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Introduction

With the rapid development of information technology, the total amount of data is growing exponentially. Companies rely on their powerful storage capability to continuously collect, organize, and analyze data, in order to mine valuable information. A large amount of data is stored in different data sites and various types of servers. Due to security, privacy or other technical reasons, companies are reluctant to share data and only want to exchange information at non-data levels. In order to make bet-ter use of different levels of information and reveal the internal information structure at local data sites, clustering algorithms based on collaborative mechanisms have been proposed. The basic idea of collaborative clustering is to first run a clustering algorithm independently at each data site, and then interact by exchanging the local structure information of each data site to reveal the potential common underlying structure of different data sites.

The concept of collaborative fuzzy clustering (CFC) and its implementation have been introduced in [START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF]. The development of CFC solves many practical problems (see, e.g., [START_REF] Loia | Semantic web content analysis: A study in proximitybased collaborative clustering[END_REF], [START_REF] Forestier | Collaborative multi-strategical clustering for object-oriented image analysis[END_REF], [START_REF] Elhamifar | Sparse subspace clustering: Algorithm, theory, and applications[END_REF]). Collaboration mechanisms have been extensively studied from different perspectives: collaborative frameworks based on rough-fuzzy clustering or topological maps, higher-level collaborative schemes relying on existing clustering algorithms or collaborative approaches dedicated to distributed datasets (see, e.g., [START_REF] Mitra | Rough-fuzzy collaborative clustering[END_REF], [START_REF] Depaire | PSO driven collaborative clustering: A clustering algorithm for ubiquitous environments[END_REF], [START_REF] Ghassany | Collaborative generative topographic mapping[END_REF], [START_REF] Sublime | Collaborative clustering with heterogeneous algorithms[END_REF]).

Since the original concept of CFC only implies a single collaboration phase, Pedrycz and Rai [START_REF] Pedrycz | A multifaceted perspective at data analysis: a study in collaborative intelligent agents[END_REF][START_REF] Pedrycz | Collaborative clustering with the use of Fuzzy C-Means and its quantification[END_REF] further refined the concept by making the collaboration an iterative process in which a specific data site would periodically use structure information from other data sites resulting from the collaboration process. In addition, experiments show that the performance of the CFC algorithm is not sensitive to the choice of the collaborative strength coefficient. In this paper, we study the specific form of the collaboration mechanism under the framework of Dempster-Shafer evidence theory.

Previous studies suggest that a direct comparison of two partition matrices after a few steps of collaboration could not be feasible as we may not have a direct correspondence between their rows (respective clusters). Consequently, several authors have proposed to rearrange the partition matrix (see e.g. [START_REF] Pedrycz | A multifaceted perspective at data analysis: a study in collaborative intelligent agents[END_REF], [START_REF] Pedrycz | Collaborative clustering with the use of Fuzzy C-Means and its quantification[END_REF], [START_REF] Prasad | A preprocessed induced partition matrix based collaborative fuzzy clustering for data analysis[END_REF]). Recently, the Hungarian algorithm [START_REF] Kuhn | The Hungarian method for the assignment problem[END_REF] has been used to ensure that the same rows in the partition matrices refer to the same cluster. However, it has been found experimentally that the partition matrix reordering is not necessary, especially when facing a large number of phases of the collaboration [START_REF] Shen | Collaborative fuzzy clustering algorithm: Some refinements[END_REF].

Collaborative clustering has not been studied under the framework of evidence theory, which is considered to be a very mature theoretical system for uncertainty inference and widely used in many fields (see, e.g., [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF], [START_REF] Lelandais | Fusion of multi-tracer PET images for dose painting[END_REF], [START_REF] Lian | Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction[END_REF], [START_REF] Bordes | Evidential grammars: A compositional approach for scene understanding. Application to multimodal street data[END_REF], [START_REF] Lian | Spatial evidential clustering with adaptive distance metric for tumor segmentation in FDG-PET images[END_REF]). Evidential clustering relies on the concept of credal partition [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF], which uses mass functions to characterize the uncertainty in data effectively. The concept of credal partition extends those of hard, fuzzy and possibilistic partitions, and it constitutes a more general clustering framework. For each object, masses are assigned not only to single classes, but also to unions of classes. Experiments reported in [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF] and [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF] show that this extra flexibility allows us to have a deeper understanding of the data structure and improve the robustness to outliers.

In this paper, we study the implementation of a collaborative evidential clustering (CEC) algorithm, assuming the data at each site have the same sample size, the same number of clusters, and different feature spaces. Specifically, we explore the implementation of the collaboration mechanism in the ECM algorithm [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF]. We consider a collaborative mechanism based on cluster structure information given existing data confidentiality requirements. Furthermore, to address the Excessive In-formation Interaction (EII) and Insufficient Information Interaction (III) problems, we propose a single-step CEC algorithm and a multi-step CEC algorithm separately, in which the number of multi-step collaborations is controlled based on a structural similarity index (see e.g. [START_REF] Pedrycz | A multifaceted perspective at data analysis: a study in collaborative intelligent agents[END_REF], [START_REF] Pedrycz | Collaborative clustering with the use of Fuzzy C-Means and its quantification[END_REF], [START_REF] Shen | Collaborative fuzzy clustering algorithm: Some refinements[END_REF]).

This paper is organized as follows. Section 2 recalls the background notions about belief functions, the ECM algorithm and the pignistic transform. The singlestep and multi-step CEC algorithms are are introduced in Sections 3 and 4, respectively. Section 5 presents experimental results and some observations. Conclusions are given in Section 6.

Preliminaries

The Dempster-Shafer theory of evidence [20,[START_REF] Smets | The transferable belief model[END_REF] (or belief function theory) is a theoretical framework for representing partial and unreliable information. Let us consider a variable ω taking values in a finite set Ω = {ω 1 , . . . , ω j , . . . , ω c }, called the frame of discernment. Partial knowledge regarding the actual value taken by ω can be represented by a mass function m, which is an application from the power set of Ω in the interval [0, 1] such that ∑ A⊆Ω m(A) = 1. The subsets A of Ω such that m(A) > 0 are called the focal sets of m. The mass m(A) can be interpreted as a fraction of a unit mass of belief that is allocated to A and that cannot be allocated to any subset of A. Complete ignorance is obtained when Ω is the only focal set, and full certainty when the whole mass of belief is assigned to a unique singleton of Ω . If all the focal sets of m are singletons, m is similar to a probability distribution: it is then called a Bayesian mass function. In the following, we use the concise notation m i j ∈ [0, 1] to denote the belief of object x i to subset A j , and m i / 0 to denote the mass assigned to the empty set. A mass function m i such that m i / 0 = 0 is said to be normalized. Under the open-world assumption, the mass m i / 0 is interpreted as a quantity of belief given to the hypothesis that the actual value of ω might not belong to Ω [START_REF] Smets | The transferable belief model for quantified belief representation[END_REF].

ECM is one of the algorithms proposed to derive a credal partition from data [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF]. Deriving a credal partition implies determining, for each object x i , the quantities m i j = m i (A j ) in such a way that a low value of m i j is found when the distance d i j between x i and A j is high. In this framework, partial knowledge regarding the class membership of an object is represented by a mass function on the set of possible classes. Thus, belief mass may be given to any subset A of Ω (any set of classes), and not only to singletons of Ω . This representation makes it possible to model a wide variety of situations ranging from complete ignorance to full certainty. The ECM algorithm searches for the credal partition matrix M and cluster center matrix V that minimize the following criterion:

J ECM (M,V ) = N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } c α j m 2 i j d 2 i j + N ∑ i=1 δ 2 m 2 i / 0 , (1) 
subject to the constraints m i j ≥ 0 for all i and j, m i / 0 ≥ 0 for all i, and

∑ { j|A j ̸ = / 0,A j ⊆Ω } m i j + m i / 0 = 1, (2) 
for all i. In (1), c j = |A j | is the cardinality of A j and δ represents the distance of any object to the empty set.

In order to make a decision regarding the value of ω, it is possible to transform a normalized mass function m into a probability distribution using the following pignistic transformation [START_REF] Smets | The transferable belief model[END_REF]: For a given data site D[t], we combine the information provided by the local data with the cluster structure information of the collaborators to determine the cluster structure. For that purpose, the objective function is expanded into the form As in the ECM algorithm, we also need M[t] to satisfy constraints [START_REF] Bordes | Evidential grammars: A compositional approach for scene understanding. Application to multimodal street data[END_REF]. Therefore, the single-step collaborative clustering algorithm consists in minimizing Q[t] in (4) subject to (2). This optimization task splits into two problems, namely, determining the credal partition matrix M[t] and the cluster center matrix V [t]. To determine the partition matrix, we exploit the technique of Lagrange multipliers. This leads to the new objective function that is formed separately for each data site D[t], namely,

BelP(ω) = ∑ {A⊆Ω |ω∈A} m(A) |A| , ∀ω ∈ Ω . ( 3 
)

A Single-Step CEC Algorithm

Q[t] = N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } c α j [t]m 2 i j [t]d 2 i j [t] + N ∑ i=1 δ 2 m 2 i / 0 [t] + T ∑ s=1,s̸ =t κ[t, s] N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } (m i j [t] -m i j [s]) 2 d 2 i j [t], (4) 
L[t] = N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } c α j [t]m 2 i j [t]d 2 i j [t] + N ∑ i=1 δ 2 m 2 i / 0 [t] + T ∑ s=1,s̸ =t κ[t, s] N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } (m i j [t] -m i j [s]) 2 d 2 i j [t] - N ∑ i=1 λ i   ∑ { j|A j ̸ = / 0,A j ⊆Ω } m i j [t] + m i / 0 [t] -1   , ( 5 
)
where λ i denotes a Lagrange multiplier. The necessary conditions leading to the local minimum of M[t] read as follows:

∂ L[t] ∂ m i j [t] = 2c α j [t]m i j [t]d 2 i j [t] + 2 T ∑ s=1,s̸ =t κ[t, s](m i j [t] -m i j [s])d 2 i j [t] -λ i = 0, (6a) ∂ L[t] ∂ m i / 0 [t] = 2δ 2 m i / 0 [t] -λ i = 0, (6b) 
∂ L[t] λ i = ∑ { j|A j ̸ = / 0,A j ⊆Ω } m i j [t] + m i / 0 [t] -1 = 0. ( 6c 
)
Introducing the notations

ψ[t] = T ∑ s=1,s̸ =t κ[t, s], φ i j [t] = T ∑ s=1,s̸ =t κ[t, s]m i j [s], (7) 
we get the solution

m i j [t] = φ i j [t] c α j [t] + ψ[t] + 1 d 2 i j [t](c α j [t]+ψ[t]) ( 1 -∑ { j|A j ̸ = / 0,A j ⊆Ω } φ i j [t] c α j [t]+ψ[t]
)

∑ { j|A j ̸ = / 0,A j ⊆Ω } 1 d 2 i j [t](c α j [t]+ψ[t]) + 1 δ 2 , ( 8a 
)
m i / 0 [t] = 1 - ∑ { j|A j ̸ = / 0,A j ⊆Ω } m i j [t]. (8b) 
In the calculations of the prototypes we confine ourselves to the weighted Euclidean distance between the sample and the centroid of the cluster, so the necessary condition for solving the local minimum of the cluster center

V [t] is ∂ L[t] ∂ v l [t] = N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } c α j [t]m 2 i j [t] ∂ d 2 i j [t] ∂ v l [t] + T ∑ s=1,s̸ =t κ[t, s] N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } (m i j [t] -m i j [s]) 2 ∂ d 2 i j [t] ∂ v l [t] . (9) 
Introducing the notations

B lq [t] = N ∑ i=1 x iq ∑ w l ∈A j c α-1 j m 2 i j [t], B lq [t, s] = N ∑ i=1 x iq ∑ w l ∈A j (m i j [t] -m i j [s]) 2 1 c j [t] , H lk [t] = N ∑ i=1 ∑ {w k ,w l }⊆A j c α-2 j m 2 i j [t], H lk [t, s] = N ∑ i=1 ∑ {w k ,w l }⊆A j (m i j [t] -m i j [s]) 2 1 c 2 j ,
the cluster center matrix V [t] has the form

V [t] = ( 
H[t] + ∑ s=1,s̸ =t κ[t, s]H[t, s]
) -1 (

B[t] + ∑ s=1,s̸ =t κ[t, s]B[t, s]
)

. ( 10 
)
More details about the derivation process can be found in [START_REF] Qiao | On study of collaborative evidential clustering algorithm with applications[END_REF]. The algorithm can be described in Algorithm 1. It is worth noting that for each data site, the information used by single-step collaboration comes from the cluster structure information obtained by the initial ECM algorithm, not from the improved cluster structure information of the collaborator data site through collaboration.

Termination criterion I relies on the changes to the cluster center matrices obtained in successive iterations of the single-step CEC algorithm; we chose the L ∞ norm as a measure of change in the cluster center matrices. Subsequently, the optimization is terminated when this distance is lower than an assumed threshold value ε > 0.

A Multi-step CEC Algorithm

As the single-step CEC algorithm described in Section 3 may face the EII and III problems, we consider a multi-step collaboration mechanism to get more information from the collaborator data site for better interaction. The original purpose of collaboration was to reconcile and optimize the differences between cluster structures of various data sites. As the reconciliation continues, we can expect that the cluster structure similarity between the data sites will gradually increase. Therefore, we can use the structural similarity index to guide the multi-step CEC algorithm. 

M f inal [t] ← M original [t], V f inal [t] ← V original [t] 4: end for 5: for t = 1 to T do 6: l ← 0, I 0 [t] ← 1 7: M 0 [t] ← M original [t] and V 0 [t] ← V original [t] 8:
while I l [t] ≥ ε do 9:

for q = 1 to T do 10:

if q ̸ = t then 11:

M l [q] ← M original [q] and V l [q] ← V original [q] 12:
end if 13:

end for 14:

l ← l + 1 15:

Compute M l [t], V l [t] using ( 8) and [START_REF] Lian | Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction[END_REF] with

M l-1 [t], V l-1 [t] 16: I l [t] ← max k∈[1,n[t]], j∈{ j|A j ̸ =ϕ ,A j ⊆Ω } (|V l jk [t] -V l-1 jk [t]|) 17:
end while 18:

M f inal [t] ← M l [t], V f inal [t] ← V l [t] 19: end for 20: return M f inal [t] and V f inal [t]
We should stress the fact that a direct comparison of two credal partition matrices could not be feasible as we may not have a direct correspondence between their rows (respective clusters). In a more general setting, we might even have different numbers of clusters at the individual data sites, and this diversity could make any attempt to form the correspondence between the partition matrices infeasible. Instead, we consider the following approach in which we test how the structure revealed at one data site performs on the remaining ones. Let us consider the following local structural similarity index:

W [t] = T ∑ s=1,s̸ =t N ∑ i=1 ∑ { j|A j ̸ = / 0,A j ⊆Ω } m 2 i j [s]∥x i [t] -v j [t|s]∥ 2 . ( 11 
)
where

v j [t|s] = ∑ N i=1 m 2 i j [s]x i [t] ∑ N i=1 m 2 i j [s] . ( 12 
)
The rationale behind this measure is that if the structure of D[s] is similar to that of D[t], then the structure should also obtain a good performance on D[t] (a more similar structure should lead to a lower value of W [s]). Finally, for all data sites, we have the following global structural similarity metric

W = T ∑ t=1 W [t]. (13) 
This indicator is used to control the number of iterations of the multi-step CEC algorithm, denoted as termination criterion II. So when |W l -W l-1 | < ε, the multistep CEC algorithm is completed. The multi-step collaborative evidential clustering algorithm consists of three phases. It can be described in Algorithm 2.

Algorithm 2 Multi-step CEC Algorithm. 

[t] and V 0 [t] 2: l ′ ← 0, II ← W 0 3: while II ≥ ε do 4: for t = 1 to T do 5: M original [t] ← M l ′ [t], V original [t] ← V l ′ [t] 6:
end for 7:

l ′ ← l ′ + 1 8: Run (5)-(20) of Algorithm 1, return values are denoted as M l ′ [t] and V l ′ [t] 9: II ← |W l ′ -W l ′ -1 | 10: end while 11: return M l ′ [t] and V l ′ [t]
The multi-step collaboration process is actually a cascade of single-step collaboration processes. We can imagine that before each single-step collaboration, the structural information of all data sites enters the information interaction pool, representing all the information that can be used in this single-step CEC process. For each data site, the collaborator cluster structure information that can be utilized is constant, only its own structure is constantly changing.

The final partition is determined by assigning each object to the cluster after convergence of the algorithm with maximal pignistic probability [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF]. Based on the given reference partition, we use the adjusted Rand index (ARI) to characterize the local collaboration quality of each data site. The global collaborative quality assessment index is then defined as

AARI = 1 T T ∑ ii=1 ARI[ii]. ( 14 
)

Experimental Results

In this section, we report on experimental findings 1 for some machine learning data sets [START_REF] Asuncion | UCI machine learning repository[END_REF]. The intent is to demonstrate the effectiveness of the collaboration and get some experimental insights into the behavior of the algorithms. At the local level, the structural similarity indicators of all data sites in each data set further confirm the existence of EII and III problems (see Fig. 3). Furthermore, we find that indices W and W[t] have roughly the same trend, which shows that W is excellent at global direction control.The ARI and its reference level for each data set are shown in Fig. 4.

For data sites D [START_REF] Asuncion | UCI machine learning repository[END_REF] and D [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF] in the Iris dataset, we found that in the first few collaborations, the information was redistributed multiple times to find the correct direction of collaboration, which laid an important foundation for the subsequent collaboration. In the algorithm debugging phase, we find that the randomness introduced by redistribution is the key factor that determines the improvement of the final multi-step CEC algorithm. For data site D [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF] in the Wine dataset, we found that ARI decreased slightly in the late stage but was still significantly higher than the baseline level, while the ARIs of data sites D [START_REF] Asuncion | UCI machine learning repository[END_REF] and D [START_REF] Bordes | Evidential grammars: A compositional approach for scene understanding. Application to multimodal street data[END_REF] were still rising. This further confirms that collaboration is a long term interaction process. The information data site D [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF] lost can cause the data sites D [START_REF] Asuncion | UCI machine learning repository[END_REF] and D [START_REF] Bordes | Evidential grammars: A compositional approach for scene understanding. Application to multimodal street data[END_REF] to get a bigger boost. Therefore, the loss is beneficial in general. It also indirectly shows that our choice of the global structural similarity index W as the stopping criterion of the multi-step CEC algorithm is reasonable. The numerical results of the multi-step CEC of each dataset are shown in Table 1. From Table 1, we can see more clearly that the single-step cooperation algorithm has poor stability and is prone to excessive information interaction, which causes the cluster structure to change too much and affect the value of ARI. The multi-step collaboration algorithm has a good correction effect, and it can improve ARI well after the information is redistributed. By further observation, we also found that the data site with a lower initial ARI value eventually rose significantly. The information it can use comes from the original data site with a higher value of ARI and a data site with a large difference from its cluster structure.

Concluding Remarks

In this study we have proposed a new concept of collaborative evidential clustering. Our multi-step CEC algorithm has been validated on real data sets and the experimental results have shown competitive performances. The EII and III problems in the single step CEC algorithm play a very good role in information redistribution and lay the foundation for multi-step CEC algorithm. So far, the research we have completed is based on two assumptions: (a) all data sites have the same number of clusters, (b) the strength of collaboration between different data sites is the same. These assumptions will be relaxed in future work.

  Require: D[1], . . . , D[t], . . . , D[T ], c, termination criterion I, termination criterion II, κ[t, s], ε 1: Run Steps (1)-(20) of Algorithm 1, return values are denoted as M 0

  The details of the features contained in the data site in each dataset are as follows. For Iris dataset: (a) Sepal.Length, Sepal.Width; (b) Sepal.Width, Petal.Length; (c) Petal.Length, Petal.Width. For Seeds dataset: (a) area, perimeter, compactness; (b) compactness, length of kernel, width of kernel; (c) width of kernel, asymmetry coefficient, length of kernel groove. We set c = 3, κ[t, s] = 1, ε = 0.0001. The evolutions of W and AARI as a function of the number of iterations are reported in Figs. 1 and 2.

Fig. 1

 1 Fig. 1 With the continuous reconciliation of multi-step collaboration, the structural similarity between data sites is enhanced, and the value of W constantly declines. The EII problem emerged in the early stage, which resulted in a slight increase of W . The post-correction function of multi-step collaboration is indispensable.

Fig. 2

 2 Fig.2EII and III led to a decrease in AARI after single step collaboration; the multistep collaboration process performs effective information correction, making the index AARI strictly superior to the initial value after multi-step CEC. This further confirms the adequacy and necessity of the multi-step collaborative process.

Fig. 3

 3 Fig. 3 The trend of local structural similarity index of Iris and Seeds dataset.

Fig. 4

 4 Fig. 4 Trend of ARI index of Iris and Seeds dataset.

  All data sites have the same number of samples denoted by N, same clusters denoted by c, but different feature spaces composed of n[1], . . . , n[t], . . . , n[T ] features, respectively. Matrix K T ×T is used to quantify the collaboration strength between each pair of data sites; its general term, denoted by κ[t, s], represents the collaboration strength between sites D[t] and D[s]. As there is no collaboration between D[t] and itself, we set κ[t,t] = 0.

To meet data confidentiality requirements, we mainly consider the collaborative mechanism based on cluster structure information (including M and V ) and integrate it into the objective function of the ECM algorithm.

The T data sites are denoted by D

[START_REF] Asuncion | UCI machine learning repository[END_REF]

, . . . , D[t], . . . , D[T ].

  The weight κ[t, s] controls the balance between local data information and collaborator cluster structure information. When κ[t, s] = 0, the problem translates into a scenario where the standard ECM algorithm acts at each data site without collaboration. In general, we propose to constrain κ[t, s] to be in the interval [0, 1], so that the second term in the right-hand side of (4) does not dominate the first one.

for t = 1, 2, . . . , T . The objective function Q[t] contains two parts. The first part is the sum of weighted distances between the patterns in D[t] and the center of the nonempty subset A j ; it is just the objective function (1) of the standard ECM applied to D[t] with β = 2. The second part implements the collaborative mechanism, which makes the clustering based on the D[t] aware of other collaborators. The difference between M[t] and M[s] represents the difference in cluster structure between data sites D[t] and D[s].

  Algorithm 1 Single-step CEC Algorithm. D[1], . . . , D[t], . . . , D[T ], c, termination criterion I, κ[t, s], ε 1: for t = 1 to T do 2: Use ECM to get the original M original [t] and V original [t] 3:

Require:

Table 1

 1 Multi-step collaborative clustering results analysis of Iris and Wine datasets

	Data site	Original ARI	Single step ARI	Multi-step ARI	Promotion (%)
	Iris -D[1]	0.546	0.626	0.652	0.106
	Iris -D[2]	0.534	0.416	0.664	0.130
	Iris -D[3]	0.547	0.515	0.771	0.224
	Wine -D[1]	0.377	0.334	0.651	0.275
	Wine -D[2]	0.571	0.423	0.687	0.115
	Wine -D[3]	0.333	0.521	0.636	0.303

We also conducted a simulation study. Experiments with synthetic dataset can be found in[START_REF] Qiao | On study of collaborative evidential clustering algorithm with applications[END_REF]. The ARI index for each data site is close to 1, which demonstrates that our algorithms are very competitive. Due to space limitations, the results of simulation studies have to be omitted.
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