given. Theorem 1.1 is proven with a fixed point argument for the map S defined on

K :=

{
a ∈ C([0, T ]× [0, 1]) ;

∫ 1

0

a(t, x)dx = ‖f0‖L1 − ‖g0‖L1 , t ∈ [0, T ]

}
,

by S = S3 ◦ S2 ◦ S1. Here,

S1(a)(t, x) = E0 +

∫ x

0

a(t, y)dy, (t, x) ∈ [0, T ]× [0, 1],

S2(E) := (f, g),

where f (resp. g) is the solution to the linear Vlasov equation with force field E (resp. −E), initial
datum f0 (resp. g0) and direct reflection boundary conditions, and

S3(f, g) :=

∫
(f − g)(·, ·, v)dv.

In Lemma 3.1 we prove that S mapsK intoK. Lemma 3.2 proves the compactness of S in C([0, T ]×[0, 1]).
Lemma 3.3 proves its continuity. We then conclude that there is a fixed point a of S, such that
(f, g) = S2 ◦ S1(a) is a solution to the Cauchy problem (1.1)–(1.8).

Lemma 3.1 The map S is well defined and maps K into K.

Proof of Lemma 3.1.
S1(a) := E is continuous on [0, T ]× [0, 1] like a, and globally Lipschitz with respect to x since

|E(t, x′)− E(t, x)| ≤‖ a ‖∞ |x′ − x|, t ∈ [0, T ], (x, x′) ∈ [0, 1]2. (3.1)

Moreover, E(t, 0) = E0 and E(t, 1) = E0 + ‖f0‖L1 − ‖g0‖L1 are constants different from zero by (1.11).
The analysis from Section 2 and the evenness of (f0, g0) with respect to v allow to define S2(E) = (f, g),
where f (resp. g) is the solution to the linear Vlasov equation with force field E (resp. −E), initial
datum f0 (resp. g0) and direct reflection boundary conditions. Recall that

f(t, x, v) = f0(X(0; t, x, v), |V (0; t, x, v)|),(
resp. g(t, x, v) = g0(Y (0; t, x, v), |W (0; , t, x, v)|)

)
, (t, x, v) ∈ [0, T ]× [0, 1]× R,
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where (X,V ) (resp. (Y,W )) are the generalized characteristics associated to E (resp. −E), such that

(t, x, v)→ (X(0; t, x, v), |V (0; t, x, v)|, Y (0; t, x, v), |W (0; t, x, v)|) (3.2)

is continuous. Consequently, f (resp. g) is continuous, and nonnegative like f0 (resp. g0).
S(a) =

∫
(f − g)(·, ·, v)dv belongs to C([0, T ]× [0, 1]). Indeed, let

R = (|E0|+ ‖ a ‖∞)T.

By (1.10), there is U > 0 such that∫
|v|>U

sup
x∈[0,1],|w−v|<R

f0(x,w)dv and
∫
|v|>U

sup
x∈[0,1],|w−v|<R

g0(x,w)dv

are arbitrarily small. It follows from the continuity of (3.2) and (f0, g0), that the map

(t, x) 7→
∫
|v|<U

(f − g)(t, x, v)dv

=

∫
|v|<U

(
f0(X(0; t, x, v), |V (0; t, x, v)|)− g0(Y (0; t, x, v), |W (0; t, x, v)|)

)
dv

is continuous on [0, T ]× [0, 1]. Finally, the mass conservation of f (resp. g) implies that∫ 1

0

∫
(f − g)(t, x, v)dvdx = ‖f0‖L1 − ‖g0‖L1 , t ∈ [0, T ].

Consequently S(a) belongs to K.

Lemma 3.2 S is compact in C([0, T ]× [0, 1]).

Proof of Lemma 3.2. Let (an)n∈N with an ∈ C([0, T ]× [0, 1]) bounded by M . Denote by

En = S1(an) and (fn, gn) = (S2 ◦ S1)(an).

By (1.10), (S(an))n∈N is bounded in C([0, T ]× [0, 1]) by∫
sup

x∈[0,1],|w−v|<(|E0|+M)T

f0(x,w)dv +

∫
sup

x∈[0,1],|w−v|<(|E0|+M)T

g0(x,w)dv.

Prove its uniform equicontinuity. Let η > 0 be given. By (1.10), there is U > 0 such that,∫
|v|>U

sup
x∈[0,1],|w−v|<(|E0|+M)T

f0(x,w)dv +

∫
|v|>U

sup
x∈[0,1],|w−v|<(|E0|+M)T

g0(x,w)dv <
η

2
.

Let (Xn, Vn) (resp. (Yn,Wn)) be the generalized characteristics associated to the field S1(an) (resp.
−S1(an)). The existence of h0 > 0 such that

sup
(t,x)∈[0,T ]×[0,1]

∫
|v|<U

∣∣f0(Xn(0; t+ h, x+ k, v), |Vn(0; t+ h, x+ k, v)|)− f0(Xn(0; t, x, v), |Vn(0; t, x, v)|)
∣∣ dv < η

4
,

(resp.

sup
(t,x)∈[0,T ]×[0,1]

∫
|v|<U

∣∣g0(Yn(0; t+ h, x+ k, v), |Wn(0; t+ h, x+ k, v)|)− g0(Yn(0; t, x, v), |Wn(0; t, x, v)|)
∣∣ dv < η

4
,

n ∈ N, |h|+ |k| < h0,

follows from the uniform continuity on [0, T ]× [0, 1]× [−U,U ] of the map

(t, x, v) 7→
(
Xn(0; t, x, v), |Vn(0; t, x, v)|, Yn(0; t, x, v), |Wn(0; t, x, v)|

)
,

and its continuous dependence with respect to the fields. The Ascoli theorem applies, which ends the
proof of the lemma.
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Lemma 3.3 S is continuous in C([0, T ]× [0, 1]).

Proof of Lemma 3.3. Let (an)n∈N converging to a in C([0, T ]× [0, 1]). Denote by

En = S1(an), (fn, gn) = (S2 ◦ S1)(an), S(an) =

∫
R
(fn − gn)dv,

E = S1(a), (f, g) = (S2 ◦ S1)(a), S(a) =

∫
R

(f − g)dv.

The sequence (En)n∈N converges to E in C([0, T ]× [0, 1]), because

max
[0,T ]×[0,1]

|En − E| ≤ max
[0,T ]×[0,1]

|an − a|.

Let η > 0 be given. By (1.10), there is U > 0 such that,∫
|v|>U

sup
x∈[0,1],|w−v|<(|E0|+M)T

f0(x,w)dv +

∫
|v|>U

sup
x∈[0,1],|w−v|<(|E0|+M)T

g0(x,w)dv < η.

And so,∫
|v|>U

(
f0(Xn(0; t, x, v), |Vn(0; t, x, v)|) + g0(Yn(0; t, x, v), |Wn(0; t, x, v)|)

)
dv

+

∫
|v|>U

(
f0(X(0; t, x, v), |V (0; t, x, v)|) + g0(Y (0; t, x, v), |W (0; t, x, v)|)

)
dv ≤ 4η, n ∈ N∗.

The convergence of∫
|v|<U

(
f0(Xn(0; t, x, v), |Vn(0; t, x, v)|)− g0(Yn(0; t, x, v), |Wn(0; t, x, v)|)

)
dv

to ∫
|v|<U

(
f0(X(0; t, x, v), |V (0; t, x, v)|)− g0(Y (0; t, x, v), |W (0; t, x, v)|)

)
dv

in C([0, T ]× [0, 1]) when n→ +∞ follows from the continuous dependence of

[0, T ]× [0, 1]× [−U,U ] 3 (t, x, v) 7→ (X(0; t, x, v), |V (0; t, x, v)|, Y (0; t, x, v), |W (0; t, x, v)|)

with respect to the fields.

End of the proof of Theorem 1.1. The existence of a solution (f, g, E) to the Cauchy problem (1.1)–(1.8)
follows from Lemmas 3.2–3.3 and the Schauder fixed-point theorem for the map S in K.

The obtention of quasineutrality from the Vlasov-Poisson system, i.e. the passage to the limit when ε→ 0
in (1.1)–(1.8) is a difficult problem. The formal limit does not hold for unstable profiles, as proven by D.
Han-Kwan and M. Hauray in [HAN2015]. In [HAN2016], D. Han-Kwan and F. Rousset justified the
quasineutral limit of a Vlasov-Poisson system with adiabatic electrons for small times in Sobolev spaces,
and for initial data satisfying a Penrose stability condition.
In the following property, we prove that the electroneutraliy equation (3.6) holds at the limit ε→ 0.

Property 3.1
For every ε > 0 let (fε, gε, Eε) be a solution to the Vlasov-Poisson system (1.1)–(1.8) with initial datum
(f0

ε , g
0
ε , Eε,0) satisfying the assumptions of Theorem 1.1, and∫

[0,1]×R
v2(f0

ε + g0
ε)dxdv ≤ C, ε > 0, (finite initial kinetic energy), (3.3)

√
εEε,0 ≤ C, ε > 0, (3.4)∫
R
f0
ε (x, v)dv =

∫
R
g0
ε(x, v)dv, a.a. (t, x) ∈ [0, T ]× [0, 1], ε > 0, (initial electroneutrality), (3.5)∥∥f0

ε

∥∥
L2 +

∥∥g0
ε

∥∥
L2 ≤ C, ε > 0,
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for some C > 0. There exist a subsequence (fεn , gεn) of (fε, gε), a subsequence (Eεn) of (Eε), and
functions (f, g) such that (fεn , gεn), (resp. (

√
εnEεn)) weakly converges to (f, g) in L2([0, T ]× [0, 1]×R)

(resp. L2([0, T ] × [0, 1])). Moreover, (
∫
R fεndv) (resp. (

∫
R gεndv)) weakly converges in L2([0, T ] × [0, 1])

to
∫
R fdv (resp.

∫
R gdv), and∫

R
f(t, x, v)dv =

∫
R
g(t, x, v)dv, a.a. (t, x) ∈ [0, T ]× [0, 1]. (3.6)

Proof of Property 3.1. The energy associated to the Vlasov-Poisson system (1.1)–(1.8) is the sum of the
kinetic and potential energies,

Eε(t) =
1

2

∫
[0,1]×R

v2(fε + gε)(t, x, v)dxdv +
ε

2

∫
[0,1]

Eε(t, x)2dx. (3.7)

The boundary conditions have been chosen in order to ensure the conservation of the energy. This
classically follows from the multiplication by v2 of the Vlasov equations (1.1)–(1.2), their integration
with respect to (x, v), and the use of the continuity equations,

∂t

(∫
R
(fε − gε)dv

)
+ ∂x

(∫
R
v(fε − gε)dv

)
= 0.

More details can be found in [GIO2019]. And so,

Eε(t) =
1

2

∫
[0,1]×R

v2(f0
ε + g0

ε)(x, v)dxdv +
ε

2
E2

ε,0, t ∈ [0, T ].

The family (
√
εEε)ε>0 being uniformly bounded in L2([0, T ] × [0, 1]), there is a sequence (εn) tending

to zero when n → +∞ such that (
√
εnEεn) weakly converges in L2([0, T ] × [0, 1]). Hence (εnEεn)

weakly converges to zero in L2([0, T ]× [0, 1]) when n→ +∞. The family (fε) and (gε) being uniformly
bounded in L2([0, T ] × [0, 1] × R), there is a subsequence of (εn), still denoted by (εn) for the sake of
simplicity, and functions f and g in L2([0, T ]× [0, 1]×R), such that (fεn) (resp. (gεn)) weakly converges
in L2([0, T ]× [0, 1]× R) to f (resp. g), and∫

v2(f + g)(t, x, v)dxdv < +∞.

Moreover, (
∫
fεn(t, x, v)dv)n∈N (resp. (

∫
gεn(t, x, v)dv)n∈N) weakly converges in L2([0, T ] × [0, 1]) to∫

f(t, x, v)dv (resp.
∫
g(t, x, v)dv). Indeed, for any function α ∈ L2([0, T ]× [0, 1]),∣∣∣∣∫ α(t, x)

∫
(fεn − f)(t, x, v)dvdxdt

∣∣∣∣
≤ ‖α‖∞

K2

∫
v2(fεn + f)(t, x, v)dvdxdt+

∣∣∣∣∫ α(t, x)χK(v)(fεn − f)(t, x, v)dvdxdt

∣∣∣∣ , (3.8)

where χK denotes the characteristic function of ] −K,K[. The first term in the r.h.s. of (3.8) tends to
zero when K → +∞ uniformly with respect to n. The second term in the r.h.s. of (3.8) tends to zero
for any fixed K, given that the map α(t, x)χK(v) belongs to L2([0, T ] × [0, 1] × R). The passage to the
limit when n→ +∞ in (1.3) leads to the electroneutrality equation (3.6).

4 Proof of the uniqueness Theorem 1.2
This section splits into two lemmas. Under the assumptions of Theorem 1.2 and locally in time, Lemma 4.1
provides a bound on the number of possible bounces at the boundary of the domain of the generalized
characteristics associated to a solution to (1.1)-(1.8). Lemma 4.2 proves the local in time uniqueness
result of Theorem 1.2.

Lemma 4.1 Assume that for some c0 > 0 and V0 > c0,

f0(x, v) = 0, x ∈ [0, 1], |v| ≤ c0 or |v| ≥ V0. (4.1)
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Let T ∈
]
0, c0

2ci

[
, where

ci = |E0|+
1

ε

∫ 1

0

∫
(f0 + g0)(x, v)dvdx. (4.2)

Then the number of possible bounces of the generalized characteristics of a solution to (1.1)–(1.8) at the
boundaries x = 0 and x = 1 of the domain is bounded by

Tci√
V 2

0 + 2ci − 2V0

.

Proof of Lemma 4.1. By the mass conservations,∫
f(t, x, v)dxdv =

∫
f0(x, v)dxdv,

∫
g(t, x, v)dxdv =

∫
g0(x, v)dxdv, t ∈ [0, T ].

Hence, ci is a bound from above of ‖E‖∞. Let x0 ∈ [0, 1] and c0 < |v0| < V0. By (2.5) and (4.2), the
velocities V (s; 0, x0, v0) along the generalized characteristics starting at (0, x0, v0) satisfy

c0
2
≤ |V (s; 0, x0, v0)| ≤ 2V0, s ∈ [0, T ]. (4.3)

Assume a first bounce on the generalized characteristics starting at (0, x0, v0) occurs at s1 on the x = 1
boundary. It follows from the positive bound from below of |V (s; 0, x0, v0)| in (4.3) that the next possible
bounce will occur at x = 0. Denote by s2 the time of such a bounce. Since

X(s2; 0, x0, v0) = X(s2; s1, 1, V (s+
1 ; 0, x0, v0)),

it holds that

1 + V (s+
1 ; 0, x0, v0)(s2 − s1) +

∫ s2

s1

(s2 − r)E(r,X(r; 0, x0, v0))dr = 0.

Taking into account that |V (s+
1 ; 0, x0, v0)| (resp. E(r,X(r; 0, x0, v0))) is bounded from above (resp. from

below) by 2V0 (resp. −ci) implies that

ci(s2 − s1)2 + 2V0(s2 − s1)− 2 ≥ 0.

The result of the lemma follows.

Lemma 4.2
Assume f0 Lipschitz with respect to the (x, v) variable, and even with respect to the variable v.
For T > 0 small enough, there is a unique solution to the Cauchy problem (1.1)-(1.8).

Proof of Lemma 4.2.
Let (f, g) and (f̃ , g̃) be two solutions to the problem. Denote by (X(·; t, x, v), V (·; t, x, v)) (resp.
(Y (·; t, x, v),W (·; t, x, v)), resp. (X̃(·; t, x, v), Ṽ (·; t, x, v)), resp. (Ỹ (·; t, x, v), W̃ (·; t, x, v))) the generalized
characteristics associated to f (resp. g, resp. f̃ , resp. g̃) starting at (t, x, v). Let us prove that

(X(0; t, x, v), |V (0; t, x, v)|, Y (0; t, x, v), |W (0; t, x, v)|)
= (X̃(0; t, x, v), |Ṽ (0; t, x, v)|, Ỹ (0; t, x, v), |W̃ (0; t, x, v)|), (t, x, v) ∈ [0, T ]× [0, 1]× R.

By Lemma 4.1, the number of bounces of the generalized characteristics starting at (0, x0, v0) is uniformly
bounded. Let us first consider the case where no bounce (resp. at most one bounce) occurs at x = 0
(resp. at x = 1). Denote by A0 (resp. A2) the set of (r, y, u) ∈ [0, T ] × [0, 1] × R such that the (X,V )
and (X̃, Ṽ ) characteristics respectively associated to f and f̃ , passing at (r, y, u), both have no bounce
(resp. one bounce) at x = 1 on [0, T ]. Denote by A1 the set of (r, y, u) ∈ [0, T ] × [0, 1] × R such that
the (X,V ) (resp. the (X̃, Ṽ )) characteristics passing at (r, y, u) has one bounce (resp. no bounce) at
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x = 1 on [0, T ]. Denote by (Bi)0≤i≤2 analogous sets relative to the (Y,W ) and (Ỹ , W̃ ) characteristics
respectively associated to g and g̃. Denote by

α = sup
(r,y,u)∈A0∪A2

(
|(X − X̃)(0; r, y, u)|+ |(V − Ṽ )(0; r, y, u)|

)
+ sup

(r,y,u)∈A1

(
|(X − X̃)(0; r, y, u)|+ |(V + Ṽ )(0; r, y, u)|

)
+ sup

(r,y,u)∈B0∪B2

(
|(Y − Ỹ )(0; r, y, u)|+ |(W − W̃ )(0; r, y, u)|

)
+ sup

(r,y,u)∈B1

(
|(Y − Ỹ )(0; r, y, u)|+ |(W + W̃ )(0; r, y, u)|

)
.

Using the Lipschitz assumption on f0 and g0, and their evenness when considering A1 and B1, notice
that

|E − Ẽ|(r, z) =

∣∣∣∣∣
∫ z

0

∫ [
f0(X(0; r, y, u), V (0; r, y, u))− f0(X̃(0; r, y, u), Ṽ (0; r, y, u))

]
dudy

−
∫ z

0

∫ [
g0(Y (0; r, y, u),W (0; r, y, u))− g0(Ỹ (0; r, y, u), W̃ (0; r, y, u))

]
dudy

∣∣∣∣∣
≤ cα, (r, z) ∈ [0, T ]× [0, 1].

Let (t, x, v) ∈ A0. Both generalized characteristics (X,V ) and (X̃, Ṽ ) without backward bounce, starting
at (t, x, v), are given by

X(s; t, x, v) = x+ v(s− t) +

∫ t

s

(r − s)E(r,X(r; t, x, v))dr, V (s; t, x, v) = v −
∫ t

s

E(r,X(r; t, x, v))dr,

X̃(s; t, x, v) = x+ v(s− t) +

∫ t

s

(r − s)Ẽ(r, X̃(r; t, x, v))dr, Ṽ (s; t, x, v) = v −
∫ t

s

Ẽ(r, X̃(r; t, x, v))dr.

Hence (
|X − X̃|+ |V − Ṽ |

)
(s; t, x, v)

≤ c
(∫ t

s

|E − Ẽ|(r, X̃(r; t, x, v))dr +

∫ t

s

∣∣∣E(r,X(r; t, x, v)− E(r, X̃(r; t, x, v))
∣∣∣ dr)

≤ c
(∫ t

s

|E − Ẽ|(r, X̃(r; t, x, v))dr +

∫ t

s

|X − X̃|(r; t, x, v)dr

)
≤ c

(
Tα+

∫ t

s

|X − X̃|(r; t, x, v)dr

)
.

Consequently, (
|X − X̃|+ |V − Ṽ |

)
(s; t, x, v) ≤ cTα, s ∈ [0, T ], (t, x, v) ∈ A0.

In particular, (
|X − X̃|+ |V − Ṽ |

)
(0; t, x, v) ≤ cTα, (t, x, v) ∈ A0. (4.4)

Let (t, x, v) ∈ A2. Both generalized characteristics with a backward bounce at (t1(t, x, v), 1), starting at
(t, x, v), are given by

X(s; t, x, v) = x+ v(s− t) +

∫ t

s

(r − s)E(r,X(r; t, x, v))dr,

V (s; t, x, v) = v −
∫ t

s

E(r,X(r; t, x, v))dr, s ∈ [t1(t, x, v), t],

X(s; t, x, v) = 1 + (t1 − s)
(
v −

∫ t

t1

E(r,X(r; t, x, v))dr

)
+

∫ t1

s

(r − s)E(r,X(r; t, x, v))dr,

V (s; t, x, v) = −v +

∫ t

t1

E(r,X(r; t, x, v))dr −
∫ t1

s

E(r,X(r; t, x, v))dr, s ∈ [0, t1(t, x, v)[,
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and similar equations for (X̃, Ṽ ) with a backward bounce at (t̃1(t, x, v), 1). Assume t1(t, x, v) ≤ t̃1(t, x, v).
It holds that

(X − X̃)(s) =

∫ t

s

(r − s)
[
E(r,X(r))− Ẽ(r, X̃(r))

]
dr,

(V − Ṽ )(s) =

∫ t

s

[
E(r,X(r))− Ẽ(r, X̃(r))

]
dr, s ∈ [t̃1(t, x, v), t].

Hence, (
|X − X̃|+ |V − Ṽ |

)
(s; t, x, v) ≤ cTα, s ∈ [t̃1(t, x, v), t], (t, x, v) ∈ A2, (4.5)

as in the A0 case. Moreover,

(X − X̃)(s) = 2(t̃1 − s)
(
−v +

∫ t

t̃1

Ẽ(r, X̃(r))dr

)
+

∫ t̃1

s

(r − s)(E(r,X(r))− Ẽ(r, X̃(r))dr

+

∫ t

t̃1

(r − s)(E(r,X(r))− Ẽ(r, X̃(r))dr, s ∈ [t1(t, x, v), t̃1(t, x, v)[. (4.6)

The distance from t1 to t̃1 can be controlled in the following way. The definition of (t1(t, x, v), V (t+1 )),

x− 1 + v(t1 − t) +

∫ t

t1

(r − t1)E(r,X(r))dr = 0, v −
∫ t

t1

E(r,X(r))dr = V (t+1 ),

implies that

V (t−1 )(t̃1 − t1) =

∫ t1

t̃1

(r − t̃1)E(r,X(r))dr +

∫ t

t̃1

(r − t̃1)
(
Ẽ(r, X̃(r))− E(r,X(r))

)
dr.

Hence, for T small enough,

0 ≤ t̃1 − t1 ≤ cT
(

sup
r∈[t̃1,t]

|X − X̃|(r) + α
)

≤ cTα, (4.7)

by (4.5). Consequently,

|X − X̃|(s) ≤ c|t̃1 − t1| ≤ cTα, s ∈ [t1(t, x, v), t̃1(t, x, v)[. (4.8)

Finally,

(X − X̃)(s) = v(t1 − t̃1)− (t1 − s)
∫ t

t1

E(r,X(r))dr + (t̃1 − s)
∫ t

t̃1

Ẽ(r, X̃(r))dr

+

∫ t1

s

(r − s)E(r,X(r))dr −
∫ t̃1

s

(r − s)Ẽ(r, X̃(r))dr

= (t̃1 − t1)

(
−v +

∫ t

t1

E(r,X(r))dr

)
− (t̃1 − s)

∫ t

t̃1

(
E(r,X(r))− Ẽ(r, X̃(r))

)
dr

− (t̃1 − s)
∫ t̃1

t1

E(r,X(r))dr +

∫ t̃1

s

(r − s)
(
E(r,X(r))− Ẽ(r, X̃(r))

)
dr

+

∫ t1

t̃1

(r − s)E(r,X(r))dr,

(V − Ṽ )(s) = 2

∫ t̃1

t1

E(r,X(r))dr +

∫ t

t̃1

(
E(r,X(r))− Ẽ(r, X̃(r)

)
dr

−
∫ t̃1

s

(
E(r,X(r))− Ẽ(r, X̃(r)

)
dr, s ∈ [0, t1[.
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Hence,

|X − X̃|(s) ≤ c|t̃1 − t1|+ cTα+ cT sup
r∈[t1,t]

|X − X̃|(r) + c

∫ t1

s

|X − X̃|(r)dr

≤ cTα+ c

∫ t1

s

|X − X̃|(r)dr, by (4.7), (4.5) and (4.8),

≤ cTα, s ∈ [0, t1[, (4.9)

|V − Ṽ |(s) ≤ c|t̃1 − t1|+ cTα+ cT sup
r∈[0,t]

|X − X̃|(r)

≤ cTα, s ∈ [0, t1[, by (4.5), (4.8) and (4.9). (4.10)

It follows from (4.9)–(4.10) taken at s = 0 that(
|X − X̃|+ |V − Ṽ |

)
(0; t, x, v) ≤ cTα, (t, x, v) ∈ A2. (4.11)

Let us consider the last case, where (t, x, v) ∈ A1. Again,(
|X − X̃|+ |V − Ṽ |

)
(s; t, x, v) ≤ cTα, s ∈ [t1(t, x, v), t]. (4.12)

Moreover,

X(s) = X(t1) + (t1 − s)V (t+1 ) +

∫ t1

s

(r − s)E(r,X(r))dr,

V (s) = −V (t+1 )−
∫ t1

s

E(r,X(r))dr,

X̃(s) = X̃(t1)− (t1 − s)Ṽ (t1) +

∫ t1

s

(r − s)Ẽ(r, X̃(r))dr,

Ṽ (s) = Ṽ (t1)−
∫ t1

s

Ẽ(r, X̃(r))dr, s ∈ [0, t1(t, x, v)[.

Consequently,(
|X − X̃|+ |V + Ṽ |

)
(0; t, x, v) ≤

(
|X − X̃|+ |V − Ṽ |

)
(t+1 (t, x, v); t, x, v) + ct1

≤ cTα, (t, x, v) ∈ A1, (4.13)

since, using that X̃ is non-increasing on [0, t] because the sign of Ṽ cannot change,

0 ≤ X̃(0)− X̃(t1) ≤ 1− X̃(t1) = (X − X̃)(t1) ≤ cTα.

Here, the last inequality results from (4.12). Moreover, X̃(0)−X̃(t1) = t1|Ṽ (τ)| for some τ ∈ [0, t1]. This
implies that

t1 ≤ cTα.
It follows from (4.4), (4.11) and (4.13) that

sup
(t,x,v)∈A0∪A2

(
|X − X̃|+ |V − Ṽ |

)
(0; t, x, v) + sup

(t,x,v)∈A1

(
|X − X̃|+ |V + Ṽ |

)
(0; t, x, v) ≤ cTα.

It similarly holds that

sup
(t,x,v)∈B0∪B2

(
|Y − Ỹ |+ |W − W̃ |

)
(0; t, x, v) + sup

(t,x,v)∈B1

(
|Y − Ỹ |+ |W + W̃ |

)
(0; t, x, v) ≤ cTα.

The case where more than zero (resp. one) bounce occurs at x = 0 (resp. at x = 1) can be analogously
treated by splitting the characteristics between those bouncing an even (resp. odd) number of times.
And so, α ≤ cTα. Hence α = 0 for T small enough. Consequently,

(X,Y )(0; t, x, v) = (X̃, Ỹ )(0; t, x, v),

(V,W )(0; t, x, v) = ±(Ṽ , W̃ )(0; t, x, v), (t, x) ∈ [0, T ]× [0, 1],
c0
2
≤ |v| ≤ 2V0,

so that (f, g) = (f̃ , g̃).
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