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BPEC: Belief-Peaks Evidential Clustering
Zhi-gang Su and Thierry Denoeux

Abstract—This paper introduces a new evidential clustering
method based on the notion of “belief peaks” in the framework
of belief functions. The basic idea is that all data objects in
the neighborhood of each sample provide pieces of evidence that
induce belief on the possibility of such sample to become a cluster
center. A sample having higher belief than its neighbors and
located far away from other local maxima is then characterized as
cluster center. Finally, a credal partition is created by minimizing
an objective function with the fixed cluster centers. An adaptive
distance metric is used to fit for unknown shapes of data
structures. We show that the proposed evidential clustering
procedure has very good performance with an ability to reveal
the data structure in the form of a credal partition, from which
hard, fuzzy, possibilistic and rough partitions can be derived.
Simulations on synthetic and real-world datasets validate our
conclusions.

Index Terms—Dempster-Shafer theory, belief functions, unsu-
pervised learning, soft clustering, density peaks clustering.

I. I NTRODUCTION

CLUSTERING is one of the most important tasks in data
mining and machine learning. It aims to find groups

or clusters of objects that are similar to one another but
dissimilar to objects in any other clusters. With different
philosophies, distinct clustering techniques have been derived,
for example, see [1]–[4] and the literature therein. Among
them,partitional clusteringhas attracted a lot of attention in
artificial intelligence communities.

Classicalhard partitional clusteringintends to assign each
object unambiguously to one cluster with full certainty. Re-
cently, Rodriguez and Laio proposed such a hard partitional
clustering algorithm by fast search and find of density peaks,
calleddensity peaks clustering(DPC) [5]. In the DPC, a cluster
center is defined as an object surrounded by neighbors with
lower local densities and far away from any other object with
higher local density. In order to detect all the cluster centers,
densityρi

ρi =
∑

j 6=i
χ(dij , dc) (1)

is first computed at each data objectoi according to distance
dij (between objectsoi andoj , i = 1, 2, ∙ ∙ ∙ , n, j 6= i) using a
cutoff or Gaussian kernelχ(∙, ∙) with cutoff distancedc. Next,
for each object, the distanceδi separating it from its nearest
object with a higher density is computed as

δi =

{
max1≤j≤n{dij}, if i = arg maxj{ρj },

minj:ρj>ρi{dij}, otherwise.
(2)
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Fig. 1. Illustration of ambiguity and uncertainty in clustering.

By drawing a decision graph withρ andδ asx− andy−axes,
respectively, cluster centers are then defined as the data objects
that have both high density and large distance. At last, each
of the remaining data objects is assigned heuristically to the
same cluster as its nearest neighbor with higher density. One
merit of the DPC algorithm is its ability to detect cluster
centers without requiring to fix the number of clusters as priori.
Therefore, a lot of interesting work on DPC has emerged. See,
for example, [6]–[10].

However, the DPC and its variants compute hard partitions:
they do not allow ambiguity, uncertainty or doubt (rather than
noise) in the assignment of objects to clusters. As illustrated in
Fig. 1, the objects between or among different clusters should
be considered as ambiguous and/or uncertain. In contrat,
evidential clustering[2], [11]–[16] allows us to describes
ambiguity and uncertainty in the membership of objects to
clusters using Dempster-Shafer mass functions [17]. Roughly
speaking, a mass function can be seen as a collection of
sets with corresponding masses. A collection of such mass
functions forn objects is calledcredal partition.

Furthermore, in DPC algorithms, each object in the neigh-
borhood of a sample provides just a numerical measure (i.e.,
a cutoff or Gaussian kernel function value of the distance
between the object and the sample) supporting such sample
to become a cluster center. As a matter of fact, an object
in the neighborhood of a sample could provide more useful
information on the possibility of such sample to become a
cluster center. With this in mind and the theoretic viewpoint
of belief functions, we may describe the support degree at
each object by a mass function. The belief degree (associated
to a mass function) at each data object can then be viewed as
an extension of the (local) density in DPC algorithms. As we
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will see, the cluster centers selected according to belief peaks
are usually different from, and more appropriate than those
obtained by density peaks. For instance, in Fig. 1, objecto2

can be selected as a cluster center according to density peaks,
whereas the objecto1 is preferred by belief peaks, as will be
discussed in Section III-A.

Motivating by the above considerations, this paper intends
to propose a new evidential clustering method based on
finding belief (rather than density) peaks as well as a credal
partition in the theoretic framework of belief functions [17]–
[19]. More precisely, all data objects in the neighborhood of
each sample provide pieces of evidence on the possibility of
such sample to become a cluster center. Then, by combing
these pieces of evidence, a sample having higher belief than its
neighbors and located far away from other local maxima will
be characterized as a cluster center. Once all the cluster centers
have been fixed, a credal partition will finally be created by
minimizing an objective function, using an adaptive distance
metric to describe non-spherical clusters. In this paper, we
call our methodBelief-Peaks Evidential Clustering(BPEC).
The philosophy of BPEC is distinct from that of the DPC in
several respects:

• BPEC selects cluster centers from the viewpoint ofin-
formation fusion in the theoretic framework of belief
functions, considering more useful information on the
possibility of a data object to become a cluster center.

• BPEC creates a credal partition allowing ambiguity and
uncertainty in the assignment of data objects, by solving
a constrained optimization problem (with fixed cluster
centers) as an alternative to heuristic assignment.

• The credal representation in the BPEC provides us a
flexible way to reveal the data structure and, in particular,
it can produce hard, fuzzy [20], possibilistic [21] and
rough [22], [23] partitions.

As will be shown in Section IV, the BPEC procedure has
good performances and outperforms the standard DPC algo-
rithm as well as some other evidential clustering algorithms
in most cases.

The rest of this paper is organized as follows. The theory
of belief functions and the notion of credal partition are
first briefly recalled in Section II. The BPEC method is then
introduced in Section III. In Section IV, we conduct some
experiments to study the performances of BPEC using some
synthetic and real-world datasets. The last section concludes
the paper.

II. PRELIMINARIES

A. Background on belief functions

In this subsection, we briefly recall some basic notions of
the theory of belief functions [17]–[19], [24]–[26] needed in
the rest of the paper. Given aframe of discernmentΩ =
{ω1, ω2, ∙ ∙ ∙ , ωc}, a mass function is defined as a mapping
from 2Ω to [0, 1] such that

∑

A⊆Ω
mΩ(A) = 1. (3)

The subsetsA of Ω such thatmΩ(A) > 0 are called thefocal
setsof mΩ. A mass function is said to be

• Bayesianif it only has singletons (i.e.,|A| = 1) as focal
sets, andunnormalized Bayesianif it has either singletons
or the empty set(∅) as focal sets;

• Consonantif its focal sets are nested;
• Logical if it has only one nonempty focal set;
• Non-dogmaticif it has Ω as one focal set; in particular,

the vacuous mass function, verifyingmΩ(Ω) = 1, corre-
sponds to total ignorance;

• Unnormalizedif it has the empty set as one focal set, and
normalizedotherwise.

There are other equivalent representations of a mass func-
tion such as thebelief and plausibility functions defined,
respectively, as

BelΩ(A) =
∑

∅6=B⊆A

mΩ(B), (4)

PlΩ(A) =
∑

A∩B 6=∅

mΩ(B), (5)

for all A ⊆ Ω. The functionplΩ : Ω → [0, 1] such that
plΩ(ω) = PlΩ({ω}) is called thecontour functionassociated
to mΩ. If mΩ is Bayesian, we haveplΩ(ω) = mΩ({ω}) for
all ω ∈ Ω. In this case,plΩ is a probability distribution.

The combination of mass functions plays a critical role in
the theory of belief functions. Letm1 and m2 be two mass
functions. The conjunctive combination ofm1 andm2 yields
the unnormalized mass function

mΩ
1∩2(A) =

∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), ∀A ⊆ Ω. (6)

If necessary, the normality conditionmΩ(∅) = 0 may be
recovered by dividing each massmΩ

1∩2(A) by 1 −mΩ
1∩2(∅).

The resulting operation is noted⊕ and is calledDempster’s
rule of combination:

mΩ
1
⊕

2(A) =
mΩ

1∩2(A)
1−mΩ

1∩2(∅)
, ∅ 6= A ⊆ Ω. (7)

Both rules are commutative, associative and admit the vacuous
mass function as a unique neutral element.

B. Credal partitions

Suppose that we have a setO = {o1, o2, ∙ ∙ ∙ , on} of n
objects. LetΩ = {ω1, ω2, ∙ ∙ ∙ , ωc} be the set ofc clusters.
If we know for sure which cluster each object belongs to,
we have a hard partition of the datasetO. More precisely, a
hard partition may be represented by binary variablesuik such
that uik = 1 if object oi belongs to clusterωk, anduik = 0
otherwise.

When objects cannot be assigned to clusters with cer-
tainty, one can represent ambiguous and uncertain cluster
memberships by mass functionsmΩ

i , i = 1, 2, ∙ ∙ ∙ , n. Each
massmΩ

i (A) is interpreted as a degree of support attached
to the proposition “the true cluster of objectoi is in A”,
and to no more specific proposition. Then−tuple MΩ =
(mΩ

1 ,mΩ
2 , ∙ ∙ ∙ ,mΩ

n ) is called a credal partition [2], [13].
Example 1: The 4−tupleMΩ = (mΩ

1 ,mΩ
2 ,mΩ

3 ,mΩ
4 ) in

Table I is an example of a credal partition. We can see that
objectso1 and o3 likely belong to ω1 and ω2, respectively.
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TABLE I
A CREDAL PARTITION ON Ω = {ω1, ω2}

∅ {ω1} {ω2} Ω

mΩ
1 0 0.7 0.2 0.1

mΩ
2 0 0 0 1.0

mΩ
3 0 0.2 0.8 0

mΩ
4 1.0 0 0 0

In contrast, objectso2 and o4 correspond to two different
situations of maximum uncertainty. Objecto2 has a full
mass assigned toΩ: this reflects total ambiguity in the class
membership of this object, which means that it might belong
to ω1 as well as toω2. For objeto4, it has the largest mass
assigned to the empty set, indicating that this object does not
seem to belong to any of the two clusters and is anoutlier.

The notion of credal partition boils down to several other
usual clustering structures when the mass functions have some
special types [2].

• Hard partition: We have a hard partition withuik = 1
if all mass functionsmΩ

i are certain, i.e.,mΩ
i ({ωk}) = 1

for somek, anduik = 0 otherwise.
• Fuzzy partition: We have a fuzzy partition withuik =

mΩ
i ({ωk}) if all the mass functionsmΩ

i are Bayesian. In
particular, a fuzzy partition with a noise cluster may be
obtained if all the mass functionsmΩ

i are unnormalized
Bayesian, i.e., ifuik = mΩ

i ({ωk}) and ui∗ = mΩ
i∅ =

mΩ
i (∅) = 1−

∑c
k=1 uik.

• Possibilistic partition: if massesmΩ
i are consonant, the

corresponding plausibility function is formally a possi-
bility measure, and the credal partition can be seen as a
possibilistic partition,uik = plΩi (ωk) being interpreted as
the possibility that objectoi belongs to clusterωk.

• Rough partition: if massesmΩ
i are logical, i.e., we have

mΩ
i (Ai) = 1 for some∅ 6= Ai ⊆ Ω, we can then define

the lower and upper approximations of clusterωk as

ωL
k = {oi|Ai = {ωk}}, ωU

k = {oi|{ωk} ⊆ Ai}. (8)

The memberships to the lower and upper approximations
are then, respectively,uik = BelΩi ({ωk}) and ūik =
PlΩi ({ωk}).

In general the credal partition obtained by an evidential
clustering algorithm does not belong to any of the previous
specific types, but it can be transformed into a simpler repre-
sentation. A fuzzy partition can be obtained by transforming
each mass functionmΩ

i into a probability distributionpi using
the plausibility-probability transformation defined by

pi(ωk) =
plΩi (ωk)

∑c
l=1 plΩi (ωl)

, k = 1, 2, ∙ ∙ ∙ , c. (9)

By selecting the cluster with maximum probability for each
object, we get a hard partition. To obtain a fuzzy partition with
a noise cluster, the degree of membership of each objectoi

to clusterωk can be defined asuik = (1 − mΩ
i∅)pi(ωk) and

the degree of membership to the noise cluster asui∗ = mΩ
i∅.

To obtain rough partition, for instance, the followinginterval
dominance decision rule[13] can be used to select the setAi

of clusters whose plausibility exceeds the degree of belief of
any other clusters,

Ai = {ω ∈ Ω|∀ω′ ∈ Ω, plΩi (ω) ≥ BelΩi ({ω′})}, (10)

where plΩi and BelΩi are the normalized contour and belief
functions associated to mass functionmΩ

i .

III. PROPOSED METHOD: BPEC

Similar to DPC algorithms, the BPEC algorithm also con-
sists of two parts: definition of cluster centers and assignment
of the remaining data objects. These two parts will be dis-
cussed in Sections III-A and III-B, respectively. In Section
III-C, the time complexity of BPEC will be analyzed and
a variant with a limited number of informative composite
clusters will be introduced. The tuning of parameters will be
addressed in Section III-D.

A. Belief peaks

For a given setO of n data objects, a new frame of
discernmentC = {C,¬C} is defined to discern whether an
object is a cluster center (C) or not (¬C). The basic idea
to detect cluster centers can be summarized as follows. Let
NK(oi) denote the set of theK nearest neighbors (KNN) of
object oi. Each neighboroj in NK(oi) provides a piece of
evidence about objectoi being a cluster center. This piece
of evidence can be represented by a mass functionmC

ij .
By combining these mass functions using Dempster’s rule
(6)-(7), a normalized mass functionmC

i can be obtained as
well as its associated belief functionBelCi . An object having
higher degree of beliefBelCi ({C}) than its neighbors will be
characterized as a cluster center if it is also at a relatively large
distance from other objects with higher degrees of belief.

Each neighboroj in NK(oi) supports the assumption thatoi

is a cluster center if the distancedij between the two objects
is small. If this distance is large, the evidence of objectoj is
inconclusive. Mass functionmC

ij can, thus, be defined as

mC
ij(A) =

{
φ(d2

ij), A = {C},

1− φ(d2
ij), A = C,

(11)

whereφ(∙) is a decreasing function verifying

φ(0) = α0 and lim
d2
ij→∞

φ(d2
ij ) = 0 (12)

with a constantα0 such that0 < α0 ≤ 1. A popular choice
for φ(∙) is [27], [28]

φ(d2
ij) = α0 exp(−γ2

i d2
ij), (13)

whereγi is a positive parameter associated to objectoi.
Using Dempster’s rule, the final normal mass functionmC

i

for objectoi can be calculated as

mC
i =

⊕

j∈NK(oi)

mC
ij . (14)

According to (14), we have the following proposition used
to calculate beliefBelCi ({C}) at data objectoi.
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Proposition 1:The degree of belief that objectoi is a cluster
center is

BelCi ({C}) = 1−
∏

j∈NK(oi)

[
1− φ(d2

ij)
]
. (15)

Proof: The combined mass function has two focal sets:
C and{C}. The mass onC is the product of the1 − φ(dij),
so the mass on{C} is 1 minus this product. Hence, we have

mC
i (C) =

∏

j∈NK(oi)

[
1− φ(d2

ij)
]

(16)

and

mC
i ({C}) = 1−

∏

j∈NK(oi)

[
1− φ(d2

ij)
]
. (17)

Now, BelCi ({C}) = mC
i ({C}), which completes theproof.

Proposition 1 provides us with the final belief on the
possibility of an object to become a cluster center. According
to the basic idea of BPEC, to be a cluster center an object
should not only have high degree of belief, but it should also
be located far away from other objects with high degrees of
belief. Hence, a metric should be defined in order to measure
distances among objects, as that done in DPC. Here, we
redefine thedelta metric δi in (2), as follow

δi = min
{j:BelCj ({C})>BelCi ({C})}

dij (18)

for objects that do not have the highest degree of belief and
δi = max1≤j≤n{dij} for the object with the highest degree
of belief.

Now, we can construct aδ−BelC({C}) (δ−Bel for short)
decision graph by plottingBelC({C}) versusδ. The objects
with higherBelCi ({C}) and largerδi are identified as cluster
centers. As illustrated in Fig. 2, cluster centers usually appear
in the upper right corner of the decision graph. For given lower
boundsδmin andBelmin, the objects such thatδi > δmin and
BelCi ({C}) > Belmin will be selected as centers. Meanwhile,
data objects with small degrees of belief and large deltas can
be detected as outliers from the decision graph.

Remark 1: There exist some relationships between the
belief (BelCi ({C})) and the density (ρi) in DPC algorithms.
Four typical densitiesρi are briefly recalled as follows. With
Gaussian kernel, i.e.,χ(dij , dc) = φ(d2

ij) with α0 = 1 and
γi = 1/dc, density (1) can be rewritten asρi :=

∑n
j=1 φ(d2

ij).
To reduce the influence of data objects far away, the density
can be locally defined asρi :=

∑
j∈NK(oi)

φ(d2
ij), e.g., see the

adaptive DPC (ADPC-KNN) [9] in whichγi = 1/(μK +σK)

such thatμK = 1
n

∑n
i=1 νK

i , σK =
√

1
n−1

∑n
i=1(ν

K
i − μK)2

and νK
i = maxj∈NK(oi)(dij). In [10], Xie et al. proposed a

fuzzy weighted KNN-DPC (FKNN-DPC) in which the local
density is defined asρi :=

∑
j∈NK(oi)

φ(dij) with α0 =
1, γi = 1 and non-squared Euclidean distance. In a different
way, Du et al. [7] proposed a DPC-KNN algorithm in which
the local density was defined asρi :=

∏
j∈NK(oi)

φ(d2
ij) with

Fig. 2. An example of decision graphδ − Bel

α0 = 1 and γi = 1/
√

nf , wheref is a constant percentage.
By expanding (15), we get

BelCi ({C}) = (−1)K+1
∏

j∈NK(oi)
φ(d2

ij)+
∑

j∈NK(oi)
φ(d2

ij) + l(φ(d2
ij)) (19)

with a polynomial functionl(∙). It is evident that the belief
BelCi ({C}) can be viewed as an extension of densities defined
in [5] with K = n, [9] and [7]. If one uses a non-squared
distance, thenBelCi ({C}) is an extension of the local density
in [10]. The distribution of cluster centers via the BPEC is usu-
ally different from and arguably more appropriate than those
obtained by these DPC algorithms. To show this, a numerical
example is presented as follows, and another synthetic example
will be presented later in Example4.

Example 2: Given data objectsoi, i = 1, 2, ∙ ∙ ∙ , 9 as
illustrated in Fig. 1. Supposeφ(d2

12) = 0.3, φ(d2
13) =

0.9, φ(d2
16) = 0.45, φ(d2

23) = 0.35, φ(d2
24) = φ(d2

25) =
0.7, φ(d2

36) = 0.25, φ(d2
45) = 0.5, and all φ(∙) between

any other two objects are smaller than0.2. Furthermore, we
assumeφ(d2

ij) = φ(d2
ji), i, j = 1, 2, ∙ ∙ ∙ , 9. For simplicity,

this example considersρi =
∑

j∈NK(oi)
φ(d2

ij) with K = 3.
We haveρ1 = 0.45 + 0.9 + 0.3 = 1.65, ρ2 = 0.7 × 2 +
0.35 = 1.75, ρ3 = 0.9 + 0.35 + 0.25 = 1.5, ρ4, ρ5 <
0.5 + 0.7 + 0.2 = 1.4, ρ6 < 0.45 + 0.25 + 0.2 = 0.9, ρi <
0.2 × 3 = 0.6, i = 7, 8, 9. According to (15), we can obtain
BelC1 ({C}) = 1− 0.1× 0.55× 0.7 = 0.9615, BelC2 ({C}) =
1 − 0.32 × 0.65 = 0.9415, BelC3 ({C}) = 1 − 0.1 ×
0.65 × 0.75 = 0.95125, BelC4 ({C}), BelC5 ({C}) < 1 −
0.3 × 0.5 × 0.8 = 0.88, BelC6 ({C}) < 1 − 0.55 × 0.75 ×
0.8 = 0.67, BelCi ({C}) < 1 − 0.83 = 0.488, i =
7, 8, 9. Hence, ρ2 = max1≤i≤9{ρi} while BelC1 ({C}) =
max1≤i≤9{BelCi ({C})}. Consequently, objecto2 is selected
as a cluster center by the density peaks method, whereas
o1, located closer to the center of gravity of these nine data
objects, is preferred by the belief peaksmethod.

Remark 2: In some cases, some prior knowledge may be
obtained in the form of mass functionsmC

i0, i = 1, 2, . . . , n,
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representing the initial possibility of each data object to be
selected as a cluster center. In this case, the final massesmC

i

in (14) can be recalculated as1

mC
i = mC

i0

⊕



⊕

j∈NK(oi)

mC
ij



 . (20)

However, it is not clear how the prior mass functionsmC
i0

could be obtained in practice. We leave this problem for further
research.

B. Construction of the credal partition

In this section, we address the problem of deriving a
credal partitionMΩ = (mΩ

1 ,mΩ
2 , . . . ,mΩ

n )′ ∈ Rn×2c

for the
set of objectsO locating at (x1, x2, . . . , xn)′ ∈ Rn×p, by
minimizing an objective function with the fixed cluster centers
vk ∈ Rp, k = 1, 2, . . . , c, found in the previous section.

Deriving a credal partition fromO implies determining the
quantitiesmΩ

ij = mΩ
i (Aj), Aj ⊆ Ω for each objectoi in such

a way thatmΩ
ij is high (respectively, low) when the distance

Dij betweenoi and the focal setAj is small (respectively,
large). Suppose each clusterωk is represented by a center
vk. As suggested in theEvidential C-Meansalgorithm (ECM)
[15], the barycenter̄vj of the centers associated to the clusters
composing nonempty setAj can be defined as

v̄j =
1
|Aj |

c∑

k=1

skjvk, (21)

where skj = 1 if ωk ∈ Aj and skj = 0 otherwise. LetSk

be thep × p symmetric positive definite matrix associated to
clusterωk inducing a norm‖x‖2Sk

= x′Skx. Similar to (21),
we can define the matrix̄Sj associated to the nonempty subset
(i.e., the composite cluster)Aj . The distance between object
oi and composite clusterAj is then

D2
ij = ‖xi − v̄j‖

2
S̄j

= (xi − v̄j)
′|Aj |

−1
c∑

k=1

skjSk(xi − v̄j). (22)

Then, a credal partitionMΩ can be derived by minimizing
the following objective function:

JBPEC(MΩ, S1, ∙ ∙ ∙ , Sc)

=
n∑

i=1

∑

j:Aj 6=∅

|Aj |
α(mΩ

ij)
βD2

ij +
n∑

i=1

Δ2(mΩ
i∅)

β , (23)

subject to
{∑

j:Aj 6=∅ mΩ
ij + mΩ

i∅ = 1, i = 1, 2, ∙ ∙ ∙ , n,

det(Sk) = 1, k = 1, 2, ∙ ∙ ∙ , c,
(24)

where constantsα, β andΔ have the same meaning as those
in the ECM algorithm, anddet(∙) denotes the determinant of
a matrix. Note that the empty focal set∅ is treated separately
from other nonempty focal sets by using a constantΔ.

1This was suggested by an anonymous referee.

To minimizeJBPEC , we apply the alternate optimization
algorithm as suggested in the constrained ECM [11] and get

mΩ
ij =

|Aj |−α/(β−1)D
−2/(β−1)
ij

∑
l:Al 6=∅ |Al|−α/(β−1)D

−2/(β−1)
il + Δ−2/(β−1)

,

(25a)

mΩ
i∅ = 1−

∑

j:Aj 6=∅
mΩ

ij , (25b)

for i = 1, 2, ∙ ∙ ∙ , n, j : ∅ 6= Aj ⊆ Ω, and

Sk = det(Σk)1/pΣ−1
k , k = 1, 2, ∙ ∙ ∙ , c, (26)

with

Σk =
n∑

i=1

∑

j:Aj 6=∅

|Aj |
α−1(mΩ

ij)
βskj(xi − v̄j)(xi − v̄j)

′.

For completeness, the calculations of (25) and (26) are pre-
sented in the Appendix A.

The BPEC algorithm can be summarized in Algorithm 1.

Algorithm 1 : Belief-peaks evidential clustering
Input : K,α0, q, α, β, termination thresholdε, Δ, δmin,

Belmin, data of objectsxi ∈ Rp, i = 1, 2, ∙ ∙ ∙ , n
Calculate degrees of belief (BelCi ({C})) for all objects1

using (15)
Calculate delta’s (δi) for all objects according to (18)2

Draw the decision graphδ −Bel, and determine lower3

boundsδmin andBelmin

Select cluster centersvk, k = 1, 2, ∙ ∙ ∙ c in the decision4

graph and determineΔ
t← 0, Sk(0) = I,MΩ(0) = 05

repeat6

t← t + 1; % t is the number of iterations7

CalculateMΩ(t) according to (21), (22) and (25)8

usingSk(t− 1);
Update matrixSk(t) according to (26)9

until ‖MΩ(t)−MΩ(t− 1)‖ < ε ;10

Output : cluster centersvk and credal partitionMΩ

Remark 3: When selecting cluster centers, BPEC considers
the local geometric information of each data object, whereas
the ECM algorithm does not. This characteristic may result in
more appropriate cluster centers and, thus, a more reasonable
credal partition, as shown later in Example 3. Furthermore,
when just applyingδ − Bel instead ofρ − δ in DPC [5],
namely, selecting cluster centers according to belief peaks and
assigning each of the remaining objects to the same cluster
as its nearest neighbor with higher belief, we can intuitively
induce abelief versionof DPC, calledBelief peaks clustering
(BPC), which is summarized in Algorithm 2 and is presented
in Appendix B. The BPC will be implemented under the same
initial conditions as those of the BPECalgorithm.

Remark 4: The barycenters (21) as defined in ECM may
lead to uninformative composite clusters in some cases, as
remarked in [12]. To reduce the time complexity of BPEC,
an informative BPEC algorithm with a limited number of
composite clusters will be discussed in SectionIII-C.
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Fig. 3. Illustration of less informative composite clusters in a credal partition.

C. Time complexity analysis and informative BPEC

Using the notations of Algorithm 1, the time complexity of
BPEC can be analyzed as follows.

First, the computation cost to obtain the belief peaks in
Step 1 isO(p2n(n − 1)/2) + O(22Kn). Then, the sorting
and assignment processes in Step 2 can be performed in
O(n log n) + O(n) operations. Finally, to derive a credal
partition in Steps6−10, we need to performO(2ctn)+O(2ct)
operations. The total time complexity of BPEC is, thus,
O(p2n(n − 1)/2 + 2ct(n + 1) + n(log n + 22K + 1)) ∼
O(p2n2 + 2cnt).

The complexity of BPEC depends heavily on both the
numbern of objects and the numberc of clusters. Whenc
is large, we may have2c > n, and the complexity of BPEC
becomes prohibitive if the numberc of clusters is too large.
Moreover, some composite clusters (i.e., focal sets) in the
credal partition may be less informative in some cases. For
instance, in a two dimensional clustering task as shown in Fig.
3, the composite clusters{ω1, ω3} andΩ are less informative
than the other clusters.

Hence, it is interesting to remove less informative focal sets
so as to reduce the time complexity of the BPEC algorithm. In
[14], Denœux proposed to preserve the needed expressivity of
the credal partition by considering as focal sets the empty set,
the singletons, and optionally the whole frame of discernment,
and then to add some informative pairs of clusters. As a result,
the number of focal sets is much smaller than2c, in particular
when the numberc is large. In a similar way, theinformative
BPEC can be described as follows:

1) Step 1: Run the BPEC in the basic configuration with
focal sets of cardinalities 0, 1, and optionally,c. An
initial credal partitionMΩ

0 is then created. The similarity
between each pair of clusters(ωj , ωl) is measured by

S(j, l) =
∑n

i=1
plΩijplΩil , (27)

where plΩij and plΩil are, respectively, the normalized
plausibilities that objectoi belongs to clustersωj andωl.
We then can determine the setPK of pairs{ωj , ωl} that
are mutualK nearest neighbors according to similarity
measure (Note thatK should not be confused withK).

2) Step 2: Run the BPEC again starting fromMΩ
0 , and

adding as focal sets the pairs of clusters inPK.

D. Tuning of parameters

To implement the BPEC algorithm, some parameters should
be selected in advance, includingK, α0, γi, δmin, Belmin, α,
β, Δ and ε. When implementing the informative BPEC, the
number of mutualK nearest pairs of clusters also needs to be
determined.

The constantα0 in the decreasing functionφ(∙) should be
positive and not greater than 1. We suggestα0 = 1/K in order
to avoid “saturated beliefs” if the number of nearest neighbors
K is large. (This issue will be discussed later in Remark 6).

Parametersγi and K together play critical roles on de-
termining the distribution of objects in the decision graph.
As shown in Remark 1, most DPC algorithms usually define
a unique value ofγi for all objects oi, i = 1, 2, ∙ ∙ ∙ , n.
It is interesting to allow “adaptive”γi (i.e., different cutoff
distances) for different data objects. Here, we defineγi as the
inverse of a quantile of the distances between objectoi and
its K nearest neighbors

γi = 1/ quantile
j∈NK(oi)

(dij , q), (28)

whereq is a quantile number such that0 ≤ q ≤ 1. To fix γi in
an automatic way for simplicity, we setq = 0.9 in this paper.

For KNN-based classification or clustering algorithms, there
is no efficient rule to determine the optimal numberK of
neighbors automatically. For BPEC, a simple approach is to
increaseK until some objects (i.e., cluster centers and outliers)
can be visually separated from the other objects. It will be seen
that, for most datasets, a large value ofK is preferable. More
interestingly, the distribution of cluster centers in the decision
graph is not too sensitive to the change ofK providedK is
large enough. More details will be given with experimental
results in Section IV.

In contrast toK and q, it is easy to determine the lower
boundsδmin andBelmin, because cluster centers can usually
be located far away from other data objects. In fact, we will
see thatδmin and Belmin are not as crucial as they seem
to be and there are many choices forδmin and Belmin. As
recommended with most DPC algorithms, we suggest deter-
mining δmin and Belmin by visual inspection after drawing
the decision graph. The lower boundsδmin andBelmin will
be presented together with cluster centers in the decision graph
for convenience.

To derive a credal partition, we should presetε, α, β,K and
Δ. We use as default valuesε = 10−3, α = 1 andβ = 2, as
in the ECM algorithm [15]. Furthermore, we just consider at
most two mutual nearest pairs of clusters when the number of
clusters is large (i.e.,K = 1 or 2). Finally, we setΔ2 equal to
a constant smaller than the minimal delta associated to outliers
in the decision graph if outliers exist; otherwise,Δ2 can be a
constant larger than the maximummax1≤i≤n{δi}.

Remark 5: As a matter of fact, tuningK and q together
usually provides a more flexible way to distinguish cluster
centers from other regular data objects. In practice, one can
alternately increase and/or decreaseK and q in their ranges
until one gets an interpretableδ −Bel decisiongraph.
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IV. EXPERIMENTAL RESULTS

This section consists of two parts. In Section IV-A, some
numerical examples are used to illustrate the behavior of BPEC
algorithm. In Section IV-B, we compare the performance of
BPEC as to those of some other clustering algorithms.

During the simulations, all the attributes of data objects were
normalized into[0, 1] to make the results independent from the
units in which these attributes are expressed, according to the
following min-max rule:

xij ←
xij −min(x∙j)

max(x∙j)−min(x∙j)
, (29)

wherexij denotes the value of attributej of object oi, and
min(x∙j) and max(x∙j) are, respectively, the minimum and
maximum values of attributej.

TheAdjust Rand Index(ARI) [29] is a popular choice for a
performance index and is suitable to measure the closeness
of a hard partition to the truth. To perform comparisons
among hard, fuzzy, rough and even credal partitions, Denœux
proposed a credal version of ARI, calledCredal Rand Index
(CRI) [30]. In this paper, we use CRI as the performance
index when comparing the closeness between two credal
partitions. When comparing two hard partitions, CRI and ARI
are equivalent. In this case, the criterion will be referred to as
“ARI”. We refer the reader to [29] and [30] for the precise
definitions of ARI and CRI.

A. Illustrative examples

In the following three examples, we use the notationBel
in place ofBelCi ({C}) for simplicity when there is no risk of
confusion.

Example 3: In this example, we consider the famous
butterfly dataset [12], [15] to illustrate the results of BPEC.
The butterfly dataset is represented by circles in Fig. 4 (top).
We setK = 4, q = 0.9 andΔ2 = 0.1. The δ −Bel decision
graph can first be drawn, as shown in Fig. 5. In this graph,
objects 3 and 9 have equally high degrees beliefs and are far
away from other data objects. Hence, these two data objects
can be considered as the centers of two clusters, i.e.,c = 2.
With the selected cluster centers, outlined by symbol“ + ”
in Fig. 4 (top), a credal partition can then be created and
illustrated in Fig. 4 (bottom), from which we can see that
the credal partition is meaningful to reveal ambiguity and
uncertainty. For instance, objecto6 could be assigned to any
of the two detected clusters, whereas objecto12 ando13 could
be better identified as outliers. In contrast,o6, o7 ando13 were
assigned toΩ by ECM, and instead,o13 was assigned toΩ by
the Belief C-Means (BCM) algorithm [12]. More interestingly,
BPEC can find the true locations of centers whereas the ECM
and BCMcannot.

Example 4: In this example, we consider the strongly
overlappingfour-classdataset [15] consisting of 100 of data
objects in each class. We aim to study the influence ofK, q
and the locations of centers on the clustering performances.
We consideredK ∈ {20, 25, ∙ ∙ ∙ , 90}, q ∈ {0.1, 0.2, ∙ ∙ ∙ , 1.0}
and Δ2 = 0.2. In each case, we selected the cluster centers
from the decision graph. The credal partition was then created
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Fig. 5. δ − Bel decision graph for the butterfly dataset.

by BPEC. Fig. 6 shows the number of clusters and the
ARI as functions ofK and q. The ARI was computed after
transforming the credal partition into a hard one using the
maximum probability rule (9). From Fig. 6a, we can see
that the true number of clusters can be easily identified in
most cases, in particular whenK and q take large values
simultaneously. Correspondingly, Fig. 6b indicates that better
performances (i.e., higher ARI) can be achieved when the true
number of clusters has been found, in which case the best
performance is achieved withARI = 0.7398 when K = 75
andq = 0.9. In the best case, the decision graph and the credal
partition are illustrated in Figs. 7 and 8, respectively.

For comparison with this best case, we present in Fig. 9 the
cluster centers selected by the degree of belief and the four
typical densities mentioned in Remark 1. We can see that some



IEEE TRANSACTIONS ON FUZZY SYSTEMS 8

0

1

20
25

2

30

N
um

be
r 

of
 c

lu
st

er
 c

en
te

rs

35

3

40

4

45
50

K

55
60 0.965 0.870 0.775 0.6

q

0.580 0.485 0.390 0.20.1

 a

0.3
100

0.4

0.5

80 1

A
R

I

0.6

 K

0.7

60

 q

0.8

0.5
40

20 0

 b
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cluster centers selected by belief peaks are different from those
obtained by density peaks. To study the influence of cluster
centers, we computed the ARI for each group of selected
cluster centers, by applying the same assignment strategy as
used in DPC. WithK = 75, q = 0.9, f = 2%, we get
ARIDPC = 0.3258, ARIADPC−KNN = ARIFKNN−DPC =
ARIDPC−KNN = 0.7279 and ARIBPC = 0.7392, which,
together withARIBPEC = 0.7398, shows that the cluster
centers selected by belief peaks are better in thiscase.

Example 5: In this example, we used the datasetS2 in
[31], consisting of5000 objects and15 clusters, to illustrate
the partition via informative BPEC with a limited number
of composite clusters. WithK = 80, q = 0.9, Δ = 1 and
K = 1, the decision graph is drawn in Fig. 10, and the rough
approximations of the initial and final credal partitions are
illustrated in Figs. 11 and 12, respectively. It can be seen from
Fig. 10 that the true number of clusters can be found, and from
Figs. 11 and 12 that the rough partition transformed from the
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Fig. 7. δ − Bel decision graph for the four-class dataset.

credal partition obtained via informative BPEC seems to be
reasonable.

Remark 6: As can be seen from the decision graphs in
above three examples that, the beliefsBelCi ({C}) seem to
approach an upper bound that is smaller than1. This is the
case because, according to (15), we have

BelCi ({C}) ≤ 1− lim
dij→0

∏

j∈NK(oi)

[
1− φ(d2

ij)
]

= 1− (1− α0)
K . (30)

When choosingα0 = 1
K we havelimK→∞(1− 1

K )K = 1
e and

thus get the infimum of upper bound, i.e.,1− 1
e . To increase

this infimum,α0 can be redefined in a more general form such
asα0 = 1/Kθ with a positive constantθ. With an appropriate
choice ofθ, correct number of clusters can beselected.

B. Performance evaluation

In this subsection, we aim to evaluate the performances of
BPEC based on some synthetic and UCI real-world datasets
with characteristics summarized in Table II. As can be seen
from Table II, the synthetic datasets have large numbers of
clusters, while the real-word datasets have more attributes.

To implement BPEC, some parameters were preset as men-
tioned in Section III-D and some others were fixed individually
as shown in Table III. In the absence of outliers, we suggest
Δ = 1 for simplicity. For comparison, several DPC algorithms
were also applied to these datasets, including BPC, DPC [5],
DPC-KNN [7], ADPC-KNN [9] and FKNN-DPC [10]. For
DPC [5], the cutoff distancedc was defined according to a
proportionf = 2% of the total number of objects in a dataset,
i.e.,dc = d̄(ip), whered̄ is a vector sorting distancesdij , i < j
in descending order andip = round(n ∙f). For DPC-KNN [7],
f = 2%. The ARI values are shown in Table IV.

As can be seen from Tables III and IV, BPEC and BPC can
find the true number of clusters for most of these datasets,
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Fig. 8. Contour surfaces of the credal partition (top: singletons andΩ, bottom:
empty set and composite clusters with|Aj | = 2, 3) obtained by BPEC for
the four-class dataset.

TABLE II
DATASET DESCRIPTION

Type Name Size # Attributes c Source

A3 7500 2 50 [32]

D31 3200 2 31 [33]

DIM1024 1024 1024 16 [34]

Synthetic R15 600 2 15 [33]

S4 5000 2 15 [31]

S2 5000 2 15 [31]

Unbalance 650 2 8 [35]

Iris 150 4 3 [36]

Parkinsons 195 23 2 [36]

Pima 768 8 2 [36]

Real-world Seeds 210 7 3 [36]

Waveform 5000 21 3 [36]

WDBC 569 30 2 [36]

Wine 178 13 3 [36]
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Fig. 9. Locations of centers selected by different methods for the four-class
dataset.
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and BPEC has the highest ARI values in most cases. With the
same fixedK and the same assignment strategy for DPC-
KNN and BPC, we can see that BPC outperforms DPC-
KNN and DPC in most cases. This result shows that cluster
centers selected according to belief peaks can usually yield
more better clustering performances. As stated in Remark
5, alternately tuningK and q in their ranges can usually
induce more distinguishable decision graph and thus better
performance. For instance, more appropriate cluster centers
with ARI= 0.8176 can be achieved for the WDBC dataset
when selectingq = 0.1 andK = 40 in an alternate way. As
another example, the true number of clusters can be found for
the Pima dataset with ARI= 0.1210 if q = 0.1 andK = 40.
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Fig. 11. Lower rough approximations of the initial credal partitionMΩ
0 for

the S2 dataset.

Fig. 12. Lower and (four pairs of) upper rough approximations of the final
credal partitionMΩ for the S2 dataset.

By comparing BPEC with BPC, it can be concluded that
ECM assigns the remaining objects more reliably than BPC,
resulting in better performance. Furthermore, we can see that
the hard partition obtained from the BPEC algorithm using the
maximum plausibility-probability rule (9) is different from that
obtained by the BPC algorithm, which means that BPC is not
merely a crisp version of BPEC.

To compare BPEC with some other evidential clustering
algorithms, ECM [15], EVCLUS [13] and EK-NNclus [37]
were also implemented. When compared with ECM and
EVCLUS, the BPEC algorithm was implemented with full
focal sets. When compared with EK-NNclus, BPEC was
used with singletons and the whole frame of discernment,

TABLE III
SELECTION OF SOME PARAMETERS INBPEC

Datasets Some parameters Foundclusters

K K by BPEC/BPC

A3 150 1 50 (50)

D31 50 1 31 (31)

DIM1024 20 1 16 (16)

R15 20 1 15 (15)

S4 300 1 15 (15)

S2 80 1 15 (15)

Unbalance 70 1 8 (8)

Iris 20 1 3 (3)

Parkinsons 40 1 2 (2)

Pima 40 1 2 (3)

Seeds 40 2 3 (3)

Waveform 100 2 3 (3)

WDBC 40 1 2 (2)

Wine 30 1 3(3)

TABLE IV
ARI VALUES: COMPARISONS BETWEENBPECAND SOME ALTERNATIVE

CLUSTERING ALGORITHMS1, 2 .

Datasets ADPC FKNN DPC DPC BPC BPEC

-KNN -DPC -KNN

A3 0.97 − 0.9775 0.9246 0.9835 0.9889

D31 0.94 − 0.9358 0.8627 0.9384 0.9522

DIM1024 1.00 − 1.00 1.00 1.00 1.00

R15 0.99 − 0.9928 0.9228 0.9928 0.9928

S4 0.63 − 0.6268 0.5876 0.6519 0.6374

S2 − 0.924 0.9286 0.9227 0.8644 0.9303

Unbalance 1.00 − 1.00 1.00 1.00 1.00

Iris 0.76 0.922 0.7060 0.5681 0.7060 0.7565

Parkinsons − 0.391 0.0266 0.3910 0.2566 0.4135

Pima 0.02 0.013 0 0.0143 0.0682 0.0967

Seeds 0.77 0.790 0.7076 0.6531 0.7076 0.7236

Waveform 0.25 0.350 0.2516 0.2669 0.2872 0.3939

WDBC − 0.786 0.5175 0.5061 0.7546 0.7924

Wine − 0.852 0.7128 0.6990 0.7269 0.8653

1 The ARI values for ADPC-KNN and FKNN-DPC are taken from [9] and
[10]. Missing values are indicated by “−”.

2 The bold and underlined value(s) in each row indicates the best perfor-
mance.

as EK-NNclus. For ECM and EVCLUS, the number of
clusters was preset to the value found by BPEC, and the
Euclidean distance was used in BPEC instead of an adaptive
one. In contrast with ECM and EVCLUS, EK-NNclus was
run with integer labels randomly generated in the range
[1, n], as it does not require number of clusters as priori.
Furthermore, the number of nearest neighbors (Knn) and
quantile of these nearest neighbors (qnn) were set for EK-
NNclus as follows, for the seven datasets from Iris to Wine:
(50, 0.5), (300, 0.9), (50, 0.9), (500, 0.9), (50, 0.5), (200, 0.5)
and (50, 0.9).

For each real-world dataset in Table II, we run ECM,
EVCLUS and EK-NNclus ten times, respectively. At each
time, we calculated CRI between BPEC and these three



IEEE TRANSACTIONS ON FUZZY SYSTEMS 11

0 0.2 0.4 0.6 0.8 1
mean ARI via ECM

0

0.2

0.4

0.6

0.8

1

A
R

I v
ia

 B
P

E
C

Pima

Parkinsons

Waveform

Seeds

Iris

Wdbc
Wine

 a

-0.2 0 0.2 0.4 0.6 0.8 1
mean ARI via EVCLUS

-0.2

0

0.2

0.4

0.6

0.8

1

A
R

I v
ia

 B
P

E
C

Pima

Waveform

Wine

Parkinsons

Wdbc

Iris

Seeds

 b

0 0.2 0.4 0.6 0.8 1
mean ARI via EK-NNclus

0

0.2

0.4

0.6

0.8

1

A
R

I v
ia

 B
P

E
C

 w
ith

 s
in

gl
et

on
s 

an
d 

Parkinsons

Seeds

Pima

Waveform

Wdbc

Iris Wine

 c

0 0.2 0.4 0.6 0.8 1
ARI via informative BPEC

0

0.2

0.4

0.6

0.8

1

A
R

I v
ia

 B
P

E
C

Pima

Waveform

Parkinsons

Wine

Seeds Iris

WDBC

 d

Fig. 13. The ARI values via BPEC vs. ARI values via (a) ECM, (b) EVCLUS, (c) EK-NNclus, and (d) informative BPEC with limited composite clusters

TABLE V
CRI (mean ± std.) BETWEEN BPECAND OTHER EVIDENTIAL

CLUSTERING ALGORITHMS.

Datasets BPEC-ECM BPEC-EVCLUS BPEC-EK-NNclus

Iris 0.9436 ± 0.0001 0.7407 ± 0.0222 0.3572 ± 0

Parkinsons 0.8434 ± 0.0001 0.5365 ± 0.0275 −0.1258 ± 0.0203

Pima 0.9331 ± 0.0005 0.6207 ± 0.0022 0.0045 ± 0

Seeds 0.9504 ± 0.0002 0.6053 ± 0.0047 0.3834 ± 0.0142

Waveform 0.9472 ± 0.0001 0.7157 ± 0.0016 0.3963 ± 0

WDBC 0.9596 ± 0.0003 0.6527 ± 0.0123 0.5352 ± 0

Wine 0.9616 ± 0.0001 0.7642 ± 0.0074 0.3423 ± 0

evidential algorithms. (Note that, for the EK-NNclus we only
considered the cases when true number of clusters had been
found). The mean CRI and standard deviation (std.) over the
ten times are presented in Table V. It can be concluded from
Table V that, on the one hand, the cluster centers found by
the BPEC are not the same to those obtained by the ECM, on
the other hand, BPEC creates different credal partitions from
those generalized by the ECM, EVCLUS and EK-NNclus.

To gain further insight into the relative performances of
BPEC and alternative evidential clustering algorithms, we
compared the closeness of the hard partitions generated from
credal partitions according to maximum rule (9) by each
algorithm, to the true hard partition for each dataset. Fig. 13
displays the ARI values obtained by BPEC vs. those obtained
by ECM, EVCLUS, and EK-NNclus. Fig. 13a shows that
BPEC outperforms ECM on these seven real-world datasets. It
can be seen from Fig. 13b that BPEC outperforms EVCLUS in
most cases except for the Wine dataset, for which BPEC and
EVCLUS have comparable performances. We can see from
Fig. 13c that EK-NNclus outperforms BPEC on the Wine and
Seeds datasets, whereas BPEC outperforms EK-NNclus on the
other five real-world datasets. Finally, Fig. 13d shows that the
performance of the BPEC algorithm is not deteriorated when
limiting the number of composite clusters.

V. CONCLUSIONS

In this paper, we have introduced a clustering procedure,
called the Belief-peaks Evidential Clustering (BPEC) algo-
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rithm, which can find the true number of clusters and create
a credal partition for some datasets with good performances.
When the number of clusters is small (usually less than ten),
the performances of BPEC and its informative variant with
a limited number of composite clusters are approximately
equal. In contrast, BPEC can be enhanced if less informa-
tive composite clusters (i.e., focal sets) when the number
of clusters is large. Furthermore, BPEC can provide hard,
fuzzy, possibilistic and even rough partitions. Finally, as a by-
product of the BPEC algorithm, we proposed a belief version
of DPC, called the Belief Peaks Clustering (BPC) algorithm.
We have shown that BPC outperforms DPC in most cases but
is outperformed by BPEC (of which it is not merely a crisp
version).

There are several avenues for further research, such as
combining the belief peak approach with other clustering
algorithms instead of ECM, and improving the method to make
it applicable to very large datasets.
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APPENDIX A
CALCULATIONS OF (25) AND (26) USING THE ALTERNATE

OPTIMIZATION ALGORITHM IN CONSTRAINED ECM

The Lagrangian for problem (23)-(24) can be written as

L(MΩ, S1, . . . , Sc, λ1, ∙ ∙ ∙ , λn, η1, . . . , ηc)

= JBPEC −
n∑

i=1

λi

( ∑

j:Aj 6=∅

mΩ
ij + mΩ

i∅ − 1
)

−
c∑

k=1

ηk

(
det(Sk)− 1

)
, (31)

whereλi andηk are Lagrange multipliers.
First, we optimizemΩ

ij and mΩ
i∅ by fixing matrix Sk.

By calculating the partial derivatives of (31) with respect
to mΩ

ij , mΩ
i∅ and λi and setting them to zero, we have for

i = 1, 2, . . . , n and all j such thatAj ⊆ Ω,

∂L
∂mΩ

ij

= β|Aj |
α(mΩ

ij)
β−1D2

ij − λi = 0, (32a)

∂L
∂mΩ

i∅

= βΔ2(mΩ
i∅)

β−1 − λi = 0, (32b)

∂L
∂λi

=
∑

j:Aj 6=∅
mΩ

ij + mΩ
i∅ − 1 = 0. (32c)

By solving mΩ
ij and mΩ

i∅ from (32a) and (32b) and inserting
them into (32c), we get

(λi

β

) 1
(β−1)

=

1
∑

j:Aj 6=∅
|Aj |−α/(β−1)D

−2/(β−1)
ij + Δ−2/(β−1)

, (33)

which, inserted in (32a) and (32b), leads to (25).

Next, we consider thatmΩ
ij andmΩ

i∅ are fixed to obtainSk

andηk. We have, fork = 1, 2, . . . , c,

∂L
∂Sk

=
n∑

i=1

∑

j:Aj 6=∅

|Aj |α−1(mΩ
ij)

βskj(xi − v̄j)(xi − v̄j)′

− ηk det(Sk)S−1
k = 0, (34)

and
∂L
∂ηk

= det(Sk)− 1 = 0. (35)

Define

Σk =
n∑

i=1

∑

j:Aj 6=∅

|Aj |
α−1(mΩ

ij)
βskj(xi − v̄j)(xi − v̄j)

′.

From (34) and (35), it follows that

ΣkSk = ηkI, k = 1, 2, ∙ ∙ ∙ , c, (36)

whereI is a p× p identify matrix. Taking the determinant of
(36), we get

det(ΣkSk) = det(Σk) det(Sk) = det(Σk) = ηp
k, (37)

which leads to
ηk = det(Σk)1/p. (38)

By inserting (38) into (34), we finally get (26).

APPENDIX B
BPC: BELIEF PEAKS CLUSTERINGALGORITHM

The belief version of DPC algorithm, i.e., belief peaks
clustering algorithm (BPC) is summarized as follow.

Algorithm 2 : Belief peaks clustering
Input : K,α0, q, xi ∈ Rp for i = 1, 2, ∙ ∙ ∙ , n
Calculate degrees of belief (BelCi ({C})) for all objects1

using (15)
Calculate delta’s (δi) for all objects according to (18)2

Draw the decision graphδ −Bel3

Select cluster centersvk, k = 1, 2, ∙ ∙ ∙ c4

Assign each of the remaining objects to the same cluster5

as its nearest neighbor with higher belief
Output : cluster centers and hard partition
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