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The main goal of this paper is to describe an axiomatic utility theory for Dempster-Shafer belief function lotteries. The axiomatic framework used is analogous to von Neumann-Morgenstern's utility theory for probabilistic lotteries as described by Luce and Raiffa. Unlike the probabilistic case, our axiomatic framework leads to interval-valued utilities, and therefore, to a partial (incomplete) preference order on the set of all belief function lotteries. If the belief function reference lotteries we use are Bayesian belief functions, then our representation theorem coincides with Jaffray's representation theorem for his linear utility theory for belief functions. We illustrate our framework using some examples discussed in the literature. Finally, we compare our decision theory with those proposed by Jaffray and Smets.

Introduction

The main goal of this paper is to propose an axiomatic utility theory for lotteries described by belief functions in the Dempster-Shafer (D-S) theory of evidence [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. The axiomatic theory is constructed similar to von Neumann-Morgenstern's (vN-M's) utility theory for probabilistic lotteries [START_REF] John Von Neumann | Theory of Games and Economic Behavior[END_REF][START_REF] Herstein | An axiomatic approach to measurable utility[END_REF][START_REF] Hausner | Multidimensional utilities[END_REF][START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF][START_REF] Jensen | An introduction to Bernoullian utility theory: A discussion[END_REF][START_REF] Fishburn | The Foundations of Expected Utility[END_REF]. Unlike the probabilistic case, our axiomatic theory leads to interval-valued utilities, and therefore to a partial (incomplete) preference order on the set of all belief function lotteries. Also, we compare our decision theory to those proposed by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF] and Smets [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF].

In the foreword to Glenn Shafer's 1976 monograph [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], Dempster writes: "... I believe that Bayesian inference will always be a basic tool for practical everyday statistics, if only because questions must be answered and decisions must be taken, so that a statistician must always stand ready to upgrade his vaguer forms of belief into precisely additive probabilities." More than 40 years after these lines were written, a lot of approaches to decision-making have been proposed (see the recent review in [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF]). However, most of these methods lack a strong theoretical basis. The most important steps toward a decision theory in the D-S framework have been made by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], Smets [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF], and Shafer [START_REF] Shafer | Constructive decision theory[END_REF]. However, we argue that these proposals are either not sufficiently justified from the point of view of D-S theory, or not sufficiently developed for practical use. Our goal is to propose and justify a utility theory that is in line with vN-M's utility theory, but adapted to be used with lotteries whose uncertainty is described by D-S belief functions.

In essence, the D-S theory consists of representationsbasic probability assignments (also called mass functions), belief functions, plausibility functions, etc.-together with Dempster's combination rule, and a rule for marginalizing joint belief functions. The representation part of the D-S theory is also used in various other theories of belief functions. For example, in the imprecise probability community, a belief function is viewed as the lower envelope of a convex set of probability mass functions called a credal set. Using these semantics, it makes more sense to use the Fagin-Halpern combination rule [START_REF] Fagin | A new approach to updating beliefs[END_REF], rather than Dempster's combination rule [START_REF] Halpern | Two views of belief: Belief as generalized probability and belief as evidence[END_REF][START_REF] Shafer | Perspectives on the theory and practice of belief functions[END_REF][START_REF] Shafer | Rejoinders to comments on "Perspectives on the theory and practice of belief functions[END_REF]. The utility theory this article proposes is designed specifically for the D-S belief function theory, and not for the other theories of belief functions. This suggests that Dempster's combination rule should be an integral part of our theory, a property that is not satisfied in the proposals by Jaffray and Smets.

There is a large literature on decision making with a (credal) set of probability mass functions motivated by Ellsberg's paradox [START_REF] Ellsberg | Risk, ambiguity and the Savage axioms[END_REF]. An influential work in this area is the axiomatic framework by Gilboa-Schmeidler [START_REF] Gilboa | Maxmin expected utility with a non-unique prior[END_REF], where they use Choquet integration [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Gilboa | Additive representations of non-additive measures and the Choquet integral[END_REF] to compute expected utility. A belief function is a special case of a Choquet capacity. Jaffray's [START_REF] Jaffray | Linear utility theory for belief functions[END_REF] work can also be regarded as belonging to the same line of research, although Jaffray works directly with belief functions without specifying a combination rule. A review of this literature can be found in, e.g., [START_REF] Gajdos | Attitude toward imprecise information[END_REF], where the authors propose a modification of the Gilboa-Schmeidler [START_REF] Gilboa | Maxmin expected utility with a non-unique prior[END_REF] axioms. As we said earlier, our focus here is on decision-making with D-S theory of belief functions, and not on decision-making based in belief functions with a credal set interpretation. As we will see, our interval-valued utility functions lead to intervals that are contained in the Choquet lower and upper expected utility intervals.

The remainder of this article is as follows. In Section 2, we sketch vN-M's axiomatic utility theory for probabilistic lotteries as described by Luce and Raiffa [START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF]. In Section 3, we describe our adaptation of vN-M's utility theory for lotteries in which uncertainty is described by D-S belief functions. Our assumptions lead to an interval-valued utility function, and consequently, to a partial (incomplete) preference order on the set of all belief function lotteries. In Section 4, we illustrate the application of our representation theorem to three examples from the literature. In Section 5, we compare our utility theory with those described by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], and Smets [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF]. Finally, in Section 6, we summarize and conclude.

vN-M's Utility Theory

In this section, we describe vN-M's utility theory for decision under risk. Most of the material in this section is adapted from [START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF]. A decision problem can be seen as a situation in which a decision-maker (DM) has to choose a course of action (or an act) in some set F. An act may have different outcomes, depending on the state of nature X. Exactly one state of nature will obtain, but this state is unknown. Let Ω X = {x 1 , . . . , x n } denote the set of states of nature, and let O = {O 1 , . . . , O r } denote the set of outcomes. 1 An act can be formalized as a mapping f : Ω X → O. In this section, we assume that uncertainty about the state of nature is described by a probability mass function (PMF) p X for X. If the DM select act f , they will get outcome O i with probability

p i = ∑ {x∈Ω X | f (x)=O i } p X (x). (1) 
To each act f there corresponds a PMF p = (p 1 , . . . , p r ) for O. We call L = [O, p] a probabilistic lottery. As only one state in Ω X will be realized, a probabilistic lottery will result in exactly one outcome O i (with probability p i ), and we assume that the lottery will not be repeated. Another natural assumption is that two acts that induce the same lottery are equivalent: the problem of expressing preference between acts then boils down to expressing preference between lotteries. We are concerned with a DM who has preferences on L , the set of all probabilistic lotteries on O, and our task is to find a real-valued utility function u : L → R such that the DM strictly prefers L to L if and only if u(L) > u(L ), and the DM is indifferent between L and L if and only if Of course, finding such a utility function is not always possible, unless the DM's preferences satisfy some assumptions. We can then construct a utility function that is linear in the sense that the utility of a lottery L = [O, p] is equal to its expected utility ∑ r i=1 p i u(O i ), where O i is regarded as a degenerate lottery where the only possible outcome is O i with probability 1. In the remainder of this section, we describe the assumptions that lead to the existence of such a linear utility function. Suppose that L = {L (1) , . . . , L (s) } is a set of s lotteries, where each of the s lotteries L j = [O, p ( j) ] are over outcomes in O, with PMFs p ( j) for j = 1, . . . , s. Suppose q = (q 1 , . . . , q s ) is a PMF for L such that q j > 0 for j = 1, . . . , s, and ∑ s j=1 q j = 1. Then [L, q] is called a compound lottery whose outcome is exactly one lottery L (i) (with probability q i ), and lottery L (i) will result in one outcome O j (with probability p (i) j ). Notice that the PMF p (i) is a conditional PMF for O in the second stage given that lottery L (i) is realized (with probability q i > 0) in the first stage (see Figure 1). We can compute the joint PMF for (L, O), and then compute the marginal p of the joint for O. The following assumption states that the resulting lottery [O, p] is indifferent to the compound lottery [L, q]. Assumption 2.2 (Reduction of compound lotteries) Any compound lottery [L, q], where L

u(L) = u(L ). We write O i O j if the DM strictly prefers O i to O j , write O i ∼ O j if
(i) = [O, p (i) ], is indifferent to a simple (non-compound) lottery [O, p], where p i = q 1 p (1) i + . . . + q s p (s) i (2) 
for i = 1, . . . , r. PMF (p 1 , . . . , p r ) is the marginal for O of the joint PMF of (L, O).

A simple lottery involving only outcomes O 1 and O r with PMF (u, 1u), where 0 ≤ u ≤ 1, is called a reference lottery, and is denoted by 

[{O 1 , O r }, (u, 1 -u)]. Let O 2 denote the set {O 1 , O r }. Assumption 2.3 (Continuity) Each outcome O i is indif- ferent to a reference lottery O i = [O 2 , (u i , 1 -u i )] for some u i , where 0 ≤ u i ≤ 1, i.e., O i ∼ O i .
O i = [O 2 , (u i , 1 -u i )] that is indifferent to O i , then the result is a compound lottery that is indifferent to L.
From Assumptions 2.1-2.5, given any lottery L = [O, p], it is possible to find a reference lottery L = [O 2 , (u, 1u)] that is indifferent to L (see Figure 2). This is expressed by Theorem 1 below. 2 Theorem 1 ( [START_REF] Luce | Games and Decisions: Introduction and Critical Survey[END_REF]) Under Assumptions 2.1-2.5, any lot-

tery L = [O, p] is indifferent to a reference lottery L = [O 2 , (u, 1 -u)] with u = r ∑ i=1 p i u i . ( 3 
) Assumption 2.6 (Monotonicity) A reference lottery L = [O 2 , (u, 1-u)] is preferred or indifferent to reference lottery L = [O 2 , (u , 1 -u )] if and only if u ≥ u .
2. For reasons of space, proofs of all results in this paper are omitted and can be found in [START_REF] Denoeux | An interval-valued utility theory for decision making with Dempster-Shafer belief functions[END_REF].

As

O 1 ∼ O 1 = [O, (u 1 , 1 -u 1 )] and O r ∼ O r = [O, (u r , 1 -u r )], Assumptions 2.4 and 2.6 imply that u 1 = 1 and u r = 0. Also, from O 1 O 2 • • • O r , we can deduce that 1 = u 1 ≥ u 2 ≥ • • • ≥ u r = 0.
Assumptions 2.1-2.6 allow us to define the utility of a lottery as the probability of the best outcome O 1 in an indifferent reference lottery, and this utility function for lotteries on O is linear. This is stated by the following theorem. 

∑ i=1 p i u i ≥ r ∑ i=1 p i u i . ( 4 
)
Thus, we can define the utility of lottery L = [O, p] as u(L) = ∑ r i=1 p i u i , where u i = u(O i ). Also, such a linear utility function is unique up to a strictly increasing affine transformation, i.e., if u i = a u i + b, where a > 0 and b are real constants, then u(L) = ∑ r i=1 p i u i also qualifies as a utility function.

A Utility Theory for D-S Belief Function Theory

In this section, we describe a new utility theory for lotteries where the uncertainty is described by D-S belief functions. 3 These lotteries, called belief function lotteries, 4 will be introduced in Section 3.1. We present and discuss assumptions in Section 3.2, and state a representation theorem in Section 3.3.

Belief function lotteries

We now generalize the decision framework outline in Section 2 by assuming that uncertainty about the state of nature X with state space Ω X is described by a BPA m X for X. The probabilistic framework is recovered as a special case when m X is Bayesian. As before, we define an act as a mapping f :

Ω X → O. Mapping f pushes m X forward from Ω X to O, transferring each mass m X (a) for a ∈ 2 Ω X to b = { f (x) : x ∈ a}.
The resulting BPA m for O is then defined as follows:

m(b) = ∑ {a∈2 Ω X | f [a]=b} m X (a), (5) 
for all b ⊆ O, where f [a] denotes the image of subset a by f [START_REF] Denoeux | Representations of uncertainty in artificial intelligence: Beyond probability and possibility[END_REF]. Eq. ( 5) clearly generalizes Eq. ( 1). The pair [O, m] will 3. We assume the reader is familiar with the fundamentals of D-S belief functions. A brief review appears in [START_REF] Denoeux | An interval-valued utility theory for decision making with Dempster-Shafer belief functions[END_REF]. 4. This notion was previously introduced in [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF] under the name "evidential lottery."

be called a belief function (bf) lottery. As before, we assume that two acts can be compared from what we believe their outcomes will be, irrespective of the evidence on which we base our beliefs. This assumption is a form of what Wakker [START_REF] Wakker | Dempster belief functions are based on the principle of complete ignorance[END_REF] calls the principle of complete ignorance (PCI). It implies that two acts resulting in the same bf lottery are equivalent. The problem of expressing preferences between acts becomes that of expressing preferences between bf lotteries. Thus, we are concerned with a DM who has preferences on L b f , the set of all bf lotteries. We will define our task as finding a utility function u :

L b f → [R], where [R] denotes the set of closed real intervals, such that the u(L) = [u, u + w] is viewed as an interval-valued utility of L.
The interval-valued utility can be interpreted as follows: u and u + w are, respectively, the degrees of belief and plausibility of receiving the best outcome in a bf reference lottery equivalent to L. Given two lotteries L and L , L is preferred to L if and only if u ≥ u and u + w ≥ u + w . This leads to incomplete preferences on the set of all bf lotteries. If we assume w = 0 for all bf lotteries, then we have a realvalued utility function on L b f , and consequently, complete preferences.

Example 1 (Ellsberg's Urn) Ellsberg [START_REF] Ellsberg | Risk, ambiguity and the Savage axioms[END_REF] describes a decision problem that questions the adequacy of the vN-M axiomatic framework. Suppose we have an urn with 90 balls, of which 30 are red, and the remaining 60 are either black or yellow. We draw a ball at random from the urn. Let X denote the color of the ball drawn, with Ω X = {r, b, y}. Notice that the uncertainty of X can be described by a BPA m X for X such that m X ({r}) = 1/3, and m X ({b, y}) = 2/3.

First, we are offered a choice between Lottery L 1 : $100 on red, and Lottery L 2 : $100 on black, i.e., in L 1 , you get $100 if the ball drawn is red, and $0 if the ball drawn is black or yellow, and in L 2 , you get $100 if the ball drawn is black and $0 if the ball drawn is red or yellow. Choice of L 1 can be denoted by alternative f 1 :

Ω X → {$100, $0} such that f 1 (r) = $100, f 1 (b) = f 1 (y) = $0. Similarly, choice of L 2 can be denoted by alternative f 2 : Ω X → {$100, $0} such that f 2 (b) = $100, f 2 (r) = f 2 (y) = $0. L 1 can be represented by the BPA m 1 for O = {$0, $100} as fol- lows: m 1 ({$100}) = 1/3, m 1 ({$0}) = 2/3. L 2 can be rep- resented by BPA m 2 for O as follows: m 2 ({$0}) = 1/3, m 2 ({$0, $100}) = 2/3. Notice that L 1 and L 2 are bf lotter- ies. Ellsberg notes that a frequent pattern of response is L 1 preferred to L 2 .
Second, we are offered a choice between L 3 : $100 on red or yellow, and L 4 : $100 on black or yellow, i.e., in L 3 you get $100 if the ball drawn is red or yellow, and $0 if the ball drawn is black, and in L 4 , you get $100 if the ball drawn is black or yellow, and $0 if the ball drawn is red. L 3 can be represented by BPA m 3 as follows: m 3 ({$100}) = 1/3, and m 3 ({$0, $100}) = 2/3, and L 4 can be represented by the BPA m 4 as follows: m 4 ({$0}) = 1/3, m 4 ({$100}) = 2/3. L 3 and L 4 are also belief function lotteries. Ellsberg notes that L 4 is often strictly preferred to L 3 . Also, the same subjects who prefer L 1 to L 2 , prefer L 4 to L 3 .

Assumptions of our framework

As in the probabilistic case, we will assume that a DM's preferences for bf lotteries are reflexive and transitive. However, unlike the probabilistic case, we do not assume that these preferences are complete. In the probabilistic case, incomplete preferences are studied in [START_REF] Aumann | Utility theory without the completeness axiom[END_REF], and in the case of sets of utility functions, in [START_REF] Dubra | Expected utility theory without the completeness axiom[END_REF].

Our first assumption is identical to Assumption 2.1. This allows us to label the outcomes such that

O 1 O 2 • • • O r , and O 1 O r . (6) 
Let L b f denote the set of all bf lotteries on O = {O 1 , . . . O r }, where the outcomes satisfy Eq. ( 6). As every BPA m for O is a bf lottery, L b f is essentially the set of all BPAs for O. As the set of all BPAs include Bayesian BPAs, the set L b f is a superset of L , i.e., every probabilistic lottery on O can be considered a bf lottery.

Consider a compound lottery [L, m], where L = {L 1 , . . . , L s }, m is a BPA for L, and L j = [O, m j ] is a bf lottery on O, where m j is a conditional BPA for O in the second stage given that lottery L j is realized in the first stage. Assumption 3.2 posits that we can reduce the compound lottery to a simple bf lottery on O using the D-S calculus, and that the compound lottery is equally preferred to the reduced simple lottery on O. 

and m L j , j is a BPA for (L, O) obtained from m j by conditional embedding, for j = 1, . . . , s.

The following proposition states that Assumption 3.2 generalizes Assumption 2.2.

Proposition 3 Let L = {L 1 , . . . , L s } be a set of bf lotter- ies, with L j = [O, m j ], in which m j is a Bayesian condi- tional BPA for O given L j such that m j ({O i }) = p ( j) i and ∑ r i=1 p ( j) 
i = 1 for j = 1, . . . , s. Let [L, m] be a compound lottery in which m is a Bayesian BPA for L such that m({L j } = q j for j = 1, . . . , s with ∑ s j=1 q j = 1. Then BPA m defined by Eq. ( 7) is Bayesian, and it verifies m ({O i }) = s ∑ j=1 q j p ( j) i 

m a ({O 1 }) = u a , (9a) m a ({O r }) = v a , and (9b) 
m a (O 2 ) = w a , (9c) 
where u a , v a , w a ≥ 0, and u a + v a + w a = 1. Furthermore,

w a = 0 if a = {O i } is a singleton. Notice that Bel m a ({O 1 }) = u a , and Pl m a ({O 1 }) = u a + w a = 1 -v a .
For singleton subsets, the equivalent bf reference lottery is Bayesian: this ensures that Assumption 3.3 is a generalization of Assumption 2.3. For non-singleton subsets a of outcomes, we may have w a > 0, i.e., the bf reference lottery may not be Bayesian. In other words, we do not assume that ambiguity can be resolved by selecting an equivalent probabilistic reference lottery.

Example 2 Consider lottery L 2 = [{$100, $0}, m 2 ] in Example 1, where m 2 ({$0}) = 1/3, and m 2 ({$100, $0}) = 2/3. Suppose we wish to assess the utility of focal set {$100, $0} using a probabilistic reference lottery [{$100, $0}, (p, 1p)]. A DM may have the following preferences. For any p ≤ 0.2 she prefers {$100, $0} to the probabilistic reference lottery, and for any p ≥ 0.3, she prefers the probabilistic reference lottery to {$100, $0}. However, she is unable to give us a precise p such that {$100, $0} ∼ [{$100, $0], (p, 1p)]. For such a DM, we can assess a bf reference lottery [{$100, $0}, m a ] such that Bel m a ({$100}) = 0.2 and Pl m a ({$100}) = 0.3, i.e., u {$100,$0} = 0.2, v {$100,$0} = 0.7, and w {$100,$0} = 0.1. Assumption 3.4 (Quasi-order) The preference relation for bf lotteries on L b f is a quasi-order, i.e., it is reflexive and transitive.

In contrast with the probabilistic case (Assumption 2.4), we do not assume that is complete. There are many reasons we may not wish to assume completeness. It is Figure 3: Reducing a bf lottery to a bf reference lottery not descriptive of human behavior. Even from a normative point of view, it is questionable that a DM has complete preferences on all possible lotteries. The assumption of incomplete preferences is consistent with the D-S theory of belief functions where we have non-singleton focal sets. Several authors, such as Aumann [START_REF] Aumann | Utility theory without the completeness axiom[END_REF], and Dubra et al. [START_REF] Dubra | Expected utility theory without the completeness axiom[END_REF] argue why the assumption of complete preferences may not be realistic in many circumstances.

The substitutability assumption is similar to the probabilistic case (Assumption 2.5)-we replace an outcome in the probabilistic case by a focal set of m in the bf case. 

({O 1 }) = k ∑ i=1 m(a i ) u a i , (10a) 
m({O r }) = k ∑ i=1 m(a i ) v a i , and (10b) 
m(O 2 ) = k ∑ i=1 m(a i ) w a i , (10c) 
where u a i , v a i , and w a i , are the masses assigned, respectively, to {O 1 }, {O r }, and O 2 , by the bf reference lottery a i equivalent to a i .

Next, we formulate the monotonicity assumption. This is less obvious than it is in the probabilistic case (Assumption 2.6), as there are several ways in which intervals may be ordered. Assumption 3.6 below states that, given two bf reference lotteries L and L , the former will be preferred if and only if it assigns a higher degree of belief to the best consequence O 1 , and a lower degree of belief to the worst consequence O r . and Bel m ({O r }) ≤ Bel m ({O r }), i.e., if and only if outcome O 1 is deemed both more credible and more plausible under L than it is if under L . The corresponding indifference relation is L ∼ L if and only if u = u and w = w . It is clear that as defined in Assumption 3.6 is reflexive and transitive. Also, the preference relation on the set of all bf reference lotteries is obviously incomplete. Thus, two lotteries are incomparable if not L L and not L L, i.e., if one of the intervals [u, u + w] and [u , u + w ] is strictly included in the other.

Assumptions 3.1, 3.3 and 3.6 imply the following consistency constraints between the reference bf lotteries equivalent to single outcomes:

1 = u {O 1 } ≥ u {O 2 } ≥ . . . ≥ u {O r } = 0. ( 11 
)
Our final assumption has no counterpart in the vN-M theory. It states that a set a of outcomes is always at least as desirable as the worst outcome in a, and at most as desirable as the best outcome in a. 

∑ a i ∈2 O m(a i ) u a i ≥ ∑ a i ∈2 O m (a i ) u a i (13a)
and

∑ a i ∈2 O m(a i ) (u a i + w a i ) ≥ ∑ a i ∈2 O m (a i ) (u a i + w a i ). (13b)
Thus, for a bf lottery L = [O, m], we can define

u(L) = [u, u + w] (14) 
as an interval-valued utility of L, with

u = ∑ a i ∈2 O m(a i ) u a i and w = ∑ a i ∈2 O m(a i ) w a i . (15)
Also, such a utility function is unique up to a strictly increasing affine transformation, i.e., if u = a u + b, and w = a w + b, where a > 0, and b are real constants, then

u (L) = [u , u + w ]
also qualifies as an interval-valued utility function.

In the imprecise probability literature, we have lower and upper Choquet integrals as follows [START_REF] Gilboa | Maxmin expected utility with a non-unique prior[END_REF][START_REF] Coletti | Models for pessimistic or optimistic decisions under different uncertain scenarios[END_REF]: Definition 6 (Choquet integrals) Suppose we have a real-valued function u : O → R. The lower and upper Choquet integrals of u with respect to BPA m for O, denoted by u m and u m , are defined as follows: 

u m = ∑ a∈2 O m(a) min O i ∈a u(O i ) , (16a) 
u m = ∑ a∈2 O m(a) max O i ∈a u(O i ) . (16b) 
u m ≤ u ≤ u + w ≤ u m , (17) 
where u and w are as in Eq. ( 15). Thus, the interval-valued utility of lottery [O, m] as defined in Theorem 5 is always included in the lower-upper expected utility interval. The lower and upper expectations defined by Eq. ( 16) can thus be seen as lower and upper bounds of the interval utility of a lottery L = [O, m] and could be used as conservative estimates if the equivalent bf reference lotteries a i cannot be elicited.

A special case of Theorem 5 is if we use Bayesian bf reference lotteries for the continuity assumption, i.e., w a = 0 for all focal sets a of m. In this case, Theorem 5 implies Corollary 7 below where we have a real-valued utility function, and consequently, a complete ordering on L b f . as the utility of L. Also, such a utility function is unique up to a strictly increasing affine transformation, i.e., if u a = a u a + b, where a > 0, and b are real constants, then

u (L) = ∑ a∈2 O m(a) u a
also qualifies as a utility function.

The utility function in Eq. ( 18) has exactly the same form as Jaffray's linear utility [START_REF] Jaffray | Linear utility theory for belief functions[END_REF]. This is discussed further in Section 5.1.

Examples

In this section, we illustrate the application of Theorem 5 to three examples: Ellsberg's urn problem described in Example 1, the one red ball problem described in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF], and the 1,000 balls urns described in [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF].

Example 3 (Ellsberg's urn) Consider the four bf lotteries described in Example 1. Given a vacuous bf lottery

[{$100, $0}, m({$100, $0}) = 1]
, what is an indifferent bf reference lottery? For an ambiguity-averse DM,

[{$100, $0}, (1/2, 1/2)] [{$100, $0}, m({$100, $0}) = 1].
For such a DM, we must have u {$100, $0} + w {$100, $0} < 1/2.

For the first choice problem between L 1 ($100 on r), and L 2 ($100 on b), using Eq. ( 14), u(L 1 ) = 1/3, and

u(L 2 ) = 2 3 u {$100, $0} , u {$100, $0} + w {$100, $0} .
Thus, an ambiguity-averse DM would choose L 1 . This result is valid as long as u {$100, $0} + w {$100, $0} < 1/2 and is consistent with Ellsberg's findings. For the second choice problem between L 3 ($100 on r or y), and L 4 ($100 on b or y),

u(L 3 ) = 1 3 (1) + 2 3 u {$100, $0} , u {$100, $0} + w {$100, $0} ,
and u(L 4 ) = 2/3. An ambiguity-averse DM would choose L 4 , as

1 3 + 2 3 u {$100, $0} + w {$100, $0} < 2 3 ,
as long as u {$100, $0} + w {$100, $0} < 1/2, a result that is also consistent with Ellsberg's empirical findings.

Example 4 (One red ball) Consider the following example called 'one red ball' in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF]. An urn possibly contains balls of six colors: red (r), blue (b), green (g), orange (o), white (w), and yellow (y). One ball is drawn at random from the urn. We are informed that the urn has a total of n balls, where n is a positive integer, and that there is exactly one red ball in the urn. Suppose random variable X denotes the color of the ball drawn from the urn. Then Ω X = {r, b, g, o, w, y}, and m X is a BPA for X such that m X ({r}) = 1/n, and m X ({b, g, o, w, y}) = (n -1)/n. First, you pick a color, and then you draw a ball at random from the urn. You win $100 if the color of the ball drawn from the urn matches the color you picked and you win $0 if it doesn't. What color do you pick? In [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF], the authors describe some informal experiments where all respondents chose red for n ≤ 7, and for n ≥ 8, several respondents preferred a color different from red. Suppose you pick r. The bf lottery L r based on m X is as follows: [{$100, $0}, m r ], where m r ({$100}) = 1/n, and m r ({$0}) = (n -1)/n. If the color you pick is b, then the bf lottery L b is [{$100, $0}, m b ], where m b ({$0}) = 1/n, and m b ({$100, $0}) = (n -1)/n. Thus, we have u(L r ) = 1/n, and

u(L b ) = n -1 n u {$100, $0} , u {$100, $0} + w {$100, $0} . So, L b is strictly preferred to L r whenever n -1 n u {$100, $0} > 1 n ,
i.e., whenever u {$100, $0} > 1/(n -1), and L r is strictly preferred to L b whenever

n -1 n u {$100, $0} + w {$100, $0} < 1 n ,
i.e., whenever u {$100, $0} + w {$100, $0} < 1/(n -1). Hence, L b is increasingly preferred to L r when n increases, which is consistent with the findings reported in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF]. In our model, when

u {$100, $0} < 1 n -1 < u {$100, $0} + w {$100, $0} ,
the two lotteries L r and L b are incomparable. If forced to choose, the DM might just choose arbitrarily. As the experiment reported in [START_REF] Jiroušek | Ambiguity aversion and a decision-theoretic framework using belief functions[END_REF] did not allow the respondents to express inability to choose between the two lotteries, it does not provide any evidence for or against our model.

Example 5 (Urns with 1,000 balls) The following example is discussed in [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF], where it is credited to Ellsberg in an oral conversation (with the authors of [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF]). It is also discussed in [START_REF] Einhorn | Decision making under ambiguity[END_REF]. There are two urns, each with 1,000 balls, numbered from 1 -1, 000. Urn 1 has exactly one ball for each number, and there is no ambiguity. Urn 2 has unknown number of balls of each number, and there is much ambiguity. One ball is to be chosen at random from an urn of your choosing. If the number on the ball matches a specific number, e.g., 687, you win $100, and if not, you win nothing ($0). Which one of the two urns will you choose?

It is reported in [START_REF] Becker | What price ambiguity? or the role of ambiguity in decision-making[END_REF] that many respondents chose Urn 2. Why? Urn 1 has only one ball numbered 687, and therefore, the probability of winning $100 if the choice is Urn 1 is very small, 0.001. Urn 2 could possibly have anywhere from 0 to 1, 000 balls numbered 687. Thus, the choice of Urn 2, although ambiguous, is appealing. Let's analyze this problem using Theorem 5.

Let X 1 denote the number on the ball chosen from Urn 1, and let X 2 denote the number on the ball chosen from Urn 2. Ω

X 1 = Ω X 2 = {1, . . . , 1000}. Function m X 1 is a BPA for X 1 as follows: m X 1 ({1}) = . . . = m X 1 ({1000}) = 0.001. BPA m X 2 is vacuous, i.e., m X 2 (Ω X 2 ) = 1.
Lottery L 1 corresponding to choice of Urn 1 (say, alternative f 1 ) is [{$100, $0}, m 1 ], where m 1 is a BPA for {$100, $0} such that m 1 ({$100}) = 0.001, and m 1 ({$0}) = 0.999. L 1 is a bf reference lottery, and thus, u(L 1 ) = 0.001. Lottery L 2 corresponding to choice of Urn

2 (say, alternative f 2 ) is [{$100, $0}, m 2 ], where m 2 is a vacuous BPA for {$100, $0}. The utility of L 2 is u(L 2 ) = u {$100, $0} , u {$100, $0} + w {$100, $0} .
Consequently, L 2 is preferred to L 1 as long as u {$100, $0} ≥ 0.001, a condition that is easily satisfied. This may explain why many DMs prefer to be ambiguity-seeking in this context, i.e., prefer L 2 to L 1 .

Comparison

In this section, we compare our utility theory to Jaffray's linear utility theory [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], and to Smets' two-level decision theory [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF].

Comparison with Jaffray's Axiomatic Theory

Jaffray's axiomatic theory is based on considering the set of all belief functions for O as a mixture set as follows. Suppose m 1 and m 2 are BPAs for O, and suppose λ ∈ [0, 1]. Then m defined as:

m(a) = λ m 1 (a) + (1 -λ )m 2 (a) (19) 
for all a ∈ 2 O , is a BPA for O. BPA m can be written as m = λ m 1 + (1λ )m 2 , and called a mixture of m 1 and m 2 . Using the Jensen-version [START_REF] Jensen | An introduction to Bernoullian utility theory: A discussion[END_REF] of vN-M axiom system, Jaffray uses the following assumptions, all of which are expressed using mixture BPA functions: 

[O, λ m 1 + (1 -λ ) m 3 ] [O, m 2 ] [O, µ m 1 + (1 -µ) m 3 ].
Theorem 8 (Jaffray's representation theorem [START_REF] Jaffray | Linear utility theory for belief functions[END_REF])

The preference relation on L b f satisfies Assumptions 5.1-5.3 if and only if there exists a utility function u :

L b f → R such that for any lottery L = [O, m] in L b f , u(L) = ∑ a∈2 O m(a) u a , (20) 
where u a = u([O, m d a ]), and m d a is a deterministic BPA for O such that m d a (a) = 1.

Thus, Jaffray's axioms result in the same solution as that of Corollary 7, which is a special case of Theorem 5. As Jaffray's axioms do not use Dempster's rule explicitly, it is not clear whether Eq. ( 20) applies to the D-S framework or not. The mixture BPA m derived from BPAs m 1 and m 2 using Eq. ( 19) is not Dempster's combination rule, although Eq. ( 19) can be derived from a belief function model using Dempster's rule. By deriving this solution from a set of axioms making use of the basic constructs of DS theory (namely, Dempster's combination rule, marginalization, and conditional embedding), we provide additional arguments supporting Eq. ( 20) as a natural definition of the real-valued utility of a bf lottery in the D-S theory.

Also, there is no explicit notion of a bf reference lottery in Jaffray's framework. Thanks to our continuity axiom (Assumption 3.3), the interval-valued utility [u a , u a + w a ] in our framework receives a simple interpretation as an interval-valued probability of a best outcome O 1 , in a bf reference lottery [O 2 , m a ] that is indifferent to a and such that m a ({O 1 }) = u a , m a ({O r }) = 1 -(u a + w a ), and m a (O 2 ) = w a . We believe that this simple interpretation can be very helpful when eliciting utilities from DMs.

Comparison with Smets' Decision Theory

Smets' decision theory [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF] is a two-level framework where beliefs, represented by belief functions, are held at a credal level. When a DM has to make a decision, the marginal belief function for a variable of interest is transformed into a PMF, and the Bayesian expected utility framework is then used to make a decision.

Smets uses a transformation called the pignistic transform to transform belief functions into PMFs. This transform is justified in [START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF] using a mixture property as follows. Let T denote the belief-PMF transformation. Smets [START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF] argues that this transformation should be linear, i.e., we should have, for any λ ∈ [0, 1], 

T (λ m 1 + (1 -λ ) m 2 ) = λ T (m 1 ) + (1 -λ )T (m 2 ).
for all O ∈ O, where I(•) is the indicator function. The pignistic PMF BetP m is mathematically identical to the Shapley value in cooperative game theory [START_REF] Shapley | A value for n-person games[END_REF]. In [START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF], Smets attempts to derive Eq. ( 21) from the maximum expected utility principle. The argument, however, is quite technical and unconvincing. Given the definition in Eq. ( 22), the expected utility of a bf lottery L = [O, m] according to the pignistic PMF is

u BetP (L) = ∑ O∈O BetP m (O) u {O} (23a) = ∑ O∈O ∑ a⊆O m(a) |a| I(O ∈ a) u {O} (23b) = ∑ a⊆O m(a) 1 |a| ∑ O∈a u {O} . (23c) 
It is a special case of Eq. ( 18), with

u a = 1 |a| ∑ O∈a u {O} .
Smets' decision theory thus amounts to assuming that a DM is indifferent between a bf lottery that gives them an outcome in a for sure, and a bf reference lottery in which the probability of the best outcome is equal to the average utilities of the outcomes in a. This is consistent with our Assumptions 3.1-3.6, but it is inconsistent with Assumption 3.7. Also, this restricted model does not have a parameter to represent a DM's attitude toward ambiguity. As a result, it is unable to explain Ellsberg's paradox and the ambiguity aversion of human DMs as described, e.g., in the examples in Section 4.

Summary and Conclusions

In this section, we summarize our proposal and sketch some future work. We start with Luce and Raiffa's version of the vN-M utility theory for probabilistic lotteries. We then consider bf lotteries, lotteries when our beliefs about the state of the world is described by DS belief functions. We use a similar set of axioms as vN-M, but first we replace each singleton outcome in a probabilistic lottery by a focal set of a BPA. Second, we replace the reduction of compound lotteries with a corresponding axiom that uses Dempster's combination rule and belief function marginalization in place of probabilistic combination (pointwise multiplication followed by normalization) and probabilistic marginalization (addition). Third, we use a bf reference lottery with two independent parameters. The axioms lead to a decision theory that involves assessing the utility of each focal element of a BPA as an interval-valued utility.

Interval-valued utilities lead to a partial preference relation on the set L b f of all bf lotteries. If we use Bayesian bf reference lotteries with a single parameter, then our axiomatic framework leads to a real-valued utility function that is exactly the same as in Jaffray's linear utility theory [START_REF] Jaffray | Linear utility theory for belief functions[END_REF].

The decision theory that results from our axioms is more general than that proposed by Jaffray [START_REF] Jaffray | Linear utility theory for belief functions[END_REF], which can be construed as a decision theory for belief functions interpreted as generalized probabilities. Jaffray's axiomatic theory is based on a set of mixture BPAs. A mixture of two BPAs is not the same as a Dempster's combination of two BPAs, although we could construct a belief function model where the mixture BPA is obtained by Dempster's rule. Thus, it is not clear if Jaffray's linear utility theory is applicable to D-S belief function lotteries or not. Our utility theory confirms that this is indeed the case. Our bf reference lotteries lead to interval-valued utilities, and consequently, a partial preference relation on the set of all bf lotteries.

We also compare our axiomatic theory to Smets' twolevel framework [START_REF] Smets | Decision making in a context where uncertainty is represented by belief functions[END_REF][START_REF] Smets | Decision making in the TBM: The necessity of the pignistic transformation[END_REF], and note that his framework is too constrained to explain ambiguity-aversion or ambiguityseeking behavior of human DMs.

In practice, implementing the most general form of our axiomatic theory may need assessment of 2 k parameters, where k is the number of focal sets of a bf lottery. In the worst case, k can be as large as 2 |O| -1. In [START_REF] Denoeux | An interval-valued utility theory for decision making with Dempster-Shafer belief functions[END_REF], based on additional assumptions, we propose a model based on only two parameters, which can be interpreted as reflecting both the DM's attitude to ambiguity and their indeterminacy. This model, as well as others, will have to be further studied and developed. More generally, a rigorous methodology to elicit interval-valued utilities remains to be designed.
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  the DM is indifferent between (or equally prefers) O i and O j , and write O i O j if the DM either strictly prefers O i to O j or is indifferent between the two.

  Given Assumption 2.1, without loss of generality, let us assume that the outcomes are labelled such that O 1 O 2 • • • O r , and to avoid trivialities, assume that O 1 O r .

	Assumption 2.1 (Weak ordering of outcomes) For any
	two outcomes O i and O j , either O i O j or O j O i . Also,
	if O i O j and O j O k , then O i O k . Thus, the preference
	relation over O is a weak order, i.e., it is complete and
	transitive.
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The assumption of finiteness of the sets Ω X and O is only for ease of exposition. It is unnecessary for the proof of the representation theorem in this section.
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