
HAL Id: hal-02471110
https://hal.science/hal-02471110v1

Preprint submitted on 7 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential design for prediction Sequential design for
prediction with Gaussian process models

Mona Abtini, Céline Helbert, François Musy, Luc Pronzato, Maria-João
Rendas

To cite this version:
Mona Abtini, Céline Helbert, François Musy, Luc Pronzato, Maria-João Rendas. Sequential design
for prediction Sequential design for prediction with Gaussian process models. 2020. �hal-02471110�

https://hal.science/hal-02471110v1
https://hal.archives-ouvertes.fr

Sequential design for prediction

Sequential design for prediction
with Gaussian process models

Mona Abtini mona.abtini@doctorant.ec-lyon.fr,
Céline Helbert celine.helbert@ec-lyon.fr,
François Musy francois.musy@ec-lyon.fr
ECL, ICJ, UMR 5208
Université de Lyon
36 av. G. de Collongue
69134 Ecully Cedex, FRANCE

Luc Pronzato pronzato@i3s.unice.fr

Maria-João Rendas rendas@i3s.unice.fr

I3S - UMR7271

CNRS-UCA

2000 route des lucioles

06900 Sophia Antipolis, FRANCE

Editor: tbd

Abstract

When numerical simulations are time consuming, the simulator is replaced by a simple
(meta-)model which approximates its behavior. This surrogate model is adjusted on a set of
carefully chosen computer experiments, or Design of Experiments (DoE), with the objective
of obtaining the best possible approximation with available computational budget. For the
widely used Gaussian process models, Mutual Information (MI) is a particularly attractive
DoE quality measure. Finding the set of configurations that optimise the MI criterion
is a NP-hard problem, and in this paper we concentrate on the sequential construction
of designs by greedily maximising MI. Unfortunately, even this much simpler problem
is still computationally demanding, still involving prohibitively large running times. We
propose a new algorithm for the sequential construction of MI-optimal designs that shares
computational costs across several candidate points, enabling a significant reduction of
computing time. In particular, we show that the combination of our approach with a Lazy-
greedy strategy proposed previously leads to important computational gains, enabling the
consideration of more challenging problems (higher dimensional problems, finer grids of
design points). A comprehensive numerical study highlights the increased invariance of the
computational costs of the new algorithm with respect to implementation choices, like the
covariance kernel.

Keywords: Design of Experiments, Mutual Information, Computational Complexity

1. Introduction

Computer experiments have become an instrumental alternative to real experiments in the
study of physical phenomena. However, analysis of complex systems (in particular high-
dimensional problems, which involve many input variables) requires in general a significant

1

Abtini et. al.

number of time-consuming simulations, each one possibly taking from several hours to
several days. A Design of Experiments (DoE) specifying a small number N of carefully
chosen simulations allows the identification of an accurate (meta-)model of the simulator
which can be used to concentrate subsequent analysis in the regions of the input domain
potentially relevant to the goals of the study. In this paper, we consider meta-models that
assume that the observed system is a realisation of a Gaussian process.

In the framework of Gaussian process modelling, Mutual Information (MI, Caselton
and Zidek (1984)) is used to quantify the decrease of uncertainty about unobserved values
of the process that results from using a given design. Maximizing the MI between the
observations at the design points and the function values over the rest of its domain should
thus lead to meta-models with good predictive quality. As for many other performance
criteria, the direct determination of the N -point design with maximal MI is a difficult (NP-
hard, non-linear, multivariate) problem. In this paper we focus on using sequential greedy
optimisation to find DoEs with near-optimal MI.

Definition 1 (greedy optimisation) Let φ be a criterion defined on the power set of a
finite set DM . A greedy algorithm for the maximisation of φ, initialized at A0 = ∅ (the
empty set), sequentially selects points in DM according to

xn+1 ∈ Arg max
x∈DM\An

φ (An ∪ {x}) , An+1 = An ∪ {xn+1} .

Unless for additive criteria, the quality of a DoE obtained by the greedy construction
above cannot in general be guaranteed. However, because the MI criterion is submodular
and quasi-monotonic, see Krause et al. (2008), the MI of the solutions An obtained at all
iterations (n = 1, 2, . . .) of the greedy algorithm can be proved to achieve at least 63% of
its maximum possible value, as a consequence of a celebrated theorem of Nemhauser et al.
(1978).

However, even this sequential construction of designs with guaranteed MI may remain
prohibitive when the size of DM is large, since it requires the inversion of a correlation matrix
of size |DM\An|−1. As shown in Krause et al. (2008), lazy-greedy optimisation, see Minoux
(1978), which avoids in each iteration actual computation of MI over the entire set DM \An,
can be used to decrease the overall computational time, submodularity guaranteeing no
subsequent loss of performance. The number of evaluations of the criterion performed at
each iteration can thus be decreased. Unfortunately, the numerical complexity of each
evaluation of φ(·) may still remain prohibitively large when |DM | is very large.

This paper addresses this last curb on use of MI as a design criterion, presenting an
efficient implementation of the MI evaluations performed at each iteration of the greedy
algorithm, which must consider possible extensions An ∪ {x}, for x ∈ DM \ An, of the
current design An. The gain of our implementation is based on a partition of the set of
remaining candidate points, DM \ An, which enables the mutualisation of certain matrix
inversions, being an example of the familiar trade-off between memory requirements and
computational complexity. We show that this efficient evaluation, based on block decompo-
sition of the correlation matrices, can be combined with the idea proposed in Krause et al.
(2008) to further improve the overall efficiency of design construction. Contrary to the
Stochastic-Greedy algorithm presented in Mirzasoleiman et al. (2015), the improvement in

2

Sequential design for prediction

computational complexity proposed here does not come at the price of performance degra-
dation.

The structure of the paper is as follows. Section 2 recalls the definition of Mutual Infor-
mation and remembers its expression under the Gaussian process assumption. In Section 3
we present briefly the sequential construction method proposed in Krause et al. (2008)
(Algorithm Lazy). Our new algorithm based on block partition (Algorithm Blocks) is de-
scribed in Section 4, where the influence of the number of blocks on the computing time
is investigated and a rule for its quasi-optimal choice given. In Section 5 we combine both
ideas, lazy-greedy and block partition (Algorithm Lazy-Blocks), and present a numerical
comparison of the complexity of the three algorithms. Details on the analysis of the com-
plexity of Algorithm Blocks, which resorts to a more exact characterisation of the numerical
complexity of Cholesky factorisation than what can easily be found in the literature, are
collected in Appendix A.

2. Mutual information in Gaussian process modelling

In this section we recall the principles of Gaussian process regression, the definition of
Mutual Information, and its analytical expression for Gaussian process models.

2.1 Gaussian process modelling

Let D be a compact subset of a d-dimensional space and DM an M -point discretization
of D, for example, when D = [0, 1]d, DM can be a regular grid or the first M points
of a low discrepancy sequence. Let X ⊂ DM be a DoE with N points. We write X =
(xji)1≤i≤N,1≤j≤d, where xji is the j-th coordinate of the i-th point and denote X = DM \X.

Gaussian process regression assumes that the response of the simulator to inputs x ∈ D
is a realization of a Gaussian process (see Rasmussen and Williams (2005)) (Y (x))x∈D,
with known mean γ, where γ : x ∈ D → γ(x) ∈ R, and covariance k : (xi, xk) ∈ D ×D →
k(xi, xk) = σ2r(xi, xk) ∈ R, where r(., .) is a correlation kernel. After observation of the
responses of the simulator on the DoE, YX = {Y (x), x ∈ X}, a meta-model approxi-
mates the simulator response on D by the expected value of the posterior Gaussian process
((Y (x))x∈D | YX) ∼ GPY (µx|X , σ

2
x|X), where

µx|X = E [Y (x)|YX] = γ(x) + rtx,XR
−1
X,X(YX − γ(X)) , (1)

σ2x|X = V [Y (x)|YX] = σ2(1− rtX,xR−1X,XrX,x) . (2)

Above, we used notation RX1,X2 = (r(xi, xj))xi∈X1,xj∈X2
, with X1 and X2 two DoE’s (hav-

ing possibly different sizes), rX,x = (r(xi, x))16i6|X|, γ(X) = (γ(xi))16i6|X| and rtX,x is the
transpose of rX,x. In (1,2), RX,X is thus a |X|× |X| symmetric positive-definite matrix and
rX,x and γ(X) are columns vectors of length |X|. The mean function γ(x) does not play
any role in MI-based construction of DoE, and we will assume without loss of generality
that γ(x) = 0 for all x ∈ D.

2.2 The MI criterion

We present below basic definitions from information theory. All the material can be
found in classic references, see for instance Cover and Thomas (1991). We start by the

3

Abtini et. al.

elemental definition of Shannon entropy of a random variable X ∼ g(x) as H(X) =
−
∫
R g(x) log g(x) dx For jointly distributed random variables X and Y , (X,Y) ∼ g(x, y)

let Y ∼ gY (y), X ∼ gX(x) and gX|y(x|y) denote the conditional density of x given
Y = y. The conditional (Shannon) entropy of X given Y is by definition H(X|Y) =
−
∫
R gY (y)

∫
R gX|y(x|y) log gX|y(x|y) dx dy.

Definition 2 (mutual information) The mutual information between a pair of random
variables (X,Y) is defined by:

MI(X;Y) =

∫
R

∫
R
g(x, y) log

[
g(x, y)

gX(x)gY)(y)

]
dxdy .

MI(X;Y) measures the degree of statistical dependency between the two random vari-
ables X and Y , and MI(X;Y) = 0 if and only if they are statistically independent. In fact,
mutual information measures the decrease of the Shannon entropy of one of the variables
when the other is observed:

MI(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X) , (3)

= H(X) +H(Y)−H(X,Y) , (4)

the last equation resulting from the chain rule of entropy H(X,Y) = H(X|Y) +H(Y).
In the context of DoE, one should chooseX such that the mutual information MI(YX ;YX)

between observed (YX) and unobserved (YX) simulator outputs is maximal. By (4),

MI(YX ;YX) = H(YX)−H(YDM
) +H(YX) . (5)

If YX and YX are jointly Gaussian (which is the case, under the Gaussian process assump-
tion, when YX gathers the observed values of the simulator response) the Shannon entropy
is given by

H(YX) =
N

2

[
1 + log(2πσ2)

]
+

1

2
log(detRX,X) , (6)

and the mutual information criterion MI(YX ;YX) is given by

MI(YX ;YX) =
1

2

[
log(detRX,X)− log(detRDM ,DM

) + log(detRX,X)
]
. (7)

For simplicity, in the sequel we shall write H(X) for H(YX) and MI(X) for MI(YX ;YX).
Note that it is an immediate consequence of (5) that MI(∅) = 0.

3. Greedy MI maximisation

In general computing an MI-optimal N -point design is a very difficult and time-consuming
task: the optimisation problem is high dimensional, since N × d coordinates must be de-
termined simultaneously, and several local optima exist in general. Although a sequential
greedy construction – see Definition 1 – leads to a suboptimal solution, it has two important
advantages: first, at each step the optimisation concerns only one (d dimensional) design
point; second, and equally important, the final size of the design does not need to be fixed
in advance.

Moreover, as we remember in subsection 3.1 below, it has been proved that under
convenient assumptions on the optimised criterion it is possible to provide guarantees on
the quality of the designs identified at each step of the sequential construction.

4

Sequential design for prediction

3.1 Submodularity

Let A be a finite set. The power set of A, usually denoted by 2A, is the set of all subsets of
A. Naturally, |2A| = 2|A|.

Definition 3 (submodularity Bach (2011)) A function φ defined on the power set of
DM is submodular if and only if it satisfies the following two (equivalent) conditions:

for all subsets A and B of DM , φ(A) + φ(B) ≥ φ(A ∪B) + φ(A ∩B) , (8)

for all A ⊂ B ⊂ DM and x ∈ DM \B , φ(A ∪ {x})− φ(A) ≥ φ(B ∪ {x})− φ(B) .
(9)

For those unfamiliar with the notion of submodularity, equation (9) provides an intuitive
meaning of this concept as the celebrated “diminishing returns” property: the increase in
the value of φ when an element is added to a set A is a decreasing function of this set.

The following definition will prove useful in the sequel.

Definition 4 (efficiency) Let φ be a criterion defined on the power set of DM that should
be maximised.

The efficiency of A ⊂ DM is the ratio φ(A)/φ?|A|, where φ∗N = maxA⊂DM ,|A|=N φ(A)
denotes the optimal criterion value for sets of size N .

Theorem 1 (guaranteed efficiency, Nemhauser et al. (1978)) Let φ(·) be an increas-
ing submodular criterion defined on the powerset of DM for which φ(∅) = 0. Let AN be
the set of the N first points selected by the greedy algorithm and denote e = exp(1), then:

φ(AN)

φ∗N
≥
(

1− 1

e

)
' 0.63 .

The theorem states that, provided that the criterion satisfies suitable conditions, the
greedy construction guarantees an efficiency of at least 63%, whatever the size N of the
design constructed (N ≤ M). Note that the selection rule indicated in Definition 1 is
equivalent to maximisation of δAn(x), the increment of φ at An:

Arg max
x∈DM\An

φ (An ∪ {x}) = Arg max
x∈DM\An

δAn(x), where δX(x) = φ(X ∪ {x})− φ(X) .

If φ is submodular these increments are, for each x, decreasing functions of An, that is,
of the iteration n.

3.2 Greedy construction for the MI criterion

As noted before, MI trivially verifies the normalisation condition φ(∅) = 0. On the contrary,
MI(X) ≡ MI(YX ;YX) is symmetric in its two arguments and thus strictly speaking the
mutual information criterion cannot be a monotone function, violating one of the conditions
of Theorem 1. Nevertheless, for small design sizes N ≤ bM/2c the MI criterion can be seen
to satisfy the conditions of Theorem 1, see Krause et al. (2008), and thus the efficiency of
the DoEs obtained by greedy maximisation can be guaranteed for N < bM/2c.

5

Abtini et. al.

The increment δX(x) when adding point x to X can be expressed in terms of conditional
Shannon entropies (see (5))

δX(x) = MI(X ∪ {x})−MI(X) = H({x} |X)−H({x} |X \ {x}), x ∈ X . (10)

Note that δX(x) = 0 when x ∈ X.
Under the Gaussian assumption, see equations (6) and (2), each conditional entropy is

of the form

H({x} |Z) =
1

2

[
1 + log(2πσ2) + log

(
1− rtZ,xR−1Z,ZrZ,x

)]
,

for either Z = X or Z = X \ {x}. The costly operation in the expression above is the
inversion of RZ,Z , which is O(M3). While for the first term of (10), for which Z = X, this
is a small matrix of size N , for the second term |Z| = |X \ {x} | = M −N − 1 is in general
very large.

At each iteration one such matrix inversion must be done for each element of X = DM \
X, whose cardinality is O(M) when N �M , leading to a unrealistic complexity O(NM4)
for choosing a quasi-MI-optimal design of size N if a straightforward implementation of the
greedy algorithm is used. In Section 4.1 we present an efficient numerical implementation
that shares some of the computational load amongst evaluations for distinct x ∈ DM \X,
by relying upon a suitable partition of RX,X .

3.3 Lazy-greedy: exploiting the submodularity of MI

In Krause et al. (2008) the authors show that submodularity of the MI criterion allows its
lazy-greedy optimisation, avoiding exhaustive search through all remaining candidate points
at each greedy iteration. Computational time can thus be reduced without sacrificing the
original performance guarantee.

In fact, since MI is submodular it thus verifies the “diminishing returns” property,

for all Xk ⊂ Xk+1 ⊂ DM and for all x ∈ Xk+1, , δXk+1
(x) ≤ δXk

(x) .

This means that increments computed in previous iterations of the greedy algorithm are
upper bounds on the value they can take in future iterations. Algorithm Lazy presented
below, proposed in Krause et al. (2008), outputs the N point design that is chosen by greedy
optimisation of MI. During the iterations, it maintains in memory an upper bound (δ(x))
on the value of the actual MI increment with respect to the current design (δXn(x)) for each
x ∈ DM \Xn, that is,

δ(x) ≥ δXn(x), ∀x ∈ DM \Xn .

The computational gains of Algorithm Lazy arise from direct placement of elements x
with δ(xi) ≤ δ(x∗) in the list Ln without actual update of their increment at that iteration,
and is difficult to quantify.

While the worst case complexity of Algorithm Lazy is still O(NM4), the acceleration
observed in real applications is often very large, as we will see in Section 5.2. In Mirza-
soleiman et al. (2015) the authors propose a stochastic version of this algorithm that is based
on update of only a random sample of the set of candidate points that has complexity lin-
ear in the size of the domain. However, this acceleration comes at the price of a decreased
performance guarantee of 1 − 1/e − ε, where ε is determined by the size ((M/N) log(1/ε))
of the subset of candidate points that is actually updated in each iteration.

6

Sequential design for prediction

Algorithm A (Algorithm Lazy)

for all x ∈ DM do
δ(x) = MI({x});

end for
x1 = arg maxx δ(x), X1 = {x1}; set δ(x1) = 0;
for n = 2 to N ≤ dM/2e do

include all x ∈ DM with δ(x) > 0 in the candidate list Ln, sorted by decreasing values
of δ(xi);
while |Ln| > 1 do

let x∗ be the first x in Ln, compute δ(x∗) and update δ(x∗) = δ(x∗);
remove from Ln all the xi such that δ(xi) ≤ δ(x∗);
place x∗ in the right position in Ln (sorted by decreasing values of δ(xi));

end while
Take xn has the only element in Ln; set Xn = Xn−1 ∪ {xn};

end for

4. Partitioning

We present now the major result of the paper, showing how the overall complexity of each
greedy iteration can be decreased by working with a partition of the set of candidate points,
addressing also the determination of its optimal size.

4.1 Principle

By equation (7), maximizing MI(X ∪ {x}), where x ∈ X, is equivalent to maximizing the
sum

δ(x) = log(detRX∪{x},X∪{x}) + log(detRX\{x},X\{x}) . (11)

At each greedy iteration we must compute the two terms in the left handside for each
candidate point x in X. This section proposes a method that decreases the computational
load of each greedy iteration by mutualizing the some of the numerical load across the
blocks of a partition of X.

Consider the addition of x to the current design X and write RX∪{x},X∪{x} as

RX∪{x},X∪{x} =

[
RX,X rX,x
rtX,x 1

]
,

such that log(detRX∪{x},X∪{x}) = log(1 − rtX,xR
−1
X,XrX,x) + log(detRX,X). Using the

Cholesky factorization RX,X = StS, we obtain

log(detRX∪{x},X∪{x}) = log
[
1− (S−trX,x)t(S−trX,x)

]
+ 2 log(detS) . (12)

Matrix S does not depend on x, and thus only S−trX,x needs to be computed for each new
candidate point x.

Although less simple, it is also possible to identify computations involved in the evalu-
ation of log(detRX\{x},X\{x}) that can be shared amongst distinct candidate points x, by

considering a partition of the set of all candidate points X.

7

Abtini et. al.

Let L ⊂ X, ` ∈ L a generic element of L, and partition X as

X = I ∪ L−` ∪ {`} , where I = X \ L, and L−` = L \ {`} . (13)

Write —if required by applying a suitable permutation of its lines and columns— RX,X in
the corresponding block form:

RX,X =

 RI,I RI,L−` RI,`
Rt
I,L−` RL−`,L−` RL−`,`

RtI,` Rt
L−`,l

1

 .
We must calculate the log-determinant of this matrix when its last line and column are
deleted:

detRX\{x},X\{x} = det

[
RI,I RI,L−`

Rt
I,L−` RL−`,L−`

]
= log(detRI,I) + log(det(B`)) , (14)

where B` is the Schur complement of block RI,I

B` = RL−`,L−` −RtI,L−`R
−1
I,IRI,L−` . (15)

We see that the term log det(RI,I) in (14) is common to all ` ∈ L showing that the Cholesky
factorization RI,I = StLSL and the determination of its determinant can be shared amongst
all elements of block L.

Besides, for each different ` we need to compute

B` = RL−`,L−` −DL−`,L−` , where DL−`,L−` = RtI,L−`R
−1
I,IRI,L−` . (16)

Note that B` can be obtained by deleting both its `-th line and column of matrix BL,L:

B` = [BL,L]∼`,∼` , where BL,L = RL,L −DL,L, and DL,L = RtI,LR
−1
I,IRI,L .

(17)
Finally, matrix DL,L is computed by using the Cholesky factorisation of RI,I , as

DL,L = CtLCL, with CL = S−tL RI,L . (18)

We presented above how considering a binary partition X = I ∪ L of the set of candidate
points enables to share computations amongst the points belonging to each element of
either L or I (remark that the derivation above is symmetric in sets I and L). More
generically, the set of candidate points can be partitioned in m subsets, X = ∪mv=1Lv, and
computations shared amongst the elements of each subset Lv as we described above. The
overall organisation of the computations is summarised in Algorithm Blocks below.

4.2 Complexity of Algorithm Blocks

The complexity of Algorithm Blocks depends heavily on the number m of blocks into which
X is partitioned: the number of required factorizations of RI,I increases with m, while the
computational cost of the factorization of B` must decrease with m since the size of each
block Lv is smaller. An optimal balance between these two terms must thus exist, and

8

Sequential design for prediction

Algorithm B (Algorithm Blocks)

1: {Initialization}
X = ∅,

2: for n = 1 to N do
3: Perform Cholesky factorization RX,X = StS
4: for all ` ∈ X do
5: Compute log det(RX∪{x},X∪{x}) (eq. (12))
6: end for
7: Partition X =

⋃m
v=1 Lv

8: for v = 1 to m do
9: L = Lv , I = X \ L

10: Perform Cholesky factorization RI,I = StLSL
11: Compute log det(RI,I) = 2 log det(SL)
12: Compute DL,L (eq. (18))
13: for l ∈ L do
14: Perform Cholesky factorization of B` (eq. (16)
15: Compute log det(RX\{x},X\{x}) (eq. (14))

16: Compute δ(`) (eq. (11))
17: end for
18: end for
19: l∗ = arg max δ(`) , X = X ∪ {`∗}
20: end for

we address in this subsection the determination of the optimal number of blocks used in
Algorithm Blocks to build a design of size n from M candidate points, m?(M,n). Details
of the analysis are relegated to Appendix A.

The algorithmic complexity of Algorithm Blocks is dominated by the Cholesky factor-
izations, whose cost is equal to O(p3) for a p × p matrix. As shown in Appendix A the
total (for all iterations) cost of instructions 10 and 12 increases with m; see the expres-
sion for c10 + c12 in the Appendix, while the cost of instruction 14, corresponding to c14
in the Appendix, decreases. This results, for large values of M , in a total cost of order
O[(M − n)4/m3] to build a design of size n.

In Appendix A, see (20), we derive upper and lower bounds on the optimal value
m∗(M,n), respectively m+(M,n) and m−(M,n). It is found that m∗(M,n) ≈ m−(M,n) =

[3(M − n)]
1
4 when M →∞ while keeping n fixed.

This indicates that block size should vary as the design grows during sequential con-
struction of the design. However, since in practical applications n�M , we consider a fixed
value of m for all iterations, and propose to use m = m̂(M), with

m̂(M) = m−(M, 0) = d(3M)
1
4 e. (19)

Using the lower bound m = m−(M,n) leads to a total cost of O[(M − n)3.25] for Algo-
rithm Blocks, showing a clear improvement from the worst case complexity of O(nM4) of
Algorithm Lazy.

9

Abtini et. al.

We want to stress the generality of the analysis above. First, note that it is independent
of the correlation kernel r(x, y) of the Gaussian process used to build the correlation matrix
RDM ,DM

, which adds to the complexity above a constant term, of order M ×M . Moreover,
it is also insensitive to the exact partition {Lv}v=1,...,m of the set of candidate points X
that is used. Finally, it is as well independent of the geometry of the finite set of candidate
design points DM that covers the domain D.

The same is not true for Algorithm Lazy. Since the construction of listM in each of its
iterations depends both on the correlation structure r(x, y) of the process and on the order
by which points are tested, its complexity in practical problems is expected to depend on
the chosen Gaussian process model as well on the manner in which DM is embedded in D,
that is, on the geometry of DM . The numerical study presented in section 5 confirms this.

4.3 Numerical illustration

We present in this subsection numerical studies that confirm our analytical model of the
variation algorithmic complexity of Algorithm Blocks with m as well as the validity of m̂(M)
given by (19) as an approximation for the optimal partition size.

Figure 1 plots the evolution of the measured computational time taken by Algorithm
Blocks for the generation of N -point designs, with N varying from 20 to 120 by steps of
20. The candidate design points are the first M = 500 points of the 2-dimensional Sobol’
sequence, see Sobol and Levitan (1976), and the kernel of the Gaussian process is a Matérn
5/2,

K5/2,θ(x, x
′) =

[
1 +
√

5 θ ‖x− x′‖+ 5 θ2 ‖x− x′‖2/3
]

exp(−
√

5 θ ‖x− x′‖) ,

see for instance Stein (1999), with correlation range θ = 0.08. Similar results were obtained
for other correlation kernels (exponential and Gauss). The Figure confirms our analysis,
showing that the optimal value of m is largely independent of N , all the curves exhibiting a
minimum at about the same value. It also confirms the near optimality of the value m̂(M)
predicted by equation (19): m̂(M) ' 7, indicated by the red vertical line, which is only
slightly larger than the minima observed. Note that since the increase of computational
complexity when m ' m? is slow, this slight overestimation of the optimal number of blocks
m∗ is preferable to its underestimation, inducing only a small penalty in the computational
complexity.

Figure 2 shows the impact of the size of DM on the number of blocks m? that leads
to a minimal complexity of Algorithm Blocks. For several values of m we measured the
time required to select a design of a fixed size (N = 100) for M ∈ {500, 1 000, 2 000}.
Since algorithm complexity quickly grows with M , to facilitate the analysis the plots show
normalised versions t̂ ∈ [0, 1] of the measured running times. Each curve in Figure 2 is
thus affected by a distinct normalisation and for that reason the scale of the vertical axis is
omitted. The plot on the right shows a zoom around m ' m∗ which confirms the increase
of the optimal block size m∗ with M predicted by equation (19) (indicated in the legend of
the figure). The Figure also shows that the quality of the approximation increases with M ,
being better for M = 2 000 than for M = 500.

10

Sequential design for prediction

t

m

Figure 1: Computational time t (in seconds) for the generation of N -point designs as a
function of m; N = 20, 40, 60, 80, 100, 120, d = 2, M = 500. Matérn Gaussian
process kernel.

t̂ t̂

Figure 2: (normalized) computational time t̂ for the generation of a N -point design (N =
100) as a function of number of blocks m for M = 500, 1 000, 2 000; d = 2; the
right panel is a zoom of the left one around m∗. Matérn Gaussian process kernel.

11

Abtini et. al.

5. Combining submodularity and matrix partitioning

In this section we present a third algorithm, that combines the lazy principle of Algorithm
Lazy with the organisation of the numerical computations on which Algorithm Blocks is
based. A thorough numerical study of the complexity of the three algorithms is presented
enabling comparison of their efficiency.

5.1 Approach

Algorithm Lazy-Blocks, see page 23, draws on the ideas presented in both sections 3.3 and
4.1, combining the parsimonious evaluation of candidate points of Algorithm Lazy with the
computation sharing based on partition of the correlation matrix as done by Algorithm
Blocks.

The “Initialisation” section (lines 1–10) uses Algorithm Blocks to compute the individual
increments of each x ∈ DM with respect to the empty set. The same block structure is
used to share the partial computations amongst the elements of each element of the m-ary
partition build in the first instruction. The point with largest value of δ(x) is then chosen
as the first point (line 13). From that singleton solution the algorithm increases the size of
the design X by adding one point at a time. The computational organisation of Algorithm
Blocks is then combined with lazy-greedy by working in each iteration with a new partition
of the remaining candidate points, build in the first instruction of the greedy cycle (line
17). As in Algorithm Blocks, log det(RX∪{x},X∪{x}), the first term in the expression for

δ(x), which uses the Cholesky factorisation of the design matrix, is then computed for all
the remaining candidate points (lines 18–21).

The algorithm proceeds to the calculation of the second term in equation (11), by
considering in turn each block Lv of the partition. For each block, Algorithm Lazy is
applied to the corresponding elements. Two lists, Lists L+ and L−, are instrumental in
the implementation of the algorithm: L− contains the set points (of block Lv) that remain
potential best choices given the updated values of δ and L+ gathers the set of points (in
all blocks) that either have been updated or that are worse than the best point found. At
each iteration, the remaining candidate points that are worse than the best updated point
(the list M, updated in line 42) are added to L+ (line 43). Note that the algorithm works
“across blocks”: the increments of elements that are placed in L+ when screening a different
block than the one they belong to will not be considered when their own block is processed.
Whenever δ(x) is actually computed (line 40), re-use of previous matrix computations is
done as for Algorithm Blocks.

It is important to note that, as we mentioned before, the set of elements whose increment
is actually computed in Algorithm Lazy depends on the relative strength of correlation with
the points already in the design, and thus its complexity is potentially affected by the choice
of r(x, y) and by the geometry of the set of candidate points. Moreover, it is also affected
by the order by which the candidate points are selected at each iteration: orderings that
lead to listsM which have large sizes lead to larger computational gains. Since all elements
in each member of the partition are screened consecutively, the partition {Lv}v=1,...,m used
influences the final complexity of Algorithm Lazy-Blocks. In our current implementation,
a new partition is built at each iteration, as the uniform partition of the set of candidate
points sorted by decreasing order of δ.

12

Sequential design for prediction

Table 1: Variances of running times (20 runs)
(a,C,DM) N = 50 N = 100 N = 150 N = 200

(Lazy, Matérn, grid) 0.050 0.052 0.09 0.073

(Lazy, Matérn, Sobol) 0.015 0.033 0.0168 0.029

(Blocks, Matérn, grid) 0.0009 0.0017 0.0172 0.0499

(Blocks, Matérn, Sobol) 0.0013 0.0022 0.0131 0.0300

(Lazy-Blocks, Matérn, grid) 0.0057 0.0188 0.0248 0.0918

(Lazy-Blocks, Matérn, Sobol) 0.0123 0.0167 0.0213 0.0503

Lazy, Exponential, grid) 0.0213 0.0960 0.0494 0.0370

(Lazy, Exponential, Sobol) 0.0146 0.0331 0.0168 0.0290

(Blocks, Exponential, grid) 0.0218 0.0224 0.0524 0.0845

(Blocks, Exponential, Sobol) 0.0123 0.0167 0.0213 0.0503

(Lazy-Blocks, Exponential, grid) 0.0013 0.0014 0.0114 0.0296

(Lazy-Blocks, Exponential, Sobol) 0.0013 0.0022 0.0131 0.0300

5.2 Numerical comparison of the three algorithms

We present in this section a numerical study of the complexity of algorithms Lazy, Blocks
and Lazy-Blocks, assessed through the running times of 20 executions of each algorithm,
T ad,C,g(M,N), a ∈ {Lazy,Blocks,Lazy − Blocks}. In the notation, d ∈ {1, 5} indicates the
dimension of the input space of f , C ∈ {Matérn,Exponential} indicates the correlation
function of the Gaussian process model, g ∈ {grid,Sobol} indicates the geometry of the set
of candidate points DM (either a uniform grid or points of the Sobol sequence), M is the
size of DM and N the final size of the design.

The variances of the running times observed in the 20 runs of each algorithm are shown
in Table 1. In our experiments, the standard deviation observed in the 20 runs is always
negligible, never exceeding 0.3% of the running time (see the left plots in Figure 3 for the
corresponding mean values). For that reason, we concentrate below in the comparison of
average running times.

Below, we study how the numerical complexity T ad,C,g(M,N) of the three algorithms is
affected by a number of parameters and implementation choices:

1. Algorithm choice, that is, different values of a ∈ {Lazy, Blocks, Lazy-Blocks};

2. The geometry g of the set of candidate points DM ;

3. The size M of DM ;

4. The dimension d of the input space;

5. The correlation kernel C of the Gaussian process.

We start by assessing issue 1. The left plots of Figure 3 show the average running times
T a2,C,DM

(529, N) for algorithms Lazy, Blocks and Lazy-Blocks for several choices of C, DM

and N . Input space has dimension d = 2 and M = 529 for all cases. In the top plots a

13

Abtini et. al.

T
a 2
,M

a
té

rn
,g

(5
2
9
,
N

)

R
L
B

2
,M

a
té

rn
,g

,5
2
9
,N

(a
)

T
a 2
,E

x
p
,g

(5
2
9
,
N

)
(s

e
c
o
n
d
s)

R
L
B

2
,E

x
p
,g

,5
2
9
,N

(a
)

Figure 3: Comparison of running times of algorithms Lazy, Blocks and Lazy-Blocks. For
all cases, d = 2, M = 529 and N ∈ {50, 100, 150, 200}, see legend for colour
code. Dotted lines correspond to g = grid, dashed lines to g = Sobol.
Top: Matern kernel; bottom: exponential kernel. Left: T a2,C,g(529, N), right:

T a2,C,g(529, N)/TLazy−Blocks2,C,g (529, N), a ∈ {Lazy,Block}.

Gaussian process model with a Matérn kernel is used, while those in bottom assume an
exponential kernel. The lines link values that differ only on the algorithm chosen. Dotted
lines indicate that g = grid, and for dashed lines g = Sobol. The color of the lines indicates
the value of N ∈ {50, 100, 150, 200} as indicated in the legend of the figure.

To clarify the gains achieved by the combination of the Lazy and Blocks approaches,
the plots in the right of Figure 3 show the corresponding ratios

RLBd,C,g,M,N (a) =
T ad,C,g(M,N)

TLazy−Blocksd,C,g (M,N)
, a ∈ {Lazy,Block}, g ∈ {grid, Sobol} .

We can see that except in one case (when g =Sobol and N = 200) all values are larger than
1 (black horizontal line) indicating that Lazy-Blocks has the smallest running time. We can
further notice, see plots in the right, that the computational gain offered by Lazy-Blocks

14

Sequential design for prediction

decreases monotonically with N : while a gain greater than 5 is obtained for N = 50 (red
lines) this relative advantage disappears when N = 200, the Lazy Algorithm having then for
g =Sobol a running time comparable to Lazy-Blocks, depending on the correlation kernel
of the Gaussian process model. Note that for N = 200 and M = 529 the hypothesis behind
our approximation of m?—that the size of the partitions is very large—is violated, and thus
our implementation of Lazy-Blocks may not be optimal. For moderate design sizes the gain
of Lazy-Blocks with respect to Lazy is considerable, ranging from around 10 (for the regular
grid domain) for N = 50 to more than 2 for N = 150.

Figure 3 also allows the comparison of the numerical complexity of algorithms Lazy and
Block, showing that for the smallest value of N (the exact range of design sizes depending
on the intrinsic geometry of DM) Algorithm Blocks is more efficient than Algorithm Lazy.
The running time of Algorithm Blocks is the one that is the most sensitive to the increase
of N , and for large values of N (cyan lines) its efficiency is the worst of all three algorithms.
Mutualisation of the computations seems thus to be interesting mainly as a way to improve
on the Lazy algorithm, offering an advantage over Lazy only for small values of N .

Figure 3 also answers question 2 through the comparison of the dotted (g = grid) and
dashed (g = Sobol) lines of the same color. As anticipated, it shows that only the Lazy
algorithm is clearly affected by the choice of the geometry of the set of candidate points,
the dashed and dotted lines being almost coincident for the Algorithms Blocks and Lazy-
Blocks. The numerical complexity of the Lazy algorithm is smaller when DM are the points
of the Sobol sequence than when a uniform grid is used (the dotted lines are always above
the dashed lines). That Algorithm Blocks should not be affected by the particular choice of
candidate points was expected, since it updates the increments δ(x) for all points in each
iteration. However, the little variation observed for the Lazy-Blocks algorithm is somewhat
unexpected.

R
M 2
,M

a
té

rn
,

S
o
b

o
l,
N

(2
0
0
0
,
a
)

Figure 4: Influence of M . Ratios RMd,C,g,M,N (a), a ∈ {Lazy, Block, Lazy-Blocks}, N =
50, 100.

15

Abtini et. al.

Figure 4 addresses issue 3, the effect of M on the complexity of the three algorithms. It
plots the ratio

RMd,C,g,N (M,a) =
T ad,C,g(M,N)

T ad,C,g(529, N)
, a ∈ {Lazy,Block,Lazy-Blocks}, N ∈ {50, 100} ,

for M = 2 000 and moderate design sizes of N = 50 and N = 100 (red and green lines,
respectively). A Matérn kernel is considered, d = 2 and g = Sobol. We can see that Lazy
is penalised the most by the increase of the size of candidate points from 529 to 2 000: its
complexity is multiplied by 130 for the largest design size and by 100 for N = 50, when the
size M of the set of candidate points is increased only by 3.7. As we should expect, the
penalty of Algorithm Blocks does not depend on design size N , being close to 70 for both
N = 50 and N = 100. The plots show an increase in numerical complexity of Algorithm
Lazy-Blocks of 30 and 40, for N = 100 and N = 50, respectively. We can thus expect, in
the light of these results, that the range of designs sizes for which Algorithm Blocks is more
efficient than Lazy, which was approximately N ≤ 100 in Figure 3, can be considerably
larger for larger values of M .

Figure 5 compares the complexity of the three algorithms for two different dimensions
of the input space, d = 2 and d = 5, plotting the ratio

RdC,g,M,N (d, a) =
T ad,C,g(M,N)

T a2,C,g(M,N)
, a ∈ {Lazy,Block,Lazy-Blocks},

for the construction of designs of size N = 50 and N = 100, addressing thus question 4. In
both cases DM corresponds to the first M = 2 000 points of the Sobol sequence. Following
(19), Algorithms Blocks and Lazy-Blocks use m̂ = 9. As expected, the computational time
for Algorithm Blocks is not impacted by the dimension of the input space if M is held
constant. In contrast Algorithm Lazy slows down as dimension increases, the degradation
being more pronounced for the exponential (right plot) than for the Matérn correlation
kernel (left plot). The complexity penalty grows with design size N , being equal to 1.66 for
N = 50 and slightly larger than 2 for N = 100 (Matérn correlation). Algorithms Blocks
and Lazy-Blocks are virtually insensitive to the increase of d, their ratios (see plot in the
left of Figure 5) being close to 1 and virtually independent of the design size N .

Figure 6 plots the ratio of the running times of Algorithms Lazy and Blocks to the
running time of Lazy-Blocks for d = 2 and for d = 5 (all other parameters are held constant:
N = 50,M = 2 000, g =Sobol, C =Matérn). It shows that the gain of Lazy-Blocks relative
to Lazy is the largest when d = 5, when it is nearly equal to 30, almost twice as the gain
for d = 2.

We finally address issue 5, the influence of the choice of the correlation kernel on the
complexity of the design algorithms. Comparison the top and bottom plots in Figure 3
shows that the chosen correlation kernel has little influence in the relative behaviour of
the algorithms: the geometry of the lines varies little between the top and bottom plots.
However, comparison of the actual running times of this Figure, as well as analysis of the
red lines in the left and right plots of Figure 5, indicate that the Exponential kernel leads,
for Algorithm Lazy, to consistently larger running times than the Matérn kernel. Figure
7 plots combinations of Matérn/Exponential and Grid/Sobol for Algorithm Lazy, sowing

16

Sequential design for prediction

R
d M

a
té

rn
,

S
o
b

o
l,
2
0
0
0
,N

(5
,
a
)

R
d E

x
p
,

S
o
b

o
l,
2
0
0
0
,1

0
0
(5

,
a
)

a a

Figure 5: Influence of d on running time. Ratios Rd
C,Sobol,2 000,N (5, a), for algorithms Lazy,

Blocks and Lazy-Blocks. Left: C = Matern, N = 50, 100; right: C = Exponen-
tial, 100.

T
a d
,M

a
té

rn
,

S
o
b

o
l(

2
0
0
0
,5

0
)

T
L
a
z
y
−

B
lo

c
k
s

d
,M

a
té

rn
,

S
o
b

o
l(

2
0
0
0
,5

0
)

a

Figure 6: Influence of d on relative efficiency of Lazy-Blocks. Solid lines: d = 2, dotted
lines: d = 5. Red: N = 50, green: N = 100.

that changing from the Matérn to the exponential correlation kernel induces a penalty
approximately independent of N , which is larger for the grid geometry (red points) than
when DM is the Sobol set (green points).

We summarise below the major conclusions

1. The complexity of both Blocks and Lazy-Blocks depends only on the size of the set
of candidate design points, being insensitive to the choice of correlation kernel, the
geometry of the set of candidate design points, and the dimension of the input space.
On the contrary, Algorithm Lazy is sensitive to all parameters and choices, being

17

Abtini et. al.

T
a 2
,E

x
p
,g

(5
2
9
,
N

)

Ta
2,Matérn,g

(529, N)

Figure 7: Influence of correlation kernel on the complexity of Algorithm Lazy. Red:
g =grid; green: g =Sobol. Symbols of the same colour differ in the value of
N ∈ {50, 100, 150, 200}.

larger for the exponential kernel than for the Matérn kernel, and for the grid topology
than for Sobol sequence.

2. The complexity of Algorithm Lazy-Blocks is in general the smallest of all three algo-
rithms, the gain in computational time with respect to Lazy being larger for small
designs (N) and larger dimensions of the input space (d).

6. Conclusion

An efficient implementation of a greedy algorithm for the construction of designs with
maximal Mutual Information (Algorithms Blocks and Lazy-Blocks) has been proposed.
The algorithm is based on a block partition of the correlation matrix which allows re-use of
the result of matrix operations of large numerical complexity, like Cholesky-based matrix
inversions. A quasi-optimal rule for the number of blocks in the partition is presented,
based on a detailed analysis of the complexity of the algorithm.

Combining this organisation of the numerical computations involved in the evaluation
of the MI criterion with the strategy behind Algorithm Lazy originally presented in Krause
et al. (2008), which exploits the sub-modularity of the MI criterion to avoid useless cri-
terion computations, the paper proposes the new algorithm Lazy-Blocks, which may offer
important reductions in the computational load involved in the sequential construction of
an experimental design, in particular when the dimension of the input space is large and
the design is a small subset of the complete set of candidate points, as it is the case in most
situations of practical interest.

Contrary to the Lazy algorithm proposed in Krause et al. (2008) the complexity of the
proposed algorithm is insensitive to the choice of correlation kernel, to the intrinsic geometry
of the set of candidate points as well as to the dimension of the input space, depending only
on the size of the solution set, which is determined by the size of the set of candidate points

18

Sequential design for prediction

and the size of the design. Algorithm Lazy-Blocks is thus an efficient and robust alternative
to previously proposed algorithms for the sequential construction of MI-optimal designs.

Acknowledgments

The authors acknowledge funding from the OQUAIDO chair and ANR PEPITO for the
work presented, and thank Bertrand Iooss for initially motivating them to this problem,
drawing their attention to the importance of the sequential construction of space-filling
design in industrial applications. The two last authors acknowledge partial funding from
ANR project INDEX, contract ANR-18-CE91-0007.

References

F. Bach. Learning with submodular functions: a convex optimization perspective. arXiv
preprint arXiv:1111.6453, 2011.

W.F. Caselton and J.V. Zidek. Optimal monitoring network designs. Statistics and Proba-
bility Letters, 2(4):223–227, 1984.

T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons” 1991.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian pro-
cesses: theory, efficient algorithms and empirical studies. The Journal of Machine Learn-
ing Research, 9:235–284, 2008.

M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques. Proc. 8th IFIP Conference, Wurzburg, 1977 (Part 2), pages
234–243. Springer, New-York, 1978.

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. Lazier than
lazy greedy. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, AAAI’15, pages 1812–1818. AAAI Press, 2015.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maxi-
mizing submodular set functions–I. Mathematical Programming, 14(1):265–294, 1978.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN
026218253X.

I.M. Sobol and Yu.L. Levitan. The production of points uniformly distributed in a multi-
dimensional cube. Preprint IPM Akad. Nauk SSSR, 40(3), 1976.

M.L. Stein. Interpolation of Spatial Data. Some Theory for Kriging. Springer, Heidelberg,
1999.

19

Abtini et. al.

Appendix A. Optimal size of partitions

We estimate the cost in Algorithm Blocks of adding one point chosen among t points
(t = M − n in the algorithm, with n the current design size and M the total number of
candidate design points). Instructions 3 and 5 have negligible cost compared to that of other
instructions; moreover, their cost does not depend on m. Therefore, we limit ourselves to
evaluating complexity of instructions 10, 12 and 14.

Hypotheses We make the approximation that the partition is uniform: card(Lv) = t/m
for all v in {1, ...,m}.

Lemma 1 Approximate numerical complexity of elementary matrice operations
The cost of the Cholesky decomposition of a p× p matrix is p3/3 + p2/2 + p/2 and the cost
of the solution to a triangular system of size p is p2.

1. The cost of the Cholesky decomposition of matrices of size card(J \Lv) = t(1− 1/m)
is

t3

3

(
1− 1

m

)3

+
t2

2

(
1− 1

m

)2

+
t

2

(
1− 1

m

)
,

and thus the cost of m passes through instruction 10 is

c10 = t3
(m− 1)3

3m2
+ t2

(m− 1)2

2m
+ t

(m− 1)

2
.

2. The cost of the solution of card(Lv) = t/m triangular systems of size card(J \ Lv)
required in line 12 to compute CL, see eq. (18), is

t

m
· t2
(

1− 1

m

)2

=
t3

m

(
m− 1

m

)2

.

To this cost we must add the cost of the product of a card(Lv) × card(J \ Lv) =
t/m × t(1 − 1/m) matrix by its transpose involved in the evaluation of DL,L in line
12, which is

2

(
t

m

)2

· t
(

1− 1

m

)
= 2

t3

m3
(m− 1) .

Thus the cost of m passes through instruction 12 is

c12 = t3
(
m− 1

m

)2

+ t3
2(m− 1)

m2
.

3. Line 14, see equation (16), requires the computation of the difference between square
matrices of size card(Lv)− 1 = t/m− 1 whose cost is(

t

m
− 1

)2

,

and since it is executed t times the total cost of this differences is

c14diff =
t3

m2
− 2t2

m
+ t .

20

Sequential design for prediction

The cost of each Cholesky decomposition of a matrix of size card(Lv)− 1 in line 14 is

1

3

(
t

m
− 1

)3

+
1

2

(
t

m
− 1

)2

+
1

2

(
t

m
− 1

)
,

and thus, for the t passes through instruction 14, a total cost of

c14ch =t

(
t3

3m3
− t2

m2
+

t

m
− 1

3
+

t2

2m2
− t

m
+

1

2
+

t

2m
− 1

2

)
=

t4

3m3
− t3

2m2
+

t2

2m
− t

3
.

The cost of instructions 10 and 12 is

c10 + c12 = (m− 1)

([
(m− 1)2

3m2
+

(m− 1)

m2
+

2

m2

]
t3 +

m− 1

2m
t2 +

t

2

)
= (m− 1)

(
m2 +m+ 4

3m2
t3 +

(m− 1)

2m
t2 +

t

2

)
,

which increases with m. The cost of instruction 14 is

c14 = c14diff + c14ch =
t4

3m3
+

t3

2m2
− 3t2

2m
+

2t

3
,

which decreases with m.
The total cost of each greedy iterations is thus

c(m) =c10 + c12 + c14

=
t4

3m3
+

(
2m3 + 6m− 5

6m2

)
t3 +

(
m2 − 2m− 2

2m

)
t2 +

(
m

2
+

1

6

)
t.

For fixed m, Algorithm Blocks has O(t4) complexity when t → +∞. Writing c(m) as a
polynomial in m,

c(m) =

(
t3

3
+
t2

2
+
t

2

)
m+

t

6
− t2 +

(
t3 − t2

) 1

m
− 5t3

6m2
+

t4

3m3
.

For large t, c(m) can be approximated by

ĉ(m) =
t3m

3
− t2 +

t3

m
− 5t3

6m2
+

t4

3m3
.

The function ĉ(·) : m → ĉ(m) is continuous on [1,+∞[, with limm→+∞ ĉ(m) = +∞;
therefore, ĉ has at least one global minimum on [1,+∞[. Its first two derivatives are given
by

ĉ′(m) =
dĉ(m)

dm
=

t3

m4

(
m4

3
−m2 +

5m

3
− t
)
,

ĉ′′(m) =
d2ĉ(m)

dm2
=

t3

m5

(
2m2 − 5m+ 4t

)
.

21

Abtini et. al.

Since 2m2 − 5m + 4t does not admit any real root on [1,+∞[and ĉ′′(1) > 0, ĉ is strictly
convex on [1,+∞[and has a unique minimum, which we denote m∗.

Define m− = (3t)
1
4 , root of m4/3− t = 0. For this value of m, the first derivative of the

(approximate) cost is negative: ĉ′(m−) = [t3/(m−)2] [(5/(3m−)− 1]) < 0. Let now

m+ =

(
3

2

(
1 +

√
1 +

4

3
t

)) 1
2

,

denote a root of m4/3 −m2 − t = 0, for which it can be seen that the first derivative of
c(m) is positive: ĉ′(m+) = 5t3/[3(m+)3] > 0. The value m? at which ĉ(m) is minimum
must then lie between these two values:

m− 6 m∗ 6 m+ . (20)

Finally, remark that if we let t→ +∞ then the optimal value m∗ → m− and c(m−) '
ĉ(m−) = O(t3.25) .

22

Sequential design for prediction

Algorithm C (Algorithm Lazy-Blocks)

1: {Initialization}
Partition DM : X = ∅ , X =

⋃m
v=1 Lv

2: for v = 1, . . . ,m do
3: L = Lv , I = X \ L
4: Cholesky factorization RI,I = StLSL; compute log det(RI,I) = 2 log det(SL)
5: Compute BL,L (equation (18))
6: for x ∈ L do
7: Cholesky factorization of Bx; compute log det(RX\{x},X\{x}) (eqs. (17,14))

8: Compute δ(x) (equation (11))
9: end for

10: end for
11:

12: {Select first point}
13: x1 = arg maxx δ(x); set X = {x1};
14:

15: {Incrementally build the design}
16: for n = 2 to N do
17: Partition X =

⋃m
v=1 Lv, set M = ∅ ,

18: Cholesky factorization of current design matrix RX,X = StS
19: for all ` ∈ X do
20: Compute log det(RX∪{x},X∪{x}) (equation (12))
21: end for
22:

23: {Treat each block of the partition separately}
24: L+ = ∅
25: for v = 1, . . . ,m do
26: L = Lv , I = X \ L
27: Perform Cholesky factorization RI,I = StLSL
28: Compute log det(RI,I) = 2 log det(SL)
29: Compute BL,L (equation (18))
30: Chose a x ∈ Lv;
31: Cholesky factorization of Bx; compute log det(RX\{x},X\{x}) (eqs. (17,14))

32: Compute δ(x); (equation (11))
33: L+ = L+ ∪ {x}; L− = Lv \ L+;
34:

35: {Go over block Lv}
36: while L− 6= ∅ do
37: Chose a x ∈ L−
38: if δ(x) ≥ maxx∈L+ δ(x) then
39: Cholesky factorization of Bx; compute log det(RX\{x},X\{x}) (eqs. (17,14))

40: Compute δ(x); (equation (11))
41: end if
42: M = {x′ ∈ I ∪ L− : δ(x′) ≤ maxx∈L+ δ(x)};
43: L+ = L+ ∪M; L− = L− \M;
44: end while
45:

46: {Increment design}
47: xn = arg maxx∈L+ δ(x);
48: X = X ∪ {xn};
49: end for
50: end for

23

	Introduction
	Mutual information in Gaussian process modelling
	Gaussian process modelling
	The MI criterion

	Greedy MI maximisation
	Submodularity
	Greedy construction for the MI criterion
	Lazy-greedy: exploiting the submodularity of MI

	Partitioning
	Principle
	Complexity of Algorithm Blocks
	Numerical illustration

	Combining submodularity and matrix partitioning
	Approach
	Numerical comparison of the three algorithms

	Conclusion

