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Comparative Study of Control Approaches Designed for a Quadrotor
in a Visual Servoing Task without Observers

Choukri Bensalah1,2, Nacer K M’Sirdi1 and Aziz Naamane1

Abstract— The performance and characteristics of four con-
trollers applied to a quadrotor UAV are analyzed in this
paper. The compared control approaches are: PID, Linearizing
Feedback, Backstepping Approach and Sliding Mode based
control. A suitable and efficient structure is proposed for control
laws implementation. Standard sensors are used and need of
observer is avoided by use of IBVS.

The comparative analysis is done for the UAV in Visual
Servoing Task. It is based on tracking errors during transients
and at steady state, and on the performance and robustness
with respect to plant model, to environment perturbations (in
sensors and actuators) and uncertainties.

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) are nowadays very pop-
ular and multiple applications aroused (rescue, surveillance,
inspection, mapping, bridges, buildings supervision, and cin-
ema) [1]. They can perform stationary flight and take off and
land vertically. Their manoeuvrability and controllability as
well as their ability give them a key position to be used
as autonomous mobile robots. They exhibit non linear, non-
holonomic behaviour and, in their case, precise measurement
of all pertinent signals is not possible either for cost, for
feasibility or availability. However a human pilot is very
often needed in the loop to compensates for the lack of
sensors, drifts or robust estimators.

Fig. 1. Mechanical structure of the Quadrotor.

Our interest, in this paper, is focused in case of au-
tonomous target tracking using control with embedded vision
(instead of human in the loop) and use of standard sensors
and no observers. The required application objective is
capability to follow targets and realize autonomous motions.
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Then some features are required, like robustness face to un-
certainties, measurement noise and to parameters variations
and fast perturbations rejection.

The four rotors helicopter (see Fig 1) exhibits a nonlinear
behavior which is subject to aerodynamic forces and mo-
ments and unknown disturbances. It is multi-variable, non
linearly coupled and has inherent uncertainties in both high
and low frequencies.

In literature, previous works have considered model anal-
ysis [1], [2] and have studied control design approaches
suitable to this kind of systems [3], [4]. A Feedback Lin-
earization approach have been developed and applied with
and without use of a state observer [2], [5]. For such
model, it has been shown that it is possible to apply a non
linear controller with observers based on the Backstepping
approach [3], [4]. This has shown a good robustness and
permit to reduce the number of the required sensors to
be used (using only gyro-meters and accelero-meters), by
observing the absolute velocity of the helicopter which is
difficult to measure. But the equations describing the altitude
and the attitude motions of the Quadrotor helicopter are
basically those of a rotating rigid body with six degrees of
freedom (assuming perfect sensors and actuators).

It is true that non measurable signals can be obtained
by successive differentiation. Unfortunately they will be
contaminated by noise in a such a degree that they can
no longer be used. This complicates further the design of
robust controllers for actual systems. The main difficulties
of the motion control, for high performance positioning, are
parametric uncertainties, neglected dynamics, and external
disturbances.

Several control approaches are applied and developed but
very few of them take into account the sensors dynamics
and the actuators transfer function, delay and dynamics, in
presence of perturbations. It is not possible to get precise
measurements of absolute position variables, without exter-
nal sensors. The best way to track targets (without human in
the loop) is to use vision sensors and this needs image data
processing [6].

The main contribution of this paper is the use of complete
dynamic model of UAV quadrotor, including sensors and
actuators, with noise bias and dynamics. In addition, we
propose a suitable and efficient structure for control laws
implementation. This optimizes the controllability of the
system. The need of observer to compensate for noise
measurements, perturbations and drifts is avoided by use of
IBVS and standard sensors.

Four control approaches, chosen for their important dif-



ferences are developed and compared for their use in Image
Vision Based Servoing for Target Tracking (IBVS-TT).
Comparison between four control approaches is done: the
Exact Feedback Linearization (EFL) with dynamic exten-
sion, Back-Stepping Control (BSC), Sliding Mode Control
(SMC) and PID, are applied to a Quadrotor helicopter
including sensors and actuators dynamics and compared.

This paper is structured as follows. The second section
describes the quadrotor dynamics and model equations, for
simulation, including the sensors and the actuators. The
four designed controllers are presented in Section 3. The
models and control validation and simulation results, in Mat-
lab/Simulink, are discussed in section 4. This will be ended
by a comparative analysis. Section 5 shows the performance
of the selected controls when used with the IBVS-TT based
approach. The last section concludes this paper.

II. UAV MODEL FOR SIMULATION AND CONTROL

The four rotors helicopter is propelled by four forces
Fi(i∈{1,2,3,4}) produced by four DC motors Mi(i∈{1,2,3,4})
as depicted in Fig (1) [2]. The impair rotors (1,3) turn in the
same direction, which is in opposite directions of the pair
ones (2,4). This eliminates the anti-torque. A variation of the
rotor speeds altogether with the same quantity creates the lift
forces to control the altitude z for vertical take-off or landing.
The velocity speeding up or slowing down the diagonal
motors creates a moment which produces pitch motion φ.
Pitch angle θ allows the Quadrotor to move towards the
longitudinal direction x. Roll angle φ allows the Quadrotor to
move towards the lateral direction y. Yaw angle ψ is obtained
by speeding up or slowing down the clockwise motors regard
to the others.

A. Actuators model

The forces are non linear function of ω1,2,3,4 the angular
speeds of the four rotors and propellers, respectively. In
general, they are assumed to be proportional to the square
of the angular motors speeds ωi and given by the equation

Fi = bω2
i

where b = 1
2ρΛCT r

2 with ρ the air density, r and Λ are
the radius and the section of the propeller, respectively. CT
is the aerodynamic thrust coefficient. The aerodynamic drag
torques δi = dω2

i produced at each actuator are opposed to
the motor torque and proportional to the propeller angular
speed, where CD is the aerodynamic drag coefficient di =
1
2ρΛCDr

2ω2
i = dω2

i

Therefore, these forces create different torques around the
pitch φ, the roll θ and the yaw ψ axis that are respectively
given as follows, where λ is a positive coefficient [1], [7],
[8], [6]). The total thrust force Fz is applied on the Quadrotor
body in the z-axis.

Fz = b
4∑
i=1

Fi

Γφ = l (F4 − F2)
Γθ = l (F3 − F1)

Γψ = λ (F1 − F2 + F3 − F4)

(1)

These force and torques are provided through four Brush-
less DC motors which are characterized by a high torque and
low friction [7]. These motors behave, at the steady state
regime, like conventional DC motor. Hence, the armature
voltage of the ith Brushless DC motor is defined as follows:

vi =
Rmot
kmot

Jrω̇i + kmotωi + dRmotω
2
i (2)

where Rmot and kmot denote the internal resistance and
torque coefficient of the Brushless motors, d is the drag
propellers’ coefficient. Since that the drag coefficient d is
very small, this dynamic can be approximated as a linear
transfer function where the characteristic parameters can be
identified by experimental trials as shown in ([9]).

B. Kinematics Relations

The Quadrotor is described through the body-frame
RB (O, xb, yb, zb) and earth-frame RE (o, xe, ye, ze) as
shown in Fig. 1 [1]. The total mass of the Quadrotor is m
, g represents the gravity and l the distance from the center
of each rotor to the Center of Gravity (COG).

Let us note ξ = (x, y, z)
T the absolute Cartesian position

of the Quadrotor Center of Gravity (CoG) relative to its fixed
earth-frame RE and, the Euler angles η = (φ, θ, ψ)

T give its
attitude relative to RE . Let νB be the linear velocity of the
Quadrotor in the body attached frame and and ν = (ẋ, ẏ, ż)

T

the linear velocity of the UAV in the earth-frame RE . The
vector ν = (ẋ, ẏ, ż)

T is expressed, with the rotationR matrix
as follows:

ν = R (φ, θ, ψ) .νB (3)

The rotation matrix R (φ, θ, ψ) : RE → RB depends on
the Euler angles (φ, θ, ψ) and is defined as follows, where
c = cos (.) and s = sin (.):

R =

 cψcθ sφsθcψ − sψcφ cφsθcψ + sψsφ
sψcθ sφsθsψ + cψcθ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (4)

It is worthwhile to note that the stability constraints give the
following motions limits on the pitch φ ∈

[
−π2 ,

π
2

]
, the roll

θ ∈
[
−π2 ,

π
2

]
and the yaw ψ ∈ [−π, π].

ϑ = (p, q, r)
T denotes the angular velocity vector in the

frame RB . This vector can be transformed from the body
frame RB into the inertial one RE as follows:

ϑ =

 φ̇− sθψ̇
cφθ̇ + sφcθψ̇

cφcθψ̇ − sφθ̇

 (5)

So, we can deduce the angular velocities in the inertial frame
which are given by the following transformation relationship:

ϑ =

 p
q
r

 =

 1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

 φ̇

θ̇

ψ̇

 = T (φ, θ) η̇

(6)
where T is the well known velocities’ transformation matrix
which is invertible under the motion limits (see after eq(4)).
η̇ = [φ̇, θ̇, ψ̇]T



C. Dynamic Modelling

The variations of the propellers rotation speeds produce
forces and gyroscopic torques. There are two rotational
motions of the Quadrotor body:

Mgp =

4∑
i=1

Ω ∧
(

0, 0, Jr (−1)
i+1

ωi

)T
(7)

Mgb = Ω ∧ JΩ (8)

where Ω is the angular velocities vector in the fixed-frame,
Jr is the propeller inertia for each rotor. The inertia matrix
J of the Quadrotor body is defined as follows:

J =

 Jxx 0 0
0 Jyy 0
0 0 Jzz

 (9)

Using the Newton-Euler formalism for modelling, the
Newton’s laws lead to the following motion equations of
the Quadrotor:{

mξ̈ = Fth − Fd + Fg
JΩ̇ = M −Mgp −Mgb −Ma

(10)

where Fth = R (φ, θ, ψ) (0, 0, F )
T denotes the total

thrust force of the four rotors, Fd = diag (κ1, κ2, κ3) νTe
is the air drag force which resists to the Quadrotor motion,
Fg = (0, 0,mg)

T is the gravity force, M = (Γφ,Γθ,Γψ)
T

represents the total rolling, pitching and yawing torques.
The terms Mgp and Mgb are the gyroscopic torques and
Ma = diag (κ4, κ5, κ6)ϑT is the torque resulting from
aerodynamic frictions.

By substituting the position vector and the forces with their
expressions into Eq. (10), we have the following translations
dynamics of the Quadrotor:

Ẍ = 1
m (cφcψsθ + sφsψ)u1 − κ1

m Ẋ

Ÿ = 1
m (cφsψsθ − sφcψ)u1 − κ2

m Ẏ

Z̈ = 1
mcφcθu1 − g −

κ3

m Ż

(11)

From the second part of Eq. (10), and while substituting
each moment by its expression, we deduce the following
rotational dynamics of the rotorcraft:

ṗ = qr
Jyy−Jzz
Jxx

− Jr
Jxx

ωrq − κ4

Jxx
p+ 1

Jxx
u2

q̇ = pr Jzz−JxxJyy
+ Jr

Jyy
ωrp− κ5

Jyy
q + 1

Jyy
u3

ṙ = pq
Jxx−Jyy
Jzz

− κ6

Jzz
r + 1

Jzz
u4

(12)

According to the established equations (11) and (12),
x =

(
X,Y, Z, φ, θ, ψ, Ẋ, Ẏ , Ż, p, q, r

)
is retained as the

state-space vector of the nonlinear model of the Quadrotor

rewritten as the following form:

ẋ = f (x, u) :



ẋ1 = x7
ẋ2 = x8
ẋ3 = x9
ẋ4 = x10
ẋ5 = x11
ẋ6 = x12
ẋ7 = a9x7 + 1

muxu1
ẋ8 = a10x8 + 1

muyu1
ẋ9 = a11x9 + cφcθ

m u1 − g
ẋ10 = a1x11x12 + a2x10 + a3ωrx11 + b1u2
ẋ11 = a4x10x12 + a5x11 + a6ωrx10 + b2u3
ẋ12 = a7x10x11 + a8x12 + b3u4

(13)
where: {

ux = cφcψsθ + sφsψ
uy = cφsθsψ − sφcψ (14)

and,
a1 = (Jyy − Jzz) /Jxx, a2 = −κ4/Jxx, a3 = −Jr/Jxx,
a4 = (Iz − Ix) /Jyy , a5 = −κ5/Jyy , a6 = −Jr/Jyy,
a7 = (Iy − Ix) /Jzz , a8 = −κ6/Jzz , a9 = −κ1/m,
a10 = −κ2/m, a11 = −κ3/m,
b1 = −l/Jxx, b2 = −l/Jyy , b3 = −l/Jzz ,
Note that κ1,2,...,6 are the aerodynamic friction and

translations drag coefficients. The overall residual ro-
tor angular speed is ωr = ω1 − ω2 + ω3 − ω4 and
x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)

T is the
above Quadrotor state-vector.

The internal inputs (ux, uy) are desidned to deduce the
required (φd, θd) which gives the UAV the good flying state
posture.

D. Sensors Dynamics

The Quadrotor states are measured using an Inertial Mea-
surement Unit (IMU) which contains accelerometers and
gyroscope sensors [9], [7]. These give us measurements of
the translational and rotational velocities [8].

The acceleration and velocity sensors parameters are the
gains (αa, αg), the bias (βa, βg) and the additive noise
assumed white and centered (γa, γg), respectively.

The translation and rotation outputs acceleration am and
gyrometer gm measurements along x, y, and z axes can be
described by Eq. (15) and Eq. (16) respectively.

am = αaccνB + βacc + γacc (15)

gm = αgyroϑ+ βgyro + γgyro (16)

where am = (amX , a
m
Y , a

m
Z )

T are the sensor outputs,
αacc = diag (αaccX , αaccY , αaccZ ) : the accelerometer gains,
νB = R−1 (φ, θ, ψ) ν: linear velocities in the body-frame,
βacc =

(
βaccAustinX , βaccY , βaccZ

)T
are the sensor bias and

γacc = (γaccX , γaccY , γaccZ )
T are zero mean white noises.

where gm = (gmX , g
m
Y , g

m
Z )

T are the sensor outputs,
αgyro = diag (αgyroX , αgyroY , αgyroZ ) are the gyroscope gains,
ϑ = (p, q, r)

T are the angular velocities in the body-frame,
βgyro = (βgyroX , βgyroY , βgyroZ )

T are the sensor bias and
γgyro = (γgyroX , γgyroY , γgyroZ )

T zero mean white noises.



Fig. 2. Control Structure of the UAV

III. UAV CONTROL STRATEGY

A. The UAV Control Structure

The UAV trajectories to be followed are, in our case
generated by IBVS, applying the function control approach
[10][11][6][12], [13].

The control strategy of the whole system is summarized
by the Fig. 2 in three steps:
- the motors control (block 1 and variables transformations),
- the inner loop for UAV states Feedback (block 2) and
- the desired trajectories definition (block 3 and inputs
selection).

In the case of target tracking the block 4 is added for
trajectories generation by IBVS. Please note that block 1 and
block 3 will be common for all the four control approaches
compared in this paper. Four control design approach are
compared in the block 2.

The controllability of the UAV dynamics needs first the
selection of adequate inputs signals ui. The chosen 4 control
inputs of the Quadrotor dynamics are thus defined as follows,
with u = (u1, u2, u3, u4)T :

u =


F
Γφ
Γθ
Γψ

 =


b b b b
0 −lb 0 lb
−lb 0 lb 0
d −d d −d




ω2
1

ω2
2

ω2
3

ω2
4


(17)

The inputs u2 , u3 and u4 represent the controls torques
of the pitch, the roll and yaw, respectively. Please note that
there are 4 inputs and 6 different position outputs.

Then the basic level of control is to produce these inputs
by controlling each one of the 4 motors to produce the
propellers forces Fi by means of velocities ωi and then
generate inputs (the torques and forces ui of equation (2)).
This is because we have chosen to control, as main outputs
the variables (z, φ, θ, ψ). Please not that we can select 4
outputs main state variables to be controlled and then two
remaining states will be controlled in a second step (block
3) of control as internal states.

Unlike the commonly used angular speed control of the
motors, here, we choose the propelling forces Fi as actuators
outputs to be controlled, by means of the motors voltage
inputs vi. The thrust forces Fi must follow the desired forces
F di . This is the first control step, which is common to all our
control approaches. The motors and propellers are consider
as force actuators and then a PD control ensures that the
output forces Fi follow the desired ones F di as it shown in
Fig 3 (see also the block 1 for motor control in fig 4. This

Fig. 3. Control of the Propellers generated Forces (Block 1 Fig 2)

has allowed to get better results than the literature reported
ones (faster responses and convergence) [14], [1].

As the UAV has four inputs ui and six output variables
to be controlled, the decoupling strategies and feedback
linearization, which require squared systems, need selection
of 4 outputs to be decoupled. Generally one use the x, y, z
positions and ψ the steering angle to track heading and
desired positions and orientation. The states z and ψ are
controlled directly by feedback in block 2.

The remaining two angles φ and θ are considered as
internal system states. They cannot be controlled arbitrarily
and their reference signals have to be deduced from the
required outputs in x, y directions, respectively. Then, φ and
θ require an inner control loop which is the second control
step, see the first and second block in Fig (2). The desired
φd and θd are deduced by means of a control on x and y in
order to follow xd and yd (2)).

B. PID Feedback Control
The PID is extensively used in a variety of aerial applica-

tions relating to the piloting of UAV drones [15], [16]. We
can find in litterature, the design of a PID stabilizing control
for the attitude control (φ, θ, ψ) of an UAV around a fixed
point in space. Other application of PID regulation has been
proposed to stabilize the flight of a drone in space according
to the angles of roll and pitch only. The authors often use
a linearized model for stabilizing control based on a desired
attitude and position. Some authors developed a technique
of cascading the two PID regulators to control the x and y
coordinates in order to control the attitude of a drone.

In our case PID control laws are used in the three blocks
1, 2 and 3 of Fig (2). A parallel architecture of PIDs has
been used. The controller structure is made of two cascaded
control loops (and the motors control). In the inner control
loop, the attitude and the altitude are driven using a PID
controller, whereas the positions x and y are efficiently
controlled by applying a PD control. The roll and pitch
PID controllers read the commands from the PD controller
outputs ux and uy , respectively. During the simulation, we
have tested two cases; when ux and uy are directly used as
desired trajectories and by computing the equivalent control
using the relationship between these commands and angles
according to Eq.14. The last case leads to less oscillations
in steady-state phase. The deduced control expressions are
as follows:

u1 = kpz (z − zd) + kiz

∫
(z − zd) + kdz (ż − żd)

u2 = kpφ(φ− φd) + kiφ

∫
(φ− φd) + kdφ(φ̇− φ̇d)

u3 = kpθ (θ − θd) + kiθ

∫
(θ − θd) + kdθ (θ̇ − θ̇d)



u4 = kpψ (ψ − ψd) + kiψ

∫
(ψ − ψd) + kdψ (ψ̇ − ψ̇d)

ux = kpx(x− xd) + kdx(ẋ− ẋd)
uy = kpy (y − yd) + kdy (ẏ − ẏd) (18)

C. Feedback Linearization

Feedback linearization will transform the nonlinear sys-
tem into linear and non interacting subsystems using the
Lie derivatives to get the Brunovsky form, where vT =
(v1, v2, v3, v4), are the linearized system control inputs

d4

dt4x = v1
d4

dt4 y = v2
d4

dt4 z = v3
d2

dt2ψ = v4

(19)

From equation (19), the linearized control laws computed
after four derivatives steps makes this controller highly
sensitive to disturbance. The motor and sensors dynamics
are often discarded, in literature, and only the UAV model is
used during the simulation is used to compute the control.
It is proved in [14] that the UAV system given by Eq.(13)
is not linearizable by static state feedback. To overcome
this problem, the system dynamics has been extended by
including two internal variables as follows:

u1 = ζ

ζ̇ = ξ

ξ̇ = u1

(20)

where u1 is not anymore an input but becomes the internal
state variable ζ. The extended system is described by:

ẋ = f(x) +

4∑
i=1

gi(x)ui (21)

where x =
(
X,Y, Z, φ, θ, ψ, Ẋ, Ẏ , Ż, p, q, r, ζ, ξ

)
,

f(x) = [f(x), ξ, 0]T , g1 = [0, ..., 0, 1]T ,
g2 = [0, ..., b1, 0, 0, 0]T , g3 = [0, ..., b2, 0, 0]T ,
g4 = [0, ..., b3, 0]T and u2,3,4 = u2,3,4.
We have: [x(4), y(4), z(4), ψ(2)] = b(x) + a(x)u where a(x)
and b(x) are defined using the Lie derivatives.

The dynamic state feedback control used is of the form:

u = −a(x)−1b(x) + a(x)−1v (22)

D. Back-Stepping Control

Backstepping approach is a recursive control that consists
to create (step by step) intermediate variables for a group
of selected states that are called virtual controls of the
studied system [3], [17]. Among the works that implement
the Backstepping on the real systems we have found in
the literature [18], [19]. The authors performed an online
optimization based on Backstepping control to solve the
problem of virtual controls at each step.

The work in [3] illustrates the position control of the
drone. In order to verify the effectiveness of the proposed
back-stepping controller, regard to the previously proposed

method, we introduce uncertainties in the model parameters
and measurement noise.

(ai, bi) = (ai, bi)± 25%(ai, bi)

The whole system is asymptotically stable with the fol-
lowing control laws:
u1 = m

cos(x4) cos(x5)
(g−a11x9+ z̈d+k11(−k11e11+e12)+

k12e12 + e11)
u2 = 1

b1
(−a1x11x12−a2x10−a3ωrx11 + φ̈d + k1(−k1e1 +

e2) + k2e2 + e1)
u3 = 1

b2
(−a4x10x12− a5x11− a6ωrx10 + θ̈d + k3(−k3e3 +

e4) + k4e4 + e3)
u4 = 1

b3
(−a7x10x11−a8x12−a3ωrx11 + ψ̈d +k5(−k5e5 +

e6) + k6e6 + e5)
ux = m

u1
(−a9x7 + ẍd + k7(−k7e7 + e8) + k8e8 + e7)

uy = m
u1

(−a10x8 + ÿd + k9(−k9e9 + e10) + k10e10 + e9)
Where ei = xi − xid and xi is the state variable subject to
bias and noise measurement.

E. SMC Control

The Sliding Mode Control is one of robust approach that
produces a switching control law in order to drive the state
trajectories and maintain the system on a defined sliding
manifold [20], [21].

Obviously the state vector need the primary state
(x0, y0, z0, ψ) and their successive derivatives. On adopting
a classical polynomial based control law, the closed loop
system will be represented by the following equations:
u1 = m

cos(x4) cos(x5)
(g + ẋ9d − a11x9 − λz(x9 − x9d)) −

kzsign(Sz)
u2 = 1

b1
(ẋ10d − a1x11x12 − a2x10 − a3ωrx10 − λφ(x10 −

x10d))− kφsign(Sφ)
u3 = 1

b2
(ẋ11d − a4x10x12 − a5x11 − a6ωrx10 − λθ(x11 −

x11d))− kθsign(Sθ)
u4 = 1

b3
(ẋ12d − a7x10x11 − a10x12 − λψ(x12 − x12d)) −

kψsign(Sψ)
ux = m

u1
(ẋ7d − a9x7 − λx)− kxsign(Sx)

uy = m
u1

(ẋ8d − a10x8 − λy)− kysign(Sy)
where Si = ėi + λei with ei = xi − xi.

IV. SIMULATION RESULTS

All the following simulations are run on the same PC with
2.2.GH Intel processor and 8GB RAM using Simulink tools
of Matlab. The desired trajectories and simulation parameters
are also unified. Only three positions x, y, z and the yaw
angle ψ are depicted for all control strategies. Excepting
feedback linearization control, the simulation results of re-
maining control strategies show three responses; the sensor
output signal used in the process control, the model output
referring to the ideal case without perturbation measurement
and the desired trajectories.
The Quadrotor and motors parameters used in all our
simulation are reported in Table.I. The parameters of the
sensor dynamic applied to all outputs are chosen as follows:
αacc = αgyro = 1, βacc = βgyro = 10−3. As for the
noise, we have used the Simulink Band-Limited White Noise



Parameter Value Parameter Value
m 0.486 g 9.81
l 0.25 b 2.9842e-5
d 3.2320e-7 Jx 2.8385e-5
Jy 2.8385e-5 Jz 2.8385e-5
κ1 5.5670e-4 κ2 5.5670e-4
κ3 6.3540e-4 κ4 5.5670e-4
κ5 5.5670e-4 κ6 6.3540e-4
Rmot 6.3540e-4 Jr 2.8385e-5
kmot 20Jr

TABLE I
QUADROTOR PARAMETERS VALUES

block generator with noise power equal to 10−4. The desired
trajectories are chosen to not to be important in the aim to
see clearly the effect of the sensor dynamic on the responses
and consequently on the control robustness. Maintaining the
same simulation parameters, the integration step is fixed to
1 ms with the same differential solver.

A. PID control

The simulation results for PID control structure before-
hand proposed are depicted in Fig. 4. Despite the finite time
of the transition response, it is not possible to improve this
time due to the saturation applied at the desired trajectories
for pitch and roll angles. The PID parameters for each
variable are reported in Table.II.

PID coefficients φ θ ψ x y z

kp 5.5 5.5 0.1 1.2 1.2 25
ki 0.5 0.5 0.1 X X 15
kd 1 1 0.1 1 1 5

TABLE II
PIDS’ PARAMETER VALUES

Fig. 4. x,y, z and ψ tracking trajectories using PID controller

B. Feedback Linearization Control (FLC)

One way to design a linear tracking controller is by placing
the poles properly to satisfy stability. That is,

P1 = P2 = P3 = (s+ p1)4 and P4 = (s+ p2)2.
Figure 5 shows the response behavior for different values of
p1. Despite the stabilizing control laws v1,2,3 are selected to
evolve as a first order system, the responses show a second
order system behavior, even if p1 is too small. Changing the
pole p1 affects only steady-state time response and maintains
the second order behavior. The yaw angle is not affected
by the choice of p1. The corresponding pole is selected as
p2 = 5. The execution time of this control is quite long.
Then it cannot be used in real application.

Fig. 5. x,y,z and ψ tracking trajectories using input-output feedback
linearization controller

C. Back-Stepping Control (BSC)

The following backstepping controller parameters are used
in simulation: k1 = k2 = k3 = k4 = 15, k5 = 10, k6 = 2,
k7 = k9 = 5, k8 = k10 = 1, k11 = 10 and k12 = 5.
Unlike the PID controller, the backstepping is able to drive
a large variation scale of roll and pitch angles. This leads to
shorter steady state response than PID controller. Moreover,
backstepping controller shows smooth responses and less
oscillations around the desired trajectories (see Fig.6).

D. Sliding Modes Control (SMC)

This subsection shows the SMC robustness against some
nonlinear phenomena considered during the simulation of the
whole system and neglected in control design. Once again,
the simulation conditions are similar to the ones applied
for BSC and PID controllers. The controller parameters are
presented in Table (III). Figure 7 depicts the simulation of

SMC coefficients φ θ ψ x y z

k 0.1 0.1 3 0.1 0.1 3
λ 1.5 1.5 3.5 0.5 0.5 3

TABLE III
SMC PARAMETERS VALUES

the SMC controller. The obtained results show less effects



Fig. 6. x,y, z and ψ tracking trajectories using back-stepping control

against the perturbation and chattering despite the steady
state reaching time is relatively large.

Fig. 7. x,y, z and ψ tracking trajectories using SMC

E. Comparative Analysis

The controllers PID, BSC and SMC are designed to
control the Quadrotor under the same operation conditions.
Criteria to select one of these approaches depend on the goals
and the operating constraints such as power consumption
or computation burden (processing time in Matlab). The
simulation of the UAV real time behaviour is done in
Maltab/Simulink, as presented in section 2 fr all the tests.

An important factor to be compared is the power con-
sumption which can be computed from the forces Fi: P '∫ 10

0
(|F1|+ |F2|+ |F3|+ |F4|)dt. Other factors can also taken

into account such as: sensitivity against noise, implementa-
tion difficulty, environment nonlinearity robustness which are

sumarized in Table.IV.

Criteria PID F.L.C B.S.C SMC

Simulation run Time
Power consumption
Stabilization time
Sensor dynamics effect
Implementation difficulty

TABLE IV
COMPARATIVE STUDY

They are classified from the best (in white) to the worst(in
red) result: , , , .

The average degree of the preference indicates that the
PID and SMC have the are preferred. The second rank is the
BSC and the last one is the FLC that remains a theoretical
approach difficult to implement.

V. VISUAL TRACKING COMPARATIVE STUDY

The most important Quadrotor task is the tracking of
(static or mobile) objects using the visual sensors. The visual
control is a very good alternative in the presence of drifts and
measurement errors. Here, IBVS is used to control the UAV.
Let the UAV position considered relatively to the object and
control the motion with regard to this distance. We use the
visual projection in pixels:

e(t) = s(t)− s(t)∗ (23)

The control task function (minimization criterion in function
of e(t)) is then defined in image plane as the error between
a desired and actual relative position of the target (object)
([10], [11], [22]).

The feedback law leading the linear and angular velocities
V = [vx, vy, vz, ωx, ωy, ωz] needed to track the object is
defined as follows:

V = −σL+e(t) (24)

where L+ is the pseudo-inverse of the interaction matrix and
σ is a convergence rate factor (see [6]). V is then used to
define the UAV desired trajectories (to be followed by UAV
the controllers).

Our aim is to evaluate the controllers when performing a
visual tracking of mobile object which is featured by four
points in the image of a virtual camera. The desired position
for the UAV is chosen to track the center of the object at 1
m altitude.

The object follow a circular trajectory and we assuming
that the frame of the virtual camera is the Quadrotor one.
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Fig. 8. Visual Tracking for circular trajectory using PID controller
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Fig. 9. Visual Tracking for circular trajectory using Back-Stepping
controller
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Fig. 10. Visual Tracking for circular trajectory using SMC controller

The figure 8 shows that the PID control leads to trajectories
as near as possible to the circular motion of the tracked
object. Nevertheless, these trajectories oscillate more than
BSC and than SMC. An advantage of the PID control is that
the altitude of the trajectories during the transition is near to
the desired one, whereas, the BSC and SMC have an altitude
relatively far from the desired one. The PID control leads
better performances in visual tracking tasks. The feedback
linearization has not been tested due to its computing cost.

VI. CONCLUSIONS

In this paper, we have compared the performances of
PID, FLC, BSC and SMC for Quadrotor control. A suitable
and efficient structure is proposed for implementation of the
control laws. Aerodynamics effects that can influence the
evolution of the Quadrotor have been taken into account, as
well as different components such as the actuators dynamics,
their control (force control) and the sensors dynamics and
perturbations. The comparative study shows that, with our
control structure, PID and SMC give better results rather than
the and FLC. Whereas, the LFC needs a heavy computing
cost. Use of Image-Based Visual Tracking (IBVT) for a
mobile target can compensate the sensors drifts and errors.
The need of observers is then avoided. In this Comparative
Analysis, the PID allows to follow the object with less errors
compared to SMC and BSC. With the proposed structure
for control, the PID control may be enough. Thanks to the
control structure proposed which optimizes the controlability
of the system (see Fig (2)).
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