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Collaborative Evidential Clustering

Yixuan Qiao, Shoumei Li and Thierry Denœux

Abstract Different companies may not be allowed to treat data together given re-
strictions of security, privacy or other technical reasons. In order to make better
use of information from different sources, clustering algorithms based on collabo-
ration mechanisms have been widely used. We propose the concept of collaborative
evidential clustering under the framework of evidence theory. The key point is to
establish collaboration among the credal partition matrices of each data site to meet
the data confidentiality requirements. Considering the problems of excessive infor-
mation interaction and insufficient information interaction, we design single-step
and multi-step collaborative evidential clustering algorithms. Our algorithms were
validated on real data sets.

1 Introduction

With the rapid development of information technology, the total amount of data is
growing exponentially. Companies rely on their powerful storage capability to con-
tinuously collect, organize, and analyze data, in order to mine valuable information.
A large amount of data is stored in different data sites and various types of servers.
Due to security, privacy or other technical reasons, companies are reluctant to share
data and only want to exchange information at non-data levels. In order to make bet-
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ter use of different levels of information and reveal the internal information structure
at local data sites, clustering algorithms based on collaborative mechanisms have
been proposed. The basic idea of collaborative clustering is to first run a clustering
algorithm independently at each data site, and then interact by exchanging the local
structure information of each data site to reveal the potential common underlying
structure of different data sites.

The concept of collaborative fuzzy clustering (CFC) and its implementation have
been introduced in [15]. The development of CFC solves many practical problems
(see, e.g., [12], [6], [5]). Collaboration mechanisms have been extensively studied
from different perspectives: collaborative frameworks based on rough-fuzzy clus-
tering or topological maps, higher-level collaborative schemes relying on existing
clustering algorithms or collaborative approaches dedicated to distributed datasets
(see, e.g., [14], [4], [7], [24]).

Since the original concept of CFC only implies a single collaboration phase,
Pedrycz and Rai [16, 17] further refined the concept by making the collaboration an
iterative process in which a specific data site would periodically use structure infor-
mation from other data sites resulting from the collaboration process. In addition,
experiments show that the performance of the CFC algorithm is not sensitive to the
choice of the collaborative strength coefficient. In this paper, we study the specif-
ic form of the collaboration mechanism under the framework of Dempster-Shafer
evidence theory.

Previous studies suggest that a direct comparison of two partition matrices after
a few steps of collaboration could not be feasible as we may not have a direct cor-
respondence between their rows (respective clusters). Consequently, several authors
have proposed to rearrange the partition matrix (see e.g. [16], [17], [18]). Recently,
the Hungarian algorithm [8] has been used to ensure that the same rows in the par-
tition matrices refer to the same cluster. However, it has been found experimentally
that the partition matrix reordering is not necessary, especially when facing a large
number of phases of the collaboration [21].

Collaborative clustering has not been studied under the framework of evidence
theory, which is considered to be a very mature theoretical system for uncertainty
inference and widely used in many fields (see, e.g., [3], [9], [10], [2], [11]). Ev-
idential clustering relies on the concept of credal partition [3], which uses mass
functions to characterize the uncertainty in data effectively. The concept of credal
partition extends those of hard, fuzzy and possibilistic partitions, and it constitutes
a more general clustering framework. For each object, masses are assigned not only
to single classes, but also to unions of classes. Experiments reported in [3] and [13]
show that this extra flexibility allows us to have a deeper understanding of the data
structure and improve the robustness to outliers.

In this paper, we study the implementation of a collaborative evidential clus-
tering (CEC) algorithm, assuming the data at each site have the same sample size,
the same number of clusters, and different feature spaces. Specifically, we explore
the implementation of the collaboration mechanism in the ECM algorithm [13]. We
consider a collaborative mechanism based on cluster structure information given ex-
isting data confidentiality requirements. Furthermore, to address the Excessive In-
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formation Interaction (EII) and Insufficient Information Interaction (III) problems,
we propose a single-step CEC algorithm and a multi-step CEC algorithm separately,
in which the number of multi-step collaborations is controlled based on a structural
similarity index (see e.g. [16], [17], [21]).

This paper is organized as follows. Section 2 recalls the background notions
about belief functions, the ECM algorithm and the pignistic transform. The single-
step and multi-step CEC algorithms are are introduced in Sections 3 and 4, respec-
tively. Section 5 presents experimental results and some observations. Conclusions
are given in Section 6.

2 Preliminaries

The Dempster-Shafer theory of evidence [20, 23] (or belief function theory) is a
theoretical framework for representing partial and unreliable information. Let us
consider a variable ω taking values in a finite set Ω = {ω1, . . . ,ω j, . . . ,ωc}, called
the frame of discernment. Partial knowledge regarding the actual value taken by ω
can be represented by a mass function m, which is an application from the power
set of Ω in the interval [0, 1] such that ∑A⊆Ω m(A) = 1. The subsets A of Ω such
that m(A)> 0 are called the focal sets of m. The mass m(A) can be interpreted as a
fraction of a unit mass of belief that is allocated to A and that cannot be allocated
to any subset of A. Complete ignorance is obtained when Ω is the only focal set,
and full certainty when the whole mass of belief is assigned to a unique singleton of
Ω . If all the focal sets of m are singletons, m is similar to a probability distribution:
it is then called a Bayesian mass function. In the following, we use the concise
notation mi j ∈ [0,1] to denote the belief of object xi to subset A j, and mi /0 to denote
the mass assigned to the empty set. A mass function mi such that mi /0 = 0 is said to
be normalized. Under the open-world assumption, the mass mi /0 is interpreted as a
quantity of belief given to the hypothesis that the actual value of ω might not belong
to Ω [22].

ECM is one of the algorithms proposed to derive a credal partition from data
[13]. Deriving a credal partition implies determining, for each object xi, the quanti-
ties mi j =mi(A j) in such a way that a low value of mi j is found when the distance di j
between xi and A j is high. In this framework, partial knowledge regarding the class
membership of an object is represented by a mass function on the set of possible
classes. Thus, belief mass may be given to any subset A of Ω (any set of classes),
and not only to singletons of Ω . This representation makes it possible to model a
wide variety of situations ranging from complete ignorance to full certainty. The
ECM algorithm searches for the credal partition matrix M and cluster center matrix
V that minimize the following criterion:

JECM(M,V ) =
N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

cα
j m2

i jd
2
i j +

N

∑
i=1

δ 2m2
i /0, (1)

subject to the constraints mi j ≥ 0 for all i and j, mi /0 ≥ 0 for all i, and
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∑
{ j|A j ̸= /0,A j⊆Ω}

mi j +mi /0 = 1, (2)

for all i. In (1), c j = |A j| is the cardinality of A j and δ represents the distance of any
object to the empty set.

In order to make a decision regarding the value of ω , it is possible to transform
a normalized mass function m into a probability distribution using the following
pignistic transformation [23]:

BelP(ω) = ∑
{A⊆Ω |ω∈A}

m(A)
|A|

, ∀ω ∈Ω . (3)

3 A Single-Step CEC Algorithm

To meet data confidentiality requirements, we mainly consider the collaborative
mechanism based on cluster structure information (including M and V ) and inte-
grate it into the objective function of the ECM algorithm.

The T data sites are denoted by D[1], . . . ,D[t], . . . ,D[T ]. All data sites have the
same number of samples denoted by N, same clusters denoted by c, but different fea-
ture spaces composed of n[1], . . . ,n[t], . . . ,n[T ] features, respectively. Matrix KT×T
is used to quantify the collaboration strength between each pair of data sites; its
general term, denoted by κ[t,s], represents the collaboration strength between sites
D[t] and D[s]. As there is no collaboration between D[t] and itself, we set κ[t, t] = 0.

For a given data site D[t], we combine the information provided by the local data
with the cluster structure information of the collaborators to determine the cluster
structure. For that purpose, the objective function is expanded into the form

Q[t] =
N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

cα
j [t]m

2
i j[t]d

2
i j[t]+

N

∑
i=1

δ 2m2
i /0[t]

+
T

∑
s=1,s ̸=t

κ[t,s]
N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

(mi j[t]−mi j[s])2d2
i j[t], (4)

for t = 1,2, . . . ,T . The objective function Q[t] contains two parts. The first part is
the sum of weighted distances between the patterns in D[t] and the center of the non-
empty subset A j; it is just the objective function (1) of the standard ECM applied to
D[t] with β = 2. The second part implements the collaborative mechanism, which
makes the clustering based on the D[t] aware of other collaborators. The difference
between M[t] and M[s] represents the difference in cluster structure between data
sites D[t] and D[s]. The weight κ[t,s] controls the balance between local data infor-
mation and collaborator cluster structure information. When κ[t,s] = 0, the problem
translates into a scenario where the standard ECM algorithm acts at each data site
without collaboration. In general, we propose to constrain κ[t,s] to be in the interval
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[0,1], so that the second term in the right-hand side of (4) does not dominate the first
one.

As in the ECM algorithm, we also need M[t] to satisfy constraints (2). Therefore,
the single-step collaborative clustering algorithm consists in minimizing Q[t] in (4)
subject to (2). This optimization task splits into two problems, namely, determining
the credal partition matrix M[t] and the cluster center matrix V [t]. To determine the
partition matrix, we exploit the technique of Lagrange multipliers. This leads to the
new objective function that is formed separately for each data site D[t], namely,

L[t] =
N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

cα
j [t]m

2
i j[t]d

2
i j[t]+

N

∑
i=1

δ 2m2
i /0[t]

+
T

∑
s=1,s ̸=t

κ[t,s]
N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

(mi j[t]−mi j[s])2d2
i j[t]

−
N

∑
i=1

λi

 ∑
{ j|A j ̸= /0,A j⊆Ω}

mi j[t]+mi /0[t]−1

 , (5)

where λi denotes a Lagrange multiplier. The necessary conditions leading to the
local minimum of M[t] read as follows:

∂L[t]
∂mi j[t]

= 2cα
j [t]mi j[t]d2

i j[t]+2
T

∑
s=1,s̸=t

κ[t,s](mi j[t]−mi j[s])d2
i j[t]−λi = 0, (6a)

∂L[t]
∂mi /0[t]

= 2δ 2mi /0[t]−λi = 0, (6b)

∂L[t]
λi

= ∑
{ j|A j ̸= /0,A j⊆Ω}

mi j[t]+mi /0[t]−1 = 0. (6c)

Introducing the notations

ψ[t] =
T

∑
s=1,s ̸=t

κ[t,s], φi j[t] =
T

∑
s=1,s̸=t

κ[t,s]mi j[s], (7)

we get the solution

mi j[t] =
φi j[t]

cα
j [t]+ψ[t]

+

1
d2

i j [t](c
α
j [t]+ψ[t])

(
1−∑{ j|A j ̸= /0,A j⊆Ω}

φi j [t]
cα

j [t]+ψ[t]

)
∑{ j|A j ̸= /0,A j⊆Ω}

1
d2

i j [t](c
α
j [t]+ψ[t])

+ 1
δ 2

, (8a)

mi /0[t] = 1− ∑
{ j|A j ̸= /0,A j⊆Ω}

mi j[t]. (8b)

In the calculations of the prototypes we confine ourselves to the weighted Eu-
clidean distance between the sample and the centroid of the cluster, so the necessary
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condition for solving the local minimum of the cluster center V [t] is

∂L[t]
∂vl [t]

=
N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

cα
j [t]m

2
i j[t]

∂d2
i j[t]

∂vl [t]

+
T

∑
s=1,s ̸=t

κ[t,s]
N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

(mi j[t]−mi j[s])2 ∂d2
i j[t]

∂vl [t]
. (9)

Introducing the notations

Blq[t] =
N

∑
i=1

xiq ∑
wl∈A j

cα−1
j m2

i j[t], Blq[t,s] =
N

∑
i=1

xiq ∑
wl∈A j

(mi j[t]−mi j[s])2 1
c j[t]

,

Hlk[t] =
N

∑
i=1

∑
{wk,wl}⊆A j

cα−2
j m2

i j[t], Hlk[t,s] =
N

∑
i=1

∑
{wk,wl}⊆A j

(mi j[t]−mi j[s])2 1
c2

j
,

the cluster center matrix V [t] has the form

V [t] =

(
H[t]+ ∑

s=1,s ̸=t
κ[t,s]H[t,s]

)−1(
B[t]+ ∑

s=1,s ̸=t
κ[t,s]B[t,s]

)
. (10)

More details about the derivation process can be found in [19]. The algorithm can
be described in Algorithm 1. It is worth noting that for each data site, the informa-
tion used by single-step collaboration comes from the cluster structure information
obtained by the initial ECM algorithm, not from the improved cluster structure in-
formation of the collaborator data site through collaboration.

Termination criterion I relies on the changes to the cluster center matrices ob-
tained in successive iterations of the single-step CEC algorithm; we chose the L∞
norm as a measure of change in the cluster center matrices. Subsequently, the opti-
mization is terminated when this distance is lower than an assumed threshold value
ε > 0.

4 A Multi-step CEC Algorithm

As the single-step CEC algorithm described in Section 3 may face the EII and III
problems, we consider a multi-step collaboration mechanism to get more informa-
tion from the collaborator data site for better interaction. The original purpose of
collaboration was to reconcile and optimize the differences between cluster struc-
tures of various data sites. As the reconciliation continues, we can expect that the
cluster structure similarity between the data sites will gradually increase. Therefore,
we can use the structural similarity index to guide the multi-step CEC algorithm.
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Algorithm 1 Single-step CEC Algorithm.
Require: D[1], . . . ,D[t], . . . ,D[T ], c, termination criterion I, κ[t,s], ε
1: for t = 1 to T do
2: Use ECM to get the original Moriginal [t] and Voriginal [t]
3: M f inal [t]←Moriginal [t], Vf inal [t]←Voriginal [t]
4: end for
5: for t = 1 to T do
6: l← 0, I0[t]← 1
7: M0[t]←Moriginal [t] and V 0[t]←Voriginal [t]
8: while Il [t]≥ ε do
9: for q = 1 to T do

10: if q ̸= t then
11: Ml [q]←Moriginal [q] and V l [q]←Voriginal [q]
12: end if
13: end for
14: l← l +1
15: Compute Ml [t], V l [t] using (8) and (10) with Ml−1[t], V l−1[t]
16: Il [t]←maxk∈[1,n[t]], j∈{ j|A j ̸=ϕ ,A j⊆Ω}(|V l

jk[t]−V l−1
jk [t]|)

17: end while
18: M f inal [t]←Ml [t], Vf inal [t]←V l [t]
19: end for
20: return M f inal [t] and Vf inal [t]

We should stress the fact that a direct comparison of two credal partition matri-
ces could not be feasible as we may not have a direct correspondence between their
rows (respective clusters). In a more general setting, we might even have different
numbers of clusters at the individual data sites, and this diversity could make any at-
tempt to form the correspondence between the partition matrices infeasible. Instead,
we consider the following approach in which we test how the structure revealed at
one data site performs on the remaining ones. Let us consider the following local
structural similarity index:

W [t] =
T

∑
s=1,s ̸=t

N

∑
i=1

∑
{ j|A j ̸= /0,A j⊆Ω}

m2
i j[s]∥xi[t]− v j[t|s]∥2. (11)

where

v j[t|s] =
∑N

i=1 m2
i j[s]xi[t]

∑N
i=1 m2

i j[s]
. (12)

The rationale behind this measure is that if the structure of D[s] is similar to that
of D[t], then the structure should also obtain a good performance on D[t] (a more
similar structure should lead to a lower value of W [s]). Finally, for all data sites, we
have the following global structural similarity metric

W =
T

∑
t=1

W [t]. (13)
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This indicator is used to control the number of iterations of the multi-step CEC
algorithm, denoted as termination criterion II. So when |W l−W l−1|< ε , the multi-
step CEC algorithm is completed.

The multi-step collaborative evidential clustering algorithm consists of three
phases. It can be described in Algorithm 2.

Algorithm 2 Multi-step CEC Algorithm.
Require: D[1], . . . ,D[t], . . . ,D[T ], c, termination criterion I, termination criterion II, κ[t,s], ε
1: Run Steps (1)-(20) of Algorithm 1, return values are denoted as M0[t] and V 0[t]
2: l′← 0, II←W 0

3: while II ≥ ε do
4: for t = 1 to T do
5: Moriginal [t]←Ml′ [t], Voriginal [t]←V l′ [t]
6: end for
7: l′← l′+1
8: Run (5)-(20) of Algorithm 1, return values are denoted as Ml′ [t] and V l′ [t]
9: II← |W l′ −W l′−1|

10: end while
11: return Ml′ [t] and V l′ [t]

The multi-step collaboration process is actually a cascade of single-step collab-
oration processes. We can imagine that before each single-step collaboration, the
structural information of all data sites enters the information interaction pool, rep-
resenting all the information that can be used in this single-step CEC process. For
each data site, the collaborator cluster structure information that can be utilized is
constant, only its own structure is constantly changing.

The final partition is determined by assigning each object to the cluster after
convergence of the algorithm with maximal pignistic probability (3). Based on the
given reference partition, we use the adjusted Rand index (ARI) to characterize
the local collaboration quality of each data site. The global collaborative quality
assessment index is then defined as

AARI =
1
T

T

∑
ii=1

ARI[ii]. (14)

5 Experimental Results

In this section, we report on experimental findings1 for some machine learning data
sets [1]. The intent is to demonstrate the effectiveness of the collaboration and get
some experimental insights into the behavior of the algorithms.

1 We also conducted a simulation study. Experiments with synthetic dataset can be found in [19].
The ARI index for each data site is close to 1, which demonstrates that our algorithms are very
competitive. Due to space limitations, the results of simulation studies have to be omitted.
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The details of the features contained in the data site in each dataset are as follows.
For Iris dataset: (a) Sepal.Length, Sepal.Width; (b) Sepal.Width, Petal.Length; (c)
Petal.Length, Petal.Width. For Seeds dataset: (a) area, perimeter, compactness; (b)
compactness, length of kernel, width of kernel; (c) width of kernel, asymmetry coef-
ficient, length of kernel groove. We set c = 3, κ[t,s] = 1, ε = 0.0001. The evolutions
of W and AARI as a function of the number of iterations are reported in Figs. 1 and
2.

Fig. 1 With the continuous
reconciliation of multi-step
collaboration, the structural
similarity between data sites
is enhanced, and the value of
W constantly declines. The
EII problem emerged in the
early stage, which resulted in
a slight increase of W . The
post-correction function of
multi-step collaboration is
indispensable.

Fig. 2 EII and III led to a
decrease in AARI after single
step collaboration; the multi-
step collaboration process
performs effective informa-
tion correction, making the
index AARI strictly superi-
or to the initial value after
multi-step CEC. This further
confirms the adequacy and
necessity of the multi-step
collaborative process.

At the local level, the structural similarity indicators of all data sites in each data
set further confirm the existence of EII and III problems (see Fig. 3). Furthermore,
we find that indices W and W[t] have roughly the same trend, which shows that W
is excellent at global direction control.The ARI and its reference level for each data
set are shown in Fig. 4.

For data sites D[1] and D[3] in the Iris dataset, we found that in the first few
collaborations, the information was redistributed multiple times to find the correct
direction of collaboration, which laid an important foundation for the subsequent
collaboration. In the algorithm debugging phase, we find that the randomness in-
troduced by redistribution is the key factor that determines the improvement of the
final multi-step CEC algorithm. For data site D[3] in the Wine dataset, we found
that ARI decreased slightly in the late stage but was still significantly higher than
the baseline level, while the ARIs of data sites D[1] and D[2] were still rising. This
further confirms that collaboration is a long term interaction process. The informa-
tion data site D[3] lost can cause the data sites D[1] and D[2] to get a bigger boost.
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Fig. 3 The trend of local structural similarity index of Iris and Seeds dataset.

Fig. 4 Trend of ARI index of Iris and Seeds dataset.
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Therefore, the loss is beneficial in general. It also indirectly shows that our choice
of the global structural similarity index W as the stopping criterion of the multi-step
CEC algorithm is reasonable. The numerical results of the multi-step CEC of each
dataset are shown in Table 1.

Table 1 Multi-step collaborative clustering results analysis of Iris and Wine datasets

Data site Original ARI Single step ARI Multi-step ARI Promotion (%)

Iris−D[1] 0.546 0.626 0.652 0.106
Iris−D[2] 0.534 0.416 0.664 0.130
Iris−D[3] 0.547 0.515 0.771 0.224
Wine−D[1] 0.377 0.334 0.651 0.275
Wine−D[2] 0.571 0.423 0.687 0.115
Wine−D[3] 0.333 0.521 0.636 0.303

From Table 1, we can see more clearly that the single-step cooperation algorithm
has poor stability and is prone to excessive information interaction, which causes
the cluster structure to change too much and affect the value of ARI. The multi-step
collaboration algorithm has a good correction effect, and it can improve ARI well
after the information is redistributed. By further observation, we also found that the
data site with a lower initial ARI value eventually rose significantly. The information
it can use comes from the original data site with a higher value of ARI and a data
site with a large difference from its cluster structure.

6 Concluding Remarks

In this study we have proposed a new concept of collaborative evidential clustering.
Our multi-step CEC algorithm has been validated on real data sets and the experi-
mental results have shown competitive performances. The EII and III problems in
the single step CEC algorithm play a very good role in information redistribution
and lay the foundation for multi-step CEC algorithm. So far, the research we have
completed is based on two assumptions: (a) all data sites have the same number of
clusters, (b) the strength of collaboration between different data sites is the same.
These assumptions will be relaxed in future work.
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