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CASE STUDY: THE CONCEPT OF CONTINUITY IN HIGHER 
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Faïza Chellougui 
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Rahim Kouki 
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In this paper, we consider logical-mathematical formalism in mathematical 

statements. We examine formalism regarding the notion of continuity in higher 

education. The choice of this concept is based on the fact that this concept involves a 

large number of related variables and that its logical structure nevertheless not too 

complex because all quantifiers are at the top of the form (Chellougui, 2009). 

First we present the didactic transposition of the continuity from knowledge learned 

to knowledge taught. In a second step, we consider the definition of continuity as 

presented in various mathematics textbooks for first year university science students.  

INTRODUCTION 

In Tunisian secondary mathematics education, according to official instructions, logical 

symbols (logical connectors:  , !..., and quantifiers: ", #) are not introduced, and 

mathematical statements (theorems, definitions) are generally expressed in natural 

language (Chellougui, 2003). However, from the beginning of the first year of 

university, scientific formalized statements are used without a specific introduction to 

symbolism or to the relationships between statements in natural language and 

formalized statements. This widespread use of formalized language at university is 

motivated by the supposed superiority in terms of operating statements fully or 

partially formalized. However, for many students, formalism seems to be an obstacle 

to mathematical work and therefore to conceptualization (Quine 1970). Thus, in 

mathematical activity in the first year of university, we identify problems of 

interpretation of logical-mathematical vocabulary or gap of operating order to students, 

specifically difficulties in manipulation of complex statements with multiple 

quantifications. Generally, these issues are not addressed in common textbooks. We 

adopt the assumption that they reflect ordinary mathematical practice of mathematics 

teachers (Durand-Guerrier, 2003). 

To illustrate this, we chose the concept of continuity of functions which is studied in 

high school and again in college. For this concept, an understanding of how a 

definition in natural language can be expressed in form of a formal definition is 

required. Consider, for example, the definition of continuity of a function at any point 

proposed by Schwartz (1991): 
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(For all a IR ) (for all !"0) (there exist #"0 such that) (for all x IR such that $x a%&#), 

we have: $f(x) f(a)%&! . This sentence can be written formally. [...]: 

('a IR) ('!"0) ((#"0) ('x IR) [($x a%&#) ) $f(x) f(a)%&!]. (p.20) 

Here, there are three universal quantifiers and an existential quantifier in third position. 

The scope of these quantifiers on implication is between parentheses. This study is 

concerned with the definition of the term as found in several mathematical textbooks of 

first year scientific university. Prior to this study, we present some elements of didactic 

transposition of the concept of continuity from expert knowledge to knowledge to be 

taught. 

SOME ELEMENTS OF DIDACTIC TRANSPOSITION 

The first comprehensive outline of the Didactic Transposition Theory was developed 

in Chevallard (1991). This theory aims to produce a scientific analysis of didactic 

systems and is based on the assumption that the mathematical knowledge set up as a 

!"#$%&'()*+,"$!)-./#0*&1)"'/"&('2345)&')#')institutionalized educational system, normally 

has a preexistence, which is called 6"78"1!)knowledge9 -./#0*&1)/#0#'!34: 

Some objects of mathematical expert knowledge are defined as direct teaching objects 

and constructed in the didactic system (by definition or construction), i.e. mathematical 

notions, such as for example addition, the circle, or second order differential equations 

with constant coefficients. However, there are other knowledge objects, termed para-

mathematical notions, useful in mathematical activities but often not set up as teaching 

objects per se but pre-constructed, such as the notions of parameter, equation, or proof 

(Klisinska, 2009). 

We try to analyze the question of the use of para-mathematical logical symbolism in 

mathematical activity. 

We start with the general definition of continuity of a function at a point made in a 

Dictionary of Mathematics (Bouvier and al., 1979): 

Application continuous at a point.   An application f of a topological space E into a 

topological space F is continuous at x0 E if for all neighbourhoods W of f(x0) in F, there 

exists neighbourhood V of x0 in E whose image f(V) is contained in W. This is the 

mathematical expression of the sentence "f(x) tends to f(x0) as x tends to x0". In the case 

where E and F are metric spaces, f is continuous at x0 E if any !"0, there exists *"0 

such that d(x,x0)&* leads d(f(x),f(x0))&!. (p.192)  

 

 

 

 

(p.192) 

 

f(x0) x0 

W 

V 
E 

F 
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This definition is given in topological spaces and neighbourhoods; it is then translated 

into metric spaces. It is formulated in a mixed language, an association of natural 

language and mathematical symbols. The authors do not use any logical symbol but 

illustrate this definition by charts. They were inspired by the approach of Bourbaki 

(1971), which itself offers the following definition: 

Definition 1. - We say that f of a topological space X into a topological space X is 

continuous at a point x0 X if any neighbourhood V' of f(x0) in X', there exists a 

neighbourhood V of x0 in x such that x V implies f(x) V'. (P.I.8) 

In comparison, Durand-Guerrier and Arsac (2003) use logical symbolism and even 

suggest a fully formal definition to define a uniformly continuous application: 

Application uniformly continuous.   An application f of a metric space E with values in a 

metric space F is uniformly continuous if for all !"0, there exists #(!)"0 such that 

d(x,y)$#(!) implies d(f(x),f(y))$!. This can be symbolized by: 

(%!"0) (&#(!)"0) (%(x,y) E²) (d(x,y)$#(!) ' d(f(x),f(y))$!). (p.193) 

In this definition the quantification is complete and dependency relationship between # 

and ! appears. 

To give a definition of continuity in IR, it is possible to get a definition equivalent with 

intervals since the intervals form a basis of neighbourhood in set IR. 

Haug (2000) suggests the following definition: 

Definition 6.a Let E be a set of real numbers. Let f be an application of E into IR, a and b 

are real numbers. 

We say that b is a limit of f if: any open interval J centred on b, there exists an open 

interval I centred on a such that f(E(I))J . (p.107) 

He then notes: 

Show that if we replace the above equation by the following equation we obtain an 

equivalent definition.  

% IR   *  +  !, & IR   *  +  #, %E t, *a t+$ # ' *b f(t)+ $! . (p.107) 

Here, we note that there are no parentheses to express the scope of quantifiers on 

implication, which is a fairly common practice among authors of textbooks and 

mathematicians. Some students may not be aware of the difficulties related scope of 

quantifiers and use of parentheses. It is indeed important to understand the effects on 

the meaning of a statement and interpret in a mathematical theory, when changing the 

order of quantifiers (Dubinsky & Yiparaki, 2000). 

Further, we read: 

Definition 6.b  Let E be a set of real, let a be an element of E, let f an application from E 

to IR. 

We say that f is continuous at a if f has a limit at a. (p.111) 

WORKING GROUP 1

CERME 8 (2013)



99

  

The definition of a limit of a function is followed by a geometric representation based 

primarily on intervals of IR, which can enlighten the definition; there is also an 

explanation of the passage from  !"#$neighbourhood%#&'() #'*#+(",# '# !"#$distance% 

point of view, which is not very common in other textbooks studied. Use of intervals 

favours the didactic transposition of the definition with neighbourhoods; it reduces the 

number of quantifiers and may in some cases be easier to handle (Chellougui, 2009). 

STUDY OF SOME TEXTBOOKS: CONCEPT OF CONTINUITY IN THE 

KNOWLEDGE TO BE TAUGHT 

Below we present a study of certain textbooks for students in their first year of 

university. We chose these textbooks because they were used by students and teachers 

of the Faculty of Sciences of Bizerte. The textbooks we have examined are: 

Chambadal and Ovaert, Mathematics, 1966; Arnaudies and Fraysse, 1988; Schwartz, 

1991; Guégand and Gavini, 1995. 

Our focus is on the different types of language used. Three phenomena emerged from 

this study which will be analyzed below. 

Implication versus bounded quantification 

In a mathematics textbook (Chambadal & Ovaert, 1966), we find the definition of a 

limit of a function at a point followed by that of continuity. 

Definition 19. - Limit of a function at a point. - Let f be a function defined on a part A 

of IR
 

 and x0 an accumulation point of A. We say that f has a limit at x0 if it has a limit 

when x tends to x0 remaining in P=A-{x0}. We also say more briefly that f has a limit 

when x tends to x0. (pp.394-395)
1
 

This definition, first given in natural language, is then made more explicit and 

formalized: 

-If x0 is finite, so that f tends towards l when x tends to x0, it is necessary and sufficient 

that: 

!"# IR   
*

  
+

, $ %# IR   
*

  
+

 : !x#A & ([x0-%, x0+%]-{x0}), 'f(x) - l( ) "     (1)
2
 

what writes: 

!"# IR   
*

  
+

, $ %# IR   
*

  
+

 : !x#A, 'x-x0( ) % and x*x0 + 'f(x) - l( ) ".      (2) (pp.395-396) 

A beginning reader might ask where the implication that appears in (2) comes. 

In another analysis textbook of first year science (Guégand & Gavini, 1995), we can 

learn: 

2.1 Definition: Let I be an interval of IR, a # I and f : I, IR 

                                         
1 Our translation 
2 To facilitate the study of different official statements, we have numbered (1) to (12) in the illustrations taken from 

different books or in our own analysis  
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We say that f is continuous at a if and only if f admits a limit in a equal to f(a). 

Otherwise we say that f is discontinuous at a. 

Let us clarify this definition: 

f is continuous at a 

    !"#0, $ %#0, !x&I, 'x a( ) %  *  'f(x) f(a)( ) "                   (3) 

    !"#0, $ %#0, !x&I, 'x a( + %  *  'f(x) f(a)( + "                   (4) 

    !"#0, $ %#0, !x&I, [a %,a+%] , 'f(x) f(a)( + ".                     (5) (p.108)
3
 

Here the beginning reader might wonder why the implication has disappeared in (5). 

This game appearance/disappearance of implication is related to mathematical practice 

of bounded quantification. This type of quantification is present in mathematics, but 

absent in the predicate calculus. For example, the mathematical writing: 

!x&A F(x)  is reflected in the predicate calculus by: !x(x&A * F(x)). 

In fact bounded quantification hides the implication the domain of quantification is 

limited to the elements that satisfy the antecedent of the conditional statement, which 

removes the implication. The practice of bounded quantification is present in 

textbooks, several authors provide a formulation of the definition of continuity without 

the conditional, often without providing explanations allowing students to be able to 

restore the conditional by changing the domain of quantification (e.g. Chambadal & 

Ovaert 1966, Guégand and Gavini 1995). Durand-Guerrier (2003) considers that being 

able to restore or remove correctly the conditional according with the domain of 

quantification in such cases contribute to the understanding of implication. 

Implication versus conjunction 

In another textbook of mathematics (Arnaudies & Fraysse, 1988), the authors begin 

defining continuity at a point with the neighbourhoods in a metric space: 

Definition III.4.1 - Let A be a part of IR and f : A - IR a function. We say that f is 

continuous at a&A if and only if for every neighbourhood W of f(a) there exists a 

neighbourhood V of a such that f(V,A).W. 

We say that f is discontinuous at point a&A if and only if it is not continuous at that 

point. 

The function f is continuous if and only if it is continuous at every point of A. (p.108)
4
 

After they present the classic definition using a mixed language: 

[...] we obtain in particular the following definitions of continuity of f at a equivalent to 

the definition III.4.1: 

(I) For all real "#0, there exists a real /#0 such that 

(x&A and |x a|+/)*(|f(x) f(a)|+") 
(II) For all real "#0, there exists a real /#0 such that 

(x&A and |x a|</)*(|f(x) f(a)|<"). (p.108)
5
 

                                         
3 Our translation 
4 Our translation 
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We can ask: why is there "and" in the antecedent of the implication? 

We rather expect the following entry: 

For all real  !0 there exists a real "!0 such that for all x#A (|x a|$")%(|f(x) f(a)|$   

or: 

&  !0  ' "!0  &x#A  ( (x a)$ ") % ( (f(x) f(a))$  )          (6) 

Another formulation of the statement (II) presented in the textbook, using logical 

symbols for the quantification of each variable   and " gives: 

&  !0  ' "!0  (x#A and  (x a)$ ") % ( (f(x) f(a))$   )             (7) 

Are statements (6) and (7) equivalent? 

As noted above, removing the bounded quantification on the variable x to the 

statement (6), we obtain:  

& !0 '"!0 &x [x#A % ((x a)$"%(f(x) f(a))$ )]. 

Our question refers back to logical equivalence between: 

(x#A  *  (x a)$ ") % ( (f(x) f(a))$   )                               (8) 

and [x#A % ( (x a)$ " % (f(x) f(a))$   )]                         (9) 

Considering only variable x, statements (8) and (9) are respectively of the form: 

(p(x)*q(x)) % r(x)   and   [p(x) % (q(x)%r(x))]. 

It is known that in the propositional calculus, the following equivalence:  

[p % (q%r)] + [(p*q) % r]   is a tautology. 

By extension, in predicate calculus, the two following equivalences are universally 

valid: 

[p(x) % (q(x)%r(x))] + [(p(x)*q(x)) % r(x)] 

&x [p(x) % (q(x)%r(x))] + [(p(x)*q(x)) % r(x)]. 

So using logical arguments, we prove the equivalence between the two statements: (6) 

and (7). We summarize this equivalence in the following table with a justification in 

logical syntax by translating writing mathematics into predicate calculus (Kouki, 

2008):  

 

 

 

 

 

 

                                                                                                                                       
5 Out translation 

Writing mathematical  Predicates calculus 

&x#A ( F(x) % G(x) )  

&x [ x#A % (F(x) % G(x))] , 

&x [ (x#A * F(x)) % G(x) ] 

 

 

 

&x [ (x#A and F(x)) % G(x) ] 
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Negation of formalized statements 

a- It is generally recognized that formal logic is to facilitate the transition to negation 

(e.g. Guégand and Gavini 1995). 

Those quantified expressions can be easily denied. So to formulate that f does not tend to 

L (real) at a (real), we have (negation of the definition) 

 !"0, #$"0,  x%U, &x a'( $   &f(x) L' ) !       (10) (p.108)
6
 

In the textbook those quantified expressions mean: 

(1')  #!"0,  $"0, #x%U, &x a'( $ * &f(x) L' ( ! 
(2')  #!"0,  $"0, #x%U, &x a'+ $ * &f(x) L' + ! 
(3')  #!"0,  ,"0, #x%U-[a , , a+,] , &f(x) L' + !. (p.107) 

In statement (10), we find a blank between the two inequalities:  

(&x a'( $) and (&f(x) L' ) !). How to fill this blank? Is it the negation of (1'), (2') or 

(3')? 

The negation of (1') is:  !"0, #$"0,  x%U, &x a'( $  .  &f(x) L' ) !     

The negation of (2') is:  !"0, #$"0,  x%U, &x a'+ $  .  &f(x) L' " !    
The negation of (3') is:  !"0, #$"0,  x%U-[a , , a+,]  &f(x) L' " !    

Expression (10) doesn't correspond to any of the previous negations. We hypothesize 

that the authors aimed to negate statement (1) and did not want to use logical 

symbolism for the conjunction "and". If they did not put the word "and" in this blank to 

keep all words in formal language and to avoid using a mixed language. This is based 

on the fact that in mathematics we very rarely use the logical symbol "." which 

represents conjunction. This is reflected in the textbooks studied. Indeed, the logical 

symbol of the conjunction is identified just once among these textbooks: in the first 

paragraph of the part entitled: Set Theory, of Laurent Schwartz (1991). The author, in 

this section, uses the definition of continuity of a real function to illustrate the rules for 

handling negation: inversion of two types of quantification, negation of implication. 

For example: 

For express now that the function is continuous at every point, we write: 

!"# 

"(#a%IR) (#!"0) ( $"0) (#x%IR) [(&x a'+ $) * &f(x) f(a)'+ !]   (p.20) 

Further, we read: 

For example, the property for a function f of a real variable not is everywhere continuous, 

that is to say to be discontinuous at least one point is expressed by the single line: 

( a%IR) ( !"0) (#$"0) ( x%IR) [(&x a/+ $) . (&f(x) f(a)/ "!)]   (p.21) 

This second statement is obtained by recursively applying transformation rules: 

0 (#x Fx) 1  x 0Fx         (11) 

0 ( x Fx) 1 #x 0Fx         (12) 

                                         
6 Our translation 
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These rules allow change progressively the quantifiers and finally to focus on the 

negation of the open sentence into brackets. The application of the general rule: 

 (p(x) q(x)) ! p(x)"#q(x) to this open sentence provides the conjunction of an 

atomic formula and of the negation of an another atomic formula. So, finally we need 

to focus only on the negation of the atomic formula: $f(x) f(a)%&'. Then, the logical 

negation symbol disappears by the equivalence between the relation "("  and the 

negation of the relation "&" . 

Note that these transformation process of quantifiers only apply if they are heading the 

formula. Indeed, a quantifier in the antecedent of an implication is not modified by the 

negation:   

#[()x Fx)   G] ! ()x Fx) " (#G) 

b-In another textbook (Arnaudies and Fraysse (1988) mentioned above), following the 

definition of continuity, the authors define the discontinuity noting: 

The discontinuity of f at a point a*A means: 

(III) There exist '(0 such that for all +(0, (x*A and $x a%& +)  /  ($f(x) f(a)%& ') 
i.e 

(IV) There existe '(0 such that for all +(0 we can fond at least one x in A such that 

$x a%& + and $f(x) f(a)% (' . (p.109)
7
 

In statement (III), the authors use the symbol  /  that does not conform to the syntax of 

logic. it is  / . It begs leads to the question: what is negated? Especially since the 

universal quantification remains implicit:  [(x*A and $x a%&+)  /  ($f(x) f(a)%&') ] 

The authors answer in statement (IV) using a given vocabulary in a language of action, 

where we would expect more usage of the logic symbol of the existential quantifier. 

This shows that what is negated is of course the implicitly universally quantified 

statement. This point could not be obvious for some students; indeed, some beginners 

could consider the following statement: )x (x*A and $x a%&+)  /  ($f(x) f(a)%&')  
which is interpreted by: !None x satisfies the implication", which is not the negation of 

the definition. 

The following negation: # [(x*A"$x a%&+)   ($f(x) f(a)%&')]  does not give rise to 

the appearance of an existential quantifier. 

The negation is obviously on the universal #[)x (x*A"$x a%& +) ($f(x) f(a)%&')]      

CONCLUSION  

Logical-mathematical formalizations in definitions of continuity, limits and 

discontinuity are different from one textbook to another. One might think that they 

reflect the everyday practices of mathematicians. Anyway, the authors of the textbooks 

                                         
7 Our translation 
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we have studied do not provide to students means to overcome the linguistic 

difficulties raised by the use of formalism, in particular concerning its relationships 

with natural language, so that it seems that there is an  illusion of transparency of 

!"#$%!"#&'"()("*+,"+%-.)  

In some expressions, the presence of bounded quantification is indicated; practice 

creates a phenomenon of appearance/disappearance of involvement and quantification 

product entries do not conform to the syntax and logic that generates ambiguity, then 

the transition formalism is supposed ambiguities of ordinary language (Kouki, 2006). 

In addition, the use of automatic syntactic rules, not problematized, to construct 

recursively the negation of a sentence obscures many fundamental questions for 

operative use of formalism (Durand-Guerrier and al., 2012). 

The introduction of logical-mathematical formalism in the learned knowledge aims to 

introduce a certain level of mathematical rigor in mathematical discourse in order to 

get rid of ambiguities, implicit assumptions and call to evidence. In the knowledge to 

be taught, the study showed a wide variety of formulations as well in formal language 

as in natural or mixed language, for which we have identified and analyzed syntactic 

difficulties, which are likely to affect student work. 
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