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STRATEGIC ADVANTAGES IN MEAN FIELD GAMES WITH A
MAJOR PLAYER

CHARLES BERTUCCI1, JEAN-MICHEL LASRY2, PIERRE-LOUIS LIONS2,3

Résumé. Cette note porte sur une problématique de modélisation issue de la théorie
des jeux à champ moyen. On montre comment il est possible de modéliser des jeux à
champ moyen avec un agent majoritaire qui a un avantage stratégique, tout en restant
dans un cas où on ne considère que des stratégies markoviennes en boucles fermées
pour tous les joueurs. Nous illustrons ce fait autour de trois exemples.

ABSTRACT : This note is concerned with a modeling question arising from the mean
field games theory. We show how to model mean field games involving a major player
which has a strategic advantage, while only allowing closed loop markovian strategies
for all the players. We illustrate this property through three examples.

1. Introduction

In this note we present different mean field games (MFG for short) models involving
a major player who has some strategical advantages (in a sense to be detailed later on).
We introduce systems of partial differential equations (PDE) which characterize Nash
equilibria of MFG with a major player in the three following cases : when the decision
horizon of the major player is much larger than the ones of the non-atomic players, when
the major player can control the set of actions of the non-atomic players and finally when
the major player can decide to stop the game.

MFG models have been introduced by the last two authors first in the case without
common noise for the players [9] and next in the general case with the introduction of the
so-called master equation (see [11]), which is in general an infinite dimensional nonlinear
partial differential equation. Let us also recall that the essential structure conditions
(monotonicity) and most of the existing mathematical tools have also been introduced by
the last two authors (see [9, 11]). Let us mention that the particular case of MFG models
with no common noise was independently considered in [7] and that some particular cases
have been discussed previously in the Economics literature (anonymous games in the
discrete time case without common noise, or a heuristic description in a Macroeconomics
example in [8]). Finally, since their introduction, there is now a huge scientific literature
on MFG concerning the mathematical theory and also many applications to Economics,
Finance, Social Sciences, Communication Networks, Engineering Sciences, Computer
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Sciences, etc. We refer the reader to the online courses [11], to the book [6] (and the
references therein) for further information on the mathematical theory.

In many of the applicative situations in which the MFG theory is of interest, a major
player is also part of the game. Let us mention for instance the presence of regulators in
economic situation or a cartel facing a fringe of small producers in some markets, such
as it is the case in the oil production one. Thus, the study of MFG involving a major
player is of the utmost importance, both in terms of the mathematical questions raised
and in terms of applications. MFG involving a major player have been considered by
several authors, let us mention for instance [1, 5, 6, 10]. Different modeling points of view
have been adopted in the literature, some using different notions than Nash equilibria
to capture the behavior that one can expect to observe in practical situations. Let us
mention that [5] unifies in some sense the different works involving Nash equilibria. A
fundamental question is to analyse to which extent the major player dominates the game.
Several authors have investigated the possibility of capturing the dominance of the major
player by studying other notions of equilibria than the one of Nash, such as Stackelberg
equilibria. In this note, we present how we can avoid such delicate (especially in the time
dependent setting) notions by giving an inherent advantage to the major player (action
set, time horizon...). We work in the setting of [10]. In particular we are interested with
closed-looped Nash equilibria that we are able to characterize with systems of PDE.

A remark on terminology. In the present note, the term "small player", used to charac-
terize the players, is given the same meaning as the terminology "non-atomic player",
introduced by R. Aumann in Game Theory. Both terms refer to players who cannot
individually have an impact on the state or the payoff of the other players, as those
quantities only depend on mean field terms.

2. Underlying model and notations

We consider a so-called major player interacting with an infinite number of indistin-
guishable, indentical and non-atomic agents. The time is denoted by t. The state of the
major player is described by y ∈ Rd and his value function is denoted by ϕ. The state
space of the non-atomic agents is {1; ...; k} and the solution of the associated master
equation is U . The unnormalized histogram describing the repartition of non-atomic
players is x ∈ Rk. A typical system describing a MFG with a major player is :

(1)


∂tϕ+ F (x, y, U,∇yϕ, α∗) +A(x, y, U, α∗) · ∇xϕ− ν∆yϕ+ µϕ = 0;
∂tU + (A(x, y, U, α∗) · ∇x)U + α∗ · ∇yU − ν∆yU + λU = B(x, y, U, α∗);
α∗ = ∂pF (x, y, U,∇yϕ, α∗);
U |t=0 = U0;ϕ|t=0 = ϕ0;

for x ∈ Rk, y ∈ Rd, t ≥ 0, where F is the Hamiltonian of the major player, α∗ its control,
µ ≥ 0 its intertemporal preference rate and ν > 0 a parameter describing the intensity
of a noise associated to the major player. The terms A and B are modeling the MFG
interactions and λ is the intertemporal preference rate of the non-atomic players. Let us
note that the time has been reversed to simplify notations.

In the game associated to (1), the players interact both with their state and their
control, the major player perceiving of course only mean field terms. We only indicate
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this general framework to set some notations. Of course many different settings can be
addressed, some of them shall be in the rest of this note.

3. Different intertemporal preference rates for the major player and
the crowd

In many practical situations, the major player and the non-atomic players have dif-
ferent intertemporal preference rates. This can be due for instance to internal objectives
or to differences in cash reserves leading to the urgency of obtaining results for a given
party (a cartel of major players versus a fringe of non-cooperative small producers). Here
we indicate the limit of systems such as (1) when the non-atomic players become more
and more short-sighted, i.e. the limit λ → ∞. In [4], we studied the same type of limit
without a major player. In the present case, the same type of limits occurs : U → 0 as
λ→∞ and the system reduces to

(2)


∂tϕ+ F (x, y, 0,∇yϕ, α∗) +A(x, y, 0, α∗) · ∇xϕ− ν∆yϕ+ µϕ = 0;
α∗ = ∂pF (x, y, 0,∇yϕ, α∗);
ϕ|t=0 = ϕ0;

for x ∈ Rk, y ∈ Rd, t ≥ 0. The following holds :

Theorem 3.1. Under the assumptions of theorem 3.2 of [10], there exists a time T0 > 0
such that, for any 0 < ε < T0, extracting a subsequence if necessary, the sequence of
solutions (ϕλ, Uλ)λ>0 of (1) converges locally uniformly in (ε, T0)×Rk×Rd toward (ϕ, 0)
as λ goes to infinity, where ϕ is a solution of (2).

In the limit the small players do not anticipate any longer. Their behavior can now
be described by what is referred in the literature as agent-based models or population
games, but they are now interacting with a rational player with anticipations. Let us note
that in the limit, the controls of the small players are still optimal, but for a different
problem, which has zero duration. We also believe that this type of model is well-suited
to study Stackelberg like equilibria. Indeed, as the time dependence disappears for the
small players, such concepts become easier to manipulate. For instance we can think
that this model may be used to study games in which the time scale of the non-atomic
players is the day, and the time scale of the major player involves one year or more.

Finally, let us remark that such models seem particularly adapted to study questions
related to climate change and to limiting its causes. Indeed a (or several) regulator/
major player should have a significantly longer time scale in mind, compared to the one
of the crowd of the different agents who are impacting the environment.

4. The major player can take the "lead"

In this section we are interested in games in which the actions of the non-atomic
players can be directly impacted by the state of the game or the actions of the major
player. In particular, we emphasize the fact that, while continuing to work in the setting
of closed-loop markovian Nash equilibria, we can study games in which the controls of
the small players can be inhibited by the major player. This can be obtained without
modifying the key structure of the system (1).
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To set ideas on an example, take the case of a continuous state space for the non-
atomic players, when the system takes the form :
(3)

∂tϕ+ F (m, y, U [m],∇yϕ, α∗) + 〈 ∂ϕ∂m ,−div(∂H∂pm)〉 − ν∆yϕ+ µϕ = 0;
∂tU +H(x, y,m,∇xU,α∗) + 〈 ∂U∂m ,−div(∂H∂pm)〉+ α∗ · ∇yU − ν∆yU + λU = 0;
α∗ = ∂pF (m, y, 0,∇yϕ, α∗);
U |t=0 = U0;ϕ|t=0 = ϕ0.

We refer to [10] for the interpretation of the different terms in the previous system. Let
us assume that the Hamiltonian of the non-atomic players H is such that there exists H̃
and V such that

(4) H(x, y,m, p, α) = αH̃(x, y,m, p) + V · p;

then the major player can choose α = 0 and force the small players to move along the
vector field V . Another interesting situation is the case in which the Hamiltonian H has
the form

(5) H(x, y,m, p, α) = G(x, y,m)H̃(x, y,m, p) + α · p.

In such a situation, on the set {G = 0}, the small players cannot control their position
and they move only according to α.

Applications involving such modeling aspects are numerous. Let us mention the im-
portant case of a regulator which has the possibility to impact the effect of the controls of
the small players or which can take control, under certain circumstances, of the evolution
of the state of the small players.

5. Optimal stopping by the major player

In this section, we consider games in which the major player can decide to stop the
game (for everyone). More generally, we could consider impulse or switching controls for
the major player. For instance, we could consider games in which the major player can
switch between two states which are both associated to a system of the form of (1). As
the concepts involved in the following analysis are the same, we restrict ourselves to the
case of optimal stopping to simplify notations.

This type of setting is of course reminiscent of a referee whistling the end of a game
and applications of this type of models include for instance the closure of a market by a
regulator.

We denote by ψ(x, y,m) the stopping cost of the major player and by Ū the cost
the non-atomic players face once the major player has stopped the game. The action
set of the major player being non-convex, we cannot expect to obtain existence of Nash
equilibria without considering mixed strategies. Following [2, 3], we start by writing a
penalized system. At this penalized level, we assume that the major player cannot decide
to leave the game instantaneously, but control the intensity of an inhomogeneous Poisson
process on some probabilistic space (Ω,A,P), and that this intensity has to be bounded
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by ε−1 for some ε > 0. The system which describes such a game is
(6)

∂tϕ+ F (x, y, U,∇yϕ, α∗) +A(x, y, U, α∗) · ∇xϕ− ν∆yϕ+ µϕ+ β∗(ϕ− ψ)+ = 0;
∂tU + (A(x, y, U, α∗) · ∇x)U + α∗ · ∇yU − ν∆yU + λU + β∗(U − Ū) = B(x, y, U, α∗);
α∗ = ∂pF (x, y, U,∇yϕ, α∗);
0 ≤ β∗ ≤ ε−1;β∗ ≡ ε−1 on {ϕ > ψ};β∗ = 0 on {ϕ < ψ};
U |t=0 = U0;ϕ|t=0 = ϕ0;

for x ∈ Rk, y ∈ Rd, t ≥ 0. In this system, β∗ is the optimal intensity of the Poisson
process controlled by the major player. In the first equation, the term β∗(ϕ − ψ)+ is
the standard penalization term for optimal stopping. In the second equation, the term
β∗(U − Ū) stands for the fact that the small players are anticipating that at the rate β∗,
the game may stop, in which case they will face the cost Ū . Existence results for this
system can be obtained using arguments introduced in [10] and fixed point argument on
correspondances.

Theorem 5.1. Under the assumption of theorem 3.2 of [10] together with the assumption
that ψ and Ū are smooth functions, for any ε > 0, there exists T0 > 0 such that there
exists a solution (ϕ,U, α∗, β∗) of (6) for T < T0.

The passage to the limit ε→ 0 in (6) yields the following system
(7)

max {ϕ− ψ; ∂tϕ+ F (x, y, U,∇yϕ, α∗) +A(x, y, U, α∗) · ∇xϕ− ν∆yϕ+ µϕ} = 0;
∂tU + (A(x, y, U, α∗) · ∇x)U + α∗ · ∇yU − ν∆yU

+ λU + β∗(U − Ū) = B(x, y, U, α∗) on {β∗ < +∞};
0 ≤ β∗ ≤ +∞;
U = Ū on {∂tϕ+ F (U,∇yϕ, α∗) +A · ∇xϕ− ν∆yϕ+ µϕ < 0};
β∗ = 0 on {ϕ < ψ};
U |t=0 = U0;ϕ|t=0 = ϕ0;

Let us make the following remarks : (i) The fact that there exists a non-empty set
{0 < β∗ < +∞} (which makes this formulation quite complex) is in general unavoidable.
It arises from the fact that we are forced to consider Nash equilibria in mixed strategies
for the major player to obtain existence. (ii) Under some structural assumptions on F ,
A and ψ, it can be shown that Nash equilibria in pure strategies exist. In such cases
we can characterize (ϕ,U) simply with the fact that ϕ solves the obstacle problem, U
the master equation on {ϕ < ψ} and U = Ū on {ϕ = ψ}. (iii) For (7) to have classical
solutions, some compatibility assumptions have to be made on Ū , namely that it is a
solution of the master equation.
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