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Abstract
The main goal of this paper is to describe an axiomatic
utility theory for Dempster-Shafer belief function lot-
teries. The axiomatic framework used is analogous to
von Neumann-Morgenstern’s utility theory for proba-
bilistic lotteries as described by Luce and Raiffa. Un-
like the probabilistic case, our axiomatic framework
leads to interval-valued utilities, and therefore, to a
partial (incomplete) preference order on the set of all
belief function lotteries. If the belief function reference
lotteries we use are Bayesian belief functions, then our
representation theorem coincides with Jaffray’s repre-
sentation theorem for his linear utility theory for belief
functions. We illustrate our framework using some ex-
amples discussed in the literature. Finally, we compare
our decision theory with those proposed by Jaffray and
Smets.
Keywords: Dempster-Shafer theory of evidence, von
Neumann-Morgenstern’s utility theory, Jaffray’s linear
utility theory, Smets’ decision theory

1. Introduction

The main goal of this paper is to propose an axiomatic
utility theory for lotteries described by belief functions in
the Dempster-Shafer (D-S) theory of evidence [5, 24]. The
axiomatic theory is constructed similar to von Neumann-
Morgenstern’s (vN-M’s) utility theory for probabilistic lot-
teries [31, 19, 18, 23, 21, 13]. Unlike the probabilistic case,
our axiomatic theory leads to interval-valued utilities, and
therefore to a partial (incomplete) preference order on the
set of all belief function lotteries. Also, we compare our
decision theory to those proposed by Jaffray [20] and Smets
[29].

In the foreword to Glenn Shafer’s 1976 monograph [24],
Dempster writes: “... I believe that Bayesian inference will
always be a basic tool for practical everyday statistics, if
only because questions must be answered and decisions
must be taken, so that a statistician must always stand
ready to upgrade his vaguer forms of belief into precisely
additive probabilities.” More than 40 years after these lines
were written, a lot of approaches to decision-making have
been proposed (see the recent review in [6]). However,
most of these methods lack a strong theoretical basis. The

most important steps toward a decision theory in the D-S
framework have been made by Jaffray [20], Smets [29],
and Shafer [27]. However, we argue that these proposals
are either not sufficiently justified from the point of view
of D-S theory, or not sufficiently developed for practical
use. Our goal is to propose and justify a utility theory that
is in line with vN-M’s utility theory, but adapted to be used
with lotteries whose uncertainty is described by D-S belief
functions.

In essence, the D-S theory consists of representations—
basic probability assignments (also called mass functions),
belief functions, plausibility functions, etc.—together with
Dempster’s combination rule, and a rule for marginaliz-
ing joint belief functions. The representation part of the
D-S theory is also used in various other theories of belief
functions. For example, in the imprecise probability com-
munity, a belief function is viewed as the lower envelope of
a convex set of probability mass functions called a credal
set. Using these semantics, it makes more sense to use the
Fagin-Halpern combination rule [12], rather than Demp-
ster’s combination rule [17, 25, 26]. The utility theory this
article proposes is designed specifically for the D-S belief
function theory, and not for the other theories of belief
functions. This suggests that Dempster’s combination rule
should be an integral part of our theory, a property that is
not satisfied in the proposals by Jaffray and Smets.

There is a large literature on decision making with a
(credal) set of probability mass functions motivated by
Ellsberg’s paradox [11]. An influential work in this area
is the axiomatic framework by Gilboa-Schmeidler [15],
where they use Choquet integration [3, 16] to compute
expected utility. A belief function is a special case of a
Choquet capacity. Jaffray’s [20] work can also be regarded
as belonging to the same line of research, although Jaffray
works directly with belief functions without specifying a
combination rule. A review of this literature can be found
in, e.g., [14], where the authors propose a modification
of the Gilboa-Schmeidler [15] axioms. As we said earlier,
our focus here is on decision-making with D-S theory of
belief functions, and not on decision-making based in belief
functions with a credal set interpretation. As we will see,
our interval-valued utility functions lead to intervals that
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are contained in the Choquet lower and upper expected
utility intervals.

The remainder of this article is as follows. In Section 2,
we sketch vN-M’s axiomatic utility theory for probabilistic
lotteries as described by Luce and Raiffa [23]. In Section
3, we describe our adaptation of vN-M’s utility theory for
lotteries in which uncertainty is described by D-S belief
functions. Our assumptions lead to an interval-valued util-
ity function, and consequently, to a partial (incomplete)
preference order on the set of all belief function lotteries.
In Section 4, we illustrate the application of our represen-
tation theorem to three examples from the literature. In
Section 5, we compare our utility theory with those de-
scribed by Jaffray [20], and Smets [29]. Finally, in Section
6, we summarize and conclude.

2. vN-M’s Utility Theory
In this section, we describe vN-M’s utility theory for de-
cision under risk. Most of the material in this section is
adapted from [23]. A decision problem can be seen as a
situation in which a decision-maker (DM) has to choose
a course of action (or an act) in some set F. An act may
have different outcomes, depending on the state of nature
X . Exactly one state of nature will obtain, but this state is
unknown. Let ΩX = {x1, . . . ,xn} denote the set of states
of nature, and let O = {O1, . . . ,Or} denote the set of out-
comes.1 An act can be formalized as a mapping f : ΩX→O.
In this section, we assume that uncertainty about the state
of nature is described by a probability mass function (PMF)
pX for X . If the DM select act f , they will get outcome Oi
with probability

pi = ∑
{x∈ΩX | f (x)=Oi}

pX (x). (1)

To each act f there corresponds a PMF p = (p1, . . . , pr)
for O. We call L = [O,p] a probabilistic lottery. As only
one state in ΩX will be realized, a probabilistic lottery will
result in exactly one outcome Oi (with probability pi), and
we assume that the lottery will not be repeated. Another
natural assumption is that two acts that induce the same
lottery are equivalent: the problem of expressing preference
between acts then boils down to expressing preference
between lotteries.

We are concerned with a DM who has preferences on
L , the set of all probabilistic lotteries on O, and our task
is to find a real-valued utility function u : L → R such that
the DM strictly prefers L to L′ if and only if u(L)> u(L′),
and the DM is indifferent between L and L′ if and only if
u(L) = u(L′). We write Oi � O j if the DM strictly prefers
Oi to O j, write Oi ∼ O j if the DM is indifferent between

1. The assumption of finiteness of the sets ΩX and O is only for ease
of exposition. It is unnecessary for the proof of the representation
theorem in this section.

(or equally prefers) Oi and O j, and write Oi % O j if the
DM either strictly prefers Oi to O j or is indifferent between
the two.

Of course, finding such a utility function is not always
possible, unless the DM’s preferences satisfy some assump-
tions. We can then construct a utility function that is linear
in the sense that the utility of a lottery L = [O,p] is equal
to its expected utility ∑

r
i=1 pi u(Oi), where Oi is regarded

as a degenerate lottery where the only possible outcome is
Oi with probability 1. In the remainder of this section, we
describe the assumptions that lead to the existence of such
a linear utility function.

Assumption 2.1 (Weak ordering of outcomes) For any
two outcomes Oi and O j, either Oi % O j or O j % Oi. Also,
if Oi %O j and O j %Ok, then Oi %Ok. Thus, the preference
relation % over O is a weak order, i.e., it is complete and
transitive.

Given Assumption 2.1, without loss of generality, let us
assume that the outcomes are labelled such that O1 % O2 %
· · ·% Or, and to avoid trivialities, assume that O1 � Or.

Suppose that L = {L(1), . . . ,L(s)} is a set of s lotter-
ies, where each of the s lotteries L j = [O,p( j)] are over
outcomes in O, with PMFs p( j) for j = 1, . . . ,s. Sup-
pose q = (q1, . . . ,qs) is a PMF for L such that q j > 0 for
j = 1, . . . ,s, and ∑

s
j=1 q j = 1. Then [L,q] is called a com-

pound lottery whose outcome is exactly one lottery L(i)

(with probability qi), and lottery L(i) will result in one out-
come O j (with probability p(i)j ). Notice that the PMF p(i)

is a conditional PMF for O in the second stage given that
lottery L(i) is realized (with probability qi > 0) in the first
stage (see Figure 1). We can compute the joint PMF for
(L,O), and then compute the marginal p of the joint for O.
The following assumption states that the resulting lottery
[O,p] is indifferent to the compound lottery [L,q].

Assumption 2.2 (Reduction of compound lotteries)
Any compound lottery [L, q], where L(i) = [O,p(i)], is

indifferent to a simple (non-compound) lottery [O, p],
where

pi = q1 p(1)i + . . .+qs p(s)i (2)

for i = 1, . . . ,r. PMF (p1, . . . , pr) is the marginal for O of
the joint PMF of (L,O).

A simple lottery involving only outcomes O1 and Or
with PMF (u,1−u), where 0≤ u≤ 1, is called a reference
lottery, and is denoted by [{O1,Or},(u,1− u)]. Let O2
denote the set {O1,Or}.

Assumption 2.3 (Continuity) Each outcome Oi is indif-
ferent to a reference lottery Õi = [O2,(ui,1−ui)] for some
ui, where 0≤ ui ≤ 1, i.e., Oi ∼ Õi.
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Figure 1: A two-stage compound lottery reduced to an in-
different simple lottery

Figure 2: Reducing a lottery to an indifferent compound
lottery and then to an indifferent reference lottery

Assumption 2.4 (Weak order) The preference relation
% for lotteries in L is a weak order, i.e., it is complete and
transitive.

Assumption 2.4 generalizes Assumption 2.1 for out-
comes, which can be regarded as degenerate lotteries.

Assumption 2.5 (Substitutability) In any lottery L =
[O,p], if we substitute an outcome Oi by the reference lot-
tery Õi = [O2,(ui,1−ui)] that is indifferent to Oi, then the
result is a compound lottery that is indifferent to L.

From Assumptions 2.1–2.5, given any lottery L = [O,p],
it is possible to find a reference lottery L̃ = [O2,(u,1−u)]
that is indifferent to L (see Figure 2). This is expressed by
Theorem 1 below. 2

Theorem 1 ([23]) Under Assumptions 2.1–2.5, any lot-
tery L = [O,p] is indifferent to a reference lottery L̃ =
[O2,(u,1−u)] with

u =
r

∑
i=1

pi ui. (3)

Assumption 2.6 (Monotonicity) A reference lottery L =
[O2,(u,1−u)] is preferred or indifferent to reference lottery
L′ = [O2,(u′,1−u′)] if and only if u≥ u′.

2. For reasons of space, proofs of all results in this paper are omitted
and can be found in [7].

As O1 ∼ Õ1 = [O,(u1,1 − u1)] and Or ∼ Õr =
[O,(ur,1−ur)], Assumptions 2.4 and 2.6 imply that u1 = 1
and ur = 0. Also, from O1 % O2 % · · ·% Or, we can deduce
that 1 = u1 ≥ u2 ≥ ·· · ≥ ur = 0.

Assumptions 2.1–2.6 allow us to define the utility of
a lottery as the probability of the best outcome O1 in an
indifferent reference lottery, and this utility function for
lotteries on O is linear. This is stated by the following
theorem.

Theorem 2 ([23]) If the preference relation % on L satis-
fies Assumptions 2.1–2.6, then there are numbers ui asso-
ciated with outcomes Oi for i = 1, . . . ,r, such that for any
two lotteries L = [O,p], and L′ = [O,p′], L % L′ if and only
if

r

∑
i=1

pi ui ≥
r

∑
i=1

p′i ui. (4)

Thus, we can define the utility of lottery L = [O,p] as
u(L) = ∑

r
i=1 pi ui, where ui = u(Oi). Also, such a linear

utility function is unique up to a strictly increasing affine
transformation, i.e., if u′i = aui +b, where a > 0 and b are
real constants, then u(L) = ∑

r
i=1 pi u′i also qualifies as a

utility function.

3. A Utility Theory for D-S Belief Function
Theory

In this section, we describe a new utility theory for lotteries
where the uncertainty is described by D-S belief functions.3

These lotteries, called belief function lotteries,4 will be in-
troduced in Section 3.1. We present and discuss assump-
tions in Section 3.2, and state a representation theorem in
Section 3.3.

3.1. Belief function lotteries

We now generalize the decision framework outline in Sec-
tion 2 by assuming that uncertainty about the state of na-
ture X with state space ΩX is described by a BPA mX for
X . The probabilistic framework is recovered as a special
case when mX is Bayesian. As before, we define an act as
a mapping f : ΩX → O. Mapping f pushes mX forward
from ΩX to O, transferring each mass mX (a) for a ∈ 2ΩX

to b = { f (x) : x ∈ a}. The resulting BPA m for O is then
defined as follows:

m(b) = ∑
{a∈2ΩX | f [a]=b}

mX (a), (5)

for all b⊆O, where f [a] denotes the image of subset a by f
[8]. Eq. (5) clearly generalizes Eq. (1). The pair [O,m] will

3. We assume the reader is familiar with the fundamentals of D-S belief
functions. A brief review appears in [7].

4. This notion was previously introduced in [6] under the name “eviden-
tial lottery.”
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be called a belief function (bf) lottery. As before, we assume
that two acts can be compared from what we believe their
outcomes will be, irrespective of the evidence on which we
base our beliefs. This assumption is a form of what Wakker
[32] calls the principle of complete ignorance (PCI). It
implies that two acts resulting in the same bf lottery are
equivalent. The problem of expressing preferences between
acts becomes that of expressing preferences between bf
lotteries.

Thus, we are concerned with a DM who has prefer-
ences on Lb f , the set of all bf lotteries. We will define
our task as finding a utility function u : Lb f → [R], where
[R] denotes the set of closed real intervals, such that the
u(L) = [u,u+w] is viewed as an interval-valued utility of L.
The interval-valued utility can be interpreted as follows: u
and u+w are, respectively, the degrees of belief and plausi-
bility of receiving the best outcome in a bf reference lottery
equivalent to L. Given two lotteries L and L′, L is preferred
to L′ if and only if u≥ u′ and u+w≥ u′+w′. This leads
to incomplete preferences on the set of all bf lotteries. If
we assume w = 0 for all bf lotteries, then we have a real-
valued utility function on Lb f , and consequently, complete
preferences.

Example 1 (Ellsberg’s Urn) Ellsberg [11] describes a
decision problem that questions the adequacy of the vN-M
axiomatic framework. Suppose we have an urn with 90
balls, of which 30 are red, and the remaining 60 are either
black or yellow. We draw a ball at random from the urn. Let
X denote the color of the ball drawn, with ΩX = {r,b,y}.
Notice that the uncertainty of X can be described by a BPA
mX for X such that mX ({r}) = 1/3, and mX ({b,y}) = 2/3.

First, we are offered a choice between Lottery L1: $100
on red, and Lottery L2: $100 on black, i.e., in L1, you get
$100 if the ball drawn is red, and $0 if the ball drawn is
black or yellow, and in L2, you get $100 if the ball drawn is
black and $0 if the ball drawn is red or yellow. Choice of L1
can be denoted by alternative f1 : ΩX →{$100,$0} such
that f1(r) = $100, f1(b) = f1(y) = $0. Similarly, choice
of L2 can be denoted by alternative f2 : ΩX →{$100,$0}
such that f2(b) = $100, f2(r) = f2(y) = $0. L1 can be
represented by the BPA m1 for O = {$0,$100} as fol-
lows: m1({$100}) = 1/3, m1({$0}) = 2/3. L2 can be rep-
resented by BPA m2 for O as follows: m2({$0}) = 1/3,
m2({$0,$100}) = 2/3. Notice that L1 and L2 are bf lotter-
ies. Ellsberg notes that a frequent pattern of response is L1
preferred to L2.

Second, we are offered a choice between L3: $100 on red
or yellow, and L4: $100 on black or yellow, i.e., in L3 you
get $100 if the ball drawn is red or yellow, and $0 if the ball
drawn is black, and in L4, you get $100 if the ball drawn is
black or yellow, and $0 if the ball drawn is red. L3 can be
represented by BPA m3 as follows: m3({$100}) = 1/3, and
m3({$0,$100}) = 2/3, and L4 can be represented by the
BPA m4 as follows: m4({$0}) = 1/3, m4({$100}) = 2/3.

L3 and L4 are also belief function lotteries. Ellsberg notes
that L4 is often strictly preferred to L3. Also, the same
subjects who prefer L1 to L2, prefer L4 to L3.

3.2. Assumptions of our framework

As in the probabilistic case, we will assume that a DM’s
preferences for bf lotteries are reflexive and transitive. How-
ever, unlike the probabilistic case, we do not assume that
these preferences are complete. In the probabilistic case,
incomplete preferences are studied in [1], and in the case
of sets of utility functions, in [9].

Our first assumption is identical to Assumption 2.1.

Assumption 3.1 (Weak ordering of outcomes) The
DM’s preferences % for outcomes in O = {O1, . . . ,Or} are
complete and transitive.

This allows us to label the outcomes such that

O1 % O2 % · · ·% Or, and O1 � Or. (6)

Let Lb f denote the set of all bf lotteries on O =
{O1, . . .Or}, where the outcomes satisfy Eq. (6). As ev-
ery BPA m for O is a bf lottery, Lb f is essentially the set
of all BPAs for O. As the set of all BPAs include Bayesian
BPAs, the set Lb f is a superset of L , i.e., every probabilis-
tic lottery on O can be considered a bf lottery.

Consider a compound lottery [L,m], where L =
{L1, . . . ,Ls}, m is a BPA for L, and L j = [O,m j] is a bf
lottery on O, where m j is a conditional BPA for O in the
second stage given that lottery L j is realized in the first
stage. Assumption 3.2 posits that we can reduce the com-
pound lottery to a simple bf lottery on O using the D-S
calculus, and that the compound lottery is equally preferred
to the reduced simple lottery on O.

Assumption 3.2 (Reduction of compound lotteries)
Suppose [L,m] is a compound lottery as described in the
previous paragraph. Then, [L,m]∼ [O,m′], where

m′ =

(
m⊕

(
s⊕

j=1

mL j , j

))↓O
, (7)

and mL j , j is a BPA for (L,O) obtained from m j by condi-
tional embedding, for j = 1, . . . ,s.

The following proposition states that Assumption 3.2
generalizes Assumption 2.2.

Proposition 3 Let L = {L1, . . . ,Ls} be a set of bf lotter-
ies, with L j = [O,m j], in which m j is a Bayesian condi-
tional BPA for O given L j such that m j({Oi}) = p( j)

i and

∑
r
i=1 p( j)

i = 1 for j = 1, . . . ,s. Let [L,m] be a compound
lottery in which m is a Bayesian BPA for L such that

4
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m({L j} = q j for j = 1, . . . ,s with ∑
s
j=1 q j = 1. Then BPA

m′ defined by Eq. (7) is Bayesian, and it verifies

m′({Oi}) =
s

∑
j=1

q j p
( j)
i (8)

for i = 1, . . . ,r.

Next, we define a bf reference lottery [O2,m] as a bf
lottery on O2 = {O1,Or}. A bf reference lottery has three
parameters u = m({O1}), v = m({Or}), and w = m(O2),
which are all non-negative and sum to 1. The following
assumption states that any deterministic bf lottery is equally
preferred to some bf reference lottery.

Assumption 3.3 (Continuity) Any subset of outcomes
a⊆ O (considered as a deterministic bf lottery) is indiffer-
ent to a bf reference lottery ã = [O2,ma] such that

ma({O1}) = ua, (9a)
ma({Or}) = va, and (9b)

ma(O2) = wa, (9c)

where ua,va,wa ≥ 0, and ua + va +wa = 1. Furthermore,
wa = 0 if a = {Oi} is a singleton.

Notice that Belma({O1}) = ua, and Plma({O1}) = ua +
wa = 1− va. For singleton subsets, the equivalent bf refer-
ence lottery is Bayesian: this ensures that Assumption 3.3
is a generalization of Assumption 2.3. For non-singleton
subsets a of outcomes, we may have wa > 0, i.e., the bf
reference lottery may not be Bayesian. In other words, we
do not assume that ambiguity can be resolved by selecting
an equivalent probabilistic reference lottery.

Example 2 Consider lottery L2 = [{$100,$0},m2] in Ex-
ample 1, where m2({$0}) = 1/3, and m2({$100,$0}) =
2/3. Suppose we wish to assess the utility of focal
set {$100,$0} using a probabilistic reference lottery
[{$100,$0},(p,1− p)]. A DM may have the following pref-
erences. For any p ≤ 0.2 she prefers {$100,$0} to the
probabilistic reference lottery, and for any p ≥ 0.3, she
prefers the probabilistic reference lottery to {$100,$0}.
However, she is unable to give us a precise p such that
{$100,$0} ∼ [{$100,$0],(p,1− p)]. For such a DM, we
can assess a bf reference lottery [{$100,$0},ma] such
that Belma({$100}) = 0.2 and Plma({$100}) = 0.3, i.e.,
u{$100,$0} = 0.2, v{$100,$0} = 0.7, and w{$100,$0} = 0.1.

Assumption 3.4 (Quasi-order) The preference relation
% for bf lotteries on Lb f is a quasi-order, i.e., it is reflexive
and transitive.

In contrast with the probabilistic case (Assumption 2.4),
we do not assume that % is complete. There are many
reasons we may not wish to assume completeness. It is

Figure 3: Reducing a bf lottery to a bf reference lottery

not descriptive of human behavior. Even from a normative
point of view, it is questionable that a DM has complete
preferences on all possible lotteries. The assumption of
incomplete preferences is consistent with the D-S theory
of belief functions where we have non-singleton focal sets.
Several authors, such as Aumann [1], and Dubra et al. [9]
argue why the assumption of complete preferences may not
be realistic in many circumstances.

The substitutability assumption is similar to the proba-
bilistic case (Assumption 2.5)—we replace an outcome in
the probabilistic case by a focal set of m in the bf case.

Assumption 3.5 (Substitutability) In any bf lottery L =
[O,m], if we substitute a focal set a of m by an equally
preferred bf reference lottery ã = [O2,ma], then the result
is a compound lottery that is equally preferred to L.

It follows from Assumptions 3.1–3.5 that given any bf
lottery, we can reduce it to an equally preferred bf reference
lottery. This is stated as Theorem 4 below.

Theorem 4 (Reducing a bf lottery) Under Assumptions
3.1–3.5, any bf lottery L = [O,m] with focal sets a1, . . . ,ak
is indifferent to a bf reference lottery L̃ = [O2, m̃], such that

m̃({O1}) =
k

∑
i=1

m(ai)uai , (10a)

m̃({Or}) =
k

∑
i=1

m(ai)vai , and (10b)

m̃(O2) =
k

∑
i=1

m(ai)wai , (10c)

where uai , vai , and wai , are the masses assigned, respec-
tively, to {O1}, {Or}, and O2, by the bf reference lottery ãi
equivalent to ai.

Next, we formulate the monotonicity assumption. This is
less obvious than it is in the probabilistic case (Assumption
2.6), as there are several ways in which intervals may be
ordered. Assumption 3.6 below states that, given two bf
reference lotteries L and L′, the former will be preferred if
and only if it assigns a higher degree of belief to the best
consequence O1, and a lower degree of belief to the worst
consequence Or.

5
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Assumption 3.6 (Monotonicity) Suppose L = [O2,m]
and L′= [O2,m′] are bf reference lotteries, with m({O1})=
u, m(O) = w, m′({O1}) = u′, m′(O) = w′. Then, L % L′ if
and only if u≥ u′ and u+w≥ u′+w′.

Thus, L % L′ if and only if Belm({O1}) ≥ Belm′({O1})
and Belm({Or})≤Belm′({Or}), i.e., if and only if outcome
O1 is deemed both more credible and more plausible under
L than it is if under L′. The corresponding indifference
relation is L ∼ L′ if and only if u = u′ and w = w′. It is
clear that % as defined in Assumption 3.6 is reflexive and
transitive. Also, the preference relation % on the set of all
bf reference lotteries is obviously incomplete. Thus, two
lotteries are incomparable if not L % L′ and not L′ % L, i.e.,
if one of the intervals [u,u+w] and [u′,u′+w′] is strictly
included in the other.

Assumptions 3.1, 3.3 and 3.6 imply the following consis-
tency constraints between the reference bf lotteries equiva-
lent to single outcomes:

1 = u{O1} ≥ u{O2} ≥ . . .≥ u{Or} = 0. (11)

Our final assumption has no counterpart in the vN-M
theory. It states that a set a of outcomes is always at least
as desirable as the worst outcome in a, and at most as
desirable as the best outcome in a.

Assumption 3.7 (Consistency) Let a ⊆ O, and let Oa
and Oa denote, respectively, the worst and the best out-
come in a. Then we have

a % Oa and Oa % a.

Assumptions 3.6 and 3.7 imply that, for any focal sets a
of m, we have

ua ≥ min
Oi∈a

u{Oi}, and ua +wa ≤max
Oi∈a

u{Oi}. (12)

3.3. Representation theorem

Theorem 5 (Interval-valued utility function) Suppose
L = [O,m] and L′ = [O,m′] are bf lotteries on O. If the
preference relation % on Lb f satisfies Assumptions 3.1–
3.6, then there are intervals [uai ,uai +wai ] associated with
subsets ai ∈ 2O such that L % L′ if and only if

∑
ai∈2O

m(ai)uai ≥ ∑
ai∈2O

m′(ai)uai (13a)

and

∑
ai∈2O

m(ai)(uai +wai)≥ ∑
ai∈2O

m′(ai)(uai +wai). (13b)

Thus, for a bf lottery L = [O,m], we can define

u(L) = [u,u+w] (14)

as an interval-valued utility of L, with

u = ∑
ai∈2O

m(ai)uai and w = ∑
ai∈2O

m(ai)wai . (15)

Also, such a utility function is unique up to a strictly in-
creasing affine transformation, i.e., if u′ = au + b, and
w′ = aw+b, where a > 0, and b are real constants, then

u′(L) = [u′,u′+w′]

also qualifies as an interval-valued utility function.

In the imprecise probability literature, we have lower
and upper Choquet integrals as follows [15, 4]:

Definition 6 (Choquet integrals) Suppose we have a
real-valued function u : O→ R. The lower and upper Cho-
quet integrals of u with respect to BPA m for O, denoted by
um and um, are defined as follows:

um = ∑
a∈2O

m(a)
(

min
Oi∈a

u(Oi)

)
, (16a)

um = ∑
a∈2O

m(a)
(

max
Oi∈a

u(Oi)

)
. (16b)

Thus, we can regard the interval [um,um] as an interval-
valued utility of bf lottery [O,m] as defined in the impre-
cise probability literature. It follows from Theorem 4 and
Assumption 3.7 that

um ≤ u≤ u+w≤ um, (17)

where u and w are as in Eq. (15). Thus, the interval-valued
utility of lottery [O,m] as defined in Theorem 5 is always
included in the lower-upper expected utility interval. The
lower and upper expectations defined by Eq. (16) can thus
be seen as lower and upper bounds of the interval utility
of a lottery L = [O,m] and could be used as conservative
estimates if the equivalent bf reference lotteries ãi cannot
be elicited.

A special case of Theorem 5 is if we use Bayesian bf ref-
erence lotteries for the continuity assumption, i.e., wa = 0
for all focal sets a of m. In this case, Theorem 5 implies
Corollary 7 below where we have a real-valued utility func-
tion, and consequently, a complete ordering on Lb f .

Corollary 7 (Real-valued utility function) Suppose L=
[O,m] and L′ = [O,m′] are bf lotteries on O. If the prefer-
ence relation % on Lb f satisfies Assumptions 3.1–3.6 and
if wa = 0 for all focal sets a of m and m′, then there are
numbers ua associated with nonempty subsets a⊆ O such
that L1 % L2 if and only if

∑
a∈2O

m(a)ua ≥ ∑
a∈2O

m′(a)ua.
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Thus, for a bf lottery L = [O,m], we can define

u(L) = ∑
a∈2O

m(a)ua (18)

as the utility of L. Also, such a utility function is unique
up to a strictly increasing affine transformation, i.e., if
u′a = aua +b, where a > 0, and b are real constants, then

u′(L) = ∑
a∈2O

m(a)u′a

also qualifies as a utility function.

The utility function in Eq. (18) has exactly the same form
as Jaffray’s linear utility [20]. This is discussed further in
Section 5.1.

4. Examples
In this section, we illustrate the application of Theorem
5 to three examples: Ellsberg’s urn problem described in
Example 1, the one red ball problem described in [22], and
the 1,000 balls urns described in [2].

Example 3 (Ellsberg’s urn) Consider the four bf lotter-
ies described in Example 1. Given a vacuous bf lottery
[{$100,$0},m({$100,$0}) = 1], what is an indifferent bf
reference lottery? For an ambiguity-averse DM,

[{$100,$0},(1/2,1/2)]� [{$100,$0},m({$100,$0})= 1].

For such a DM, we must have u{$100,$0}+w{$100,$0} < 1/2.
For the first choice problem between L1 ($100 on r), and

L2 ($100 on b), using Eq. (14), u(L1) = 1/3, and

u(L2) =
2
3
[
u{$100,$0},u{$100,$0}+w{$100,$0}

]
.

Thus, an ambiguity-averse DM would choose L1. This re-
sult is valid as long as u{$100,$0}+w{$100,$0} < 1/2 and is
consistent with Ellsberg’s findings. For the second choice
problem between L3 ($100 on r or y), and L4 ($100 on b
or y),

u(L3) =
1
3
(1)+

2
3
[
u{$100,$0},u{$100,$0}+w{$100,$0}

]
,

and u(L4) = 2/3. An ambiguity-averse DM would choose
L4, as

1
3
+

2
3

u{$100,$0}+w{$100,$0} <
2
3
,

as long as u{$100,$0}+w{$100,$0} < 1/2, a result that is
also consistent with Ellsberg’s empirical findings.

Example 4 (One red ball) Consider the following exam-
ple called ‘one red ball’ in [22]. An urn possibly contains
balls of six colors: red (r), blue (b), green (g), orange (o),

white (w), and yellow (y). One ball is drawn at random
from the urn. We are informed that the urn has a total of
n balls, where n is a positive integer, and that there is ex-
actly one red ball in the urn. Suppose random variable
X denotes the color of the ball drawn from the urn. Then
ΩX = {r,b,g,o,w,y}, and mX is a BPA for X such that
mX ({r}) = 1/n, and mX ({b,g,o,w,y}) = (n−1)/n. First,
you pick a color, and then you draw a ball at random from
the urn. You win $100 if the color of the ball drawn from
the urn matches the color you picked and you win $0 if
it doesn’t. What color do you pick? In [22], the authors
describe some informal experiments where all respondents
chose red for n ≤ 7, and for n ≥ 8, several respondents
preferred a color different from red.

Suppose you pick r. The bf lottery Lr based on mX is as
follows: [{$100,$0},mr], where mr({$100}) = 1/n, and
mr({$0}) = (n−1)/n. If the color you pick is b, then the bf
lottery Lb is [{$100,$0},mb], where mb({$0}) = 1/n, and
mb({$100,$0}) = (n− 1)/n. Thus, we have u(Lr) = 1/n,
and

u(Lb) =
n−1

n

[
u{$100,$0},u{$100,$0}+w{$100,$0}

]
.

So, Lb is strictly preferred to Lr whenever

n−1
n

u{$100,$0} >
1
n
,

i.e., whenever u{$100,$0} > 1/(n−1), and Lr is strictly pre-
ferred to Lb whenever

n−1
n

(
u{$100,$0}+w{$100,$0}

)
<

1
n
,

i.e., whenever u{$100,$0}+w{$100,$0} < 1/(n− 1). Hence,
Lb is increasingly preferred to Lr when n increases, which is
consistent with the findings reported in [22]. In our model,
when

u{$100,$0} <
1

n−1
< u{$100,$0}+w{$100,$0},

the two lotteries Lr and Lb are incomparable. If forced
to choose, the DM might just choose arbitrarily. As the
experiment reported in [22] did not allow the respondents
to express inability to choose between the two lotteries, it
does not provide any evidence for or against our model.

Example 5 (Urns with 1,000 balls) The following exam-
ple is discussed in [2], where it is credited to Ellsberg in
an oral conversation (with the authors of [2]). It is also
discussed in [10]. There are two urns, each with 1,000
balls, numbered from 1−1,000. Urn 1 has exactly one ball
for each number, and there is no ambiguity. Urn 2 has un-
known number of balls of each number, and there is much
ambiguity. One ball is to be chosen at random from an urn
of your choosing. If the number on the ball matches a spe-
cific number, e.g., 687, you win $100, and if not, you win
nothing ($0). Which one of the two urns will you choose?

7
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It is reported in [2] that many respondents chose Urn 2.
Why? Urn 1 has only one ball numbered 687, and therefore,
the probability of winning $100 if the choice is Urn 1 is
very small, 0.001. Urn 2 could possibly have anywhere
from 0 to 1,000 balls numbered 687. Thus, the choice of
Urn 2, although ambiguous, is appealing. Let’s analyze this
problem using Theorem 5.

Let X1 denote the number on the ball chosen from Urn
1, and let X2 denote the number on the ball chosen from
Urn 2. ΩX1 = ΩX2 = {1, . . . ,1000}. Function mX1 is a BPA
for X1 as follows: mX1({1}) = . . .= mX1({1000}) = 0.001.
BPA mX2 is vacuous, i.e., mX2(ΩX2) = 1.

Lottery L1 corresponding to choice of Urn 1 (say,
alternative f1) is [{$100,$0},m1], where m1 is a BPA
for {$100,$0} such that m1({$100}) = 0.001, and
m1({$0}) = 0.999. L1 is a bf reference lottery, and thus,
u(L1) = 0.001. Lottery L2 corresponding to choice of Urn
2 (say, alternative f2) is [{$100,$0},m2], where m2 is a
vacuous BPA for {$100,$0}. The utility of L2 is

u(L2) =
[
u{$100,$0},u{$100,$0}+w{$100,$0}

]
.

Consequently, L2 is preferred to L1 as long as

u{$100,$0} ≥ 0.001,

a condition that is easily satisfied. This may explain why
many DMs prefer to be ambiguity-seeking in this context,
i.e., prefer L2 to L1.

5. Comparison
In this section, we compare our utility theory to Jaffray’s
linear utility theory [20], and to Smets’ two-level decision
theory [29].

5.1. Comparison with Jaffray’s Axiomatic Theory

Jaffray’s axiomatic theory is based on considering the set
of all belief functions for O as a mixture set as follows.
Suppose m1 and m2 are BPAs for O, and suppose λ ∈ [0,1].
Then m defined as:

m(a) = λ m1(a)+(1−λ )m2(a) (19)

for all a ∈ 2O, is a BPA for O. BPA m can be written as
m = λ m1 + (1− λ )m2, and called a mixture of m1 and
m2. Using the Jensen-version [21] of vN-M axiom system,
Jaffray uses the following assumptions, all of which are
expressed using mixture BPA functions:

Assumption 5.1 (Completeness and transitivity) The
relation % is complete and transitive over Lb f .

Assumption 5.2 (Independence) For all L1 = [O,m1]
and L2 = [O,m2] in Lb f , and λ ∈ (0,1), L1 � L2 implies
[O,λ m1 +(1−λ )m]� [O,λ m2 +(1−λ )m].

Assumption 5.3 (Continuity) For all L1 = [O,m1], L2 =
[O,m2], and L3 = [O,m3] in Lb f such that L1 � L2 � L3,
there exists λ and µ in (0,1) such that

[O,λ m1 +(1−λ )m3]� [O,m2]� [O,µ m1 +(1−µ)m3].

Theorem 8 (Jaffray’s representation theorem [20])
The preference relation % on Lb f satisfies Assumptions
5.1–5.3 if and only if there exists a utility function
u : Lb f → R such that for any lottery L = [O,m] in Lb f ,

u(L) = ∑
a∈2O

m(a)ua, (20)

where ua = u([O,md
a]), and md

a is a deterministic BPA for
O such that md

a(a) = 1.

Thus, Jaffray’s axioms result in the same solution as that
of Corollary 7, which is a special case of Theorem 5. As
Jaffray’s axioms do not use Dempster’s rule explicitly, it is
not clear whether Eq. (20) applies to the D-S framework or
not. The mixture BPA m derived from BPAs m1 and m2 us-
ing Eq. (19) is not Dempster’s combination rule, although
Eq. (19) can be derived from a belief function model us-
ing Dempster’s rule. By deriving this solution from a set
of axioms making use of the basic constructs of DS the-
ory (namely, Dempster’s combination rule, marginalization,
and conditional embedding), we provide additional argu-
ments supporting Eq. (20) as a natural definition of the
real-valued utility of a bf lottery in the D-S theory.

Also, there is no explicit notion of a bf reference lottery
in Jaffray’s framework. Thanks to our continuity axiom
(Assumption 3.3), the interval-valued utility [ua,ua +wa]
in our framework receives a simple interpretation as an
interval-valued probability of a best outcome O1, in a
bf reference lottery [O2,ma] that is indifferent to a and
such that ma({O1}) = ua, ma({Or}) = 1− (ua +wa), and
ma(O2) = wa. We believe that this simple interpretation
can be very helpful when eliciting utilities from DMs.

5.2. Comparison with Smets’ Decision Theory

Smets’ decision theory [29] is a two-level framework where
beliefs, represented by belief functions, are held at a credal
level. When a DM has to make a decision, the marginal
belief function for a variable of interest is transformed into
a PMF, and the Bayesian expected utility framework is then
used to make a decision.

Smets uses a transformation called the pignistic trans-
form to transform belief functions into PMFs. This trans-
form is justified in [30] using a mixture property as follows.
Let T denote the belief-PMF transformation. Smets [30]
argues that this transformation should be linear, i.e., we
should have, for any λ ∈ [0,1],

T (λ m1 +(1−λ )m2) = λT (m1)+(1−λ )T (m2). (21)
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The unique transformation T verifying (21) is the pignistic
transformation defined as T (m) = BetPm with

BetPm(O) = ∑
a⊆O

m(a)
|a|

I(O ∈ a) (22)

for all O ∈ O, where I(·) is the indicator function. The
pignistic PMF BetPm is mathematically identical to the
Shapley value in cooperative game theory [28]. In [30],
Smets attempts to derive Eq. (21) from the maximum ex-
pected utility principle. The argument, however, is quite
technical and unconvincing.

Given the definition in Eq. (22), the expected utility of a
bf lottery L = [O,m] according to the pignistic PMF is

uBetP(L) = ∑
O∈O

BetPm(O)u{O} (23a)

= ∑
O∈O

(
∑

a⊆O

m(a)
|a|

I(O ∈ a)

)
u{O} (23b)

= ∑
a⊆O

m(a)

(
1
|a| ∑

O∈a
u{O}

)
. (23c)

It is a special case of Eq. (18), with

ua =
1
|a| ∑

O∈a
u{O}.

Smets’ decision theory thus amounts to assuming that a
DM is indifferent between a bf lottery that gives them
an outcome in a for sure, and a bf reference lottery in
which the probability of the best outcome is equal to the
average utilities of the outcomes in a. This is consistent
with our Assumptions 3.1–3.6, but it is inconsistent with
Assumption 3.7. Also, this restricted model does not have
a parameter to represent a DM’s attitude toward ambiguity.
As a result, it is unable to explain Ellsberg’s paradox and
the ambiguity aversion of human DMs as described, e.g.,
in the examples in Section 4.

6. Summary and Conclusions
In this section, we summarize our proposal and sketch
some future work. We start with Luce and Raiffa’s version
of the vN-M utility theory for probabilistic lotteries. We
then consider bf lotteries, lotteries when our beliefs about
the state of the world is described by DS belief functions.
We use a similar set of axioms as vN-M, but first we re-
place each singleton outcome in a probabilistic lottery by
a focal set of a BPA. Second, we replace the reduction of
compound lotteries with a corresponding axiom that uses
Dempster’s combination rule and belief function marginal-
ization in place of probabilistic combination (pointwise
multiplication followed by normalization) and probabilistic
marginalization (addition). Third, we use a bf reference

lottery with two independent parameters. The axioms lead
to a decision theory that involves assessing the utility of
each focal element of a BPA as an interval-valued utility.
Interval-valued utilities lead to a partial preference relation
on the set Lb f of all bf lotteries. If we use Bayesian bf ref-
erence lotteries with a single parameter, then our axiomatic
framework leads to a real-valued utility function that is
exactly the same as in Jaffray’s linear utility theory [20].

The decision theory that results from our axioms is more
general than that proposed by Jaffray [20], which can be
construed as a decision theory for belief functions inter-
preted as generalized probabilities. Jaffray’s axiomatic the-
ory is based on a set of mixture BPAs. A mixture of two
BPAs is not the same as a Dempster’s combination of two
BPAs, although we could construct a belief function model
where the mixture BPA is obtained by Dempster’s rule.
Thus, it is not clear if Jaffray’s linear utility theory is ap-
plicable to D-S belief function lotteries or not. Our utility
theory confirms that this is indeed the case. Our bf reference
lotteries lead to interval-valued utilities, and consequently,
a partial preference relation on the set of all bf lotteries.

We also compare our axiomatic theory to Smets’ two-
level framework [29, 30], and note that his framework is
too constrained to explain ambiguity-aversion or ambiguity-
seeking behavior of human DMs.

In practice, implementing the most general form of our
axiomatic theory may need assessment of 2k parameters,
where k is the number of focal sets of a bf lottery. In the
worst case, k can be as large as 2|O|− 1. In [7], based on
additional assumptions, we propose a model based on only
two parameters, which can be interpreted as reflecting both
the DM’s attitude to ambiguity and their indeterminacy.
This model, as well as others, will have to be further studied
and developed. More generally, a rigorous methodology to
elicit interval-valued utilities remains to be designed.
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