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Decision-Making with Belief Functions: a Review

Thierry Denœux

Université de Technologie de Compiègne, CNRS
UMR 7253 Heudiasyc, Compiègne, France

Abstract

Approaches to decision-making under uncertainty in the belief function framework are re-
viewed. Most methods are shown to blend criteria for decision under ignorance with the
maximum expected utility principle of Bayesian decision theory. A distinction is made be-
tween methods that construct a complete preference relation among acts, and those that
allow incomparability of some acts due to lack of information. Methods developed in the
imprecise probability framework are applicable in the Dempster-Shafer context and are also
reviewed. Shafer’s constructive decision theory, which substitutes the notion of goal for that
of utility, is described and contrasted with other approaches. The paper ends by pointing out
the need to carry out deeper investigation of fundamental issues related to decision-making
with belief functions and to assess the descriptive, normative and prescriptive values of the
different approaches.

Keywords: Dempster-Shafer theory, evidence theory, decision under uncertainty.

1. Introduction

The idea of using completely monotone capacities, or belief functions, to model uncer-
tainty dates back to Dempster’s seminal work on statistical inference [12, 13, 14]. It was later
elaborated by Shafer in his 1976 book [55, 59], to become a full-fledged theory of uncertainty,
now commonly referred to as Dempster-Shafer (DS) theory, evidence theory, or theory of
belief functions [19]. In short, DS theory starts with the definition of a frame of discernment
Ω containing all the possible values some variable X can take. One and only one element of
Ω is the true value. Independent pieces by evidence about X are then represented by belief
functions and combined using a suitable operator called Dempster’s rule of combination.

Much of the appeal of this theory is due to the generality of the belief function framework.
If Bel is additive, it is a probability measure, and the usual probabilistic formalism if
recovered. If there is some subset A of Ω such that Bel(B) = 1 if B contains A and
Bel(B) = 0 otherwise, then belief function Bel represents a state of knowledge in which
we know for sure that the truth is in A, and nothing else. In particular, the case A = Ω
corresponds to complete ignorance or lack of evidence. Belief functions thus allow us to
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represent logical information, probabilistic information, or any combination of both. In
that sense, belief functions can be seen both as generalized sets [23], and as generalized
probability measures.

Whereas Shafer’s book presented in great detail the mathematics of belief functions in
the finite setting as well as mechanisms for combining belief functions, possibly expressed
in different frames, it remained silent on the important issue of decision-making. Shafer
wrote a paper on this topic in the early 1980’s [59], but this paper remained unpublished
until recently [58]. In the last 40 years, many researchers have attempted to fill this vacuum
and propose methods for making decisions when uncertainty is described by belief functions.
The objective of this review paper is to provide a broad picture of these endeavors in view
of clarifying the main issues and indicating directions for further research.

As belief functions make it possible to represent both ignorance and probabilistic infor-
mation, most approaches to decision-making using belief functions extend classical methods
for making decision under ignorance or probabilistic uncertainty. We will thus start with
a brief reminder of these classical methods in Section 2, after which the belief function
framework will be recalled in Section 3. We will then proceed with a systematic exposition
of decision methods in the belief function framework. Criteria for decision-making with
belief functions directly extending the classical criteria will first be reviewed in Section 4,
and approaches based on the imprecise-probability view of belief functions will be described
in Section 5. Shafer’s “constructive” decision theory [58], in which the concept of “goal”
replaces that of “utility” will be exposed in Section 6. Finally, the different approaches will
be summarized and discussed in Section 7.

2. Classical Decision Theories

In this section, we will first introduce the formal setting as well as the main notations
and definitions in Section 2.1. The two classical frameworks of decision under ignorance
and decision under probabilistic uncertainty will then be recalled, respectively, in Sections
2.2 and 2.3.

2.1. Definitions and Notations

A decision problem can be seen as a situation in which a decision-maker (DM) has to
choose a course of action (or act) in some set F = {f1, . . . , fn}. An act may have different
consequences, depending on the state of nature. Denoting by Ω = {ω1, . . . , ωs} the set of
states of nature and by C = {c1, . . . , cr} the set of consequences (or outcomes), an act can
thus be formalized as a mapping f from Ω to C. In this paper, the three sets Ω, C and F
are assumed to be finite.

It is often assumed that the desirability of the consequences can be modeled by a quanti-
tative utility function u : C → R, which assigns a numerical value to each consequence. The
higher this value, the more desirable is the consequence for the DM. Utilities can be elicited
directly, or then can sometimes be deduced from the observation of the DM’s preferences
under uncertainty [72, 52]. If the acts are indexed by i and the states of nature by j, we
will denote by cij = fi(ωj) the consequence of selecting act fi if state ωj occurs, and by
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Table 1: Payoff matrix for the investment example.

uij ω1 ω2 ω3

f1 37 25 23
f2 49 70 2
f3 4 96 1
f4 22 76 25
f5 35 20 23

uij = u(cij) the corresponding utility. The n × s matrix U = (uij) will be called a payoff
or utility matrix. These notions will now be illustrated using the following example inspired
from [41].

Example 1. Assume that the DM wants to invest money in stocks of some company. The
acts then correspond to the stocks of the different companies. We assume that the DM
considers five different stocks in F = {f1, . . . , f5}. The states of nature correspond to dif-
ferent economic scenarios that might occur and which would influence the payoffs of the
stocks of the different companies. Suppose that the DM considers three scenarios collected
in Ω = {ω1, ω2, ω3}. The payoff matrix is shown in Table 1.

If the true state of nature ω were known, then the desirability of an act f could be deduced
from that of its consequence f(ω). Typically, however, the state of nature is unknown. A
decision problem is then described by (1) the payoff matrix U and (2) some description of
the uncertainty about the state of nature. The outcome of the decision problem is typically
a preference relation < among acts. This relation is interpreted as follows: given two acts f
and f ′, f < f ′ means that f is found by the DM to be at least as desirable as f ′. We also
define the strict preference relation as f � f ′ iff f < f ′ and ¬(f ′ < f) (meaning that f is
strictly more desirable than f ′) and an indifference relation f ∼ f ′ iff f < f ′ and f ′ < f
(meaning that f and f ′ are equally desirable).

The preference relation is generally assumed to be reflexive (for any f , f < f) and
transitive (for any f, f ′, f ′′, if f < f ′ and f ′ < f ′′, then f < f ′′): it is then a preorder. If,
additionally, the relation is antisymmetric (for any f, f ′, if f < f ′ and f ′ < f , then f = f ′),
then it is an order. This preference relation is complete if, for any two acts f and f ′, f < f ′

or f ′ < f . Otherwise, it is partial. An act f is a greatest element of relation < if it is at least
as desirable as any other act, i.e, if, for any f ′ ∈ F , f < f ′. A complete preorder always
has at least one greatest element, and it has only one if it is a complete order. An act f
is a maximal (or non-dominated) element of the strict preference relation if no other act is
strictly preferred to f , i.e., if for any f ′ ∈ F , ¬(f ′ � f). A greatest element is a maximal
element, but the converse is not true in general.

Most decision methods provide a complete or partial preorder of the set F of acts. We
can then compute the set of greatest elements in the former case, and the set of maximal
elements in the latter. Some methods do not give us a preference relation, but directly a
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choice set, defined as subset F∗ ⊆ F composed of the “most preferred” acts. We can then
reconstruct a partial preference relation such that all elements in F∗ are greatest elements
as follows:

∀f, f ′ ∈ F∗, f ∼ f ′

∀f ∈ F∗,∀f ′ 6∈ F∗, f � f ′.

2.2. Decision under Ignorance

Let us start with the situation where the DM is totally ignorant of the state of nature.
All the information given to the DM is thus the utility matrix U . A act fi is said to be
dominated by fk if the consequences of act fk are always at least as desirable as those of
act fi, whatever the state of nature, and strictly more desirable in at least one state, i.e.,
if uij ≤ ukj for all j, and uij < ukj for some j. According to the non-domination principle
[68], an act that is dominated by another one should never be chosen and can, therefore, be
discarded. For instance, in Table 1, we can see that act f5 is dominated by f1: consequently,
we can remove f5 from further consideration.

After all dominated acts have been removed, there remains the problem of ordering
the non-dominated acts by desirability, and finding the set of most desirable acts. In the
following, we first recall some classical decision methods in this setting, as well as a more
recent generalization. We then discuss some axiomatic arguments proposed by Arrow and
Hurwicz [2].

Classical Criteria

Several criteria of “rational choice” that have been proposed to derive a complete pref-
erence relation over acts. They are summarized in the following list (see, e.g., [44, 68]):

• The maximax criterion considers, for each act, its more favorable consequence. We
then have fi < fk iff

max
j
uij ≥ max

j
ukj. (1)

• Conversely, Wald’s maximin criterion [75] takes into account the least favorable con-
sequence of each act: act fi is thus at least as desirable as fk iff

min
j
uij ≥ min

j
ukj. (2)

• The Hurwicz criterion [35] considers, for each act, a convex combination of the mini-
mum and maximum utility: fi < fk iff

αmin
j
uij + (1− α) max

j
uij ≥ αmin

j
ukj + (1− α) max

j
ukj, (3)

where α is a parameter in [0, 1] called the pessimism index.
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Table 2: Calculation of the preference relations for the maximin, maximax, Hurwicz (α = 0.5) and Laplace
criteria with the payoff matrix of Example 1.

ui1 ui2 ui3 minj uij maxj uij 0.5(minj uij + maxj uij)
1
s

∑
j uij

f1 37 25 23 23 37 30 28.3
f2 49 70 2 2 70 36 40.3
f3 4 96 1 1 96 48.5 33.7
f4 22 76 25 22 76 49 41

• The Laplace criterion ranks acts according to the average utility of their consequences:
fi < fk iff

1

s

s∑
j=1

uij ≥
1

s

s∑
j=1

ukj. (4)

• Finally, the minimax regret criterion [51] considers an act fi to be at least as desirable
as fk if it has smaller maximal regret, where regret is defined as the utility difference
with the best act, for a given state of nature. More precisely, let the regret rij for act
fi and state ωj be defined as follows,

rij = max
`
u`j − uij. (5)

The maximum regret for act fi is Ri = maxj rij, and act fi is considered to be at least
as desirable as fk when Ri ≤ Rk.

Example 2. Consider the payoff matrix of Example 1. We have seen that act f5 is domi-
nated and should be ruled out. From the calculations shown in Tables 2 and 3, we can see
that the above five criteria yield different strict preference relations:

• Maximin: f1 � f4 � f2 � f3

• Maximax: f3 � f4 � f2 � f1

• Hurwicz with α = 0.5: f4 � f3 � f2 � f1

• Laplace: f4 � f2 � f3 � f1

• Minimax regret: f2 � f4 � f3 � f1

The maximax and maximin criteria correspond, respectively, to extreme optimistic and
pessimistic (or conservative) attitudes of the DM. The Hurwicz criterion allows us to pa-
rameterize the DM’s attitude toward ambiguity, using the pessimism index. Figure 1(a)
shows the aggregated utilities as functions of the pessimism index. The Laplace criterion
can be seen as an application of the expected utility principle (see Section 2.3 below), using
a uniform probability distribution over the state of nature as an application of Laplace’s
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Table 3: Calculation of the preference relation for the max regret criterion with the payoff matrix of Example
1.

ui1 ui2 ui3 ri1 ri2 ri3 maxj rij
f1 37 25 23 12 71 2 71
f2 49 70 2 0 26 23 26
f3 4 96 1 45 0 24 45
f4 22 76 25 27 20 0 27

principle of indifference. These four criteria amount to extending the utility function to
sets, i.e., they aggregate, for each act fi, the utilities uij for all j, into a single number.
The minimax regret criterion works differently, as it measures the desirability of an act by
a quantity that depends on the consequences of all other acts.

Ordered Weighted Average Criterion

The Laplace, maximax, maximin and Hurwicz criteria correspond to different ways of
aggregating utilities using, respectively, the average, the maximum, the minimum, and a
convex sum of the minimum and the maximum. These four operators happen to belong to
the family of so-called Ordered Weighted Average (OWA) operators [84]. An OWA operator
of arity s is a function F : Rs → R of the form

F (x1, . . . , xs) =
s∑
i=1

wix(i), (6)

where x(i) is the i-th largest element in the collection x1, . . . , xs, and w1, . . . , ws are positive
weights that sum to 1. It is clear that the four above-mentioned operators are obtained for
different choices of the weights:

Average: (1/s, 1/s, . . . , 1/s);

Maximum: (1, 0, . . . , 0);

Minimum: (0, . . . , 0, 1);

Hurwicz: (1− α, 0, . . . , 0, α).

In a decision-making context, each weight wi may be interpreted as a probability that the i-
th best outcome will happen. Yager [84] defines the degree of optimism of an OWA operator
with weight vector w as

OPT (w) =
s∑
i=1

s− i
s− 1

wi. (7)

The degree of optimism equals 1 for the maximum, 0 for the minimum, 0.5 for the mean,
and 1− α for the Hurwicz criterion. Given a degree of optimism β, Yager [84] proposes to
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Table 4: Aggregated utilities using the OWA aggregation operator with β = 0.2 and β = 0.7 and the payoff
matrix of Example 1.

ui1 ui2 ui3 F0.2(ui1, ui2, ui3) F0.7(ui1, ui2, ui3)
f1 37 25 23 24.62 31.34
f2 49 70 2 18.67 53.40
f3 4 96 1 9.49 54.50
f4 22 76 25 27.13 52.79

choose the OWA operator Fβ that maximizes the entropy

ENT (w) = −
s∑
i=1

wi logwi, (8)

under the constraint OPT (w) = β.

Example 3. Consider again the data of Example 1. With β = 0.2 and β = 0.7, we get, re-
spectively, w = (0.0819, 0.236, 0.682) and w = (0.554, 0.292, 0.154). The aggregating utilities
for these two cases are shown in Table 4, and the corresponding preference relations are:

• β = 0.2: f4 � f1 � f2 � f3

• β = 0.7: f3 � f2 � f4 � f1.

Figure 1(b) shows the aggregated utilities for each of the four acts, as functions of β. Com-
paring Figures 1(a) and 1(b), we can see that the Hurwicz and OWA criteria yield similar
results in this case. However, the OWA parametrization allows us to recover the Laplace
criterion for β = 0.5.

Axiomatic Arguments

The fact that different criteria yield different (and, sometimes, even opposite) results is
disturbing and it calls for axiomatic arguments to support the choice of a criterion. Given
a set of acts F , each of the above five criteria induces a complete preorder < and a choice
set F∗ containing the greatest elements of <. Arrow and Hurwicz [2] have proposed four
axioms that a choice operator F → F∗ (i.e., a way of constructing the choice set) should
verify. The following description of these axioms is taken from [27].

Axiom A1: The non-empty intersection of a decision problem (set of acts) and the choice
set of a larger decision problem is the choice set of the former. Formally, if F1 ⊂ F2

and F∗2 ∩ F1 6= ∅, then F∗1 = F∗2 ∩ F1.

Axiom A2: Relabeling actions and states does not change the optimal status of actions.
Formally, if φa is a one-to-one mapping from F1 to F2 and φs is a one-to-one mapping
from Ω1 to Ω2 such that, for all f ∈ F1 and for all ω ∈ Ω1, f(ω) = φa(f)(φs(ω)), then
f ∈ F∗1 iff φa(f) ∈ F∗2 .
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Figure 1: Aggregated utilities vs. pessimism index α for the Hurwicz criterion (a) and vs. one minus the
degree of optimism β for the OWA criterion (b). (Example 3).

Given a set of acts F , a state ω ∈ Ω is said to be duplicate if there exists another state ω′

in Ω such that, for all f ∈ F , f(ω) = f(ω′). Deleting a duplicate state ω means defining
a new state space Ω′ = Ω \ {ω} and the new set of actions F|Ω′ containing the restrictions
f |Ω′ of all acts f in F . We then have the following postulate.

Axiom A3: Deletion of a duplicate state does not change the optimality status of actions.
Formally, f ∈ F∗ iff f |Ω′ ∈ (F|Ω′)∗.

Axiom A4 (dominance): If f ∈ F∗ and f ′ dominates f , then f ′ ∈ F∗. If f 6∈ F∗ and f
dominates f ′, then f ′ 6∈ F∗.

Axiom A1 is clearly violated by the minimax regret criterion. To see this, consider again,
for instance, the decision problem of Example 1. For F1 = {f1, f2, f3, f4}, we have seen that
F∗1 = {f2} according to the minimax regret criterion. Now, consider a new act f6 such
that u61 = 0, u62 = 100 and u63 = 0, and F2 = {f1, f2, f3, f4, f6}. As a consequence of
the introduction of this new act, the maximal regrets of f1, f2, f3, f4 and f6 now become,
respectively, 75, 30, 45, 27 and 49. Hence, F∗2 = {f4} and F∗1 6= F∗2 ∩F1. Act f4, which was
initially considered strictly less desirable than f2, becomes strictly more desirable after an
additional act f6 is considered.

It is also easy to see that Axiom A3 is violated by the Laplace criterion. To illustrate this
point, assume that, in Example 1, we split the state of nature ω1 in two states: “Economic
scenario 1 occurs and there is life on Mars” (ω′1) and “Economic scenario 1 occurs and
there is no life on Mars” (ω′′1). It is clear that the payoffs of the real estate investments
are identical under ω′1 and ω′′1 . Consequently, the new payoff matrix will be obtained by
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duplicating the first column in Table 1. With this payoff matrix, the average utilities for
the four acts are 30.5, 42.5, 26.25 and 36.25. Consequently, the choice set for the Laplace
criterion is F∗ = {f2}. Should we learn that there is no life of Mars, we would delete ω′1
and get that same payoff matrix as in Table 1, resulting in choice set {f4}. Learning that
there is no life on Mars thus made us change our investment decision!

Consequently, convincing arguments can be put forward for rejecting the Laplace and
minimax regret criteria as criteria for rational decision-making under ignorance. A stronger
result, due to Arrow and Hurwicz [2] is that, under some regularity assumptions, Axioms
A1 to A4 imply that the choice set depends only on the worst and the best consequences of
each act. This result provides a strong argument in favor of the Hurwicz criterion (3).

2.3. Decision under Probabilistic Uncertainty

Let us now consider the situation where uncertainty about the state of nature is quantified
by probabilities p1, . . . , ps on Ω. Typically, these probabilities are assumed to be objective:
we say that we have a problem of decision under risk. However, the following developments
also apply to the case where the probabilities are subjective. In any case, the probability
distribution p1, . . . , ps is assumed to be known, together with the utility matrix U . We can
then compute, for each act fi, its expected utility as

EU(fi) =
s∑
j=1

uijpj. (9)

According to the Maximum Expected Utility (MEU) principle, an act fi is more desirable
than an act fk if its yields more desirable consequences on average over all possible states
of nature, i.e., if it has a higher expected utility: fi < fk iff EU(fi) ≥ EU(fk).

Axiomatic justification

The MEU principle was first axiomatized by von Neumann and Morgenstern [72]. We
give hereafter a summary of their argument. Given a probability distribution on Ω, an act
f : Ω → C induces a probability measure P on the set C of consequences (assumed to be
finite), called a lottery. We denote by L the set of lotteries on C. If we agree that two acts
providing the same lottery are equivalent, then the problem of comparing the desirability of
acts becomes that of comparing the desirability of lotteries. Let < be a preference relation
among lotteries. Von Neumann and Morgenstern argued that, to be rational, a preference
relation should verify the following three axioms.

Complete preorder: the preference relation is a complete and non-trivial preorder (i.e.,
it is a reflexive, transitive and complete relation) on L.

Continuity: for any lotteries P , Q and R such that P � Q � R, there exist probabilities
α and β in (0, 1) such that

αP + (1− α)R � Q � βP + (1− β)R, (10)
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where αP + (1− α)R is a compound lottery, which refers to the situation where you
receive P with probability α and Q with probability 1−α. This axiom means that (1)
no lottery R is so undesirable that it cannot become desirable if mixed with some very
desirable lottery P , and (2) that, conversely, no act P is so desirable that it cannot
become undesirable if mixed with some very undesirable lottery R.

Independence: for any lotteries P , Q and R and for any α ∈ (0, 1],

P < Q⇔ αP + (1− α)R < αQ+ (1− α)R. (11)

We then have the following theorem.

Theorem 1 (Von Neumann and Morgentern). The two following propositions are equiv-
alent:

1. The preference relation � verifies the axioms of complete preorder, continuity, and
independence;

2. There exists a utility function u : C → R such that, for any two lotteries P =
(p1, . . . , pr) and Q = (q1, . . . , qr),

P � Q⇔
r∑
i=1

piu(ci) ≥
r∑
i=1

qiu(ci). (12)

Function u is unique up to a strictly increasing affine transformation.

Discussion

Von Neumann and Morgenstern’s theorem has had a tremendous impact, as it provides
a compelling justification of both the notion of utility, and the MEU principle. For problems
of decision under risk, the normative value of the MEU principle is widely accepted. From a
descriptive point of view, violations of the MEU principle by most DMs in some particular
situations have been demonstrated experimentally by Allais [1], among others.

For problems of decision under uncertainty (in which probabilities are not given in ad-
vance), Savage [52] has argued, based on rationality requirements, that a DM should always
maximize expected utility, for some subjective probability measure and utility function.
However, the relevance of Savage’s axioms has been questioned (see, e.g., [57]). Moreover,
Ellsberg [25] has shown experimentally that, in the presence of ambiguity, people tend to
make decisions in a way that is not consistent with the “sure thing principle”, one of Savage’s
axioms. Ellsberg’s paradox has sparkled a rich literature in theoretical economics aiming to
derive axioms that result in decision rules that better describe the way humans make deci-
sion when ambiguity is present. For instance, Gilboa [29] and Schmeidler [53] have derived
axioms that justify making decisions by maximizing the Choquet expectation of a utility
function with respect to a non-additive measure. As we will see in Section 4.1, these results
are consistent with some decision rules that have been proposed in the DS framework.
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Statistical preference and stochastic dominance

Given an act f , a probability measure P on Ω and a utility function, we can define the
real random variable X = u ◦ f , which is called a gamble [77]. Gamble X represents the
uncertain utility we get if we select act f . Let us now consider two gambles X and Y induced
by two acts defined on the same state space Ω. According to the MEU, X is at least as
desirable as Y iff E(X) ≥ E(Y ). As noted in by Couso and Dubois [8] and Couso [7], this
“dominance in expectation” relation is just one way to compare two random variables. Two
well-known alternatives are the statistical preference and first-order stochastic dominance
relations.

We say that X is statistically preferred to Y (and we note X �SP Y ) if P (X > Y ) ≥
P (X < Y ) or, equivalently, P (X > Y ) + 1

2
P (X = Y ) ≥ 0.5. We note X �SP Y if X �SP Y

but ¬(Y �SP X). The statistical preference relation is complete, but it is not transitive:
it is possible to have three gambles X, Y and Z such that X �SP Y and Y �SP Z, but
Z �SP X [11]. This lack of transitivity makes the usefulness of the statistical preference
relation questionable for decision-making.

The notion of (first-order) stochastic dominance [80] seems to be more useful. We say
that X is stochastically greater than Y , and we write X �SD Y if, for any x ∈ R,

P (X > x) ≥ P (Y > x). (13)

The meaning of this relation is clear: gamble X is at least as desirable as gamble Y if any
utility threshold x has a greater probability of being exceeded by X than it has by Y . The
stochastic relevance relation is a partial order. Also, it is well-known that X �SD Y iff
E[h(X)] ≥ E[h(Y )] for any bounded non decreasing function h : R→ R [42]. Consequently,
stochastic relevance is particularly relevant in situations where the utility function is only
known up to a non decreasing transformation.

Extensions of the statistical preference and stochastic dominance relations in the DS
setting will be discussed in Section 4.7.

3. Theory of Belief Functions

Before reviewing decision methods in the belief function framework in the following
sections, we will first recall the main definitions and results pertaining to belief functions in
Section 3.1. The motivation for considering decision problems in this framework will then
be exposed in Section 3.2.

3.1. Belief Functions

Basic definitions. As before, let Ω be the set of states of nature. A mass function [55] is a
mapping m from the power set of Ω, denoted by 2Ω, to [0, 1], such that∑

A⊆Ω

m(A) = 1,

and m(∅) = 0. Any subset A of Ω such that m(A) > 0 is called a focal set of m. In DS
theory, m is used as a representation of a piece of evidence about some variable X taking
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values in Ω. Such a function arises when we compare the evidence to the situation in which
we receive a coded message [56], and we know that the code has been selected at random
from a set S = {s1, . . . , sq} with known probabilities p1, . . . , pq. If code si was selected, then
the meaning of the message is X ∈ Γ(si), where Γ is a multi-valued mapping from S to 2Ω.
In this setting,

m(A) =
∑

{i|Γ(si)=A}

pi

is the probability that the meaning of the code is X ∈ A, i.e., the probability of knowing
only that X ∈ A, and nothing more. A mass function m on a finite set Ω can always be seen
as being induced by a probability space (S, 2S, P ), where S is a finite set and P a probability
measure on (S, 2S), and a multi-valued mapping Γ : S → 2Ω [12].

Given a mass function m, belief and plausibility functions can be defined, respectively,
as

Bel(A) =
∑
B⊆A

m(B)

and
Pl(A) =

∑
B∩A 6=∅

m(B) = 1−Bel(A),

where A denotes the complement of A. The quantities Bel(A) and Pl(A) denote, respec-
tively, the probability that the evidence implies the proposition X ∈ A, and the probability
that the evidence does not contradict this proposition. Mathematically, a belief function is
a completely monotone capacity, i.e., it verifies Bel(∅) = 0, Bel(Ω) = 1 and, for any k ≥ 2
and for any family A1, . . . , Ak of subsets of Ω,

Bel

 k⋃
i=1

Ai

 ≥ ∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

⋂
i∈I

Ai

 .

Conversely, any completely monotone capacity Bel corresponds a unique mass function m
such that

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|Bel(B),

for all A ⊆ Ω.

Relationship with probabilistic and set-theoretic formalisms. When the focal sets of m are
singletons, functions Bel and Pl boil down to a single probability measure. Mass function
m is then said to be Bayesian. DS theory is, thus, strictly more expressive than probability
theory, which is recovered as a special case when the available information is uncertain,
but precise. When there is only one focal set A, then Bel(B) = I(A ⊆ B), where I(·) is
the indicator function. Such a belief function is said to be logical. It describes to a piece
of evidence that tell us that X ∈ A for sure, and nothing more: it thus describes certain,
but imprecise information. There is a one-to-one correspondence between subsets and Ω
and logical belief functions. A general belief function (or, equivalently, its associated mass
function) can, thus, be seen as a generalized set [23].
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Imprecise-probability view. Given a belief function Bel induced by a mass function m, we
can consider the set P(m) of probability measures P that dominate it, i.e., such that P (A) ≥
Bel(A) for all A ⊆ Ω. Any such probability measure is said to be compatible with Bel, and
P(m) is called the credal set of m. It is clear that this set is convex. An arbitrary element
of P(m) can be obtained by distributing each mass m(A) among the elements of A. More
precisely, let us call an allocation of m any function

a : Ω× (2Ω \ {∅})→ [0, 1] (14)

such that, for all A ⊆ Ω, ∑
ω∈A

a(ω,A) = m(A). (15)

Each quantity a(ω,A) can be viewed as a part of m(A) allocated to the element ω of A. By
summing up the numbers a(ω,A) for each ω, we get a probability mass function on Ω,

pa(ω) =
∑
A3ω

a(ω,A). (16)

It can be shown [12] that the set of probability measures constructed in that way is exactly
equal to the credal set P(m). Furthermore, the following equalities hold for any A ⊆ Ω:

Bel(A) = min
P∈P(m)

P (A)

Pl(A) = max
P∈P(m)

P (A).

A belief function is, thus, a coherent lower probability. However, not all coherent lower
probabilities are belief functions [77]. It must be emphasized that DS theory and the theory
of imprecise probabilities (IP) initiated by Walley [77] and developed by his followers (see
e.g., [3]) are different theoretical frameworks. In particular, the two theories have different
rules of conditioning [32, 38]. In Section 5, we will review some decision rules that have been
proposed in the IP setting, because some of these rules can also be interpreted from the DS
perspective, while others may receive such an interpretation in the future.

3.2. Necessity of a Theory of Decision-Making with Belief Functions

As shown in the previous section, the formalism of belief functions, having more degrees of
freedom than probability theory, allows for the representation of weaker forms of information,
up to total ignorance. Belief functions thus appear in decision problems when information
is weaker than generally assumed in the probabilistic framework. In particular, two non
exclusive situations are typically encountered.

The first situation is one in which the DM’s information concerning the possible states
of nature is best described by a mass function m on Ω. This is the case, for instance,
in classification problem, when a classifier quantifies the uncertainty about the class of an
object by a belief function, and a decision regarding the assignment of that object has to
be made [16]. Any act f then carries m to the set C of consequences. The mass assigned

13



to each focal set A of m is transferred to the image of A by f , denoted as f [A] = {c ∈
C | f(ω) = c for some ω ∈ A}. The resulting mass function1 µf on C, called an evidential
lottery, is then defined by

µf (B) =
∑

{A⊆Ω|f [A]=B}

m(A), (17)

for any B ⊆ C.
The second situation in which belief functions come into the picture is that in which

the consequences of each act under each state of nature may not be precisely described. As
discussed in [26], this situation may arise when the decision problem is underspecified: for
instance, the set of acts F or the state space Ω may be too coarsely defined. In that case, an
act may formally be represented by a multi-valued mapping f : Ω → 2C, assigning a set of
possible consequences f(ω) ⊆ C to each state of nature ω. Given a probability distribution
p : Ω→ [0, 1], f then induces the following mass function µf on C,

µf (B) =
∑

{ω∈Ω|f(ω)=B}

p(ω), (18)

for all B ⊆ C.
It is clear that these two situations can occur simultaneously, i.e., we may have a mass

function m on Ω, and ill-known consequences. In that case, Equations (17) and (18) become

µf (B) =
∑

{A⊆Ω|
⋃

ω∈A f(ω)=B}

m(A), (19)

for all B ⊆ C. Assuming the (possibly Bayesian) mass function m on Ω to be induced by
a multi-valued mapping Γ : S → 2Ω, where S is a probability space, mass function µf is
induced by the multi-valued mapping f ∗ ◦ Γ : S → 2C, where function f ∗ : 2Ω → 2C is
defined as f ∗(A) = f [A] for any A ⊆ Ω if f is single-valued and f ∗(A) =

⋃
ω∈A f(ω) if f is

multi-valued.

Example 4. Let Ω = {ω1, ω2, ω3} and m the following mass function on Ω:

m({ω1, ω2}) = 0.3, m({ω2, ω3}) = 0.2,
m({ω3}) = 0.4, m(Ω) = 0.1.

(20)

Let C = {c1, c2, c3} and f the act

f(ω1) = {c1}, f(ω2) = {c1, c2}, f(ω3) = {c2, c3}. (21)

To compute the induced mass function on C, we transfer the masses as follows:

m({ω1, ω2}) = 0.3→ f(ω1) ∪ f(ω2) = {c1, c2} (22a)

m({ω2, ω3}) = 0.2→ f(ω2) ∪ f(ω3) = {c1, c2, c3} (22b)

m({ω3}) = 0.4→ f(ω3) = {c2, c3} (22c)

m(Ω) = 0.1→ f(ω1) ∪ f(ω2) ∪ f(ω3) = {c1, c2, c3}. (22d)

1In the rest of this paper, we will denote mass functions on Ω by the letter m and mass functions on C
(evidential lotteries) by the Greek letter µ.
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Finally, we obtain the following mass function on C:

µf ({c1, c2}) = 0.3, µf ({c2, c3}) = 0.4, µf ({c1, c2, c3}) = 0.3. (23)

In any of the situations considered above, we can assign to each act f an evidential lottery
µf on C. Determining preferences among acts then amounts to determining preferences
among evidential lotteries. Several methods generalizing the decision criteria reviewed in
Section 2 will first be reviewed in Section 4. Decision methods based on the imprecise-
probability view of belief functions will then be presented in Section 5.

4. Extensions of Classical Criteria

As recalled in Section 3.1, belief functions can be seen both as generalized sets and as
generalized probabilities. As a consequence, criteria for decision-making with belief functions
can be constructed by blending the criteria for decision under ignorance reviewed in Section
2.2 with the MEU principle recalled in Section 2.3. These criteria will be examined in
Sections 4.1 to 4.5, and axiomatic arguments will be discussed in Section 4.6. Finally,
partial preference relations among evidential lotteries will be discussed in Section 4.7.

4.1. Upper and Lower Expected Utilities

Let µ be a mass function on C, and u a utility function C → R. The lower and upper
expectations of u with respect to µ are defined, respectively, as the averages of the minima
and the maxima of u within each focal set of µ [12, 56, 15]:

Eµ(u) =
∑
A⊆C

µ(A) min
c∈A

u(c), (24a)

Eµ(u) =
∑
A⊆C

µ(A) max
c∈A

u(c). (24b)

It is clear that Eµ(u) ≤ Eµ(u), with the inequality becoming an equality when µ is Bayesian,
in which case the lower and upper expectations collapse to the usual expectation. If µ is
logical with focal set A, then Eµ(u) and Eµ(u) are, respectively, the minimum and the
maximum of u in A. As shown in [31], the lower and upper expectations are Choquet
integrals [5] with respect to the belief and plausibility functions, respectively. Consequently,
they are consistent with the decision theories proposed by Gilboa [29] and Schmeidler [53],
as discussed in Section 2.3. We can also mention the axiomatic justification of the lower
expectation proposed by Gilboa and Schmeidler [30].

Based on the notions of lower and upper expectations, we can define two complete
preference relations among evidential lotteries as

µ1 <∗ µ2 iff Eµ1(u) ≥ Eµ2(u) (25)

and
µ1 <

∗ µ2 iff Eµ1(u) ≥ Eµ2(u). (26)
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Table 5: Lower and upper expected utilities for the payoff matrix of Example 1 and the mass function on Ω
defined in Example 5.

ui1 ui2 ui3 Eµi(u) Eµi(u)
f1 37 25 23 29.0 35.6
f2 49 70 2 30.2 54.8
f3 4 96 1 2.8 49.7
f4 22 76 25 22.3 49.3

Relation <∗ corresponds to a pessimistic (or conservative) attitude of the DM, since it
takes in account the least favorable consequence within each focal set. When µ is logical,
<∗ corresponds to the maximin criterion; symmetrically, <∗ corresponds to an optimistic
attitude and extends the maximax criterion. For this reason, the strategies of maximizing
the lower and upper expected utilities can be referred to as (generalized) maximin and
(generalized) maximax, respectively. Both criteria boil down to the EU criterion when µ is
Bayesian. In the general case, each focal set of µ corresponds to a set of possible consequences
without any probabilities assigned to them. The utility of that set is, thus, computed using
one of the criteria reviewed in Section 2.2 for decision under ignorance; the utilities of the
different focal sets A are then weighted by their masses (probabilities) m(A) and averaged
in a way consistent with the notion of expected utility.

Example 5. Consider again the investment example, with the utility matrix shown in Table
2. Assume that uncertainty about the state of nature Ω is described by the following mass
function:

m({ω1}) = 0.4, m({ω1, ω2}) = 0.2, m({ω3}) = 0.1, m(Ω) = 0.3.

Consider, for instance, act f1. It induces the following evidential lottery:

µ1({c11}) = 0.4, µ1({c11, c12}) = 0.2, µ1({c13}) = 0.1, µ1({c11, c12, c13}) = 0.3,

with u(c11) = 37, u(c12) = 25 and u(c13) = 23. Consequently, the lower and upper expected
utilities can be computed as

Eµ1(u) = 0.4× 37 + 0.2× 25 + 0.1× 23 + 0.3× 23 = 29

Eµ1(u) = 0.4× 37 + 0.2× 37 + 0.1× 23 + 0.3× 37 = 35.6

The lower and upper expected expectations for the fours acts are shown in Table 5. The
corresponding strict preference relations among acts are f2 �∗ f1 �∗ f4 �∗ f3 and f2 �∗
f3 �∗ f4 �∗ f1.
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4.2. Generalized Hurwicz Criterion

Just as the lower and upper expected utility models generalize, respectively, the maximin
and maximax criteria, the Hurwicz criterion (3) can be readily generalized by defining the
expectation of u, for a pessimism index α ∈ [0, 1], as

Eµ,α(u) =
∑
A⊆C

µ(A)

(
αmin

c∈A
u(c) + (1− α) max

c∈A
u(c)

)
(27a)

= αEµ(u) + (1− α)Eµ(u). (27b)

A more general version of this criterion (where α in (27a) depends on A) was first introduced
by Jaffray [36, 37], who also justified it axiomatically (see Section 4.6 below). Criterion (27)
with fixed α was later discussed by Strat [67], who proposed to interpret α as the DM’s
subjective probability that the ambiguity will be resolved unfavorably (see also [66] for a
discussion of this criterion). Hereafter, we will use the term “Hurwicz criterion” to refer to
decision based on (27), as this principle is a direct extension to the Hurwicz criterion in the
case of complete ignorance.

Recently, Ma et al. [45] proposed to determine α automatically as a function of µ by
equating it with the normalized nonspecificity measure [22, 50] of µ defined as

N(µ) =
1

log2 |C|
∑
A⊆C

µ(A) log2(A).

Seeing N(µ) as a measure of ambiguity, this approach corresponds to a decision model in
which the DM is all the more cautious that there is more ambiguity. Ma et al. show that this
model is subject neither to Ellsberg’s paradox [25], nor to a more recent paradox proposed by
Machina [46], which contradicts Choquet expected utility. However, this decision criterion
seems to be, otherwise, weakly justified.

4.3. Pignistic Criterion

A completely different approach to decision-making with belief function was advocated
by Smets as part of the Transferable Belief Model, a variant of DS theory [61, 64, 62].
Smets defended a two-level mental model, composed of a credal level, where an agent’s
belief are represented by belief functions, and the pignistic level, where decisions are made
by maximizing EU with respect to a probability measure derived from a belief function. The
rationale for introducing probabilities at the decision level is the avoidance of Dutch books,
i.e., sequences of bets than incur sure loss [71]. Furthermore, Smets [63] argued that, as the
consequence of the MEU principle, the belief-probability transformation T should be linear,
i.e., it should verify

T
(
αµ1 + (1− α)µ2

)
= αT (µ1) + (1− α)T (µ2), (28)

for any mass functions µ1 and µ2 and for any α ∈ [0, 1]. He then showed that the only
transformation T verifying (28) is the pignistic transformation, with pµ = T (µ) given by

pµ(c) =
∑
A⊆C

µ(A)

|A|
I(c ∈ A), (29)
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for any c ∈ C. The pignistic probability pµ turns out to be mathematically identical to the
Shapley value in cooperative game theory [60]. The expected utility w.r.t. the pignistic
probability is

Ep(u) =
∑
c∈C

pµ(c)u(c) (30a)

=
∑
c∈C

u(c)
∑

{A⊆C|c∈A}

µ(A)

|A|
(30b)

=
∑
{A⊆C}

µ(A)

 1

|A|
∑
c∈A

u(c)

 . (30c)

The maximum pignistic expected utility criterion thus averages the mean utility inside each
focal set A. Consequently, it extends the Laplace criterion discussed in Section 2.2, when
uncertainty is quantified by a belief function.

Example 6. Continuing Example 5, the pignistic expected utility of act f1 is

Ep1(u) = 0.4× 37 + 0.2× 37 + 25

2
+ 0.1× 23 + 0.3× 37 + 25 + 23

3
= 31.8.

Similarly, we find Ep2(u) = 43.8, Ep3(u) = 21.8 and Ep4(u) = 33.4.

Remark 1. We have seen in Section 2.2 that the Laplace criterion for decision-making un-
der ignorance may lead to different decisions when a state of nature is “duplicated”, i.e.,
when the state space Ω is refined. The pignistic criterion obviously has the same draw-
back: refining the frame of discernment changes the pignistic probability. Smets [64] tried
to circumvent this difficulty by stating that the DM needs to select a “betting frame” before
computing the pignistic probability. It is not always clear, however, on which basis such a
choice can be made. Wilson [81] showed that the lower and upper expectations (24) are,
respectively, the minimum and the maximum of the pignistic expectations computed over all
refinements of the frame of discernment.

Remark 2. There are obviously other ways of transforming a belief function into a proba-
bility distribution. Voorbraak [73] and Cobb and Shenoy [6] have argued for the plausibility
transformation, which approximates a belief function by a probability distribution, in such a
way that the probability of singletons is proportional to their plausibility. This transformation
has the remarkable property of being compatible with Dempster’s rule (i.e., the approximation
of the orthogonal sum of two belief functions is the orthogonal sum of their approximations).
This property makes the plausibility transformation suitable for approximating a DS model
by a probabilistic model. To our knowledge, no argument has been put forward in favor of
using this approximating probability distribution for decision-making.
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Remark 3. Although the pignistic criterion does not seem to depend on any parameter
(which may be key to its appeal in real applications), it does depend on the granularity
level of the frame of discernment. Smets was aware of this difficulty and assumed that a
“betting frame” had been chosen prior to decision-making. While this choice may be natural
in some applications, this may not always be the case. Wilson [81] showed that, when
considering all refinements of the current frame, the pignistic expectation ranges between the
lower and upper expectations, just as the generalized Hurwicz criterion does. When using
the pignistic criterion, the choice of a betting frame is, thus, a critical design issue, which
is often overlooked.

4.4. Generalized OWA Criterion

A more general family of expected utility criteria can be defined by aggregating the
utilities u(c) within each focal set A ⊆ C using OWA operators as recalled in Section 2.2
[85]. It is clear that the previous definitions in Sections 4.1, 4.2 and 4.3 are recovered as
special cases. To determine the weights of the OWA operators, Yager [85] proposed to fix
the degree of optimism β defined by (7), and to use the maximum-entropy operators, for
each cardinality |A|. Formally,

Eowa
µ,β (u) =

∑
A⊆C

µ(A)F|A|,β({u(c)|c ∈ A}), (31)

where F|A|,β is the maximum-entropy OWA operator with degree of optimism β and arity
|A|. We can remark that parameter β plays the same role here, and has roughly the same
interpretation, as one minus the pessimism index α in the Hurwicz criterion. However, each
quantity F|A|,β({u(c)|c ∈ A}) depends on all the values u(c) for all c ∈ A, and not only on
the minimum and the maximum, and the pignistic criterion is recovered for β = 0.5. This
method is further discussed in Ref. [82].

Example 7. Considering again the investment example and the mass function of Examples
5 and 6, Figure 2 shows the aggregated utilities for the Hurwicz criteria as functions of α
(Figure 2(a)) and for the generalized OWA criterion as functions of 1 − β (Figure 2(b)).
Once again, we can see that these two criteria yield similar results, and that the pignistic
expectations are obtained as a special case of the generalized OWA criterion with β = 0.5.

4.5. Generalized Minimax Regret

Finally, Yager [86] also extended the minimax regret criterion to belief functions. As in
Section 2.2, we need to consider n acts f1, . . . , fn, and we write uij = u[fi(ωj)]. The regret
if act fi is selected, and state ωj occurs, is rij = maxk ukj − uij. For a non-empty subset A
of Ω, the maximum regret of act fi is

Ri(A) = max
ωj∈A

rij. (32)

Given a mass function m on Ω, the expected maximal regret for act fi is

Ri =
∑
∅6=A⊆Ω

m(A)Ri(A). (33)
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Figure 2: Aggregated utilities vs. pessimism index α for the generalized Hurwicz criterion (a) and vs. one
minus the degree of optimism β for the generalized OWA criterion (b). (Example 7).

Using the generalized minimax regret criterion, act fi is preferred over act fk if Ri ≤ Rk.
The minimax regret criterion of decision-making under ignorance is recovered when m is
logical. If m is Bayesian, we have

Ri =
∑
j

m({ωj})rij (34a)

=
∑
j

m({ωj})(max
k
ukj − uij) (34b)

=
∑
j

m({ωj}) max
k
ukj −

∑
j

m({ωj})uij. (34c)

The first term on the right-hand side of Eq. (34c) does not depend on i, and the second one
is the expected utility. Hence, the generalized minimax regret criterion is identical to the
MEU model when m is Bayesian.

Example 8. The regrets rij for the investment data are given in Table 3. With the mass
function of Example 5, we get, for act f1:

R1 = 0.4× 12 + 0.2× 71 + 0.1× 2 + 0.3× 71 = 40.5.

Similarly, we have R2 = 15.3, R3 = 42.9 and R4 = 24.3. The corresponding preference
relation is, thus, f2 � f4 � f1 � f3.
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4.6. Jaffray’s and related axioms

Except for generalized minimax regret, the criteria for decision-making with belief func-
tions decision reviewed above are all of the form

µ1 < µ2 iff U(µ1) ≥ U(µ2), (35)

where U is a function from the set of evidential lotteries to R, such that

U(µ) =
∑
∅6=A⊆C

µ(A)U(µA), (36)

where µA is the logical mass function with focal set A. To simplify the notation, we can
write U(A) in place of U(µA), and u(c) for U({c}). With these notations, we have

• U(A) = minc∈A u(c) for the maximin criterion;

• U(A) = maxc∈A u(c) for the maximax criterion;

• U(A) = αminc∈A u(c) + (1− α) maxc∈A u(c) for the Hurwicz criterion;

• U(A) = (1/|A|)
∑

c∈A u(c) for the pignistic criterion;

• U(A) = F|A|,β({u(c)|c ∈ A}) for the OWA criterion.

Jaffray [37] showed that a preference relation < among evidential lotteries is representable
by a linear utility function verifying (36) if and only if it verifies the Von Neumann and
Morgenstern axioms (see Section 2.3) extended to evidential lotteries, i.e.,

Transitivity and Completeness: < is a transitive and complete relation (i.e., a complete
preorder);

Continuity: for all µ1, µ2 and µ3 such that µ1 � µ2 � µ3, there exists α, β in (0, 1) such
that

αµ1 + (1− α)µ3 � µ2 � βµ1 + (1− β)µ3; (37)

Independence: for all µ1, µ2 and µ3, and for all α in (0, 1), µ1 � µ2 implies

αµ1 + (1− α)µ3 � αµ2 + (1− α)µ3. (38)

It is clear that U(µ) in (36) becomes the expected utility when µ is Bayesian: we then have

U(µ) =
∑
c∈C

µ({c})u(c). (39)

The major difference with the classical EU model is that we now need, in the general case,
to elicit the utility values U(A) for each subset A ⊆ C of consequences, which limits the
practical use of the method. However, Jaffray [37] showed that a major simplification of (36)
can be achieved by introducing an additional axiom. To present this axiom, let us introduce
the following notation. Let us write c1 < c2 whenever µ{c1} < µ{c2}. Furthermore, let cA
and cA denote, respectively, the worst and the best consequence in A. The additional axiom
can then be stated as follows:
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Dominance: for all non-empty subsets A and B of C, if cA < cB and cA < cB, then
µA < µB.

This axiom was justified by Jaffray [37] as follows. If cA < cB and cA < cB, it is possible
to construct a set Ω of states of nature, and two acts f : Ω→ A and f ′ : Ω→ B, such that,
for any ω ∈ Ω, f(ω) < f ′(ω). As act f dominates f ′, it should be preferred whatever the
information on Ω. Hence, f should be preferred to f ′ when we have a vacuous mass function
on Ω, in which case f and f ′ induce, respectively, the logical mass function µA and µB on C.

The Dominance axiom immediately implies that, for any non-empty subsets A and B of
C, if cA ∼ cB and cA ∼ cB, then µA ∼ µB, and U(A) = U(B). Hence, U(A) depends only
on the worst and the least consequence in A, and we can write U(A) = u(cA, cA). Equation
(36) thus becomes

U(µ) =
∑
∅6=A⊆C

µ(A)u(cA, cA). (40)

If one accepts the Dominance axiom, one is then led to rejecting the pignistic criterion, as
well as the generalized OWA criterion, except when it is identical to the Hurwicz criterion.

To describe the DM’s attitude to ambiguity, Jaffray [37] then introduced the local pes-
simism index α(c, c), defined as the value of α which makes the DM indifferent between:

1. Receiving at least c and at most c, with no further information, and

2. Receiving either c with probability α or c with probability 1− α.

We then have
u(c, c) = α(c, c)u(c) + (1− α(c, c))u(c). (41)

This relation shows how the DM’s attitudes to risk and to ambiguity jointly determine U .
Now, the utility of evidential lottery µ can be written as

U(µ) =
∑
∅6=A⊆C

µ(A)
[
α(cA, cA)u(cA) + (1− α(cA, cA))u(cA)

]
. (42)

The Hurwicz criterion (27) corresponds to the case where α(c, c) is equal to a constant α.
Jaffray’s axioms are the counterpart of the axioms of Von Neumann and Morgenstern

(see Section 2.3) for decision under risk: assuming uncertainty about the consequences of
each act to be described by belief functions, they justify the decision strategy maximizing
the utility criterion (42) for evidential lotteries.

Several researchers have arrived at (42) from different sets of axioms. Jaffray and Wakker
[39] (see also [74]) consider the situation where objective probabilities are defined on a finite
set S, and there is a multi-valued mapping Γ that maps each element s ∈ S to a subset Γ(s)
of the set Ω of states of nature. The authors thus do not postulate a belief function in the
first place, but started one step before, i.e., they postulate the existence of a source, which
induces a belief function Bel (see Section 3.1). Each act f : Ω → C then carries Bel from
Ω to C, i.e., it induces an evidential lottery. The authors then justify a neutrality axiom,
which states that two acts are indifferent whenever they generate the same evidential lottery.
Finally, they derive the decision criterion (42) from two axioms: a continuity condition, and
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a weakened version of Savage’s sure-thing principle. Interestingly, a similar criterion was
obtained in [26], for the case where an act is defined as a multi-valued mapping from Ω to 2C.
By postulating axioms similar to those of Savage, and two additional axioms, Ghirardato
proved that the preference relation among acts is represented by a utility function similar to
(42). Finally, Zhou et al. [87] recently managed to provide a set of axioms that guarantee
the existence of a utility function and a unique belief function on the state space Ω such
that preferences among acts are governed by (42). Although the axioms are quite technical
and their meaning may be difficult to grasp, this result seems to be the closest so far to a
belief-function counterpart of Savage’s theorem.

For completeness and to conclude this section, we should also mention an alternative
set of axioms proposed by Giang and Shenoy [28], leading to a different decision criterion
(see also [27]). Their approach, however, is restricted to the case of partially consonant
mass functions. A mass function m is said to be partially consonant if its focal sets can
be divided into groups such that (a) the focal sets of different groups do not intersect and
(b) the focal sets of the same group are nested. The family of partially consonant mass
functions includes Bayesian and consonant mass functions as special cases. In the context
of statistical inference, Walley [76] has shown that partially consonant mass functions arise
as a consequence of some axioms. There does not seem, however, to be any compelling
reason for constraining belief functions to be partially consonant outside the specific context
of statistical inference.

4.7. Dropping the Completeness Requirement

All decision criteria reviewed in Sections 4.1 to 4.5 induce a complete preference relation
of acts. In some applications, however, the necessity of the completeness requirement may
be questioned, and it can be argued that the potential “indecisiveness” of the agents should
be allowed [24]. Hereafter, we review two categories of decision criteria inducing partial
preferences relations based, respectively, on lower/upper expectations and on extensions of
stochastic dominance.

Criteria based on lower and upper expectations

If one drops the requirement that the preference relation among evidential lotteries be
complete, then one can adopt the following partial preference relation, called the strong
dominance or interval dominance relation [69]:

µ1 <SD µ2 iff Eµ1(u) ≥ Eµ2(u). (43)

Given a collection of evidential lotteries µ1, . . . , µn, we can then consider the set of non-
dominated elements with respect to the strict preference relation �SD. The choice set is
then

MSD = {µ ∈ {µ1, . . . , µn} | ∀µ′ ∈ {µ1, . . . , µn},¬(µ′ �SD µ)}. (44)

However, condition (43) is very strong, and many pairs of mass functions will typically not
be comparable. As a consequence, choice set (44) will often be too large. Additionally,
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the strong dominance relation (43) seems hard to justify outside the imprecise-probability
setting (see Section 5).

A weaker partial preference relation is the interval bound dominance relation [21] defined
as follows:

µ1 <ID µ2 iff
(
Eµ1(u) ≥ Eµ2(u)

)
and

(
Eµ1(u) ≥ Eµ2(u)

)
. (45)

Obviously, µ1 <SD µ2 implies µ1 <ID µ2, so that relation <ID compares more pairs of mass
functions than <SD does. Further, interval bound dominance can be justified as follows:
µ1 is at least as desirable as µ2 according to interval bound dominance iff it is at least as
desirable as µ2 according to the Hurwicz criterion for any value of the pessimism index α.
Formally,

(µ1 <ID µ2)⇔
(
∀α ∈ [0, 1], Eµ1,α(u) ≥ Eµ2,α(u)

)
, (46)

where Eµ1,α(u) and Eµ2,α(u) are defined by Eq. (27). interval bound dominance thus cor-
responds to a conservative approach that seems appropriate if one accepts the Hurwicz
criterion while being totally ignorant about the DM’s attitude towards ambiguity.

Example 9. As we can see from Table 5 and Figure 2, no pair of acts (fi, fj) is such
that Eµi(u) ≥ Eµj(u). Consequently, the choice set for the strong dominance relation is
{f1, f2, f3, f4}, i.e., the strong dominance criterion does not allow us to compare any of the
four acts. For the interval bound dominance criterion, we can see that act f2 dominates the
other three acts, but is not dominated by any other act. Consequently, the choice set for the
interval bound dominance relation is {f2}.

Criteria based on extensions of stochastic dominance

As shown in [18], the notion of first-order dominance can be generalized to belief functions
on the real-line2. Specifically, consider a gamble X = u◦f induced by an act f . If µf denotes
the associated evidential lottery, then the uncertainty on X is described by the mass function
mX obtain by carrying µf to R by mapping u, i.e.,

mX(A) =
∑

{B⊆C|u[B]=A}

µf (B).

Equation (13) can be extended in several ways to define the preference between mass func-
tions mX and mY induced by gambles X and Y :

mX & mY ⇐⇒ ∀x ∈ R, P lX((x,+∞)) ≥ BelY ((x,+∞))
mX > mY ⇐⇒ ∀x ∈ R, BelX((x,+∞)) ≥ BelY ((x,+∞))
mX 1 mY ⇐⇒ ∀x ∈ R, P lX((x,+∞)) ≥ PlY ((x,+∞))
mX � mY ⇐⇒ ∀x ∈ R, BelX((x,+∞)) ≥ PelY ((x,+∞))

2See also [49] and [40] for further generalizations in the imprecise probability setting
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Obviously, all four relations boil down to the first-order stochastic dominance relation when
the evidential lotteries are Bayesian. These four credal ordering relations have the follow-
ing properties [18], which parallel the property of stochastic dominance with respect to
expectation:

mX & mY ⇐⇒ ∀h ∈ H, E[h(X)] ≥ E[h(Y )]
mX > mY ⇐⇒ ∀h ∈ H, E[h(X)] ≥ E[h(Y )]

mX 1 mY ⇐⇒ ∀h ∈ H, E[h(X)] ≥ E[h(Y )]

mX � mY ⇐⇒ ∀h ∈ H, E[h(X)] ≥ E[h(Y )],

where H denotes the set of bounded and non decreasing functions from R to R. Con-
sequently, relations >, 1 and � correspond, respectively, to the maximin, maximax and
strong dominance criteria when the utility function is only defined up to a non decreasing
transformation.

Finally, we can remark that statistical preference has been extended in the imprecise
probability setting by Montes et al. [48] and Couso et al. [10]. Extensions in the DS setting
remain to be explored.

5. Imprecise-Probability View

As recalled in Section 3.1, a belief function is a coherent lower probability for a convex
set of compatible probability measures. Consequently, decision criteria proposed in the
imprecise-probability framework [69, 34] are also applicable when uncertainty is described
by belief functions. To keep the exposition simple, we assume that we are in the case where
we have a mass function m on Ω and acts are mappings from Ω to C. For each act fi, we
denote by Xi = u ◦ fi the gamble that maps each ωj in Ω to the utility uij = u[fi(ωj)]. The
lower and upper expectations defined by Eq. (24) can be rewritten using (17) as follows:

Eµ(u) =
∑
A⊆C

µ(A) inf
c∈A

u(c) (47a)

=
∑
A⊆C

 ∑
B⊆Ω:f(B)=A

m(B)

 inf
c∈A

u(c) (47b)

=
∑
B⊆Ω

m(B) inf
c∈f(B)

u(c) (47c)

=
∑
B⊆Ω

m(B) inf
ω∈B

u(f(ω)) = Em(X), (47d)

with X = u◦f . Similarly, Eµ(u) can be written as Em(X). The mappings X → Em(X) and
X → Em(X) are called, respectively, lower and upper previsions [77]. An important result
is that these lower and upper expectations can be interpreted as lower and upper bounds of
expectations with respect to compatible probability measures [56, 79, 31]. In other words,
the mean of minima in (47d) is also the minimum of means (expectations) with respect to all
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compatible probability measures; similarly, the mean of maxima is the maximum of means
[31]. Formally, we have the following equalities:

Em(X) = min
P∈P(m)

EP (X) (48a)

Em(X) = max
P∈P(m)

EP (X). (48b)

The interval
[
Em(X),Em(X)

]
can, thus, be seen as the range of EP (X) for all probability

measures P in the credal set of m.
As a consequence of the above result, the strong dominance relation (43) has a natural

interpretation in the imprecise-probability setting. Let X1 and X2 be two gambles. By
abuse of notation, we can use the same symbol for the preference relations among gambles
and among evidential lotteries. Thus, X1 <SD X2 iff Em(X1) ≥ Em(X2), i.e., iff for any two
probability measures P1 and P2 compatible with m, the expectation of X1 with respect to
P1 is always higher that the expectation of X2 with respect to P2. Formally,

X1 <SD X2 ⇔
(
∀(P1, P2) ∈ P(m)2, EP1(X1) ≥ EP2(X2)

)
. (49)

A gamble X is, thus, a maximal element of <SD if, for any gamble X ′, there exists probability
measures P and Q in P(m) such that EP (X) ≥ EQ(X ′). This set is arguably too large, as
P and Q are not required to be identical. Two more useful decision criteria developed in
the imprecise-probability framework will now be discussed in Section 5.1 and 5.2.

5.1. Maximality

The maximality criterion was introduced by Walley [77, Section 3.9, page 160] (see also
[78, 9, 47]). It states that gamble X1 is “almost as desirable” as X2 if the lower expectation
of X1 −X2 is positive:

X1 <max X2 iff Em(X1 −X2) ≥ 0, (50)

and the preference is strict if the inequality in the right-hand side of (50) is strict. In
Walley’s theory, a lower prevision is interpreted as the highest price an agent is willing
to pay to acquire a gamble. Clearly, Eq. (50) expresses that the DM is willing to pay a
positive price to get X1 instead of X2, i.e., that he strictly prefers X1 to X2. In terms of
credal set, the condition Em(X1 − X2) ≥ 0 means that, for any compatible probability P ,
the expectation of X1 −X2 with respect to P is positive, i.e.:

X1 <max X2 iff
(
∀P ∈ P(m), EP (X1) ≥ EP (X2)

)
. (51)

Comparing Eqs (49) and (51), it is clear that X1 <SD X2 ⇒ X1 <max X2, and the impli-
cation is strict. A gamble X is a maximal element of �max iff, for any gamble X ′, there
exists P ∈ P(m) such that EP (X) ≥ EP (X ′). The set of maximal elements of �max is, thus,
included in that of �SD.

The maximality criterion thus seems to be better founded and more useful than strong
dominance. However, these advantages come at a price, as finding the maximal elements
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according to the maximality criterion requires computing n2 − n lower expectations (where
n is the number of gambles), against n lower expectations and as many upper expectations
for the strong dominance criterion [69]. Hence, strong dominance has a computational
advantage when the number of alternatives is large. As the choice set of �SD contains that
of �max, it can also be computed as a preliminary step to reduce the number operations
needed to implement the maximality criterion.

Finally, we can remark that maximality, although introduced and studied in the imprecise-
probability context, also makes sense regardless of any notion of imprecise probability. In
the DS framework, Eq. (50) can be understood to mean that, if one DM selects X1 and
another DM selects X2, then the former is expected to gain a higher utility, even assuming
that ambiguity will be resolved in favor of the latter.

Example 10. Consider again the pay-off matrix of Table 2 and the mass function m of
Example 5. We have X1(ω1) = 37, X1(ω2) = 25, X1(ω3) = 23 and X2(ω1) = 49, X2(ω2) =
70, X2(ω3) = 2. Hence,

Em(X1 −X2) = 0.4× (−12) + 0.2× (−45) + 0.1× 21 + 0.3× (−45) = −25.2

and

Em(X2 −X1) = 0.4× (12) + 0.2× (12) + 0.1× (−21) + 0.3× (−21) = −1.2.

Consequently, X1 and X2 are not comparable by the maximality criterion. The matrix ∆X
with general term [∆X]ij = Em(Xi −Xj) is

∆X =


· −25.2 −20.1 −19.7
−1.2 · 5.1 0.4
−31.9 −40.6 · −20.4
−13.3 −22.0 −0.4 ·

 .
We thus have X2 �max X3 and X2 �max X4, whereas X1 and X2 are not dominated by any
other gamble. Consequently, the choice set for the maximality criterion is {X1, X2}.

5.2. E-admissibility

As we have seen in the previous section, a gamble X belongs to the choice set according to
the maximality criterion if it has a higher expected utility than any other gamble g′ for some
probability P that may depend on g′. The e-admissibility criterion [43, page 96] strengthens
this condition by requiring the existence of a compatible probability P for which X has
higher expected utility than any other gamble. Formally, X is in the choice set according
to the e-admissibility criterion iff there exists P in P(m) such that, for any gamble X ′,
EP (X) ≥ EP (X ′). This definition results in a choice set that is included in that of the
maximality criterion. In [54], Seidenfeld compared the maximin and e-admissibility criteria,
and argued for the latter in sequential decision problems. We can remark that, in contrast
with other decision criteria mentioned until now, e-admissibility defines a choice set directly,
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without explicitly defining a preference relation. We can, however, construct a preference
relation from the choice set, as explained in Section 2.1.

The meaning of the e-admissibility criterion seems to be more deeply rooted in the
theory of imprecise probability than that of maximality. Moreover, it is much more costly
to implement computationally: to determine whether a gamble is e-admissible, we need to
solve a linear programming problem [70, 33]. In the case when uncertainty about the state
of nature is described by a mass function m, this problem can be formulated using the
allocation function (14). Let F1, . . . , Fq denote the focal sets of m (where q can be much
smaller than 2n), akj = a(ωk, Fj) for all (k, j) such that ωk ∈ Fj, a a vector containing all
the akj’s, p the vector of probabilities p = (p1, . . . , ps), and λ = (λ1, . . . , λi−1, λi+1, . . . , λn)
a vector of n − 1 slack variables. To determine whether gamble Xi is e-admissible, we can
solve the following problem:

min
λ,a,p

∑
l 6=i

λl

subject to: ∑
{k|ωk∈Fj}

akj = m(Fj), j = 1, . . . , q (52a)

akj ≥ 0 ∀(k, j) : ∃(ωk, Fj), ωk ∈ Fj (52b)

pk =

q∑
j=1

akj, k = 1, . . . , s (52c)

s∑
k=1

pk(uik − ulk) + λl ≥ 0, l 6= i (52d)

λl ≥ 0, l 6= i. (52e)

Eqs. (52a) and (52b) express that the akj’s define an allocation function, and Eq. (52c)
expresses that the pk are compatible probabilities. Eq. (52d) can be written as EP (Xi)+λl ≥
EP (Xl), where P is the probability measure such that P ({ωk}) = pk for k = 1, . . . , s. By
minimizing the sum of the λl’s under constraints (52a)-(52e), we get the solution λ = 0
iff there exists P ∈ P(m) such that EP (Xi) ≥ EP (Xl) for all l, i.e., iff gamble Xi is e-
admissible. To determine the set of e-admissible gambles, we can start with the choice set
of the maximality criterion, and solve the linear program above for each element in that set.

Example 11. In Example 10, we found that X1 and X2 are in the choice set of the maxi-
mality criterion. Let F1 = {ω1}, F2 = {ω1, ω2}, F3 = {ω3} and F4 = {ω1, ω2, ω3} be the focal
sets of m. We recall that m(F1) = 0.4, m(F2) = 0.2, m(F3) = 0.1 and m(F4) = 0.3. To find
out whether, e.g., X1 is e-admissible, we solve the following linear programming problem:

min
λ,a,p

λ2 + λ3 + λ4
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subject to:

a12 + a22 = 0.2

a14 + a24 + a34 = 0.3

p1 = 0.4 + a12 + a14

p2 = a22 + a24

p3 = 0.1 + a34

(37− 49)p1 + (25− 70)p2 + (23− 2)p3 ≥ 0

(37− 4)p1 + (25− 91)p2 + (23− 1)p3 ≥ 0

(37− 22)p1 + (25− 76)p2 + (23− 25)p3 ≥ 0,

all the variables being positive. We find the solution λ2 = λ3 = λ4 = 0, a12 = 0.2, a22 = 0,
a14 = a24 = 0, a34 = 0.3, p1 = 0.2, p2 = 0.3 and p3 = 0.4. Consequently, gamble X1 is
e-admissible. Using the same method, X2 can be shown to be also e-admissible.

6. Shafer’s Constructive Decision Theory

All the decision criteria reviewed so far rely on the concept of utility. In the axiomatic
frameworks developed by von Neumann and Morgenstern in [72] as well as Jaffray in [37],
utilities are derived from preferences among, respectively, probabilistic and evidential lot-
teries. In Savage’s axiomatic system [52], they are derived from preferences among acts.
However, in practice, probabilities (or degrees of belief) and utilities are often elicited from
the DM. It is then assumed that probabilities and utilities can be determined independently.
Furthermore, the term “elicitation” suggests that the DM already has probabilities and util-
ities in the back of his mind, and that these values only need to be guessed as accurately as
possible.

In [58], Shafer questions these two assumptions. First, he argues, after Savage [52, pages
83-84], that when assigning a utility to some consequence corresponding to some way things
may turn out, we implicitly “assess probabilities for how further matters will turn out”
[58, page 46]. For instance, to assessing the utility of buying a new car, I need to assess
probabilities for various events such as: the possible withdrawal of my driving license, various
health problems that could affect my ability to drive, etc. If we assume that predetermined
utilities are waiting to be elicited, then it might not matter if utilities are, in fact, expected
utilities. However, Shafer questions the existence of preexisting probabilities and utilities,
and argues that these values need to be constructed. Probabilities and degrees of belief
can be constructed by comparing the problem at hand with a scale of canonical examples
such as randomly-coded messages [56] (see Section 3.1). For utilities, however, it might be
difficult or even impossible to ensure that utilities constructed at some level of description
are consistent with probabilities and utilities that would be constructed at a more detailed
level of description. This is what Shafer calls “the problem of small worlds”.
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6.1. Formulation of a Decision Problem using Goals

Based on the arguments above, Shafer suggested that a constructive decision theory
should be based not on utilities, but on goals. A goal may be defined as a “consequence” the
DM decides to value and to which he attaches utility irrespective of whatever else happens
[58]. The vocabulary of goals fits a constructive theory of decision because goals obviously
have to be made. It avoids utility’s problem of small worlds as goals constructed at a
certain level of description “by conscious thought and deliberation are the clearest and most
definitely structured of all our goals and motives” [58].

As explained in Section 2.1, the standard decision-theoretic framework distinguishes
between a set Ω of states of nature (or facts about the world that can determine the conse-
quences of our acts), and a set of consequences C, which specifies how things that the DM
cares about may turn out. In contrast, Shafer proposes to use a single frame of discern-
ment Θ, defined as a set of collectively exhaustive and mutually exclusive descriptions of
how things may turn out. A goal can then be defined as a subset of Θ. Typically, a DM
formulates n goals A1, . . . , An. These goals are consistent if their intersection is non-empty,
and they are monotonic if the subsets are nested, i.e., if for any two goals Ai and Aj, we
have either Ai ⊆ Aj or Aj ⊆ Ai. One can argue that goals should always be consistent,
but two goals initially defined as consistent can become inconsistent after restricting the
frame Θ to a subset Θ0 as a consequence of acquiring new knowledge. However, monotonic
goals A1, . . . , An can never be made inconsistent after intersection the subsets Ai with some
subset Θ0.

6.2. Evaluating Acts

Assume that performing act f ensures that things will turn out according to one of the
descriptions in some subset A(f) ⊆ Θ. One of the simplest way to evaluate f is to count
the number of goals it achieves,

u+(f) = #{i | A(f) ⊆ Ai}, (53)

and the number of goals it precludes,

u−(f) = #{i | A(f) ∩ Ai = ∅}. (54)

We can then assign act f the score

U(f) = u+(f)− u−(f). (55)

This method can be extended in two directions. First, we may attach weights w1, . . . , wn to
the goals. The total weight of the goals achieved by action f is

u+(f) =
∑

{i|A(f)⊆Ai}

wi, (56)

and the total weight of the goals precluded by f is

u−(f) =
∑

{i|A(f)∩Ai=∅}

wi. (57)
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As before, the score of f can be defined as U(f) = u+(f)− u−(f).
The second important extension is to allow uncertainty in the relation between acts and

goal satisfaction. Assume that the effect of act f is represented by a mass function mf on
Θ, with focal sets F1, . . . , Fq. The expected total weight of goals achieved by action f is
then

E
(
u+(f)

)
=

q∑
j=1

mf (Fj)
∑

{i|Fj⊆Ai}

wi, (58a)

=
n∑
i=1

wi
∑

{j|Fj⊆Ai}

mf (Fj) (58b)

=
n∑
i=1

wiBelf (Ai), (58c)

where Belf is the belief function associated to mf . Similarly, the expected total weight of
goals precluded by action f is

E
(
u−(f)

)
=

q∑
j=1

mf (Fj)
∑

{i|Fj∩Ai=∅}

wi, (59a)

=
n∑
i=1

wi
∑

{j|Fj∩Ai=∅}

mf (Fj) (59b)

=
n∑
i=1

wiBelf (Ai) (59c)

=
n∑
i=1

wi −
n∑
i=1

wiPlf (Ai). (59d)

Dropping the constant term
∑n

i=1 wi, the score of f can now be defined as

U(f) =
n∑
i=1

wi
(
Belf (Ai) + Plf (Ai)

)
. (60)

To see the connection with the MEU principle, we can define the utility u(θ) of any element
θ of Θ as the total weight of the goals satisfied if θ holds:

u(θ) =
∑
{i|θ∈Ai}

wi. (61)

Let us assume that mf is Bayesian, and let pf (θ) = mf ({θ}) for all θ ∈ Θ. Then, the
quantities u+(f) and u−(f) become, respectively,

u+(f) =
∑
θ∈Θ

pf (θ)u(θ), (62)
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and

u−(f) =
n∑
i=1

wi −
∑
θ∈Θ

pf (θ)u(θ). (63)

In that case, the quantity u+(f) thus becomes the Bayesian expected utility, and u−(f) is
redundant. When the mass functions mf on Θ induced by each of the acts f is Bayesian,
Shafer’s method thus boils down to the MEU criterion, with a suitable definition of the
utility function.

Example 12. As an illustration of the way Shafer’s method can be applied in practice, let
us consider a classification problem with a set of K classes Ω = {ω1, . . . , ωK}. Assume that
we want to classify an object with unknown class ω ∈ Ω, by selecting a non-empty set C ⊆ Ω
of possible classes. If ω = ωk and C = {ωk}, we have a perfectly correct classification. If
ωk ∈ C but |C| > 1, then the classification is still correct, but imprecise. If ωk 6∈ C, we have
an error. The ways things may turn out can be described as follows. On the one hand, the
object may actually belong to any of the K classes. On the other hand, we may select a set
of cardinality k, k = 1, . . . , K. If the set has cardinality K, then it surely contains the true
class; otherwise, we may have a correct classification or an error. The frame of discernment
Θ can, thus, be defined as follows:

Θ =
(
Ω× {1, . . . , K − 1} × {correct, error}

)
∪
(
Ω× {K} × {correct}

)
.

Our general objective is classify the object correctly while being as precise as possible. This
objective can be broken down into K monotonic goals A1 ⊂ A2 ⊂ . . . ⊂ AK, where

Ak = Ω× {1, . . . , k} × {correct}

is the goal of selecting a set of at most k elements containing the true class. Goal AK is to
select a set containing the true class, whatever its the size; it can arguably be regarded as the
most important, and should be assigned the largest weight. Let fC denote the act of selecting
the non-empty subset C ⊆ Ω, and let m be a mass function on Ω representing evidence about
the class of the object (as provided, for instance, by an evidential classifier such as described
in [17] or [83]). If |C| = k and ω = ωk, then selecting act fC will satisfy goals Ak, . . . , AK iff
ωk ∈ C. Consequently, the belief and plausibility of achieving each of the goals Ak, . . . , AK
when selecting act fC are, respectively, Bel(C) and Pl(C), and the score of fC is

U(fC) =
K∑

k=|C|

wk(Bel(C) + Pl(C)) = (Bel(C) + Pl(C))
K∑

k=|C|

wk. (64)

From (64), we can see that U(fC) is a product of two terms, one of which increases with
the size of C due to the monotonicity of mappings Bel and Pl, and the other one of which
decreases with the size of C.

For instance, assume that K = 3, w1 = w2 = 1, w3 = 2, and let m we the mass function
defined as

m({ω1, ω2}) = 0.6, m({ω2, ω3}) = 0.2, m(Ω) = 0.2.
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Table 6: Calculation of the score of acts in Example 12.

C {ω1} {ω2} {ω1, ω2} {ω3} {ω1, ω3} {ω2, ω3} Ω
Bel(C) + Pl(C) 0.8 1 1.6 0.4 1 1.2 2∑K

k=|C|wk 4 4 3 4 3 3 2

U(fC) 3.2 4 4.8 1.6 3 3.6 4

The calculation of U(fC) for each non-empty subset C of classes is detailed in Table 6. We
obtain the following preferences among acts:

f{ω1,ω2} � f{ω2} ∼ fΩ � f{ω2,ω3} � f{ω1} � f{ω1,ω3} � f{ω3}.

7. Conclusions

I have tried in this literature review to provide a broad picture of decision methods
applicable to situations where uncertainty about outcomes is formalized in the belief func-
tion framework. Interestingly, all methods boil down to MEU when the belief function is
Bayesian, but they differ in several important respects in the general case.

The most important distinction between models is whether they produce a complete
preference relation or a partial one. As shown by Jaffray [36], imposing completeness of the
preference relation as well as some other requirements (similar to the Von Neumann and
Morgenstern axioms [72] in the probabilistic case) leads to defining the expected utility of
an evidential lottery µ as a weighted sum

∑
A⊆C µ(A)U(A), where U(A) is the aggregated

utility within focal set A. The Hurwicz and OWA criteria (including the maximin, maximax
and pignistic criteria as special cases) are built on this principle, the minimax regret being
the only notable counterexample. Smets [61, 62, 63] was a strong advocate of the pignistic
criterion, which has been widely used in applications. The main arguments put forward
by Smets to support the pignistic criterion are the avoidance of Dutch books3 under forced
bets (a case for basing decisions on probability distributions, regardless on the way they are
constructed) and the linearity property (28), which uniquely determines the pignistic trans-
formation. Smets initially proposed this requirement as an axiom, but it was not generally
considered as particularly compelling. In [63], he derived it from the MEU principle, arguing
that the linearity requirement is “unavoidable provided one accepts expected utility theory”.
The argument, however, is complex and would need a critical re-examination. Following a
different path, Jaffray [36] showed that adding a dominance axiom to complete preorder,
continuity and independence axioms implies that the aggregated utility U(A) within set

3Snow [65] questioned the claim that the transferable belief model, Smets’ version of DS theory based
on a distinction between credal and pignistic levels, avoids Dutch books. Smets (personal communication)
submitted a rebuttal to the Artificial Intelligence journal, but this response was never published. It would
be interesting to re-examine Snow’s arguments and confront them to Smets’ views as exposed in various
writings.
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A should depend only on the utilities of the worst and the best consequences within that
set. Accepting this axiom leads us to discarding the pignistic and OWA criteria. The most
general form of decision criterion resulting from Jaffray’s axioms is based on locally weight-
ing the minimum and the maximum utility within each focal set using a “local pessimism
index”, generalizing the Hurwicz criterion. We thus have two main methods for building a
complete preference relation, supported by different axiomatic arguments: the pignistic and
Jaffray’s criteria. We can remark that none of these two sets axioms relies on Dempster’s
rule, a fundamental building block of DS theory. Work is under way to design a set of axioms
supporting a decision criterion with arguments more grounded in DS theory [20].

The other main category of decision models relaxes the assumption of complete pref-
erences and allows incomparability between some acts due to lack of information. This
approach has been particularly studied in the literature on imprecise probability [69, 34],
because it is in line with the general philosophy of allowing imprecision in an agent’s descrip-
tion of uncertainty, and propagating this uncertainty all the way up to the decision level.
However, it is also relevant within the DS model. Decision models allowing for incomplete
preferences can be further divided into three subcategories: (1) strong dominance and in-
terval bound dominance based on lower and upper expected utilities; (2) models based on
extensions of the stochastic dominance relation between random variables, and (3) criteria
with an imprecise probability flavor (maximality and e-admissibility). More work is needed
to evaluate the relevance of maximality and e-admissibility from the pure DS perspective.
One direction might be to consider the set of pignistic probabilities under all refinements,
which Wilson [81] showed to be a strict subset of the set of all compatible probabilities.
Could we define decision criteria based on that set, and would they be similar to, or differ-
ent from the criteria derived in the imprecise-probability framework? These are interesting
questions that should be addressed in further research.

Finally, Shafer’s constructive decision theory, as exposed in a paper written in December
1982 [59] but only published in 2016 [58], departs fundamentally from other approaches and
constitutes a category of its own. Shafer questions the practical relevance of the concept
of utility, which, he argues, are not pre-existing and waiting to be elicited, but need to be
constructed. He proposes to shift the focus from utilities to goals, formalized as subsets of
a frame of discernment comprising both states of nature and “states of the person”, i.e.,
consequences of acts. Shafer proposed to score each act by the number of goals they ensure
minus the number of goals they preclude. We note that a partial preference relation could
also be constructed by considering an act f1 to be at least as desirable as an act f2 if f1

ensures at least as many goals while precluding at most as many goals. As Shafer’s decision
theory has been overlooked until recently, deeper investigations remain to be carried out to
fully understand its theoretical and practical implications, and to put it in perspective with
respect to other approaches.

From this overview of methods of decision-making with belief functions, it is clear that
a lot of issues related to decision-making with belief functions remain unsolved and open
to investigation. As argued by Bell, Raiffa and Tversky [4] (cited in [58]), decision models
can be evaluated descriptively by their empirical validity, normatively by their theoretical
adequacy, or prescriptively by their pragmatic value, i.e., by their ability to help people make
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better decisions. Very little is known about the value of DS theory as a descriptive model
of human reasoning and decision-making under uncertainty, and considerably more work is
needed to compare the normative and prescriptive values of the various decision methods
reviewed in this paper.
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