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Quality of Information Sources in Information

Fusion

Frédéric Pichon, Didier Dubois and Thierry Denœux

Abstract Pieces of information can only be evaluated if knowledge about the quality
of the sources of information is available. Typically, this knowledge pertains to the
source relevance. In this chapter, other facets of source quality are considered, lead-
ing to a general approach to information correction and fusion for belief functions.
In particular, the case where sources may partially lack truthfulness is deeply in-
vestigated. As a result, Shafer’s discounting operation and the unnormalised Demp-
ster’s rule, which deal only with source relevance, are considerably extended. Most
notably, the unnormalised Dempster’s rule is generalised to all Boolean connec-
tives. The proposed approach also subsumes other important correction and fusion
schemes, such as contextual discounting and Smets’ a-junctions. We also study the
case where pieces of knowledge about the quality of the sources are independent.
Finally, some means to obtain knowledge about source quality are reviewed.

1 Introduction

A central problem in various kinds of information systems is to determine the correct
answer to a given question, for instance find the value of deterministic parameter x
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defined on a set X of possible values, from information provided by one or many
sources.

Pieces of information about x provided by several sources cannot be evaluated
unless some meta-knowledge on the sources, i.e., knowledge about their quality, is
available. Classically, such meta-knowledge relies on assumptions about the source
relevance, where a relevant source is a source providing useful information about x.
For instance, if the source is a sensor, then its response is typically relevant when
it is in order and irrelevant when it is out of order. In particular, if a source s is
assumed to be relevant with probability p and s provides the testimony x 2 A, then
the information item x 2 A is considered not useful with probability 1� p. This is
know as the discounting of a piece of information [28, p. 251] [29] in the context
of the theory of belief function [1, 28, 32] and the resulting state of knowledge is
represented by a simple support function [28]: the weight p is allocated to the fact of
knowing only that x2A and the weight 1� p is allocated to knowing that x2X (it is
the probability of knowing nothing from the source). If two sources, with respective
independent probabilities of relevance p1 and p2, both supply the information item
x 2 A, then one attaches reliability p1 + p2 � p1 p2 to the statement x 2 A, since one
should deduce that x 2 A whenever at least one of the sources is relevant; this is the
result obtained by Dempster’s rule of combination [1, 28]. This is actually the old
problem of merging unreliable testimonies (see the entry “Probabilité” in [6]).

Beyond source relevance, it is proposed in this chapter to consider the case where
knowledge on other facets of the quality of the sources is available. We start our
study by adding the possibility to make assumptions about the truthfulness of the
sources (Section 2). Then, we present a general framework able to deal with as-
sumptions about various forms of source quality (Section 3). This study is conducted
within the theory of belief functions and leads to a general approach to the fusion of
belief functions. Related works, and especially practical means to apply our frame-
work as well as relationships with some previous works, are reviewed in Section 4,
before concluding in Section 5.

2 Relevance and truthfulness

The reliability of a source is usually assimilated to its relevance. In this section,
we assume that reliability also involves another dimension: truthfulness. A truthful
source is a source that actually supplies the information it possesses. A source may
be non truthful in different ways. The crudest form of lack of truthfulness for a
source is to declare the contrary of what it knows. It may also tell less or something
different, even if consistent with its knowledge. For instance, a systematic bias of a
sensor may be regarded as a form of lack of truthfulness. In this section, however,
we shall only assume the crudest form of non truthfulness.
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2.1 The case of a single source

Consider the case where a single source s provides information about x and that this
information is of the form x 2 A, where A is a proper non-empty1 subset of X . If
s is assumed to be irrelevant, whatever may be its truthfulness, the information it
provides is totally useless and can be replaced by the trivial information x 2 X . In
contrast, if s is assumed to be relevant and to tell the opposite of what it knows, then
the actual information about x can be retrieved: one should replace x 2 A by x 2 A,
where A denotes the complement of A. Obviously, if s is assumed to be relevant and
truthful, then one infers that x 2 A.

Formally, let H = {(R,T ),(R,¬T ),(¬R,T ),(¬R,¬T )} denote the space of pos-
sible states of the source with respect to its relevance and truthfulness, where R (resp.
T ) means that s is relevant (resp. truthful). Then, following Dempster’s approach [1],
the above reasoning can be encoded by the multi-valued mapping GA : H! X such
that

GA(R,T ) = A; (1)
GA(R,¬T ) = A; (2)
GA(¬R,T ) = G (¬R,¬T ) = X . (3)

GA(h) interprets the testimony x 2 A in each state h 2H of s.
In general, the knowledge about the source relevance and truthfulness is uncer-

tain. Specifically, each state h 2H may be assigned a subjective probability prob(h)
such that Âh prob(h) = 1. In such case, the information item x 2 A yields the state
of knowledge on X represented by a belief function in the sense of Shafer [28], with
mass function mX on X defined by

mX (A) = prob(R,T ); (4)
mX (A) = prob(R,¬T ); (5)
mX (X ) = prob(¬R) = prob(¬R,T )+ prob(¬R,¬T ). (6)

A mass function mX is formally a probability distribution on the power set of X
(thus ÂA✓X mX (A) = 1). The quantity mX (A) represents the weight allocated to the
fact of knowing only that x 2 A; it does not evaluate the likelihood of event A like
does the probability prob(A).

The testimony provided by the source may itself be uncertain. In particular, it
may take the form of a mass function mX

s on X . Assume that s is in a given state h,
then each mH

s (A) should be transferred to GA(h), yielding the mass function denoted
mX (B|h) and defined by

mX (B|h) = Â
A:GA(h)=B

mX
s (A), 8B ✓ X . (7)

1 We consider as a source any entity that supplies a non-trivial and non-self-contradictory input.
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More generally, assume each state h has a probability prob(h), then (7) implies that
the state of knowledge on X is given by the following mass function

mX (B) = Â
h

mX (B|h)prob(h) = Â
h

prob(h) Â
A:GA(h)=B

mX
s (A). (8)

Assuming that p = prob(R) and q = prob(T ), and that the relevance of a source
is independent of its truthfulness, leads then to transforming the mass function mX

s
into a mass function denoted by mX and defined by:

mX (A) = pq mX
s (A)+ p(1�q) mX

s (A)+(1� p) mX
X (A), 8A ✓ X , (9)

where mX
s is the negation of mX

s [7], defined by mX
s (A) = mX

s (A),8A ✓X , and mX
X

the vacuous mass function defined by mX
X (X ) = 1.

The discounting operation proposed by Shafer [28] to integrate the reliability of
information sources is a special case of transformation (9), recovered for q = 1: it
corresponds to a partially relevant source that is truthful. The negating operation [26]
is also a special case recovered for p = 1, which corresponds to a partially truthful
source that is relevant. In particular, the negation of a mass function is obtained for
p = 1 and q = 0: it corresponds to a relevant source that is lying2.

Other forms of uncertain meta-knowledge about the source may be considered.
In particular, it may be known only that the source state belongs to a subset H of H.
This happens for instance if the source is assumed to be either relevant or truthful
but not both, i.e., H = {(R,¬T ),(¬R,T )}. In such case, one should deduce that
x 2 GA(H), where GA(H) denotes the image of H under GA defined as

GA(H) =
[

h2H
{GA(h)}.

Such non-elementary assumptions are actually not so interesting, since GA(H) = X
if |H|> 1, where |H| denotes the cardinality of H. Nonetheless, they are important
in the case where multiple sources provide information items, which is the topic of
the next section.

2.2 The case of multiple sources

Interpreting pieces of information provided by two sources requires making assump-
tions about their joint state with respect to their relevance and truthfulness. Let Hi
denote the set of possible states of source si, i = 1,2. The set of elementary joint
state assumptions on sources is then H1:2 =H1 ⇥H2 (we have |H1:2|= 16).

Let us first consider the simple case where each source si provides a crisp piece
of information x 2 Ai, i = 1,2, and where the two sources are assumed to be in some

2 The term “lying” is used as a synonym of “telling the negation of what is believed to be the truth”,
irrespective of the existence of any intention of a source to deceive.
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joint state h = (h1,h2) 2H1:2, with hi 2Hi the state of si, i = 1,2. The result of the
merging of the information items A = (A1,A2) ✓ X ⇥X provided by the sources
depends on the assumption h made about their behaviour, and can be represented by
a multi-valued mapping G

A

: H1:2 ! X .
As one must conclude x 2 GAi(h

i) when si tells x 2 Ai and is in state hi 2 Hi,
i = 1,2, it is clear that one must deduce that x 2 GA1(h

1)\GA2(h
2) when the sources

are assumed to be in the joint state h = (h1,h2) 2H1:2, i.e., we have

G
A

(h) = GA1(h
1)\GA2(h

2).

Concretely, this means that

• if both sources are relevant, and

– they are both truthful, then one must conclude that x 2 A1 \A2;
– s1 is truthful and s2 is not, then one must conclude that x 2 A1 \A2;
– s2 is truthful and s1 is not, then one must conclude that x 2 A1 \A2;
– they are both non truthful, then one must conclude that x 2 A1 \A2;

• if source si is relevant and the other source is irrelevant, then one must conclude
that x 2 Ai (resp. x 2 Ai) if si is truthful (resp. non truthful);

• if both sources are irrelevant, then one must conclude that x 2 X , irrespective of
the elementary assumption made on their truthfulness.

Non-elementary assumptions H ✓ H1:2 can also be considered. Under such an
assumption, one must conclude that x 2 G

A

(H) =
S

h2H{G
A

(h)}. Among the 216

assumptions H ✓H1:2, only a few are interesting (since, for instance, as soon as H
contains an elementary assumption such that both sources are non relevant, we have
G

A

(H) = X ). In particular, by considering assumptions pertaining to the number of
truthful and/or relevant sources, as well as to logical dependence between source
states, it is possible to retrieve other Boolean binary connectives besides the four
binary connectives A1 \A2, A1 \A2, A1 \A2, and A1 \A2 retrieved above.

Some interesting cases are as follows:

• Both sources are relevant, and at least one of them is truthful. This induces x 2
A1 [A2. Note that this connective is also obtained by other assumptions, such as
both sources are truthful, and exactly one of them is relevant.

• Both sources are relevant, exactly one of which is truthful, which yields x 2 A4B
(exclusive or).

• Both sources are relevant, and s1 is truthful if and only if s2 is so too. This
results in x 2 (A\B)[ (A\B), which corresponds to the Boolean equivalence
connective.

As a matter of fact, each logical connective can be retrieved from assumptions
on the global quality of information sources, in terms of relevance and truthfulness.
Accordingly, we will denote by ⌦H the set-theoretic connective associated to the
assumption H.

Suppose now that assumption H ✓ H1:2 is made about the source quality and
that si supplies an uncertain testimony in the form of a mass function mX

i , i = 1,2.
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Assume further that the sources are independent, where independence means the
following: if we interpret mX

i (Ai) as the probability that si provides statement x2Ai,
then the probability that s1 provides information item x 2 A1 and that s2 provides
conjointly information item x 2 A2 is mX

1 (A1) ·mX
2 (A2). In such case, the state of

knowledge on X is represented by the following mass function

mX (B) = Â
A:G

A

(H)=B
mX

1 (A1) ·mX
2 (A2) (10)

= Â
A:A1⌦H A2=B

mX
1 (A1) ·mX

2 (A2), (11)

which follows from the fact that if s1 tells x 2 A1 and s2 tells x 2 A2, then it is known
under assumption H that x 2 A1 ⌦H A2.

Combination rule (11) encompasses the conjunctive rule [31] (the unnormalised
version of Dempster’s rule) and the disjunctive rule [7]. The former is retrieved by
assuming that both sources are relevant and truthful, and the latter by assuming that,
e.g., both sources are relevant and at least one of them is truthful. Note also that
if A1 ⌦H A2 = /0 for two sets A1 and A2 such that mX

1 (A1) > 0 and mX
2 (A2) > 0,

then this inconsistency pertains to a disagreement between the testimonies provided
by the sources and the assumption H. In such case, a solution consists in rejecting
H and preferring an assumption compatible with the information provided by the
sources. This will be discussed further in Section 4.1.

Assume now that the sources supply crisp testimonies of the form x 2 A1 and
x2A2, but that the meta-knowledge regarding source quality is uncertain. Due to the
interest of non-elementary assumptions, it seems useful to represent this uncertainty
by a mass function, rather than a probability distribution, on H1:2. The merging of
A1 and A2 under mH1:2 result in a mass function on X defined by

mX (B) = Â
H:A1⌦H A2=B

mH1:2(H). (12)

Remark that mH1:2 induces a probability distribution over the Boolean binary
connectives attached to assumptions H:

pH1:2(⌦) = Â
H:⌦H=⌦

mH1:2(H). (13)

In addition, let us stress that mH1:2 may carry a form of independence, which we
call meta-independence between sources, different from the independence between
sources defined above. Indeed, information supplied by the sources may be indepen-
dent from each other, but pieces of meta-knowledge about the source state may not
be independent. Formally, meta-independence between sources may be modelled
by assuming that mH1:2(H) = mH1(H1)mH2(H2) if H = H1⇥H2 and mH1:2(H) = 0
otherwise, which corresponds to evidential independence [28] between frames H1
and H2 with respect to mH1:2 .
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A more general case, extending the combination operations (11) and (12), is
obtained when both the testimonies supplied by independent sources and the meta-
knowledge about their quality are uncertain and represented by mass functions. This
case induces the following mass function on X :

mX (B) = Â
H

mH1:2(H) Â
A:A1⌦H A2=B

mX
1 (A1)mX

2 (A2) (14)

= Â
⌦

pH1:2(⌦) Â
A:A1⌦A2=B

mX
1 (A1)mX

2 (A2). (15)

This approach can be formally extended to the case of dependent sources, using
the setting of [5]. It can also be readily extended to the case of n > 2 sources that
are partially truthful and relevant (see [23]). In theory, this latter extension may
pose a computational issue (the belief function expressing meta-knowledge on the
sources has a 24n complexity in the general case). However, in practice, it can remain
manageable as illustrated in [23], where special cases of the general combination
rule (14) are considered. Besides the conjunctive and disjunctive rules, there are
indeed other important combination schemes subsumed by (14). In particular, it
is the case for the method, used in various approaches (see, e.g., [15, 27, 34, 2]),
that consists in discounting sources and then combining them by the conjunctive
rule, as shown in [24] and further discussed in [23]. The weighted average of belief
functions and the combination rule corresponding to the assumption that r-out-of-n
sources are relevant, with 1  r  n, are also included in (14), as shown in [24]
and [23], respectively.

3 A general model of meta-knowledge

In the preceding section, meta-knowledge concerned the relevance and the crudest
form of lack of truthfulness of sources of information. However, in some applica-
tions, the lack of truthfulness may take a more refined form. Moreover, knowledge
about the source quality may even be different from knowing their relevance and
truthfulness. An approach to account for general source behaviour assumptions is
thus necessary. Such an approach is proposed in this section.

3.1 The case of a single source

Suppose a source s provides information about a parameter y defined on a set Y
of possible values and that this piece of information is of the form y 2 A, for
some A ✓ Y . Assume further that s may be in one of N elementary states in-
stead of four as is the case in Section 2.1, i.e., we generalise the state space from
H = {(R,T ),(R,¬T ),(¬R,T ),(¬R,¬T )} to H = {h1, . . . ,hN}. Moreover, we are
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interested by the value taken by a related parameter x defined on a domain X and
we have at our disposal some meta-knowledge that relate information item y 2 A
supplied by s to an information of the form x 2 B, for some B ✓ X , for each pos-
sible state h 2 H of s. Namely, for each A ✓ Y , there is a multi-valued mapping
GA : H ! X prescribing, for each elementary assumption h 2 H, how to interpret
on X information item y 2 A provided by s. We also add the natural requirement
that there exists h 2 H such that GA1(h) 6= GA2(h) for any two distinct subsets A1
and A2 of Y . Incomplete assumptions H ✓H may also be considered, in which case
information item y 2 A is interpreted as x 2 GA(H) = [h2HGA(h).

The setting of Section 2.1 is obtained as a particular case of this approach, by
choosing N = 4, y = x and, e.g., h1 = (R,T ),h2 = (R,¬T ),h3 = (¬R,T ),h4 =
(¬R,¬T ), in which case we have, for all A ✓ X :

GA(h1) = A,
GA(h2) = A,
GA(h3) = GA(h4) = X . (16)

Example 1 provides another illustration of this approach.

Example 1 (Case Y 6= X, inspired from Janez and Appriou [13]). We are inter-
ested in finding the type x of a given road, with x taking its value in the set
X = {track, lane,highway}. A source s provides information on this type, but it
has a limited perception of the possible types of road and in particular is not aware
of the existence of the type “lane”, so that it provides information on the space
Y = {track,highway}. In addition, we know that this source discriminates between
roads either using their width or their texture. If the source uses the road width,
then when it says “track”, we may only safely infer that the type is “track or lane”
since tracks and lanes have similar width, and when it says “highway”, we may in-
fer “highway”. On the other hand, if the source uses the road texture, then when it
says “track”, we may infer “track”, and when it says “highway”, we may only infer
“highway or lane” since highways and lanes have similar textures.

This problem may be formalised using multi-valued mappings Gtrack, Ghighway,
and GY from H= {width, texture} to X defined as

Gtrack(width) = {track, lane} ,
Gtrack(texture) = {track} ,

Ghighway(width) = {highway} ,
Ghighway(texture) = {lane,highway} ,

GY (width) = X ,

GY (texture) = X .

⇤
The proposed approach also makes it possible to model refined forms of lack of

truthfulness, as explained hereafter.
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By taking a closer look at the non truthful state ¬T considered in Section 2.1, we
can remark that it corresponds to assuming that source s tells the contrary of what
it knows, whatever it is telling concerning each of the possible values xi 2 X that
admits parameter x, since one must invert what s tells for each of these values. For
instance, let X = {x1,x2,x3,x4} and suppose that s asserts x 2 A = {x1,x3}, i.e., it
tells that x1 and x3 are possible values for x and that x2 and x4 are not possible values
for x. Then, if s is assumed to be in state ¬T , one must deduce that x 2 A = {x2,x4},
i.e., x1 and x3 are not possible values for x and x2 and x4 are possible values for x.

Accordingly, we may introduce the notion of the truthfulness of a source for a
value xi 2X : a truthful (resp. non truthful) source for a value xi 2X is a source that
tells what it knows (resp. the contrary of what it knows) for this value. Hence, state
¬T corresponds to the assumption that a source is non truthful for all values xi 2X .
It is therefore a quite strong model of the lack of truthfulness of a source.

It seems interesting to consider more subtle forms of lack of truthfulness and
in particular the assumption that a source s could be non truthful only for some
values xi 2 X (and truthful for all other values xi 2 X ), i.e., a kind of contextual
lack of truthfulness. Let B ✓X be the set of values for which s is truthful, and B the
set of values for which it is not truthful. We will denote this state by `B (the state
¬T corresponds then to the state ` /0, and T corresponds to `X ). As shown in [26,
Proposition 1], if s asserts x 2 A for some A ✓ X , and is assumed to be in state
`B, for some B ✓ X , then one must deduce that x 2 (A\B)[ (A\B). We refer the
reader to [26] for examples where such states `B may be relevant.

Considering the space of possible states `B, i.e., H = {`B|B ✓ X}, and a testi-
mony x 2 A supplied by a source, the above transformation can then be encoded by
the multi-valued mapping GA : H! X defined as:

GA(`B) = (A\B)[ (A\B), 8B ✓ X .

A further refined model of lack of truthfulness can be obtained by being even
more specific about the assumptions underlying the state ¬T , using the notions of
positive and negative clauses [12, Chapter 8] told by the source. For instance, when
s declares that x1 is a possible value for x, this is a positive clause told by the source,
and when s declares that x2 is not a possible value for x, it is a negative clause.
Accordingly, we may characterise the truthfulness of a source for each xi 2 X , with
respect to the polarity of the clauses it tells. Specifically, a source is said to be
positively truthful (resp. non truthful) for a value xi 2 X , when it declares that xi is
a possible value for x and knows that it is (resp. it is not). Hence, when a source is
assumed to be positively truthful (resp. non truthful) for xi 2 X and declares that xi
is a possible value for x, then one must deduce that it is (resp. it is not). Similarly,
a source is said to be negatively truthful (resp. non truthful) for a value xi 2 X ,
when it declares that xi is a not possible value for x and knows that it is not (resp.
it is). Hence, when a source is assumed to be negatively truthful (resp. non truthful)
for xi 2 X and declares that xi is not a possible value for x, then one must deduce
that it is not (resp. it is). Accordingly, state ¬T corresponds to assuming that a
source is positively and negatively non truthful for all values xi 2 X . In that case,
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we make two strong assumptions: the context (set of values) concerned by the lack
of truthfulness is the entire frame, and both polarities are concerned by the lack of
truthfulness.

This suggests again to consider states corresponding to weaker assumptions on
the lack of truthfulness. Two states are particularly interesting, as shown in [26]. The
first one, denoted pB, corresponds to the assumption that a source is (positively and
negatively) truthful for all xi 2 B, and positively non truthful and negatively truthful
for all xi 2 B. Under such an assumption pB, a testimony x 2 A is transformed into
knowing that x2A\B [26, Proposition 2]. The second one, denoted nB, corresponds
to the assumption that a source is positively truthful and negatively non truthful for
all xi 2 B, and (positively and negatively) truthful for all xi 2 B. A testimony x 2 A
is transformed into x 2 A[B under this latter assumption [26, Proposition 3].

These states also fit our approach since, e.g., the transformations associated to
states nB can be represented by a multi-valued mapping GA from H = {nB|B ✓ X}
to X such that GA(nB) = A [ B, for all B ✓ X . Let us remark that states `B, pB,
and nB, with associated transformations (A\B)[ (A\B) (logical equality), A\B
(conjunction), and A[B (disjunction), given testimony x 2 A, are particular cases
of a more general model of truthfulness assumptions yielding all possible binary
Boolean connectives between testimony A and context B, as detailed in [26].

The proposed approach can be further generalised to the case where both the in-
formation provided by the source and the meta-knowledge on the source are uncer-
tain and represented by mass functions mY

s and mH, respectively. Since each mass
mY
s (A) should be transferred to GA(H) under some hypothesis H ✓H, the state of

knowledge given mY
s and mH is represented by a mass function defined by

mX (B) = Â
H

mH(H) Â
A:GA(H)=B

mY
s (A), 8B ✓ X , (17)

which generalises (8). Transformation (17) is referred to as Behaviour-Based Cor-
rection (BBC) as it modifies, or corrects [18], the information supplied by the source
given our knowledge on its behaviour.

As detailed in [24], the BBC procedure generalises a deconditioning method
known as the method by association of highest compatible hypotheses [14], which
itself generalises a familiar operation of Dempster-Shafer theory, called conditional
embedding (or ballooning extension) [29].

As shown recently in [26], the BBC procedure applied with states nB and pB, re-
spectively, can also be used to provide an interpretation to the contextual discounting
and contextual reinforcement operations, which are two correction mechanisms in-
troduced formally in [19]. In addition, when applied with state `B, it can be used to
obtain a contextual version of the negating operation [26].
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3.2 The case of multiple sources

Consider now that two sources s1 and s2 provide information about y and that each
source may be in one of N elementary states (those N states are the same for both
sources), with Hi the set of possible states of source si, i = 1,2. Let H1:2 =H1⇥H2
denote the set of elementary joint state assumptions on the sources.

Assume that each source si provides a crisp piece of information x 2 Ai, i = 1,2.
For the same reason as in Section 2.2, if the sources are assumed to be in state
h = (h1,h2) 2 H1:2, then we must conclude that x 2 GA1(h

1)\GA2(h
2), where GAi ,

i = 1,2, are the mappings defined in Section 3.1. We can then define a multi-valued
mapping G

A

: H1:2 ! X , which assigns to each elementary hypothesis h 2H1:2 the
result of the fusion of the information items A = (A1,A2)✓ X ⇥X , as follows:

G
A

(h) = GA1(h
1)\GA2(h

2).

As in Section 2.2, incomplete assumptions H ✓H1:2 can be considered. In such
case, one must conclude that x 2 G

A

(H) =
S

h2H{G
A

(h)}. More generally, suppose
that the information supplied by the sources s1 and s2 and the meta-knowledge
about their behaviour are uncertain and represented by mass functions mY

1 , mY
2 and

mH1:2 , respectively. If furthermore the sources are assumed to be independent, then
the fusion of mY

1 and mY
2 given mH1:2 result in the mass function on X defined by

mX (B) = Â
H

mH1:2(H) Â
A:G

A

(H)=B
mY

1 (A1)mY
2 (A2), (18)

which generalises (14). The combination (18) will be referred to as the Behaviour-
Based Fusion (BBF) rule.

Remark that this rule can be straightforwardly extended to the case of n > 2
sources [23]. In addition, it can be extended to the case where sources si, i = 1, . . . ,n
provide information on different spaces Yi and have a different number Ni of ele-
mentary states, which may be faced in some problems.

In [30], Smets introduced a family of combination rules representing the set of
associative, commutative and linear operators for belief functions with the vacuous
mass function as neutral element. This family, called the a-conjunctions, depends
on a parameter a 2 [0,1]. Operators in this family range between two rules based
on Boolean operators as a decreases: the conjunctive rule (for a = 1), and the so-
called equivalence rule [22] (for a = 0) based on the logical equivalence operator.
Smets did not provide any clear interpretation for these rules for the cases a 2 (0,1).
As shown in [22], they are a particular case of the BBF rule: they correspond to
assuming that either both sources tell the truth or they commit the same contextual
lie `B, with some particular weight depending on a and B.
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3.3 The case of meta-independent sources

Interestingly, the BBC procedure and the BBF rule can be recovered by defining
particular valuation networks [16], representing the available pieces of information,
and by propagating uncertainty in these networks, as stated by Lemmas 1 and 2 with
associated valuation networks shown in Figures 1a and 1b, respectively.

Lemma 1 (BBC). Let mH and mY
s be the mass functions and GA, A ✓ Y , the map-

pings in (17). Let Z = 2Y and let zA denote the element of Z corresponding to the
subset A of Y , 8A ✓ Y . For each A ✓ Y , let GzA be the multi-valued mapping from
H to X such that GzA(h) = GA(h) for all h 2H. Let mZ

s be the mass function defined
by mZ

s ({zA}) = mY
s (A), for all A ✓ Y . Let mH⇥Z⇥X

G be the mass function defined
by mH⇥Z⇥X

G
⇥S

h2H,zA2Z ({h}⇥ zA ⇥GzA(h))
⇤
= 1.

We have, for all B ✓ X ,

⇣
mZ
s \�mH⇥Z⇥X

G \�mH
⌘#X

(B) = mX (B),

where mX is the mass function defined by (17) and where \� and # denote, respec-
tively, the unnormalised Dempster’s rule on product spaces and the marginalisation
operation whose definitions are provided on [16, p.8] and [16, p.9], respectively.

Proof. From Theorem 1 of [16], using deletion sequence Z,H, we obtain

⇣
mZ
s \�mH⇥Z⇥X

G \�mH
⌘#X

=

✓⇣
mZ
s \�mH⇥Z⇥X

G

⌘#H⇥X
\�mH

◆#X
. (19)

Let mH⇥Z⇥X
sG := mZ

s \�mH⇥Z⇥X
G . Eq. (19) may then be rewritten

⇣
mZ
s \�mH⇥Z⇥X

G \�mH
⌘#X

=
⇣

mH⇥Z⇥X#H⇥X
sG \�mH

⌘#X
.

We have

mH⇥Z⇥X
sG (C)=

(
mZ
s ({zA}) if C = (

S
h2H,zA2Z {h}⇥ zA ⇥GzA(h))\ (H⇥ zA ⇥X ),

0 otherwise.

For all zA 2 Z we have
"
(

[

h2H,zA2Z
{h}⇥ zA ⇥GzA(h))\ (H⇥ zA ⇥X )

#
#H⇥X =

[

h2H
{h}⇥GzA(h).

Hence, mH⇥Z⇥X#H⇥X
sG (B) for any B ✓ H⇥X can be obtained by summing over

all zA 2 Z such that
S

h2H {h}⇥GzA(h) = B:
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mH⇥Z⇥X#H⇥X
sG (B) = Â

zA2Z:
S

h2H{h}⇥GzA (h)=B
mZ
s ({zA})

= Â
A✓Y :

S
h2H{h}⇥GA(h)=B

mY
s (A).

Since 9h 2 H such that GA1(h) 6= GA2(h) for any two distinct subsets A1 and A2 of
Y , we obtain

mH⇥Z⇥X#H⇥X
sG

"
[

h2H
({h}⇥GA(h))

#
= mY

s (A), 8A ✓ Y.

The lemma follows then from Lemma 1 of [24]. ut
Lemma 2 (BBF). Let mH1:2 and mY

i , i = 1,2, be the mass functions in (18). For
i = 1,2, let Zi = 2Y and let zi

A denote the element of Zi corresponding to the subset
A of Y , 8A ✓ Y . For each A ✓ Y and i = 1,2, let Gzi

A
be the multi-valued mapping

from Hi to X such that Gzi
A
(h) = GA(h) for all h 2Hi. Let mZi

i be the mass function

defined by mZi
i ({zi

A}) = mY
i (A), for all A ✓ Y . For i = 1,2, let mHi⇥Zi⇥X

G i be the

mass function defined by mHi⇥Zi⇥X
G i

hS
h2Hi,zi

A2Zi

⇣
{h}⇥ zi

A ⇥Gzi
A
(h)

⌘i
= 1.

We have, for all B ✓ X ,

⇣
mZ1

1 \�mH1⇥Z1⇥X
G 1 \�mZ2

2 \�mH2⇥Z2⇥X
G 2 \�mH1:2

⌘#X
(B) = mX (B),

where mX is the mass function defined by (18).

Proof. From Theorem 1 of [16], using deletion sequence Z1,Z2, we obtain

⇣
mZ1

1 \�mH1⇥Z1⇥X
G 1 \�mZ2

2 \�mH2⇥Z2⇥X
G 2 \�mH1:2

⌘#H1⇥H2⇥X

=
⇣

mZ1
1 \�mH1⇥Z1⇥X

G 1

⌘#H1⇥X
\�
⇣

mZ2
2 \�mH2⇥Z2⇥X

G 2

⌘#H2⇥X
\�mH1:2 . (20)

For i = 1,2, let mHi⇥X
iG :=

⇣
mZi

i \�mHi⇥Zi⇥X
G i

⌘#Hi⇥X
. Eq. (20) may then be rewrit-

ten
⇣

mZ1
1 \�mH1⇥Z1⇥X

G 1 \�mZ2
2 \�mH2⇥Z2⇥X

G 2 \�mH1:2
⌘#H1⇥H2⇥X

= mH1⇥X
1G \�mH2⇥X

2G \�mH1:2 . (21)

The transitivity of marginalisation [16] yields

✓⇣
mZ1

1 \�mH1⇥Z1⇥X
G 1 \�mZ2

2 \�mH2⇥Z2⇥X
G 2 \�mH1:2

⌘#H1⇥H2⇥X◆#X

=
⇣

mZ1
1 \�mH1⇥Z1⇥X

G 1 \�mZ2
2 \�mH2⇥Z2⇥X

G 2 \�mH1:2
⌘#X

,
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from which we obtain, using (21),

⇣
mZ1

1 \�mH1⇥Z1⇥X
G 1 \�mZ2

2 \�mH2⇥Z2⇥X
G 2 \�mH1:2

⌘#X

=
⇣

mH1⇥X
1G \�mH2⇥X

2G \�mH1:2
⌘#X

.

From the proof of Lemma 1, we have for i = 1,2,

mHi⇥X
iG

"
[

h2Hi

({h}⇥GA(h))

#
= mY

i (A), 8A ✓ Y.

The lemma follows then from Lemma 2 of [24]. ut

Fig. 1 Valuation networks corresponding to the BBC procedure (a) and the BBF rule (b).

Lemmas 1 and 2 are instrumental to show Theorem 1, which concerns meta-
independent sources.

Theorem 1. With meta-independent sources, it is equivalent to combine the uncer-
tain information mY

1 and mY
2 by the BBF rule or to combine by the conjunctive rule

each of these pieces of information corrected using the BBC procedure.

Proof. Let mH1 and mH2 represent meta-knowledge on the two sources s1 and s2,
respectively. Meta-independence of s1 and s2 is equivalent to mH1:2 = mH1 \�mH2 .
Under this assumption, we have, with the same notations as above:

mZ1
1 \�mH1⇥Z1⇥X

G 1 \�mZ2
2 \�mH2⇥Z2⇥X

G 2 \�mH1:2

= mZ1
1 \�mH1⇥Z1⇥X

G 1 \�mZ2
2 \�mH2⇥Z2⇥X

G 2 \�mH1 \�mH2 .

From Theorem 1 of [16], using deletion sequence Z1,Z2,H2,H1, we obtain
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⇣
mZ1

1 \�mH1⇥Z1⇥X
G 1 \�mZ2

2 \�mH2⇥Z2⇥X
G 2 \�mH1 \�mH2

⌘#X

=

✓⇣
mZ1

1 \�mH1⇥Z1⇥X
G 1

⌘#H1⇥X
\�mH1

◆#X
\�
✓⇣

mZ2
2 \�mH2⇥Z2⇥X

G 2

⌘#H2⇥X
\�mH2

◆#X
,

which, using (19), can be rewritten

⇣
mZ1

1 \�mH1⇥Z1⇥X
G 1 \�mZ2

2 \�mH2⇥Z2⇥X
G 2 \�mH1 \�mH2

⌘#X

=
⇣

mZ1
1 \�mH1⇥Z1⇥X

G 1 \�mH1
⌘#X

\�
⇣

mZ2
2 \�mH2⇥Z2⇥X

G 2 \�mH2
⌘#X

.

The theorem follows then from Lemmas 1 and 2. ut

4 Related works

The framework described in the previous sections for the correction and fusion of
pieces of information is theoretical. It does not include any practical means to apply
it and in particular means to obtain the meta-knowledge that it requires. This latter
issue is discussed in Section 4.1. In addition, other approaches have been proposed
to exploit meta-knowledge about sources. They are related to ours in Section 4.2.

4.1 Obtaining meta-knowledge

Both the BBC procedure (17) and the BBF rule (18) require meta-knowledge on the
sources, in the form of a mass function mH on some space H of assumptions about
the sources, where the transformations of a source testimony associated to these
assumptions are encoded by multi-valued mappings from H to X . A central issue is
thus to obtain such meta-knowledge. Two main situations can be distinguished with
respect to this problem.

First, one may have some prior information about the sources. This information
may take the form of data. In particular, one may have access to a confusion matrix
counting the correct (crisp and precise) outputs of a source and its errors. As detailed
in [8, 17], it is possible to estimate the relevance or the truthfulness of a source from
such data. If one has access to the uncertain outputs of sources for some known ob-
jects, then one may search for the meta-knowledge that induces the least errors [9],
and specifically, as shown recently in [26], the meta-knowledge associated with
the contextual discounting, contextual reinforcement and contextual negating op-
erations can be learnt efficiently. Prior information about the sources may also take
the form of expert knowledge. For instance, schemes using such knowledge and re-
lying on multicriteria aggregations, have been proposed to evaluate the reliability of
information sources [4, 25].
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In the absence of prior information about the sources, a piece of meta-knowledge
that induces a good tradeoff between specificity and consistency of the inferred
knowledge about x can be selected [23]. To make this principle operational, it is
proposed in [23] to consider an ordered collection m

H = (mH
1 , ...,mH

M ) such that
the piece of meta-knowledge mH

1 corresponds to the conjunctive rule and, for any
1  j < M, mH

j induces a more specific knowledge about x than mH
j+1 whatever

the source testimonies may be. Then, using the fact that mH
j necessarily induces a

less consistent knowledge on x than mH
j+1, one should test iteratively each mH

j with
j = 1, . . . ,M, and select the first one for which a sufficient degree of consistency
is obtained. As illustrated in [23], collection m

H can be based on important fusion
schemes, such as discount and combine, the r-out-of-n relevant sources assump-
tion, or the a-conjunctions. Besides, this general approach subsumes some classical
fusion strategies, and in particular sequential discounting approaches [23].

4.2 Other modelling approaches

We have already seen that the approach presented in Section 2.1 extends the dis-
counting operation, which corresponds to the case where the source is known to be
truthful, but has only a probability of being relevant. Smets [33] proposed a coun-
terpart to this operation, in which the source is relevant but is not truthful, which is
also clearly extended by our approach.

The approach described in Section 3.1, i.e., the BBC procedure, subsumes the
ballooning extension and contextual correction mechanisms, as already mentioned.
It is also more general than the partially relevant information sources model pro-
posed by Haenni and Hartmann [11], as explained in [24].

An extension of the discounting operation was proposed in [18], in which uncer-
tain meta-knowledge on a source s is quantified by a mass function mH on a space
H = {h1, . . . ,hN} of possible states of the source, as is the case for the BBC proce-
dure. The interpretation of states h 2H is given in this extension by transforms mX

h
of mX

s : if the source supplies the uncertain testimony mX
s and is in state h, then our

knowledge on x is represented by mX
h . As detailed in [24], this extension and BBC

coincide in the special case where the mass function mH on H is Bayesian, and mX
h

is defined from mX
s using multi-valued mappings GA as: mX

h (B)=ÂA:GA(h)=B mY
s (A),

for all B ✓ X . Nonetheless, the two models are not equivalent in general, and one
should use one model or the other depending on the nature of available knowledge.

Finally, we may remark that alternatives to Dempster’s rule, where intersection is
replaced with other set operations, have already been considered in [7]. However, the
approach of Section 2.2 is the first to provide an explicit interpretation for the result-
ing rules. In addition, the idea in Section 3.3 of using valuation networks to recover
the BBC procedure and the BBF rule is inspired from similar approaches [29, 10]
used to recover the discounting operation and the disjunctive rule.
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5 Conclusions

In this chapter, a general approach to the correction and fusion of belief functions
has been proposed. It integrates meta-knowledge about the sources of information,
that is, knowledge about their quality. An important particular case where meta-
knowledge concerns the relevance and the truthfulness of the sources has been
deeply studied. It significantly extends Shafer’s discounting operation and the un-
normalized Dempster’s rule, which deal only with source relevance. Various forms
of lack of truthfulness have also been considered. Specifically, different definitions
of the contextual non truthfulness of a source have been introduced. With these
definitions, contextual discounting and Smets’ a-junctions can be seen as special
cases of the proposed correction and fusion procedures, respectively. In addition,
we have proved that these procedures can be recovered by propagating uncertainty
in some particular valuation networks. This result allowed us to show that, when the
behaviours of the sources are independent, it is equivalent to combine the sources’
information using our fusion procedure or to combine the pieces of information
modified using our correction procedure by the unnormalized Dempster’s rule. Fi-
nally, practical means to apply this general approach have been reviewed, making
it a potentially useful tool for various problems, such as combining classifiers or
handling intelligence reports.
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287–294. Cépaduès, Nov 2014.

18. D. Mercier, T. Denœux, and M.-H. Masson. Belief function correction mechanisms. In
B. Bouchon-Meunier, R. R. Yager, J.-L. Verdegay, M. Ojeda-Aciego, and L. Magdalena, ed-
itors, Foundations of Reasoning under Uncertainty, volume 249 of Studies in Fuzziness and
Soft Computing, pages 203–222. Springer-Verlag, Berlin, 2010.
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