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Abstract. Annotation of medical images for semantic segmentation is
a very time consuming and difficult task. Moreover, clinical experts of-
ten focus on specific anatomical structures and thus, produce partially
annotated images. In this paper, we introduce SMILE, a new deep con-
volutional neural network which addresses the issue of learning with in-
complete ground truth. SMILE aims to identify ambiguous labels in or-
der to ignore them during training, and don’t propagate incorrect or
noisy information. A second contribution is SMILEr which uses SMILE
as initialization for automatically relabeling missing annotations, using
a curriculum strategy. Experiments on 3 organ classes (liver, stomach,
pancreas) show the relevance of the proposed approach for semantic seg-
mentation: with 70% of missing annotations, SMILEr performs similarly
as a baseline trained with complete ground truth annotations.

Keywords: medical images · deep learning · convolutional neural net-
works · incomplete ground truth annotation · noisy labels · missing labels.

1 Introduction

Fully automatic semantic segmentation of medical images is a major challenge.
Over the last few years, Deep Learning and Convolutional Neural Networks
(ConvNets) have reached outstanding performances on various visual recognition
tasks [9]. Regarding semantic segmentation on natural images, state-of-the-art
performances are currently obtained with Fully Convolutional Neural Networks
(FCNs) [1, 3]. Consequently, several attempts have been made to apply those
methods on medical images [15, 11, 16]. In challenges like Liver Tumor Segmen-
tation Challenge (LiTS), leading methods are based on FCNs [5, 10].

However, training deep ConvNets requires large amount of data with clean
annotations. The annotation process is an extremely time consuming task for
semantic segmentation, which requires pixel-level labeling. This challenge is am-
plified in the medical field, where highly qualified professionals are needed. In
this paper, we focus on abdomen 3D CT-scans from an internal dataset with
more than 1000 patients, each volume containing about a hundred of 512× 512
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images. The segmentation masks have been realized by clinical experts but they
have focused on specific organs or anatomical structures, e.g. liver pathologies.
As a consequence, the collected labels intrinsically contain missing annotations,
as illustrated in Figure 1.

Fig. 1: Our 3D CT-scan dataset is labeled by clinical experts who focused on
certain organ pathologies, e.g. liver. The ground truth annotations are therefore
incomplete. We define ambiguity maps to train binary class predictors, which
ignore incorrect background labels.

Several learning methodologies can be used to address the aforementioned
missing annotations issue. Weakly Supervised Learning (WSL) can be used to
leverage coarse annotations, e.g. global image or volume labels. WSL is gen-
erally closely connected to Multiple Instance Learning [4], and has been used
for WSL segmentation of natural images [14, 13] and medical data [7]. However,
performing pixel-wise prediction from global labels is known to be a challeng-
ing task, making WSL approaches generally substantially inferior to their fully
supervised counterparts. Since missing annotations are incorporated to back-
ground pixel classes, another option to address this problem is to design models
able to incorporate noisy labels, which have been recently applied for semantic
segmentation [12, 8]. Although interesting, most of these methods rely on the
assumption that the ratio of noisy labels remains relatively low, whereas more
than 50% of the organs are commonly missing in our context.

In this paper, we introduce SMILE, a new method for Semantic segmentation
with MIssing Labels and ConvNEts. Firstly, we design a learning scheme which
converts the segmentation of K organ classes into K binary problems, and we
define ambiguity maps which allow to train the model with 100% of clean labels
(see Figure 1), while retaining a largely sufficient number of negative samples.
The model trained at this first stage is then used for automatically predicting
labels for missing organs, using a Curriculum strategy [2] (SMILEr). We per-
form extensive experiments in an sub-set of our dataset for the segmentation of
three organ classes: liver, pancreas and stomach. We show that our approach
significantly outperform a strong FCN baseline based on Deeplab [3], especially
when the number of missing organs is large. The final model (SMILEr) trained
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with only 30% of present organs performs similarly to a baseline trained with
complete ground truth annotations.

2 SMILE Model

The SMILE model is dedicated to semantic segmentation with missing labels
using ConvNets. The missing organ annotations are labeled as ”background”, as
shown in Figure 1.

SMILE is based on the strong DeepLab baseline [3], which shows impressive
results for natural and medical images [5]. The DeepLab backbone architecture
is a Fully Convolutional Networks (FCN), as shown in Figure 2, e.g. Res-Net [6].
In DeepLab, 1x1 convolutions and soft-max are applied to classify each pixel
into K (+1, i.e. background) classes.

2.1 Handling missing annotations

In our context, the main limitation of DeepLab is that background labels some-
times correspond to missing organs. Therefore, back-propagating these back-
ground labels may damage training performances by conflicting with pixels where
the organ is properly annotated.

SMILE architecture To address this problem, we choose to start from the
(K+1) multi-class classification formulation, and to classify each organ indepen-
dently using K binary classifiers. The SMILE architecture is shown in Figure 2.
We use 1 × 1 convolutions, as in DeepLab, but we apply a sigmoid activation
function to predict the presence / absence of an organ at each pixel.

SMILE training During training, the K binary models generate K losses at
each pixel by computing the binary cross entropy: Lk(ŷk, y

∗
k) = −(y∗k log(ŷk) +

(1−y∗k) log(1−ŷk)). The final loss aggregates these K losses through summation:

L(ŷ, y∗) =
K∑
k=1

wk Lk(ŷk, y
∗
k) (1)

where wk ∈ {0; 1} is a binary weight map which select or ignore pixels for class
k.

The wk weights are the core of the SMILE model, which are used to ignore
ambiguous annotations during training. We illustrate the rationale of our ap-
proach in Figure 2. We consider a volume where only one organ is annotated.
In the baseline DeepLab model, pixels for the other organs in each slice are in-
correctly labeled as background, and back-propagated consequently. Contrarily,
with SMILE, we only back-propagate labels which are certain. In this example,
we can back-propagating positive / negative labels for the annotated organ at
every pixels p: we thus have wa = 1∀p. On the other hand, for unannotated
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organs, we only use pixels which are certainly not belonging to the given class
for training the binary classifier: wu = 1 for all pixels of the annotated organs.
Other pixels are ignored during training, i.e. wu = 0.

Fig. 2: SMILE architecture and training. The presence of an organ at each pixel is
determined by using K independent binary classifiers. During training, a weight
wk for each class enables to ignore ambiguous pixels.

The idea behind SMILE is to only use true positive and true negative labels
during training. To formalize this, we consider a given organ class k with its
associated binary classification problem. We denote as βk the ratio of pixels for
the organ in all volumes of image slices, and α the ratio of missing labels for
this organ in the dataset. Table 1 shows the confusion matrix for the labels used
by SMILE and the DeepLab baseline. We can see that they both use the same
amount of true positives: TP = (1 − α) · βk. For negative examples, however,
the baseline uses FN = α · βk false negatives, i.e. the amount of unannotated
pixels belonging to the organ. The ratio TP

FN = 1−α
α gives a good indication on

the influence of the wrong information: with α > 0.5, TP
FN < 1, which means

that the model incorporates more wrong labels than correct ones, dramatically
deteriorating its performances.

On the other hand, the baseline learns with more true negatives (1 − βk)
than SMILE (1− α)(1− βk) + ε, where ε =

∑
k′ 6=k βk′ corresponds to the other

organ labels (see Figure 2). However, we take advantage on the class unbalance:
generally β << 1, e.g. β = 0.05, since the organs represent a small proportion
of the total volume. As a consequence, even if we remove some background
examples, we still have largely enough information to learn it properly.

2.2 Incremental self-supervision and relabeling

The number of true positives (TP) is linearly decreasing with respect to the
ratio of missing organ annotation α (Table 1). SMILE can thus be improved
by recovering TP in unannotated training images. We propose a self-supervised
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Table 1: Training label analysis. GT: Ground Truth
(a) Baseline FCN

H
HHHHGT

Used
Pos Neg

Pos (1 − α) · βk α · βk
Neg 0 1 − βk

(b) SMILE

H
HHHHGT

Used
Pos Neg

Pos (1 − α) · βk 0

Neg 0 (1 − α) · (1 − βk) + ε

approach to achieve this goal, called SMILEr (SMILE with relabeling). The idea
of SMILEr is to iteratively produce new positive target labels y∗i,t = 1 in an

image with missing annotations xi for each class k4, using a curriculum strategy
[2].

Basically, SMILEr is initialized with SMILE, which has been trained with
correct positive labels only (Table 1) that can be regarded as ”easy positive
samples”. Let us denote as ŷi

+, the pixels predicted as positive by SMILE in a
given unannotated image xi. SMILEr then add new ⊕ labels y∗,+i,t by selecting the

top scoring pixels among ŷi
+. The model is then retrained with the augmented

training set, and the process is iterated T times, by selecting an increasing ratio
γt = t

T γmax of top scoring pixels among positives.
The new ⊕ labels y∗i,t incorporated at each curriculum iteration are ”harder

examples”, since they are incrementally determined by the model trained with
an increased set of auto-supervised positives.

3 Experiments and Results

We perform experiments on a subset of our dataset with complete ground truth
annotations for three organs: liver, pancreas and stomach, which gathers 72
3D volume CT-scans. We generate a partially annotated dataset by randomly
removing α% of organs in the volumes independently.

Quantitative evaluations We compare our approach to the DeepLab base-
line [3] with a varying ratio of missing annotations α. We randomly split training
(80%) and testing (20%) data K times, and report averages and standard devia-
tions of Dice scores over the K runs. For SMILEr, we fix T = 2 and γmax = 0.66.

Figure 3 shows the results for the baseline, SMILE and SMILEr, for each
organ and on average. As expected, the maximum scores are reached when 100%
of the annotations are kept, i.e. α = 0. When α increases, the performances of
the baseline dramatically drop, whereas our approach continues to perform well.
For example, SMILE performs similarly as the method trained with complete
annotations with α = 40%, whereas the baseline performance is decreased by
about 20 points. The gain is even more pronounced for SMILEr which results

4 We drop the dependence of class in y∗i,t for clarity.
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(a) Mean (b) Liver

(c) Pancreas (d) Stomach

Fig. 3: Dice score versus the proportion of missing annotations α. The baseline
is represented in blue, SMILE in red and SMILEr in green.

are comparable to the fully annotated method for α = 70%, whereas the baseline
performs very poorly in this regime.

SMILEr analysis Figure 3 highlights the fact that the Dice score is better when
the organ is bigger. Regarding SMILEr, we can observe that its improvement is
especially pronounced for small organs, see for example the large performance
boost for pancreas and stomach.

Figure 4 shows how the training evolves during the T = 3 curriculum iter-
ations of SMILEr, and with γmax = 1. At t = 0, we show the segmentation of
SMILE, blue pixels indicating the new positive labels added for training for the
next step. We can see how the segmentation is refined and is nearly perfect at
γ2 = 0.66 (t = 2). It is also interesting to see how the model tends to over predict
some labels at γ3 = 1.0.

Finally, we give in Figure 5 the final segmentation for the three organ classes
in a test image, for SMILEr and the baseline, at α = 70%. We can notice the
incapacity of the baseline, whereas SMILEr successfully segments all organs.
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(a) Ground truth (b) t = 0 (c) t = 1

(f) t = 2 (g) t = 3

Fig. 4: SMILEr behaviour with T = 3 iterations, γmax = 1.0 and α = 50%.
SMILEr prediction in red, selected ⊕ pixels for the next iteration in blue.

(a) Ground Truth (b) Baseline α = 70% (c) SMILEr α = 70%

Fig. 5: Segmentation results for the baseline and SMILEr, with α = 70%. The
liver is in blue, the pancreas in red and the stomach in green.

4 Conclusions

We introduce a new model, SMILE, dedicated to semantic segmentation with
incomplete ground truth. SMILE is based on the use of certain labels for train-
ing a first model, which is lately used to incrementally re-label positive pixels.
Experiments show that SMILE can achieve comparable performances to a model
trained with complete annotations with only 30% of labels. Future works are the
application of SMILE to other organ classes, and the incorporation of uncertainty
for selecting the target pixels labels in our curriculum approach.
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