
HAL Id: hal-02470990
https://hal.science/hal-02470990

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The First Fully Polynomial Stabilizing Algorithm for
BFS Tree Construction

Alain Cournier, Stephane Rovedakis, Vincent Villain

To cite this version:
Alain Cournier, Stephane Rovedakis, Vincent Villain. The First Fully Polynomial Stabiliz-
ing Algorithm for BFS Tree Construction. Information and Computation, 2019, 265, pp.26-56.
�10.1016/j.ic.2019.01.005�. �hal-02470990�

https://hal.science/hal-02470990
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

The First Fully Polynomial Stabilizing Algorithm for BFS Tree
ConstructionI,II

Alain Courniera, Stéphane Rovedakisb,∗, Vincent Villaina

aMIS Lab., Université Picardie Jules Verne, 33 Rue St Leu, 80039 Amiens Cedex 1, France
bCEDRIC Lab., CNAM, 292 Rue St Martin, 75141 Paris Cedex 03, France

Abstract

The construction of a spanning tree is a fundamental task in distributed systems which allows
to resolve other tasks (i.e., routing, mutual exclusion, network reset). In this paper, we are
interested in the problem of constructing a Breadth First Search (BFS) tree. Stabilization is a
versatile technique which ensures that the system recovers a correct behavior from an arbitrary
global state resulting from transient faults.

A fully polynomial algorithm has a round complexity in O(da) and a step complexity in
O(nb) where d and n are the diameter and the number of nodes of the network and a and b are
constants. We present the first fully polynomial stabilizing algorithm constructing a BFS tree
under a distributed daemon. Moreover, as far as we know, it is also the first fully polynomial
stabilizing algorithm for spanning tree construction. Its round complexity is in Θ(d2) and its
step complexity is in O(n6).

To our knowledge, since in general the diameter of a network is much smaller than the num-
ber of nodes (log(n) in average instead of n [1]), this algorithm reaches the best compromise of
the literature between the complexities in terms of rounds and in terms of steps.

Keywords: Distributed systems, Fault-tolerance, Stabilization, Spanning tree construction.

1. Introduction

The computation of a solution to a given problem in a distributed system requires the col-
laboration of a part or the whole system. To this end, some amount of information have to be
exchanged between the elements of the system involved in the computation. One important as-
pect in the design of distributed algorithms is to solve a problem in an efficient way. In the
context of distributed fault-tolerance, the communication and time complexities to solve a given
problem by a distributed algorithm are important measures, expressed respectively in terms of
number of exchanged messages and rounds. Indeed, every execution of an algorithm is de-
composed into rounds, where a round contains a single computation step of each processor of

IA preliminary version of this paper has been published in OPODIS [2].
IIThis work has been partially supported by the ANR project SPADES (08-ANR-SEGI-025).
∗Corresponding author

Email addresses: alain.cournier@u-picardie.fr (Alain Cournier),
stephane.rovedakis@cnam.fr (Stéphane Rovedakis), vincent.villain@u-picardie.fr (Vincent
Villain)
Preprint submitted to Elsevier January 29, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0890540119300069
Manuscript_9cd09e30122cb7ab65c54415c738a853

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0890540119300069
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0890540119300069

the system. Self-stabilization introduced first by Dijkstra in [3] and later publicized by several
books [4, 5] is one of the most versatile techniques to handle transient faults arising in distributed
systems. A distributed algorithm is self-stabilizing if starting from any arbitrary global state (due
to faults or attacks) the system is able to recover from this catastrophic situation in finite time
without external (e.g., human) intervention. To ease the design of fault-tolerant algorithms, Dijk-
stra introduced in [3] also an abstraction model of the message passing model, the locally shared
memory model. In this model, each processor can directly read the variables of its neighbors in a
computation step (or steps), instead of exchanging messages. This model was largely used for the
design of self-stabilizing algorithms. Since the introduction of the self-stabilization paradigm,
a lot of effort has been put to design self-stabilizing algorithms with a low time complexity (or
convergence time) required to reach a correct system state. This leads to the introduction of sev-
eral stabilization alternatives, in particular Snap-stabilization which have been proposed by Bui
et al. [6]. This form of stabilization characterizes self-stabilizing algorithms with a convergence
time of 0 (see Definition 2). As explained by Cournier et al. in [7], the zero convergence time
does not guarantee that all components of the system never work in a fuzzy manner. A snap-
stabilizing protocol ensures that any request is satisfied despite the arbitrary initial configuration,
while a self-stabilizing protocol often needs to be repeated an unbounded number of times before
guaranteeing the satisfaction of any request.

Although the time complexity given in (asynchronous) rounds allows to capture the execu-
tion rate of the slowest process in any execution, another crucial measure is the number of steps
needed by an algorithm to compute the desired solution. In fact, the step complexity reflect more
accurately the workload generated by a distributed algorithm. Moreover, one can observe that
the communication complexity is deeply related to the number of steps. Indeed, this measure re-
flects the amount of information exchanged to compute the solution, especially in the context of
stabilizing algorithms in which in a step a processor sends at least one message for incorrect local
state detection in the neighborhood. Recently, reducing the communication complexity becomes
a new challenge to increase the practical use of self-stabilizing algorithms. Contrary to non fault-
tolerant distributed algorithms, self-stabilizing distributed algorithms may introduce an overhead
on the communication complexity before and after reaching a correct global state. Indeed, this
is due to two facts: (i) self-stabilizing algorithms can start from an arbitrary state (not only from
a defined initial state) of the system and converge to a correct global state, and (ii) they have to
perpetually exchange information to always allow the correction of the nodes’ state (the latter
fact is inherent to any adaptive approach). Devismes et al. [8] and Masuzawa et al. [9, 10] study
the communication efficiency of self-stabilizing algorithms after the convergence to a correct
state of the system. The goal is to determine if it is possible to design self-stabilizing algorithms
which work correctly while avoiding the communication between pairs of neighbors in the sys-
tem. To this end, they introduced several complexity measures to analyze the communication
efficiency of a protocol, among them k-efficiency and 3-k-stable. The first measure establishes
an upper bound k on the number of neighbors with which each node communicates at each step.
Note that every distributed self-stabilizing algorithm is obviously at most ∆-efficient since each
processor communicates with all its neighbors [8]. The second complexity measures is the same
as the former but focusing only on computation steps after a correct system state is reached.
The authors consider the maximal independent set, the maximal matching, the spanning tree
construction and the minimal connected dominating set problem. They present self-stabilizing
distributed algorithms achieving better communication complexities than existing algorithms,
otherwise impossibility results are given. Kutten et al. [11] addressed also the problem of re-
ducing the communication complexity of distributed self-stabilizing algorithms. Self-stabilizing

2

algorithms with low communication are proposed for several tasks: spanning tree construction,
distributed reset and unison. The given algorithms have a low communication complexity during
the whole algorithm’s execution, i.e., before and after reaching a correct system state. To achieve
low communication, randomized algorithms are designed (instead of deterministic ones) allow-
ing to by-pass the constraint on the number of communicating neighbors. In fact, a reduction
on the number of communicating neighbors in the case of deterministic algorithms induces an
increase of the convergence time.

Contrary to the above cited works, we adopt another approach to achieve communication
efficiency. In this paper, we address this problem by bounding and reducing the number of steps
needed to solve a distributed problem, and we introduce a particular class of distributed algo-
rithms, called fully polynomial algorithms, in the context of the locally shared memory model.
These algorithms are characterized by efficient complexities to solve a distributed task, i.e., a
round complexity polynomial in the network diameter and step complexity polynomial in the
network size.

Definition 1 (Fully polynomial algorithms). A distributed algorithm is fully polynomial if it
has a round complexity in O(da) and a step complexity in O(nb) where d and n are the diameter
and the number of nodes of the network and a and b are constants.

This class of distributed algorithms is particularly suitable in the context of large scale net-
works. Indeed, these systems are characterized by an ever growing size and a low diameter in
average. In this context, it is of primary importance to design algorithms with a round complex-
ity independent of the network size and a low communication complexity (e.g., achieved via a
polynomial step complexity). Distributed fully polynomial algorithms allow to have an execu-
tion with a high degree of parallelism (round complexity defined by a polynomial function of the
network diameter, and not dependent of the network size), while the communication complexity
is bounded (step complexity defined by a polynomial function of the network size, since each
processor executes at least a step). Having fault-tolerant distributed algorithms which belong to
this class of algorithms is of theoretical and practical importance, since as large scale systems
have a high number of processor they are highly subject to crash faults or topological changes.

So, an interesting question addressed in this paper can be the following: Do there exist fully
polynomial self-stabilizing algorithms solving global distributed tasks?

Contributions. To our knowledge there exists no fully polynomial stabilizing algorithm solving
global distributed tasks in the literature1. In this paper, we show that this class of algorithms
related to global distributed tasks is not empty. To this end, we consider the global distributed
task of constructing a spanning tree rooted at a designated node, due to its importance in dis-
tributed systems. As presented in the Related work section below, to our knowledge the existing
self-stabilizing spanning tree constructions cannot belong to the class of algorithms defined in
Definition 1. Indeed, the existing stabilizing algorithms have either a round and step complexity
both polynomial in n, or a round complexity polynomial in d but an exponential or unbounded
step complexity, where d and n are respectively the diameter and the size of the network. There-
fore, we present the first fully polynomial stabilizing algorithm for the construction of a spanning
tree with a round complexity lower than Θ(max(d2, n)). Our algorithm computes a BFS tree in
Θ(d2) rounds with a polynomial number of steps in O(n6) (the step complexity is O(mn4) and

1Except the abstract version of this paper [2].
3

m � n2) under a distributed daemon without any fairness assumptions (which is the weakest
daemon), with m the number of edges in the network. To our knowledge, since in general the
diameter of a network is much smaller than the number of nodes (log(n) in average instead of
n [1]), this algorithm reaches the best compromise of the literature between the complexities in
terms of rounds and in terms of steps. Moreover, the algorithm proposed in this paper is fully
polynomial for any topology, i.e., we do not consider a particular network topology. Finally,
this BFS tree construction is based on a snap-stabilizing algorithm given in this paper resolving
a sub-problem, called the Question-Answer problem, in which each node requests a permission
(delivered by a subset of network nodes) in order to perform a defined computation, which is of
independent interest.

Related work. One basic task performed in every network is the transmission of information,
which can be done by resolving the construction of a spanning tree (acyclic virtual structure with
no cycle and interconnecting all the nodes of a network). In distributed systems, the construction
of a spanning tree is commonly used to design algorithms resolving other distributed tasks, like
routing, token circulation or message broadcasting in a network. Hence, there are a lot of works
which study this task. There are many different spanning tree construction problems guarantee-
ing various properties, e.g., a spanning tree of minimum weight or a spanning tree of minimum
diameter. A survey on several self-stabilizing tree constructions can be found in [12].

Arora and Gouda [13] are interested in designing an algorithm which allows to reset a net-
work by resetting the state of the nodes when a fault is detected in a dynamic network. To this
end, the authors present a self-stabilizing reset algorithm which constructs a BFS tree in O(N2)
rounds, with N an upper bound on the number of nodes in the network. Dolev, Israeli and
Moran [14] give one of the first self-stabilizing algorithms for the construction of a spanning
tree. In their work, a BFS tree is used to resolve the mutual exclusion problem. Afek, Kutten,
and Yung [15] have proposed independently from [14] a self-stabilizing algorithm constructing
a BFS tree. This algorithm uses the node identifiers to construct a BFS tree rooted at the node
of highest identifier in the network in O(n2) rounds. Moreover, it incorporates a mechanism to
transmit requests and acknowledgments for the addition of new nodes in a tree. The root of a
tree allows the connection of new nodes if no higher identifier is detected in the network. Chen
et al. proposed a self-stabilizing spanning tree construction algorithm [16], which was improved
later to construct a BFS tree [17]. The time complexity of these two algorithms is Θ(n) rounds.
Ducourthial et al. proposed a self-stabilizing algorithm for the construction of a BFS tree which
is a modification of the algorithm proposed in [17]. As analyzed in [18], this algorithm has a
time complexity of Θ(d) rounds, where d is the diameter of the network. More recently, Burman
and Kutten [19] give a solution to construct a Shortest Path tree in O(d) rounds, extending to
the message passing model a solution proposed by Awerbuch et al. [20]. Datta, Larmore, and
Vemula [21] resolves the election problem by constructing a silent self-stabilizing BFS tree in
O(n) rounds. The silent property is to guarantee that when a legitimate configuration2 is reached
the values stored in the registers do not change anymore. O(d) additional rounds are needed to
the algorithm to become silent. There are many other works on the self-stabilizing construction
of a spanning tree with additional properties, e.g., DFS tree [22, 23]. There are also works which
study the construction of a spanning tree with a low memory complexity. For example, Johnen
and Beauquier give a self-stabilizing token circulation allowing to construct a DFS tree using

2A configuration from which every execution suffix satisfies the specification of the problem to solve.

4

O(log ∆) bits [24], whereas Johnen proposes a self-stabilizing algorithm for the construction of
a BFS tree using O(∆) bits [25], with ∆ the maximum node degree in the network.

Table 1: Distributed stabilizing algorithms for the construction of spanning trees. n, d and ∆
are respectively the number of nodes, the diameter and the maximum degree in the network,
while N is an upper bound of n, D is an upper bound of d, and Max is the maximum height
value in the tree of a node in the initial configuration. The silent property for a self-stabilizing
algorithm is to guarantee that when a legitimate configuration is reached the values stored in
the registers do not change anymore.

References Round Step Memory Silent
complexity complexity complexity property

BFS

[13] O(N2) Undetermined O(log(n)) Yes
[14] O(d) Undetermined O(∆ log(n)) Yes
[15] O(n2) Undetermined O(log(n)) Yes
[17] Θ(n) Ω(2n)† O(log(n)) Yes
[26] Θ(d) O(n(Max + d)n)† O(log(n)) Yes
[20] O(D) Ω(2

D
2)‡ O(log2(n)) Yes

[25] Ω(d2) Undetermined O(log(∆)) No
[19] O(d) Undetermined O(log2(n)) Yes
[21, 27] O(n) Ω(nlog2(n))∓ O(log(n)) Yes
[28] O(n) Ω(2

n
4)∓ O(log(n)) Yes

[7] Θ(d2 + n) O(∆n3) O(log(n)) No
This paper Θ(d2) O(n6) O(log(n)) Yes

Any
[16] O(n) Ω(2n)† O(log(n)) Yes
[29] O(n) Θ(n2d) O(log(n)) Yes
[30] Θ(n) Θ(n2) O(log(n)) Yes

DFS
[22] O(dn∆) Undetermined O(n log(∆)) Yes
[23] O(n2) O(n3) O(log(n)) Yes
[31] O(n) O(n2) O(n log(n)) Yes
[7] O(n) O(∆n3) O(log(∆ + n)) No

† This is detailed in the analysis given in [18].
‡ This is detailed in the analysis given in [32].
∓ This is detailed in the analysis given in [33].

Some of the algorithms cited above are optimal in terms of rounds for the construction of an
arbitrary spanning tree or a BFS tree. As discussed in the Introduction section, the number of
steps required to compute a solution is an important criterion since it is interesting for the commu-
nication complexity. As demonstrated in the analysis given in [18, 32], the algorithms presented
in [16, 17] have an exponential number of steps, whereas the one given in [26] has a finite num-
ber of steps (with a lower and upper bounds respectively of Ω(n2Max) and O(n(Max + d)n)
steps, where Max is the maximum height value of a node in the initial global state). Moreover,
Awerbuch et al. [20] proposed a solution to construct a Shortest Path tree with an optimal time
complexity of O(D) rounds, however as demonstrated recently by Devismes et al. [32] it sta-
bilizes in at least Ω(2D/2) steps (with D an upper bound of the network diameter d). Datta,
Larmore, and Vemula [21, 27] resolves the election problem by constructing a BFS tree which
stabilizes in O(n) rounds. Later, the same authors proposed in [28] a second self-stabilizing
algorithm for the election problem which is very similar to the first one proposed in [21, 27]. To
elect a leader in the network, a breadth-first search spanning tree rooted at the elected leader is

5

also build. Notice that there is no explicit pointer to the parent but it can easily be computed. The
main difference between these two algorithms is the way to manage fake leader identifiers, since
the system can be placed in incorrect configurations. The algorithm proposed in [28] exploits a
special value 0, smaller than any node identifier, which is propagated in the network to clean fake
identifiers. However, Altisen et al. [33] have shown recently exponential step complexities for
these two algorithms. Indeed, the first algorithm proposed in [21, 27] has a step complexity of
at least Ω(nlog2(n)) steps, while the second algorithm proposed in [28] has a step complexity of
at least Ω(2

n
4). Kosowski and Kuszner give a self-stabilizing algorithm to construct a spanning

tree with a bounded number of steps (Θ(n2d) steps are needed) [29]. Recently, in [30] Cournier
presented a new stabilizing solution for the construction of an arbitrary spanning tree improving
the bound on the number of steps of [29]. This algorithm runs in Θ(n) rounds and Θ(n2) steps.
Cournier, Devismes, and Villain proposed a snap-stabilizing solution for the problem of Propaga-
tion of Information with Feedback (PIF) [34]. A spanning tree rooted at the source node with the
information to propagate is constructed. This algorithm uses a question mechanism to ensure that
every processor in the network belongs to the constructed spanning tree, and to guarantee that
every processor receives the propagated information. Cournier, Devismes, and Villain give also
an efficient transformer to obtain a snap-stabilizing version of a distributed algorithm [7]. They
use this transformer to obtain a snap-stabilizing algorithm for the BFS tree problem which runs
in O(d2 + n) rounds and O(∆n3) steps, with ∆ the maximum degree of a node in the network.
Table 1 summarizes the time complexities (round and step complexities) of some self-stabilizing
tree construction algorithms.

Notice that the algorithm presented in [7] does not satisfy the definition of a fully polynomial
algorithm since it has a round complexity which is related with the network size. Moreover,
the algorithm proposed in [26] has a round complexity only polynomial in d and a bounded
step complexity, but its step complexity is dependent on the maximum height value Max in the
initial configuration. This value can be arbitrarily high (e.g., exponential on the network size)
which does not satisfy the definition of a fully polynomial stabilizing algorithm. However, if
one considers the latter algorithm in a non fault-tolerant context, then the algorithm satisfies the
fully polynomial property since the round and step complexity are respectively Θ(d) rounds and
O(dn) steps (each node can only execute an action to improve its height, which can be done
in time polynomial in d). Therefore, another interesting question can be: Does the stabilization
property prevent some algorithms to satisfy the fully polynomial property?

Outline of the paper. The paper is organized as follows. In Section 2 we present the model
assumed in this paper. Section 3 gives few insights on the difficulties to design fully polynomial
stabilizing distributed algorithms for the spanning tree construction problem. In Section 4, we
give a high-level overview of the fully polynomial stabilizing algorithm we propose and give an
explanation about the time complexity to solve the BFS tree problem. We then present in detail
our approach to construct a BFS tree in Section 5, based on a snap-stabilizing algorithm to the
Question-Answer problem given in Section 6. We describe in Section 7 how these stabilizing
algorithms are composed together. An example of execution of the algorithm is detailed in
Section 8. Finally, Section 9 shows the correctness of our algorithm, and we conclude in the last
section.

6

2. Model

Notations. We consider a network as an undirected connected graph G = (V ,E) where V is a
set of nodes (or processors) and E is the set of bidirectional asynchronous communication links.
We state that n is the size of G (|V | = n). We assume that the network is rooted, i.e., among
the processors, we distinguish a particular one, r, which is called the root of the network. In the
network, p and q are neighbors if and only if a communication link (p,q) exists (i.e., (p,q) ∈ E).
Every processor p can distinguish all its links. To simplify the presentation, we refer to a link
(p,q) of a processor p by the label q. We assume that the labels of p, stored in the set Neigp,
are locally ordered by ≺p. We also assume that Neigp is a constant input from the system. ∆
is the maximum degree of the network (i.e., the maximal value among the local degrees of the
processors). A tree T = (VT , ET) is an acyclic connected subgraph such that VT ⊆ V and
ET ⊆ E, where the root of tree T is noted by root(T). Moreover, any processor has a parent in
a tree T which is the neighbor on the path leading to root(T). A processor p ∈ VT with at least
two neighbors in tree T is called an internal processor and a leaf processor otherwise.

Programs. In our model, protocols are semi-uniform, i.e., each processor executes the same
program except r. We consider the local shared memory model of computation. In this model,
the program of every processor consists of a set of variables and an ordered finite set of actions
inducing a priority. This priority follows the order of appearance of the actions into the text of the
protocol. A processor can write to its own variable only, and read its own variables and that of its
neighbors. Each action is constituted as follows: < label > :: < guard >→ < statement > .
The label is used as a name to refer to an action in the program. The guard of an action in the
program of p is a boolean expression involving variables of p and its neighbors. The statement
of an action of p updates one or more variables of p. An action can be executed only if its
guard is satisfied. The state of a processor is defined by the value of its variables. The state of
a system is the product of the states of all processors. We will refer to the state of a processor
and the system as a (local) state and (global) configuration, respectively. We note C the set of
all possible configuration of the system. Let γ ∈ C and A an action of p (p ∈ V). A is said to
be enabled at p in γ if and only if the guard of A is satisfied by p in γ. Processor p is said to
be enabled in γ if and only if at least one action is enabled at p in γ. When several actions are
enabled simultaneously at a processor p: only the priority enabled action can be activated.

Let a distributed protocol P be a collection of binary transition relations denoted by 7→, on C.
An execution of a protocol P is a maximal sequence of configurations e = (γ0,γ1,...,γi,γi+1,...)
such that, ∀i ≥ 0, γi 7→ γi+1 (called a step) if γi+1 exists, else γi is a terminal configuration.
Maximality means that the sequence is either finite (and no action of P is enabled in the terminal
configuration) or infinite. All executions considered here are assumed to be maximal. E is the set
of all possible executions of P . We can give in Definition 2 a definition of Snap-Stabilization.

Definition 2 (Snap-Stabilization). Let T be a task and F be a specification of T . A protocol
P is snap-stabilizing for F if and only if starting from any configuration every execution of P
satisfies F .

As we already said, each execution is decomposed into steps. Each step is shared into three
sequential phases atomically executed: (i) every processor evaluates its guards, (ii) a daemon
(also called scheduler) chooses some enabled processors, (iii) each chosen processor executes
its priority enabled action. When the three phases are done, the next step begins.

7

A daemon can be defined in terms of fairness and distributivity. In this paper, we use the
notion of unfairness: the unfair daemon can forever prevent a processor from executing an action
except if it is the only enabled processor. Concerning the distributivity, we assume that the
daemon is distributed meaning that, at each step, if one or more processors are enabled, then the
daemon chooses at least one of these processors to execute an action.

We consider that any processor p executed a disabling action in the computation step γi 7→
γi+1 if p was enabled in γi and not enabled in γi+1, but did not execute any protocol action in
γi 7→ γi+1. The disabling action represents the following situation: at least one neighbor of p
changes its state in γi 7→ γi+1, and this change effectively made the guard of all actions of p
false in γi+1.

To compute the time complexity, we use the definitions of round and step. The definition of
round captures the execution rate of the slowest processor in any execution. Given an execution
e (e ∈ E), the first round of e (let us call it e′) is the minimal prefix of e containing the execution
of one action (an action of the protocol or a disabling action) of every enabled processor from
the initial configuration. Let e′′ be the suffix of e such that e = e′e′′. The second round of e is
the first round of e′′, and so on. On the contrary, given an execution e ∈ E the definition of step
allows to estimate more accurately the amount of computations needed by a distributed protocol
to recover a correct behavior.

Therefore, the time complexity (or convergence time) of a stabilizing algorithm is the maxi-
mum time (in steps or rounds) over every possible execution under a considered daemon to reach
a terminal (legitimate) configuration, starting from any initial configuration.

3. About the Spanning Tree problem

As presented in Table 1 in Related work, the existing self-stabilizing spanning tree construc-
tions have either a polynomial step complexity but require Ω(n) rounds, or a round complexity
polynomial on the network diameter but with an unbounded or exponential step complexity. So,
in this section we focus on the difficulty to obtain a trade-off between the round and step com-
plexities for the spanning tree construction problem.

A spanning tree T = (V ′, E′) of a graph G = (V,E) is a connected sub-graph spanning all
the processors of the network (i.e., (i) V ′ = V , (ii) E′ ⊆ E and (iii) for any pair of nodes (x, y)
there exists a unique path between x and y in T). As a consequence, T is an acyclic sub-graph
and we have that |E′| = |V | − 1. Most of the existing spanning tree approaches construct a
spanning tree of the network rooted at a given node r. To this end, a solution is computed by
selecting a neighbor u ∈ V for each node v ∈ V as its parent in the tree, i.e., the closest neighbor
of v on the path to the root in the computed tree T . Generally, a level (or height) is associated to
each node v in T indicating the number of nodes (or hops) between v and r. The maintenance
of height values at each node is largely used to solve the spanning tree construction task since it
allows to easily detect cycles (e.g., by comparing them with the network size or with other values
in the neighborhood).

In the following, we consider three self-stabilizing approaches for the spanning tree problem
whose techniques are the most related to the solution we propose in this paper. We give some
insights regarding the time complexity (number of rounds and steps) needed to construct a solu-
tion to the considered problem. To compare these algorithms from the step complexity point of
view, we will consider the number of changes on the height and parent for any node (except the
root) until reaching a legitimate configuration.

8

3.1. Classic approach

A classic approach to construct a spanning tree rooted at a node r is to use a simple rule based
on network distances: Each node is connected to the neighbor closest (according to the network
distances) to r in the network. To this end, each node maintains its height in the tree which yields
to the construction of a BFS tree. The root r has a height equal to zero, while every node (except
the root) selects as its parent the neighbor with the smallest height (and smallest identifier or
channel port in case of neighbors with equal height). This approach was used in several works
to design a self-stabilizing BFS algorithm, e.g., as the algorithm proposed by Ducourthial et al.
in [26].

By induction on the network distances starting from the root node, it is easy to show that
a BFS tree can be constructed in a self-stabilizing manner in O(d) rounds, with d the network
diameter. Indeed, each new layer of nodes at distance k from the root is stabilized in a constant
number of additional rounds, when the layers at distance j, 0 ≤ j < k, have been stabilized.

However, the use of this rule without any other mechanism can yield to a high step complex-
ity. Indeed, this approach is dependent of the height values initially present in the network, as
shown in Figure 1.

.
1

Max0

1

11 11

. . .

10

33 3 3

2 2

(a) (b) (c)

rrr xxx

a1a1a1

b1b1b1 c1c1c1

akakak

bkbkbk ckckck

Figure 1: Example used to show that the classic spanning tree approach has a step complexity related to the maximum
height value in the network.

In Figure 1(a), a special network is used which is composed of k cycles (we take k =
(n − 2)/3 in Figure 1) of three nodes (this can be generalized by using cliques of at least three
nodes) which are connected to the root r via another node x. We can consider a special initial
configuration of the system shown in Figure 1(b), where the root has a zero height and all the
nodes have a height equal to one, except x which has the maximum possible height value noted
Max. Node x is connected to r, and the parent link of the other nodes follows the k cycles.
From this particular initial configuration, we can have the following distributed execution. Each
node in the k cycles can execute concurrently the rule of the algorithm to increase their height
until Max. So, after Max × 3k steps a new configuration is reached where all the nodes have
a height value equal to Max (except the root r). From this new configuration, each node can
execute its algorithm to select the neighbor of minimum height and to update its height to be
equal to its parent’s height plus one. The following order is used to reach in n − 1 additional
steps the legitimate configuration shown in Figure 1(c): x is executed to correct first its height
to be equal to 1, then for 1 ≤ i ≤ k, nodes ai select x as their parents with a height equal to 2,
nodes bi and ci select ai as their parent with a height equal to 3. This approach leads to a step
complexity of Max× 3k + n− 1 = Ω(Max× n+ n) steps, since we have k = (n− 2)/3.

We can notice that the number of parent link changes of a node is also dependent of the
Max value, as illustrated in Figure 2. To demonstrate this point, we are interested in the node

9

y in the network of Figure 2(a). Consider the initial configuration in Figure 2(b). We can have
the following distributed execution. For i, 1 ≤ i ≤ k, each pair of nodes ai and bi execute
concurrently their algorithm to increase their height value by one. This leads y to be connected
k− 1 times to the new parent bi+1. This phase can be iterated Max times (where y is connected
again to b1 between each iteration). We can observe that the node y suffers from Ω(Max×k) =
Ω(Max× n) parent link changes, since k = (n− 3)/2 in Figure 2.

.

0

Max

1

1 1

1

2

(a) (b)

r r

x x

y y

a1 a1

b1 b1

ak ak

bk bk

Figure 2: Example used to show that the number of parent link changes with the classic spanning tree approach is related
to the maximum height value in the network.

As presented above with Figure 1 and 2, this approach has a step complexity dependent of
the maximum initial value in the network, noted Max, which can be an exponential function of
the network size. Therefore, to solve the spanning tree construction problem, we cannot establish
a polynomial step complexity using only this simple rule. In the following, we present two other
approaches for the spanning tree construction problem which have a polynomial step complexity.
To achieve this goal, the crucial point considered in these approaches is to bound the number of
parent link changes.

3.2. First approach with polynomial bound in steps

To our knowledge, Kosowski et al. proposed in [29] the first self-stabilizing algorithm to
construct a spanning tree with a polynomial step complexity. Like the previous approach, height
values are maintained for the selection of a parent in the neighborhood of each node. Contrary
to the previous classic approach, this algorithm assigns a height to each node by increasing these
values using the following rule: Each node v can increase its height value if all its neighbors have
an equal or higher height value. In this case, v takes a new height equal to the maximum height in
its neighborhood plus one. The idea behind this rule is to reach a configuration in which there is a
path between the root and every node in the network with increasing height values (note that the
difference on height values between two adjacent nodes in the spanning tree can be higher than
one). The configurations which satisfy this property are legitimate and define a correct spanning
tree, since no cycle is introduced on the described paths because of increasing height values. We
can construct a rooted spanning tree by introducing a second rule (only enabled if the first one
is not) to select as the parent of each node the neighbor of smallest height (and of minimum
identifier or channel port in case of neighbors with equal height).

10

This approach has a round complexity of O(n) rounds. This round complexity comes from
the fact that for each node the height values must be corrected until having at least one path
leading to the root with only increasing height values. The length of such a path can be of at most
n nodes, and each node having no neighbor with a smaller height must execute its algorithm.

(a) (b)

0 1 1 1 1 2

4

3

(c)

0 1 1 1 5 6

8

7

(d)

0 8 11 14 17

20

18

19

rr

rr

x1x1

x1x1

x2x2

x2x2

x3x3

x3x3

y0y0

y0y0

y1y1

y1y1

y2y2

y2y2

y3y3

y3y3

Figure 3: An example used to show the lower bound on step complexity which matches the upper bound proved in [29].
Here we consider k = 3, but this example can be generalized with a longer chain (nodes xi) and a bigger clique (nodes
yi), with 0 ≤ i ≤ k.

We will now analyze the step complexity of this algorithm by showing a lower bound of
Ω(dn2) steps which matches asymptotically the upper bound of O(dn2) steps shown in [29]. To
this end, we consider the network topology given in Figure 3(a) which is composed of a clique
of four nodes (yk with 0 ≤ k ≤ 3) connected to the root r via a chain of three nodes (xk with
0 ≤ k ≤ 3 and r = x0). Starting from the initial configuration of Figure 3(b), only the node y0
can execute the first rule to increase its height value to 5 (maximum height value of neighbors
plus one). This yields to the execution of the second rule for each node of the clique (except y0
and y1) to select y1 as their new parent, which involves k−1 steps. This process is iterated in the
clique when a new node execute its first rule. More formally, we have j, 0 ≤ j ≤ k, iterations
of this process in the clique as following: yj executes the first rule to increase its height, then
all the nodes yi (except y0 and yj) execute the second rule to select yj+1 as their new parent.
Thus, after k(k − 1) steps we reach the configuration given in Figure 3(c) in which no node
yk can execute one of its rule. However, the system has not reached a legitimate configuration.
Indeed, we have not increased the height values along the chain composed of nodes xk. So, from
configuration of Figure 3(c) only the node x3 can execute its first rule to increase its height to 6,
which triggers a new phase defined by the procedure described above in the clique and involving
k(k − 1) additional steps. Finally, we can observe that we have at most k − 1 phases to reach
the legitimate configuration given in Figure 3(d). In each phase, the node xi, 1 ≤ i ≤ k, (by
decreasing order of i) executes its first rule followed by the execution procedure described in
the clique. Therefore, we have a step complexity of Ω(k3) = Ω(dn2), since the first factor k is
dependent of the length of the chain and in the example of Figure 3 we have k = (n− 2)/2.

A crucial point with this second approach is that the step complexity of the algorithm is not
function of the maximum height value initially present in the network. Moreover, we can notice
that the step complexity can be bounded by the fact that the parent link can be changed at most
n2 for each node, as illustrated in the example of Figure 3. However, the number of parent link

11

changes for a node is important and can be a problem from an application point of view using
the spanning tree to broadcast information. So, a natural question is to determine if it is possible
to design a self-stabilizing algorithm with a smaller upper bound on parent link changes, which
can also lead to a better step complexity. This is the motivation of the third approach presented
in the next subsection.

3.3. An approach improving the bound in steps

Cournier [30] proposed a self-stabilizing spanning tree construction which improves the step
complexity of the algorithm proposed in [29]. As discussed above, this work addresses the
problem related to the maximum number of parent link changes per node. To achieve this goal,
an additional mechanism is introduced to better control this aspect, allowing to reduce the upper
bound on the step complexity.

This approach constructs an arbitrary spanning tree rooted at a designated node, noted r.
As presented in the previous approaches, each node maintains a height and a parent pointer. A
node is considered as the root of its tree if its parent has a higher height value than itself. These
elements allow to define a forest of trees. To explain the additional mechanism used we introduce
the notion of abnormal tree. A tree is called abnormal if the tree is rooted at a node x such that
x 6= r, in this case x is an abnormal root. A tree is called correct if the tree is rooted at node r.
In the algorithm proposed in [30], contrary to the previous approaches a node v can change its
parent link only when v learns it belongs to an abnormal tree. Moreover, v tries to connect to a
tree which is not abnormal via a neighbor u which does not learn it belongs to an abnormal tree.
Every node can learn it belongs to an abnormal tree thanks to the use of the additional mechanism
which works as follows. When a node x detects it is an abnormal root, then it propagates down
in its tree an Error status in the tree using a Propagation of Information with Feedback (PIF)
protocol [35, 36, 20, 34]. When every node in the subtree of x learn they belong to an abnormal
tree (i.e., when the PIF has finished), x propagates down a Leave status allowing its descendants
to leave the tree. At this point, the considered abnormal tree is frozen and no new node can be
connected to it. Every node connected to the correct tree has a Correct status. Since a node with
a Correct status cannot leave the tree it belongs to, in finite time (because the network size is
finite) every node will belong to the correct tree rooted at r.

This approach has a round complexity of O(n). Indeed, the additional mechanism allowing
to freeze the abnormal trees, with the use of a PIF procedure, is performed in time function of the
tree depth (i.e., in O(n) rounds since the depth of a tree is bounded by n). So, in O(n) rounds
there is only a correct tree and abnormal trees in the forest, since all abnormal trees are frozen in
O(n) rounds. Moreover, no additional node can be connected to any abnormal tree of the forest.
As a consequence, in at most O(n) additional rounds every node in all the abnormal trees are
connected to the correct tree, which is rooted at r.

To analyze the step complexity, we need to make some observations for each node in the
network (except the root which can execute no action). First, no node with a Correct status can
leave the tree it belongs to. As a consequence, the nodes in the correct tree never leave this one.
Second, a node which learns it belongs to an abnormal tree can join another tree via a neighbor
with a Correct status. Therefore, thanks to the mechanism used to freeze the abnormal trees a
node belonging to an abnormal tree can join at most n − 1 trees until joining the correct tree.
Finally, the author shows that any node in a correct tree can perform at most a constant number of
actions, these are used to maintain height values in the tree such that each node has a height value
equal to its parent’s height plus one. Putting it all together, this algorithm has a step complexity

12

of O(n2). Moreover, as with the approach proposed in [29] the step complexity is not dependent
of the height values initially present in the network.

4. Outline of the proposed algorithm

In this section, we give an overview of the fully polynomial stabilizing approach proposed in
this paper for the construction of a Breadth First Search tree. As stated in the previous sections,
the main difficulty is to design an algorithm with a round complexity function of the network
diameter with a polynomial step complexity.

The self-stabilizing algorithm we propose in this paper is based on the following principles
to construct a BFS tree rooted at node r:

1. First of all, each node p always attempts to connect to the neighbor q of minimum height
belonging to the normal tree (i.e., the BFS tree rooted at r). To join the normal tree, pmust
wait for a connection authorization from q to select it as its new parent.

2. When a node q receives a connection request from at least one neighbor p which want
to join the tree q belongs to, q has to check first that it belongs to the normal tree. This
verification is performed by using a question-answer mechanism which allows q to ask an
authorization from the root of the tree it belongs to. Connection authorizations are only
delivered to asking node belonging to the normal tree. Moreover, these authorizations are
delivered by increasing order of the height of asking nodes in the normal tree. This allows
to control the acceptance of new nodes from the lowest to the highest levels in the normal
tree (defining the priority of requests). As soon as the verification is over for a asking node
q (i.e., a positive answer is delivered by the root r), q delivers a connection authorization
to its neighbors p (out of the normal tree) allowing them to select q as their new parent to
join the normal tree.

3. If a node detects an inconsistency between its state and the state of its parents, then the
node goes away from the tree it belongs to by setting its status to Error and selecting
himself as a root. This allows the detection of abnormal trees.

Note that the use of connection authorizations to add new nodes in the normal tree allows to
limit the number of parent changes performed by each node. Moreover, the construction of the
BFS tree allows to reduce the cost of the verification (question-answer mechanism) executed in
Point 2 above, since it is related to the diameter of the network in the worst case.

To construct a BFS tree, each processor must be connected to its closest neighbor toward
the root r. As presented in Section 3, since there is a single root r in the network this general
approach allows to connect all the processors to the tree rooted at r in a distributed and self-
stabilizing manner in O(d) rounds [26]. However due to a bad initial configuration, we also
explained that the construction cannot be done using a polynomial step complexity because of a
non polynomial number of connections of a node to a tree which is not rooted at r. This was the
motivation to bound the number of connections to this kind of trees by introducing a mechanism
to freeze these trees [29, 30]. However, the counter part in these approaches is that their round
complexity is driven by the mechanism used to freeze the abnormal trees, i.e., function of the
network size. Therefore, in our approach we use an additional questioning mechanism allowing
us to control the expansion of the tree rooted at r, while limiting the processor connections to
abnormal trees.

Our algorithm BFS is composed of two sub-algorithms: the first sub-algorithm performs the
connection of the processors to the spanning tree (see Section 5), while the second one allows

13

or not the connections of processors in order to obtain the desired tree (i.e., in our case a BFS
tree) (see Section 6). The second sub-algorithm is considered as an oracle by the first one as
explained below. As the approaches presented in Section 3, each node maintains a parent pointer
to a neighbor and a level value indicating the number hops to the root in the tree it belongs to.

Abnormal trees detection. We consider that there is a processor r designated as the root of the
spanning tree. We consider a forest of trees and we use the notion of abnormal trees introduced
in [30], i.e., trees rooted at a node with a level lower than its parent. The tree rooted at r is
called a normal tree. We also take the principle to detect the abnormal trees, but without the
acknowledgement of all the descendants. That is, each processor p checks if its level is higher
than the one of its parent. If this constraint is not satisfied then p takes the Error status and
propagates this status in its subtree. That is, we do not use a PIF protocol, instead we only use a
mechanism to propagate the Error status.

Connection of processors. Contrary to the approach proposed in [30], each node can leave the
tree it belongs to without the permission of the root. Indeed, we do not use a PIF mechanism
to have more flexibility for the connection of processors. However, before leaving the tree it
belongs to a node must have the authorization from a neighbor to connect to him. Therefore, the
connection of processors is controlled by a questioning mechanism viewed as an oracle by the
first sub-algorithm, which delivers connection authorizations in a way allowing to construct a
BFS tree. The connection procedure of a processor p is as follows: A processor q sends a request
to the oracle, when q detects a neighbor p such that p has an Error status or p has a level higher
than q’s level plus one. If q receives a response from the oracle then p has the authorization
to connect to q. Note that we consider that the oracle responds only to the processors which
belong to the normal tree. Therefore, a node can only connect to the normal tree, except if q has
a response from the oracle because of a bad initial configuration.

Oracle. The questioning mechanism is used by each processor q with a neighbor to connect in
order to detect if q really belongs to the normal tree or not. To this end, the request of q is sent
to the root of the tree q belongs to. This request is forwarded by the ancestors of q in the tree. If
this request is received by the root r, then r sends a (positive) response to q which follows the
path used to forward q’s request, otherwise q receives no response. This mechanism is a semi-
algorithm because only positive responses are sent, which allows to not execute useless actions.
The construction of a BFS tree involves the connection of the nodes via the closest neighbor to
the root. Therefore, the root r must respond first to the request of processors of smallest level.
To this end, the oracle takes into consideration the priority associated to each request, which is
related to the height in the tree of the asking processor. Thus, a request sent by a processor q′

closer than q from r erases q’s request on the common path used to forward these two requests,
even if r still respond to the request of q. In this case, when the response to the request of q′ is
forwarded then q’s request is forwarded again on the part of the path erased by the request of q′.
The responses are delivered level by level starting from the root. So, we can identify a classic
method to construct a BFS tree based on waves used to add a new layer of processors with a
synchronization to the root between two consecutive waves. Note that, a processor in a Error
status cannot execute the actions related to the oracle, it can only execute the first sub-algorithm
in order to hook to another neighbor with an authorization.

14

Time complexity considerations. First of all, we consider the round complexity of the whole al-
gorithm. Algorithm BFS uses a questioning mechanism which can be viewed as a synchronizer
allowing to construct a BFS tree rooted at r layer by layer, the addition of any new layer of pro-
cessors is dependent on the acknowledgement to a permission request. The requesting processors
closest to r at height k receive an acknowledgement to their request from r in O(k) rounds (see
Corollary 1) which allows their neighbors to hook on to the normal tree. The same argument
holds for the addition of each new layer. Moreover, the height of a BFS tree is lower than or
equal to the network diameter. Therefore, summing up the round complexity associated to each
layer we obtain a O(d2) round complexity to construct a BFS tree, with d the network diameter.
On the other hand, the mechanism we use for deleting the abnormal trees is obviously in O(n)
rounds, since the height of such a tree can be in O(n). But any processor in an abnormal tree far
from the root of this tree will become the neighbor of at least a processor of the normal BFS tree
in O(d2) rounds and will hook to it even if the abnormal tree is not yet deleted. So the global
round complexity is still O(d2) (see Lemma 19).
We give below the main arguments allowing to show that Algorithm BFS has a polynomial step
complexity inO(∆mn3+mn4). We first consider the step complexity of the first sub-algorithm.
The questioning mechanism is designed to avoid that a processor can hook to an abnormal tree
several times by the same neighbor. Therefore, a processor can hook to an abnormal tree at most
∆ times until reaching the normal tree (with ∆ the maximum degree of a node) and at most n
times when it belongs to the normal tree until reaching its final position. This involves that there
are at most ∆n + n2 connections until all the processors reach their correct position in the final
BFS tree. We consider now the step complexity of the questioning mechanism. The connection
of a processor is the result of a request, done by at most each of its neighbors (i.e., at most ∆
requests per processor connection). So, to construct a BFS tree at most ∆m + mn requests are
generated by the first sub-algorithm. A processor receives a response from the oracle in O(n2)
steps, since the oracle handles first the closest requests in the tree. Note that a synchronization is
performed for the parallel requests of same priority which yields a polynomial number of retrans-
missions. Thus, in O(n3) steps every requesting processor in the normal tree receives a response
(there are at most n concurrent requests in the network). Given an upper bound on the number
of generated requests, we have to multiply this amount by the number of steps needed by the
oracle to respond to these requests in order to obtain an upper bound to the total step complexity
of Algorithm BFS.
Notice that in one hand using a questioning mechanism allows us to save steps by avoiding the
transmission of useless requests, but on the other hand we obtain a higher round complexity
(O(d2) instead of O(d) with standard algorithms constructing BFS trees) due to the fact that
permissions must be delivered before the add of new nodes to the constructed tree. Moreover,
the step complexity (see Lemma 30) is not related with any initial value of a variable and it holds
under any fairness assumptions.

5. Spanning Tree Construction

In this section, we are interested in the problem of constructing a tree spanning all the proces-
sors of the network. We consider a particular root processor, noted r, which is used to construct
a spanning tree. More precisely, we consider the construction of a Breadth First Search (BFS)
tree rooted at processor r. We can define a BFS tree as in Definition 3.

15

Definition 3 (BFS Tree). Let G = (V,E) be a network and r a node called the root. A graph
T = (VT , ET) of G is called a Breadth First Search tree if the following conditions are satisfied:

1. VT = V and ET ⊆ E, and
2. T is a connected graph (i.e., there exists a unique path in T between any pair of nodes
x, y ∈ VT) and |ET | = |V | − 1, and

3. For each node p ∈ VT , the path between p and r in T is a shortest path (in hops) between
p and r in G.

We give a formal specification to the problem of constructing a BFS tree, stated in Specifica-
tion 1.

Specification 1 (BFS Tree Construction). Let C the set of all possible configurations of the sys-
tem. An algorithm ABFS solving the problem of constructing a stabilizing BFS tree satisfies the
following conditions:

[TC1] Algorithm ABFS reaches a set of terminal configurations T ⊆ C in finite time, and

[TC2] In every configuration γ ∈ T there exists a spanning tree satisfying Definition 3.

5.1. Breadth first search tree algorithm

In this section, we present a snap-stabilizing algorithm, called BFS, to construct a BFS tree.
Algorithm BFS is a semi-uniform algorithm, this means that exactly one of the processors,
called the root and denoted r, is distinguished. This distinguished processor is used in Algorithm
BFS as the root of the spanning tree.

Algorithm BFS is a composition of two algorithms. Algorithm 1 is based on the fact that a
processor has to choose a neighbor with the minimal distance to the root as its parent in the tree.
It is well known that this common idea is enough to get a round complexity inO(d), but does not
ensure a step complexity inO(nb)5. So we allow a processor to connect to a neighbor only if this
neighbor is in the tree rooted at r and in the shortest path to r. The detection of such neighbors
is assigned to Algorithm 2 (see Section 6) which can be seen as an oracle by Algorithm 1. The
second role of Algorithm 1 is to remove the abnormal trees, i.e., those that are not rooted at r.

5.1.1. Variables
We define below the variables used by Algorithm 1. For Algorithm 1, we characterize r by

the predicate Allowed (i.e., Allowed(p) ≡ (p = r), ∀p ∈ V).

Shared variable. Each processor p ∈ V has a local shared variable p.Req which is used by
Algorithm 1 to monitor Algorithm 2 at p. This shared variable can take four values: ASK,
WAIT , REP , and OUT . By setting the shared variable p.Req to ASK, Algorithm 1 informs
Algorithm 2 that a permission from the root of the tree that p belongs to is needed at p. In this
case, Algorithm 2 tries to send a request and to obtain a permission for p if it is possible (i.e.,
if p belongs to an allowed tree and this request has the highest priority during enough time for

5Indeed, this approach is used in [17] to construct a BFS tree with a round complexity in Θ(d) but with a step
complexity in Ω(Max×n2), as demonstrated in [18]. However, Max is an upper bound of n and can be arbitrary high
with respect to n so the step complexity can be at least exponential. Note that the gap between the lower and the upper
bound (see Table 1) of the step complexity leads us to think that the lower bound in [18] is not tight.

16

an acknowledgment to return). If a permission is delivered to processor p, then Algorithm 2 sets
this shared variable to REP in order to inform Algorithm 1. Then, every neighbor of p can
execute Algorithm 1 to join the tree that p belongs to. When there is no neighbor of p to connect,
then Algorithm 1 sets p.Req to OUT which allows Algorithm 1 to request another permission
through Algorithm 2 if needed.

Local variables. Each processor p ∈ V maintains three local variables:

• p.P : it gives the parent of p in the tree it belongs to, p.P = ⊥ for processor p = r.

• p.L: it stores the level (or height) of p in the tree it belongs to, p.L = 0 for processor
p = r.

• p.S: it defines the status of processor p. It can take two values: E if p does not belong
to a tree rooted at a processor x satisfying Predicate Allowed(x), C otherwise. We have
p.S = C for processor p = r.

5.1.2. Algorithm description
As described before, we consider a forest F of trees and a distinguished processor r which is

the only processor authorized to deliver permissions in the network (i.e., Allowed(p) ≡ (p = r)
for every processor p ∈ V). We can notice that in a tree there is a strong constraint between the
level of a processor and the level of its parent in the tree: For any processor p 6= r, the level of
p’s parent must be equal to p’s level minus 1. Therefore, the root of a tree in forest F is either
(i) processor r, or (ii) a processor p 6= r such that p.L ≤ (p.P).L (it is used to detect cycles in
the network). Since we want to construct a spanning tree, in case (ii) we say that processor p
is an abnormal root. Moreover, any processor p 6= r in a tree in F rooted at an abnormal root
belongs to an abnormal tree. Every processor p ∈ V in an abnormal tree can execute E-action
to change its Status to E (i.e., p.S = E) and to inform its descendants in the tree (see the formal
description of Algorithm 1). Note that to reduce the number of moves executed by Algorithm
BFS, a processor p ∈ V in an abnormal tree does not ask any permission. Processor p waits
until a neighbor q in the tree rooted at r authorizes p to connect to q.

When a BFS tree is constructed, the following property is verified at each processor p ∈
V, p 6= r: The level of p’s parent is equal to p’s level minus 1 (i.e., (p 6= r) ⇒ (p.L =
(p.P).L + 1)). For processor r, we have the following constant values: r has no parent and a
level equal to zero (i.e., (p = r) ⇒ (p.P = ⊥ ∧ p.L = 0)). Moreover, according to Claim 3 of
Definition 3 we must have that the deviation on the level values between any processor p ∈ V
and its neighbors does not exceed one (i.e., ∀q ∈ Neigp, |q.L− p.L| ≤ 1). If one of these above
constraints are not verified then a BFS tree is not constructed. Therefore, we have either at least
one abnormal tree in F or there is a processor p ∈ V with a neighbor q such that q.L− p.L > 1
(i.e., Predicate GP -REP (p) is satisfied at p). In these cases, processor p executes A-action to
set the shared variable p.Req to ASK in order to ask the permission to allow q to connect to p,
if p is not already asking a permission (i.e., we have p.Req = OUT). To this end, Algorithm 2
sends a request to the root of the tree.

Inputs for Algorithm 2. In order to allows Algorithm 2 to send a request the following inputs
are given at processor p: (i) Child(p) is the set of children of p in the tree (i.e., Child(p) ≡
{q ∈ Neigp : q.P = p}), (ii) Parent(p) is the parent of p in the tree (i.e., Parent(p) ≡ p.P),
(iii) Height(p) is the height in the tree of the requesting processor p, and (iv) Allowed(p) is a

17

Algorithm 1 Spanning Tree Construction for any p ∈ V
Inputs: Neigp: set of (locally) ordered neighbors of p;
Shared variable: p.Req ∈ {ASK,WAIT,REP,OUT};
. .
Macros:
Child(p) = {q ∈ Neigp :: q.P = p ∧ q.L = p.L + 1}
Parent(p) = p.P
Height(p) = p.L
ChPar(p) = {q ∈ Neigp\Child(p) :: q.S = C}
MinChPar(p) = min{q ∈ ChPar(p) :: ∀t ∈ ChPar(p), q.L ≤ t.L}. .

Global Predicates:
GoodT (p) ≡ p.S 6= E ∧ (p 6= r ⇒ p.L = (p.P).L + 1)
GoodL(p) ≡ (∀q ∈ Neigp :: |p.L− q.L| > 1⇒ (p.L < q.L ∨ q.S = E))
GP -REP (p) ≡ (∃q ∈ Neigp :: q.S = E ∨ q.L− p.L > 1)
Start(p) ≡ p.Req = OUT ∧GP -REP (p)
End(p) ≡ p.Req = REP ∧ ¬GP -REP (p). .

Algorithm for p = r:
Constants: p.S = C; p.P = ⊥; p.L = 0;
Predicates:

Allowed(p) ≡ true

Actions:
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

Algorithm for p 6= r:
Variables: p.S ∈ {C,E}; p.P ∈ Neigp; p.L ∈ N;
Predicates:

Allowed(p) ≡ false
AbnormalTree(p) ≡ p.S = C ∧ ((p.P).S = E ∨ (p.P).L ≥ p.L)
Connect(p) ≡ (∃q ∈ Neigp :: q.Req = REP ∧ q = MinChPar(p)

∧(p.S = C ⇒ p.L− q.L > 1))

Actions:
E-action :: AbnormalTree(p) → p.S := E;
C-action :: Connect(p) → p.S := C; p.P := MinChPar(p);

p.L := (p.P).L + 1; p.Req := OUT ;
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

predicate which notifies if p can deliver permissions (i.e., Allowed(p) ≡ (p = r)). We remind
thatAllowed(p) must be satisfied only at processor p = r in Algorithm 2 to allow that eventually
every processor joins the tree rooted at r, since eventually the processors cannot join another tree
in the forest F .

In the case a permission is delivered at processor p (i.e., we have p.Req = REP), then
each neighbor q of p can execute C-action to connect to p. However to construct a BFS tree
without an overcost on moves, processor q waits for until its neighbor x with the smallest level
in a normal tree gives a connection authorization to q by executing C-action (i.e., we have
x.Req = REP ∧ x = MinChPar(q)). When processor q executes C-action then it sets its
variables q.P and q.L according to its new parent in the tree, and it changes its status to Status
C and its shared variable q.Req to OUT . Finally, if there is no neighbor for which processor
p needs a permission (i.e., Predicate GP -REP (p) is no more satisfied at p), then p executes
O-action to set its shared variable p.Req toOUT . This informs Algorithm 2 that the permission
can be removed at p, then this allows p to ask a new permission later.

6. Question-Answer problem

In this section, we present a snap-stabilizing algorithm to implement the oracle used by the
BFS tree construction given in Section 5. Formally, this oracle has to solve the Question-Answer

18

problem which can be stated as following, a formal specification is given in Specification 2.
Given a static forest F of trees in a network G = (V,E), a set of processors De ⊆ V re-

questing a permission to make a defined computation and a set of processorsAP ⊂ V authorized
to deliver permissions. Each p ∈ AP is a root of a tree T ∈ F . The Question-Answer problem
is to deliver a permission (or acknowledgement) to a processor p in a tree T ∈ F if and only if
the root q of T is in AP .

Specification 2 (Question-Answer). Let G = (V,E) be a network and F the static forest of
trees in G. Let a tree T ∈ F and root(T) the root of T . T is an allowed tree if root(T) ∈ AP
and not allowed otherwise. A protocol P which resolves the Question-Answer problem satisfies:

• Liveness 1: During an infinite execution, if a processor has to send infinitely often a
request and it cannot send its request in an allowed tree, then there exist an infinite number
of requests which were sent.

• Liveness 2: For every execution suffix, if a processor in an allowed tree has sent a re-
quest at time t, then there exist at least one processor in the same tree which receives an
acknowledgement to its own sent request at time t′ > t.

• Safety 1: Every processor which has sent a request receives at most one acknowledgement
causally related to its sent request.

• Safety 2: Every processor in a not allowed tree which has sent a request never receives an
acknowledgement.

Remark that only semi-algorithms can satisfy Specification 2, that is no acknowledgement is
sent to processors in a not allowed tree, from Property (Safety 2) of Specification 2.

6.1. Question-Answer algorithm

In this section, we present a snap-stabilizing algorithm for the Question-Answer problem, a
formal description is given by Algorithm 2. This is a non-uniform algorithm because some rules
are only executed by a subset of processors p ∈ V satisfying a local Predicate Allowed(p) (i.e.,
p can deliver a permission or not).

6.1.1. Variables
We define below the different variables used by Algorithm 2.

Shared variable. Each processor p ∈ V has a local shared variable p.Req which allows an
external algorithm to require the Question-Answer algorithm at p. This shared variable can take
four values: ASK, WAIT, REP, and OUT . By setting the shared variable p.Req to ASK
in the external algorithm, p requests a permission through the Question-Answer algorithm to its
root of the tree. To this end, Question-Answer algorithm tries to send a request to the root of
the tree and sets the shared variable p.Req to WAIT . The request sent by requesting processors
with the lowest level (or height) in the tree will reach the root and then receive a permission
(an acknowledgement). When p receives an acknowledgement, it sets p.Req to REP . Finally,
the external algorithm must set p.Req to OUT to request another permission through Question-
Answer algorithm.

19

Local variables. Each processor p ∈ V maintains two local variables:

• p.Q: it defines the status of the Question-Answer algorithm at processor p. There are three
distinct status: R, W, and A. Status R notifies that p transmits a request to the root of
the tree, whereas Status W indicates that p waits for an acknowledgement from the root
for the transmitted request. The third status, Status A, indicates that p has received an
acknowledgement from the root.

• p.HQ: it stores at p the height of the processor which has sent the request.

6.1.2. Algorithm description
To simplify the presentation of the algorithm, consider a forest of allowed trees (i.e., trees

rooted at nodes p satisfying Predicate Allowed(p)) and a fixed set of requests. In the following,
we explain the way our algorithm handles requests focusing on a single tree T of the forest, but
this is the same for the other trees since the requests in each tree are handled independently. In
the algorithm, the requests sent by nodes of lowest height in the tree are handled in priority.

When a processor p has a local request requested by the external algorithm (i.e., p.Req =
ASK), p can execute QR-action to set its variables p.Req, p.Q, and p.HQ to WAIT,R, and
to Height(p) respectively, in order to send its request to the root of the tree it belongs to. The
external algorithm is informed that the request is sent since p.Req = WAIT . Otherwise, an
internal processor p in the tree with no local request (i.e., p.Req 6= REP) could have to transmit
requests from its children (the request from a requesting descendant of lowest height first) in the
following cases:

• a child of p given by Chp (see Algorithm 2) is sending a request with a highest priority
(i.e., (Chp).HQ < p.HQ);

• the acknowledgement received for the transmitted request is no more needed at p (all its
children waiting it have transfered the acknowledgment, see Predicate Transmit(p));

• p is waiting for an acknowledgement for a request and a new request is transmitted by a
child of p with the same height (see Predicate Retransmit(p)).

In all these above cases, p executes QRC-action to set p.Q to R and p.HQ to the lowest
height among requesting descendant of p (i.e., p.HQ = (Chp).HQ).

A processor p waits for an acknowledgement for a current request when its parent has trans-
mitted the request (see Predicate Wait(p)). Moreover, all p’s children transmitting the same
request (i.e., with the same height) have to wait for an acknowledgement. Hence, Status W al-
lows to remove bad requests due to an incorrect initial configuration and to synchronize request
transmissions of same priority. In this case, p sets its variable p.Q to W using QW -action.

When the root root(T) of the tree T has no local request and is waiting for an acknowledge-
ment for requesting descendant(s) (see Predicate Answer), then it executes QA-action to set
its variable root(T).Q to A. This permission is propagated down in the tree to the requesting
descendant(s) following the path(s) used to transmit the request. Finally, a processor p waiting
for an acknowledgement to a local request (i.e., p.Q = W and p.Req = WAIT) executes QA-
action to receive the acknowledgement and sets the shared variable p.Req to REP to notify to
the external algorithm of the delivered permission. Note that as soon as a received acknowledge-
ment is no more needed at a processor p (i.e., p.Req is set to OUT by the external algorithm),
then another request transmitted by a child of p can be transmitted by p up in the tree.

20

Algorithm 2 Question-Answer algorithm for any p ∈ V
Inputs: Neigp: set of (locally) ordered neighbors of p;

Child(p): set of neighbors considered as children of p in the tree;
Allowed(p): predicate which indicates if p is able to acknowledge to a request;
Parent(p): parent of p in the tree, equal to a processor q ∈ Neigp if ¬Allowed(p) or equal to⊥ otherwise ;
Height(p): height of p in the tree;

Shared variable: p.Req ∈ {ASK,WAIT,REP,OUT};
Variables: p.Q ∈ {R,W,A}; p.HQ ∈ N;
. .
Macros:
RC(p) = {q ∈ Child(p) :: q.Q ∈ {R,W}}
PrioRC(p) = {q ∈ RC(p) :: ∀t ∈ RC(p), q.HQ ≤ t.HQ}
Chp = min{q ∈ PrioRC(p)}. .

Global Predicates:
Transmit(p) ≡ p.Q = A ∧ (∀q ∈ Child(p) :: q.Q = W ⇒ q.HQ 6= p.HQ)
Retransmit(p) ≡ p.Q = W ∧ (∃q ∈ Child(p) :: q.Q = R ∧ q.HQ = p.HQ)
Error(p) ≡ p.Q 6= A ∧ [(p.Req 6∈ {ASK,WAIT} ∧ p.HQ = Height(p)) ∨ (p.HQ 6= Height(p)

∧(p.Req 6= REP ⇒ (∀q ∈ Child(p) :: q.HQ = p.HQ⇒ q.Q = A)))]
Request(p) ≡ p.Req = ASK ∧ (|PrioRC(p)| > 0⇒ Height(p) ≤ (Chp).HQ)
RequestT (p) ≡ p.Req 6= REP

∧|PrioRC(p)| > 0 ∧ [((Chp).HQ ≥ p.HQ⇒ Transmit(p)) ∨ Retransmit(p)]. .

Algorithm:
Predicates:

Wait(p) ≡ (Allowed(p) ∧ p.Q = R ∧ (∀q ∈ Child(p) :: q.HQ = p.HQ⇒ q.Q = W))∨
(¬Allowed(p) ∧ Parent(p).Q = R ∧ p.Q = R ∧ Parent(p).HQ = p.HQ
∧(∀q ∈ Child(p) :: q.HQ = p.HQ⇒ q.Q = W))

Answer(p) ≡ (Allowed(p) ∧ p.Q = W)∨
(¬Allowed(p) ∧ Parent(p).Q = A ∧ p.Q = W ∧ Parent(p).HQ = p.HQ)

Actions:
QE-action :: Error(p) → p.Q := A; p.HQ := Height(p);
QR-action :: Request(p) → p.Q := R; p.HQ := Height(p); p.Req = WAIT ;
QRC-action :: RequestT (p) → p.Q := R; p.HQ := (Chp).HQ;

if p.HQ < Height(p) ∧ p.Req = WAIT
then p.Req := ASK; fi

QW -action :: Wait(p) → p.Q := W ;
QA-action :: Answer(p) → p.Q := A;

if p.Req = WAIT then p.Req := REP ; fi

However, a processor must be able to detect wrong requests due to an incorrect initial con-
figuration. A request treated by a processor p is a wrong request in the following cases (see
Predicate Error(p)):

• p is sending a local request whereas it has no local request (i.e., p.Q 6= A ∧ p.Req 6∈
{ASK,WAIT} and p.HQ = Height(p));

• p is transmitting a request from a child, however no child of p has a request with the same
height (i.e., p.Q 6= A∧p.HQ 6= Height(p)∧ (∀q ∈ Child(p), q.HQ = p.HQ⇒ q.Q =
A)).

When a processor p detects a wrong request, then p executes QE-action. This action has
the highest priority among the actions at p, and it resets p’s state like if an acknowledgement to
a local request was received, i.e., to set p.Q to A and p.HQ to Height(p) (without changing the
state of the shared variable p.Req).

A questioning mechanism close to the mechanism presented here was used in [34] to design a
snap-stabilizing solution to the problem of Propagation of Information with Feedback (PIF) with
a round complexity inO(n) and a step complexity inO(∆n3). However, solving the PIF problem
involves a strong synchronization in the network to insure that all the nodes in the network belong

21

to the same broadcast tree before initiating the feedback phase. Indeed, each time a node is added
to the broadcast tree the questioning mechanism is reset leading to a O(n) round complexity.
Contrary to this questioning mechanism, here our mechanism needs a weakest synchronization to
resolve the Question-Answer problem. LetDe be the set of requesting nodes and hmin the height
of closest requesting nodes from the root in T . The first requests acknowledged by root(T) are
the requests from nodes at height hmin. Then, if the set of requests is static then the requests at
height hmin +1 are acknowledged by root(T) (if any) and so on. In fact, only a synchronization
for the requests of requesting nodes at height hmin (whose requests are of highest priority) in
tree T is required leading to a round complexity function of the height of T . The transmission of
a request requires O(n) steps, however this transmission can be interrupted only by a requesting
node with the same height in T , that is at most |De| times.

The following corollary summarizes the above discussion:

Corollary 1. Let T be an allowed tree and hmin be the height of the closest requesting nodes in
De from the root in T . In O(hmin) rounds and O(n|De|) steps, at least one requesting node in
De receive an acknowledgement from root(T) to its request.

7. Composition and complexities

Algorithm BFS is obtained by the composition of Algorithm 2 and Algorithm 1. These two
algorithms are composed together at each processor p ∈ V with a conditional composition (first
introduced in [37]): Algorithm 1 ◦ |Cond(p) Algorithm 2, where each guard g of the actions of
Algorithm 2 at each processor p ∈ V has the form Cond(p)∧ g with Predicate Cond(p) defined
below (see Algorithm 1 for the description of predicates): Cond(p) ≡ GoodT (p) ∧GoodL(p).

Using this composition, each processor p ∈ V can execute Algorithm 2: (i) to transmit
requests and acknowledgements only if the tree containing p is locally correct (i.e., Predicate
GoodT (p) is satisfied), and (ii) to ask a permission if needed (i.e., Predicate GoodL(p) is sat-
isfied). Indeed, actions in Algorithm 2 can be locked to avoid processors belonging to a tree
not rooted at r (abnormal tree) to transmit useless requests since no acknowledgement can be
received (only r can deliver acknowledgements). Therefore, processors in abnormal trees can
only execute actions in Algorithm 1 to hook on to another tree in the forest via a neighbor with
a permission (acknowledgement delivered by Algorithm 2). Moreover, actions of Algorithm 2
and Algorithm 1 can be enabled at p simultaneously. In this case, Algorithm 2 is executed before
Algorithm 1 at p.

8. An example of execution

In this section we give an example of execution of Algorithm BFS. To this end, we con-
sider the network with the initial configuration illustrated in Figure 4(a). In Figure 4, the values
of the variables of each processor p is given in three parts: the first pair (p.L, p.S) related to
Algorithm 1, followed by the shared variable p.Req, and a last pair (p.Q, p.HQ) related to Al-
gorithm 2.

In the following, we explain the evolution of the system states by (synchronous) round until
reaching a terminal and legitimate configuration illustrated in Figure 4(h):

22

OUT,

(A,2)

(2,C),

OUT,

(A,1)

(1,C),

ASK,

(A,1)

(1,C),

ASK,

(A,2)

(2,C),

OUT,

(A,1)

(1,E),

OUT,

(A,0)

(0,E),

OUT

(A,2)

(2,E),

OUT,

(A,0)

(0,C),

OUT,

(A,4)

(4,E),

OUT,

(A,1)

(1,E),

OUT,

(A,2)

(2,E),

OUT,

(A,3)

(3,E),

OUT,

(A,2)

(2,E),

(b)

OUT,

(A,2)

(2,C),

OUT,

(A,1)

(1,C),

OUT,

(A,1)

(1,C),

OUT,

(A,2)

(2,C),

OUT,

(A,1)

(1,C),

OUT,

(A,0)

(0,C),

OUT

(A,2)

(2,C),

OUT,

(A,2)

(2,C),

OUT,

(A,0)

(0,C),

OUT,

(A,4)

(4,C),

OUT,

(A,1)

(1,C),

OUT,

(A,2)

(2,C),

OUT,

(A,3)

(3,C),

(a)

OUT,

(A,2)

(2,C),

OUT,

(R,2)

(1,C),

WAIT,

(R,1)

(1,C),

WAIT,

(R,2)

(2,C),

OUT,

(A,1)

(1,E),

OUT,

(A,0)

(0,E),

OUT

(A,2)

(2,E),

OUT,

(R,1)

(0,C),

OUT,

(A,4)

(4,E),

OUT,

(A,1)

(1,E),

OUT,

(A,2)

(2,E),

OUT,

(A,3)

(3,E),

OUT,

(A,2)

(2,E),

(c)

OUT,

(A,2)

(2,C),

OUT,

(R,2)

(1,C),

REP,

(A,1)

(1,C),

WAIT,

(W,2)

(2,C),

OUT,

(A,1)

(2,C),

OUT,

(A,0)

(0,E),

OUT

(A,2)

(2,E),

OUT,

(A,1)

(0,C),

OUT,

(A,4)

(4,E),

OUT,

(A,1)

(1,E),

OUT,

(A,2)

(2,E),

OUT,

(A,3)

(3,E),

OUT,

(A,2)

(2,E),

(d)

OUT,

(A,2)

(2,C),

OUT,

(W,2)

(1,C),

OUT,

(R,2)

(1,C),

WAIT,

(W,2)

(2,C),

WAIT,

(W,2)

(2,C),

OUT,

(A,0)

(0,E),

OUT

(A,2)

(2,E),

OUT,

(R,2)

(0,C),

OUT,

(A,4)

(4,E),

OUT,

(A,1)

(1,E),

OUT,

(A,2)

(2,E),

OUT,

(A,3)

(3,E),

OUT,

(A,2)

(2,E),

(e)

OUT,

(A,2)

(2,C),

OUT,

(A,2)

(1,C),

OUT,

(A,2)

(1,C),

REP,

(A,2)

(2,C),

REP,

(A,2)

(2,C),

OUT,

(A,0)

(3,C),

OUT

(A,2)

(3,C),

OUT,

(A,2)

(0,C),

OUT,

(A,4)

(3,C),

OUT,

(A,1)

(1,E),

OUT,

(A,2)

(2,E),

OUT,

(A,3)

(3,C),

OUT,

(A,2)

(3,C),

(f)

OUT,

(A,2)

(2,C),

OUT,

(R,3)

(1,C),

OUT,

(A,2)

(1,C),

OUT,

(R,3)

(2,C),

OUT,

(A,2)

(2,C),

OUT,

(A,0)

(3,C),

OUT

(A,2)

(3,C),

OUT,

(R,3)

(0,C),

WAIT,

(3,C),

(R,3)

OUT,

(A,1)

(1,E),

OUT,

(A,2)

(2,E),

WAIT,

(R,3)

(3,C),

OUT,

(A,2)

(3,C),

(g)

OUT,

(A,2)

(2,C),

OUT,

(A,3)

(1,C),

OUT,

(A,2)

(1,C),

OUT,

(A,3)

(2,C),

OUT,

(A,2)

(2,C),

OUT,

(A,0)

(3,C),

OUT

(A,2)

(3,C),

OUT,

(A,3)

(0,C),

OUT,

(3,C),

(A,3)

OUT,

(A,1)

(4,C),

OUT,

(A,2)

(4,C),

OUT,

(A,3)

(3,C),

OUT,

(A,2)

(3,C),

(h)

rr

rr

rr

r r

x1x1

x1x1

x1x1

x1 x1

x2x2

x2x2

x2x2

x2 x2

x3x3

x3x3

x3x3

x3 x3

x4x4

x4x4

x4x4

x4 x4

y1y1

y1y1

y1y1

y1 y1

y2y2

y2y2

y2y2

y2 y2

y3y3

y3y3

y3y3

y3 y3

y4y4

y4y4

y4y4

y4 y4

z1z1

z1z1

z1z1

z1 z1

z2z2

z2z2

z2z2

z2 z2

z3z3

z3z3

z3z3

z3 z3

z4z4

z4z4

z4z4

z4 z4

Figure 4: Network considered for the example of execution of Algorithm BFS. For each processor p, the values of the
variables are separated in three parts: the first pair (p.L, p.S) related to Algorithm 1, followed by the shared variable
p.Req, and a last pair (p.Q, p.HQ) related to Algorithm 2. (a) initial configuration with a forest of trees (dotted lines
are edges not used in the forest), (b)-(g) several intermediate states with modifications in bold text until reaching the
terminal configuration given in (h).

23

Round 0.

1. First of all, the processors belonging to an abnormal tree are informed by the abnormal
root of this situation. So, every processor yi and zi, 1 ≤ i ≤ 4, execute E-action of
Algorithm 1 to propagate the Error status E in the abnormal trees.

2. After this propagation of Error status, the processors x2 and x4 have neighbors satisfying
Predicate GP -REP (). So, these two processors execute A-action of Algorithm 1 to set
the shared variable Req to ASK for sending their local request to the questioning mecha-
nism (i.e., Algorithm 2). The configuration obtained after the execution of these actions is
illustrated in Figure 4(b).

Round 1.

1. The questioning mechanism sets the shared variable Req to WAIT by the execution of
QR-action of Algorithm 2 at x2 and x4 to inform these processors that their requests are
taken into account. These processors cannot send another request (local or not) until this
shared variable has OUT value. Moreover, by the execution of QR-action the variables Q
and HQ (related to the sent request) are set to R and 1 for x2 or 2 for x4 (level of x2 and
x4).

2. Then processors x1 and r transmit the request of highest priority (i.e., with the lowest HQ
value) from their descendants by executing QRC-action of Algorithm 2. So, x1 transmits
the request initiated by x4, while r transmits the request from x2. The new configuration
reached after all these actions is given in Figure 4(c).

Round 2.

1. The processors on the requesting path related to the request initiated by x2 and x4 execute
QW -action of Algorithm 2 to notice that the request has been transmitted by the parent in
the tree. So, the variable Q is set to value W at x2 and r, this is also the case for x4.

Round 3.

1. The authorization for x2’s request is given by the root r of the normal tree and is propagated
down following the requesting path of x2’s request. So, r and x2 execute QA-action of
Algorithm 2 to set variable Q to value A. Moreover, since x2 receives an authorization
for its local request then the shared variable Req is also set to value REP to inform
Algorithm 1 that neighbor processors can be connected to x2.

2. Processor z2 executes C-action of Algorithm 1 to hook to x2 because of the authorization
given to x2. So, z2 sets its variables S, P and L to C, x2 and 2 (x2’s level plus one)
respectively. The new reached configuration is illustrated in Figure 4(d).

Round 4.

1. The request initiated by x4 is transmitted to r, since the authorization for x2’s request has
been propagated down. So, r executes QRC-action of Algorithm 2 to set variables Q and
HQ to R and 2 respectively.

2. The processors on the requesting path related to x4’s request execute QW -action of Algo-
rithm 2 to notice that the request has been transmitted by the parent in the tree.

24

3. Processor x2 executes O-action of Algorithm 1 to set its shared variable Req to OUT
since all its neighbors are connected (no neighbor satisfying Predicate GP -REP ()) and
the obtained authorization is no more needed. This allows x2 to send a new request if
needed.

4. Processor z2 has neighbors which satisfy Predicate GP -REP (). So, it executes A-action
of Algorithm 1 to set the shared variable Req to ASK to send a local request to the
questioning mechanism.

Round 5.

1. r executes QW -action of Algorithm 2 to notice that x4’s request has been correctly trans-
mitted. So, the variable Q is set to value W at r.

2. The questioning mechanism set the shared variable Req to WAIT by executing QR-
action of Algorithm 2 at z2 to inform Algorithm 1 at z2 that the local request is taken into
account. Moreover, by the execution of QR-action the variables Q and HQ are set to R
and 2.

3. x2 executes QRC-action to transmit the request initiated by z2. So, variables Q and HQ
are set to R and 2 respectively.

Round 6.

1. At this point of the execution, x4 and z2 have initiated two requests of same priority (x4 and
z2 have the same level). A synchronization is done by the questioning mechanism in order
to synchronize the connection of processors at layer 3 of the constructed BFS. To this end,
the transmission of the request is reseted at all the processors on the common requesting
path of x4’s and z2’s request. So, here only r execute QRC-action of Algorithm 2 to set
the variable Q to R.

2. z2 executes QW -action of Algorithm 2 to notice that its local request has been correctly
transmitted by its parent in the tree. So, the variable Q is set to value W at z2. The
configuration obtained after the execution of all these actions is given in Figure 4(e).

Round 7.

1. x2 and r execute QW -action of Algorithm 2 to notice that the request initiated by z2 has
been correctly transmitted by its parent in the tree. So, the variable Q is set to value W at
x2 and r.

Round 8.

1. The authorization for the request of x4 and z2 is given by the root r and is propagated
down following the requesting path corresponding to the request of x4 and z2. So, r,
x1, x4 execute QA-action of Algorithm 2 to set variable Q to value A for x4’s request,
the same is done by x2 and z2 for z2’s request. Moreover, since x4 and z2 receive an
authorization for their local request then the shared variable Req is set to REP at x4 and
z2 to inform Algorithm 1 that neighbor processors can be connected to x4 and z2.

2. Processors z1, z3 and z4 execute C-action of Algorithm 1 to hook to z2 because of the
authorization given to z2. The same is done at y3 and y4 to hook to x4. So, variables S,
P and L are set to C, z2 (or x4 accordingly) and 3. The new reached configuration is
illustrated in Figure 4(f).

25

Round 9.

1. Processors x4 and z2 execute O-action of Algorithm 1 to set their shared variable Req
to OUT since all their neighbors are connected (no neighbor satisfying Predicate GP -
REP ()) and the obtained authorization is no more needed. This allows x4 and z2 to send
a new request if needed.

2. Processors y3 and y4 have neighbors which satisfy Predicate GP -REP (). So, A-action of
Algorithm 1 is executed to set the shared variable Req to ASK to send a local request to
the questioning mechanism.

Round 10.

1. The questioning mechanism set the shared variable Req to WAIT by the execution of
QR-action of Algorithm 2 at y3 and y4 to inform Algorithm 1 that the local request is
taken into account. Moreover, by the execution of QR-action the variables Q and HQ are
set to R and 3 at y3 and y4.

2. x4 and x1 execute QRC-action to transmit the request initiated by y3 and y4 of same
priority. So, variables Q and HQ are set to R and 3 respectively. The new obtained
configuration is given in Figure 4(g).

Round 11.

1. y3, y4, x4, x1 and r execute QW -action of Algorithm 2 to notice that the requests initiated
by y3 and y4 have been correctly transmitted by their parent in the tree. So, the variable Q
is set to value W .

Round 12.

1. The authorization for the request of y3 and y4 is given by the root r and is propagated down
following the requesting path corresponding to the request of y3 and y4. So, r, x1, x4, y3
and y4 execute QA-action of Algorithm 2 to set variable Q to value A. Moreover, since y3
and y4 receive an authorization for their local request then the shared variable Req is set
to REP at y3 and y4 to inform Algorithm 1 that neighbors can be connected to y3 and y4.

2. Processor y2 executes C-action of Algorithm 1 to hook to y3 because of the authorization
given to y3. The same is done at y1 to hook to y4. So, variables S, P and L are set to C,
y3 (or y4 accordingly) and 4.

Round 13.

1. Finally, processors y3 and y4 execute O-action of Algorithm 1 to set their shared variable
Req to OUT since all their neighbors are connected (no neighbor satisfying Predicate
GP -REP ()) and the obtained authorization is no more needed. The new and legitimate
configuration reached by the system is illustrated in Figure 4(h).

9. Correctness proof

In this section, we show the correctness of the two algorithms proposed in this paper. In
a first part, we prove that the Question-Answer algorithm (Algorithm 2) is stabilizing under a
weakly fair daemon (Section 9.1.2), and then its correctness under an unfair daemon by showing
a polynomial step complexity (Section 9.1.3). In a second part, we consider the BFS algorithm
(Algorithm 1). We show its correctness under a weakly fair daemon (Section 9.2.2), and then
under an unfair daemon (Section 9.2.3).

26

9.1. Proof of Question-Answer algorithm
In the following proofs, we consider a more general context than the one used to present

Algorithm 2 for the Question-Answer problem. So Height(p) could be replaced by any priority
which can be independent from the height of a requesting processor p (which is a particular case).

To prove the correctness of the Question-Answer algorithm (Algorithm 2), we first intro-
duce some useful definitions, and we show that in an illegitimate configuration there is always
at least one enabled processor (Theorem 1). Then, we establish that in at most O(k + 1)
rounds the request and the corresponding answer of every processor at height k in the nor-
mal tree are transmitted by the Question-Answer algorithm (Lemmas 8, 9, and 10). We show
that the Question-Answer algorithm is a silent algorithm (Lemma 11), which allows us to con-
clude that the Question-Answer algorithm satisfies Specification 2 under a weakly fair daemon
(Lemma 12). Finally, we consider an unfair daemon and given a set of local requests from pro-
cessors belonging to the normal tree T , we prove that these requests and their corresponding
answers are transmitted in at most O(n3) steps (Corollary 4).

9.1.1. Definitions
Definition 4 (Path). The sequence of processors P(x, y) =< p0 = x, p1, . . . , pk = y > is
called a path if ∀i, 1 ≤ i ≤ k, Parent(pi) = pi−1. The processors p0 and pk are termed as the
extremities of P . The length of P is noted |P| = k.

Definition 5 (Allowed tree). A tree T rooted at processor p such that (p = root(T)∧Allowed(p))
is called an allowed tree. Any tree T ′ rooted at processor q such that (q = root(T ′)∧¬Allowed(q)
is called a not allowed tree.

In the following, we consider a static forestF of trees constructed in the networkG = (V,E).

Definition 6 (Request priority). Given a tree T in forest F and k processors in T sending a
request. Let R = {Rp1

, . . . , Rpk
} be the set of requests sent by processors pi, 1 ≤ i ≤ k,

in T . A request Rpi has a higher priority than request Rpj , 1 ≤ i, j ≤ k, if Height(pi) <
Height(pj). A request Rpi sent (or transmitted) by a processor p ∈ T is of highest priority in
the neighborhood of p if ∀q ∈ Neigp\{Parent(p)} the request Rpj

sent (or transmitted) by q
we have Height(pj) > Height(pi).

In the reminder, we make the hypothesis that the extern algorithm (AlgorithmA) sets in finite
time the shared variable p.Req from REP to OUT when a permission delivered at p is no more
needed.

9.1.2. Proof assuming a weakly fair daemon
The following theorem proves that any execution of Question-Answer algorithm is deadlock-

free.

Theorem 1. Let the set of configurations B ⊆ C such that there is at least one processor p ∈ V
in an allowed tree which has a request to send or has sent a request and it does not receive an
acknowledgement in every configuration γ ∈ B. ∀γ ∈ B,∃q ∈ V such that q is enabled in γ.

Proof. Assume, by the contradiction, that ∃γ ∈ B such that ∀q ∈ V no action is enabled at q
in γ. Assume then that there exists at least one allowed tree T in γ in which ∃p ∈ T such that
p.Req = ASK. Consider the processor p ∈ T with the request of highest priority in T , i.e.,

27

(∀x ∈ T :: x.Req = ASK ∧Height(p) < Height(x)). In this case, either p.Req = ASK and
QR-action is enabled at p, a contradiction, or ∃q ∈ P(root(T), p) such that q.HQ 6= p.HQ.
Moreover, since p’s request is of highest priority in T then q satisfies p.HQ = (Chq).HQ
and |PrioRC(q)| > 0. We assume that p.Req 6= REP, otherwise by hypothesis p.Req is set
to OUT in finite time. In this case, either we have (p.HQ < q.HQ ⇒ RequestT (q)) and
QRC-action is enabled at q, a contradiction. Otherwise, q has transmitted a request with the
same priority, i.e., we have p.HQ = q.HQ and q.Q = W (see Predicate Retransmit(q)),
and QRC-action is enabled at q, a contradiction. The execution of QR-action sets p.Req
to WAIT . Hence, by contradiction, p.Q = R, p.HQ = Height(p) and p.Req = WAIT
at p and ∀q ∈ P(root(T), p), q.HQ = p.HQ. If ∃q ∈ P(root(T), p) such that q.Q = W
then QRC-action is enabled at q (see Predicate Retransmit(q)), a contradiction. Thus, ∀x ∈
P(root(T), p), x.HQ = p.HQ ∧ x.Q = R. Then, we have (Parent(p).HQ = p.HQ ∧
p.HQ = Height(p)) ⇒ Wait(p) and QW -action is enabled at p, a contradiction. If ∃q ∈
P(root(T), p) such that q.Q = R ∧ (∃s ∈ Child(q) :: s.Q = W) then QW -action is enabled
at q, a contradiction. Hence, by contradiction, ∀x ∈ P(root(T), p), x.HQ = p.HQ ∧ x.Q =
W . Thus, QA-action is enabled at root(T), a contradiction. If ∃q ∈ P(root(T), p) such that
Parent(q).Q = A ∧ q.Q = W then QA-action is enabled at q, a contradiction. 2

Lemma 1. Let an allowed tree T in a static forest F . After executing QE-action at a processor
p ∈ T , QE-action is disabled at p until p sends or transmits another request.

Proof. Assume, by the contradiction, that QE-action is enabled at a processor p ∈ T before p
sends or transmits another request. After the first execution of QE-action, we have p.Q = A
at p. If p can execute QE-action again then this implies that we have p.Q 6= A (because
(p.Q = A ⇒ ¬Error(p))). Since we assume that p does not execute QR-action and QRC-
action, then this implies that p.Q = W obtained by executing QW -action at p, a contradiction
because Wait(p)⇒ p.Q = R at p. 2

Lemma 2. Let an allowed tree T in a static forest F . When QR-action is enabled at processor
p ∈ T , it remains enabled until p executes it and p remains in T .

Proof. Let γ 7→ γ′ be a step. Assume, by the contradiction, that QR-action is enabled at p in γ
and not in γ′ (i.e., ¬Request(p) in γ′) but p did not execute QR-action in γ 7→ γ′. According
to the hypothesis of the lemma, we assume that p has no child with a request of priority higher
than p’s request (i.e., Height(p) ≤ (Chp).HQ). QR-action is the enabled action at p which
has the highest priority, otherwise according to Lemma 1 after executing QE-action then it is
disabled at p. Moreover, we assume that p remains in T in γ′, so p.Req = ASK in γ′. Since p
did not move in γ 7→ γ′, we have p.HQ 6= Height(p). Thus, Request(p) is satisfied in γ′, a
contradiction. 2

Lemma 3. Let any allowed tree T in a static forest F . Every processor p ∈ T transmits the
request with highest priority in its neighborhood.

Proof. According to formal description of Algorithm 2, to transmit a request a processor exe-
cutes QR-action or QRC-action. Assume, by the contradiction, that there is a processor p ∈ T
which does not transmit a request. That is, QR-action and QRC-action are disabled or they
are not the enabled actions of highest priority at p.

We first show that QR-action and QRC-action are enabled at p. We must consider two
cases: p has a local request to send with a priority higher than its children requests or p has a

28

request from a child to transmit of highest priority. If p has a local request to send then p.Req ∈
{ASK,WAIT}. Since QR-action is not enabled at p, this implies that p.Req = WAIT
and p has already sent its request, a contradiction. In first case, p’s request has the highest
priority in p’s neighborhood (i.e., |PrioRC(p)| = 0 or Height(p) ≤ (Chp).HQ). So QR-
action is enabled at p, a contradiction. Otherwise, p has a child request with a priority higher
than the priority of its local request (i.e., we have p.Req 6= REP and |PrioRC(p)| > 0).
Consider the child q of p such that Chp = q. We have that QR-action is disabled and by
contradiction QRC-action is not enabled at p. Thus, to have ¬RequestT (p) this implies we
have (Chp).HQ ≥ p.HQ and we must consider two sub-cases at p: p.Q 6= A or ∃s ∈ Child(p)
such that s.Q = W∧s.HQ = p.HQ. Either p.Q 6= A then this implies that (Chp).HQ = p.HQ
and p has already transmitted the request of q, a contradiction. Or ∃s ∈ Child(p) such that
s.Q = W ∧ s.HQ = p.HQ. This implies that either s = q and p has already transmitted q’s
request or s 6= q and s.HQ < q.HQ, a contradiction because (Chp) = q. Thus, QR-action or
QRC-action is enabled at every processor p ∈ T which has a local request or a request from a
child to transmit of highest priority.

We must show that QR-action or QRC-action is the enabled action of highest priority
for every processor p ∈ T which has a local request or a request from a child to transmit of
highest priority. IfQR-action orQRC-action are not the action of highest priority at p then this
implies that QE-action is always enabled. According to Lemma 1, after executing QE-action
it is not enabled at p (unless QR-action or QRC-action is executed), a contradiction. So,
QE-action is disabled at p. According to Lemma 2, QR-action is enabled until it is executed
at every processor p ∈ T having a request of priority higher than its children requests (i.e.,
Height(p) ≤ (Chp).HQ). Otherwise, we have QR-action is disabled. Therefore, since QE-
action and QR-action are disabled then QRC-action is the enabled action of highest priority
for every processor p ∈ T which has a request of highest priority from a child to transmit. 2

Corollary 2. Let an allowed tree T in a static forest F . The request with highest priority in T is
transmitted to root(T).

Lemma 4. Let any allowed tree T in a static forest F . Every processor p ∈ T waits for an
acknowledgement if p’s parent transmits the request of highest priority in p’s neighborhood.

Proof. According to formal description of Algorithm 2, to wait for an acknowledgement to a
request a processor executesQW -action. Assume, by the contradiction, that there is a processor
p ∈ T which does not wait for an acknowledgement while p transmits the request of highest
priority in its neighborhood. That is, QW -action is disabled or it is not the enabled action of
highest priority at p.

We first show that QW -action is enabled at p. According to Lemma 3, for processor p we
have p.Q = R, p.HQ = Height(p), and p.Req = WAIT if p has sent a local request, or
p.Q = R, p.HQ 6= Height(p), and p.Req 6= REP otherwise. We must consider two cases: p’s
parent has not transmitted p’s request or there is a child of pwith a request of same priority which
is not waiting for the acknowledgement (i.e., ¬[Parent(p).Q = R ∧ Parent(p).HQ = p.HQ]
or ∃q ∈ Child(p) such that q.HQ = p.HQ∧ q.Q 6= W). Note that for root(T) only the second
case must be considered. If ¬[Parent(p).Q = R ∧ Parent(p).HQ = p.HQ] then this implies
that the request transmitted by p’s parent is not the request of highest priority in the neighborhood
of p’s parent (since its parent has transmitted another request), a contradiction with assumption
of lemma to prove. Otherwise, ∃q ∈ Child(p) such that q.HQ = p.HQ∧q.Q 6= W . Then there
is a path P(p, s) in T such that x.HQ = Height(s) = q.LQ for every processor x ∈ P(p, s).

29

Moreover, there is a processor y ∈ P(p, s) such that y.Q = W and Parent(y).Q = R. Thus,
QW -action is enabled at Parent(y) from the first case. By induction on the length of path
P(p, s) when every processor x has executed QW -action then q.Q = W , a contradiction.

We must show that QW -action is the enabled action of highest priority for every processor
which transmits the request of highest priority in its neighborhood also transmitted by their par-
ent. Assume, by the contradiction, thatQW -action is not the enabled action of highest priority at
p. Suppose thatQE-action is the enabled action of highest priority at p. According to Lemma 1,
after executing QE-action it is not enabled at p, a contradiction. So, QE-action is disabled at
p. Suppose that QR-action or QRC-action is enabled at p, a contradiction because we as-
sume that p has transmitted the request of highest priority in its neighborhood (i.e., ((p.Req =
WAIT ∧ p.Q 6= A) ⇒ ¬Request(p)) or ((p.Req 6= REP ∧ p.Q 6= A) ⇒ ¬RequestT (p))).

2

Corollary 3. Let an allowed tree T in a static forest F . root(T) waits for an acknowledgement
for the request of highest priority in T .

Lemma 5. Let an allowed tree T in a static forestF . A processor p ∈ T waiting for an acknowl-
edgement to a transmitted request transmits again the request of a child with the same priority,
if it is the request of highest priority in p’s neighborhood.

Proof. According to formal description of Algorithm 2, a processor p ∈ T waiting for an ac-
knowledgement executes QRC-action to transmit again a request from a child with the same
priority.

As there is a child request of highest priority in p’s neighborhood transmitted by p, then we
have p.Req 6= REP ∧ |PrioRC(p)| > 0. Assume, by the contradiction, that p does not execute
QRC-action to transmit again the request with the same priority. Either for every child q of p
we have q.Q 6= R or q.HQ 6= p.HQ because (∀q ∈ Child(p) :: q.Q 6= R∨q.HQ 6= p.HQ)⇒
¬Retransmit(p). Either q.Q 6= R then q has no request to transmit because its request was
already transmitted (i.e., q.Q = W) or an acknowledgement was received (i.e., q.Q = A),
a contradiction. Or q.HQ 6= p.HQ then the request to transmit again by p is not of highest
priority in p’s neighborhood (i.e., (Chp).HQ 6= q.HQ), a contradiction with the hypothesis of
the lemma. 2

Lemma 6. Let any allowed tree T in a static forestF and a processor s ∈ T sending the request
of highest priority in T . Every processor p ∈ P(root(T), s) transmits the acknowledgement to
the request of s.

Proof. According to formal description of Algorithm 2, to transmit the acknowledgement to a
request a processor executes QA-action. Assume, by the contradiction, that there is a processor
p ∈ P(root(T), s) which does not transmit the acknowledgement to the request of s. That is,
QA-action is disabled or it is not the enabled action of highest priority at p.

We first show that QA-action is enabled at p. According to Lemma 4, for processor p
we have p.Q = W , p.HQ = Height(s), and p.Req = WAIT if p = s, or p.Q = W ,
p.HQ = Height(s) 6= Height(p) and p.Req 6= REP otherwise. We must consider two cases:
p = root(T) or p 6= root(T). Consider processor root(T), if QA-action is disabled then
this implies that root(T).Q 6= W , a contradiction with the assumption that for every processor
q ∈ P(root(T), s) we have q.Q = W . Now, p 6= root(T). Consider p is the child of root(T)
such that p ∈ P(root(T), s). If QA-action is disabled at p then either Parent(p).Q 6= A or

30

Parent(p).HQ 6= p.HQ or p.Q 6= W , a contradiction because root(T).Q = A from first case
and we assume for every processor q ∈ P(root(T), s) we have p.Q = W , p.HQ = Height(s).
Otherwise, p 6= root(T) and p is not the child of root(T). By induction on the length of
path P(root(T), s), the arguments used for processor p can be applied for every processor q ∈
P(root(T), s). Thus, QA-action is enabled for every processor q ∈ P(root(T), s).

We must show that QA-action is the enabled action of highest priority for every processor
p ∈ P(root(T), s). Assume, by the contradiction, that QA-action is not the enabled action of
highest priority at p. According to Lemma 1, after executing QE-action it is not enabled at
p, a contradiction. So, QE-action is disabled at p. Suppose that QR-action or QRC-action
is enabled at p, a contradiction because we assume that p has transmitted the request of high-
est priority in its neighborhood (i.e., ((p.Req = WAIT ∧ p.Q 6= A) ⇒ ¬Request(p)) or
((p.Req 6= REP ∧ p.Q 6= A)⇒ ¬RequestT (p))). Suppose that QW -action is enabled at p, a
contradiction because p.Q 6= R. 2

Lemma 7. Let an allowed tree T in a static forest F . Between the reception of two acknowl-
edgements to a request, every processor p ∈ T has sent a new request.

Proof. According to formal description of Algorithm 2, to receive an acknowledgement to a
request in an allowed tree T a processor executes QA-action. Assume, by the contradiction,
that there is a processor p ∈ T which receives two acknowledgements for the same request. That
is, QR-action and QRC-action are not executed by p between two consecutive executions of
QA-action.

After the first execution of QA-action by p, we have p.Q = A in configuration γi. To
execute QA-action in step γj−1 7→ γj , with i < j, this implies we had p.Q = W in γj−1
because Answer(p) ⇒ p.Q = W . Thus, QW -action was executed in step γj−2 7→ γj−1.
However, to execute QW -action in step γj−2 7→ γj−1 this implies we had p.Q = R in γj−2
because Wait(p) ⇒ p.Q = R. So, by formal description of Algorithm 2 QR-action or QRC-
action was executed in step γj−3 7→ γj−2, with i < j − 3, a contradiction. 2

Lemma 8. Let an allowed tree T in a static forest F and a processor p ∈ T at height k with a
local request of highest priority in T . From any configuration, in at most k+1 rounds p’s request
is transmitted to root(T).

Proof. We show by induction the following proposition: If at height less than k in T there is no
processor q ∈ T such that QR-action is enabled at q and ∃p ∈ T at height k such that p.Req =
ASK, then in at most j+1 rounds we have ∀q ∈ P(root(T), p), q.Q = R∧q.HQ = Height(p)
at height ≥ k − j in T .
In the base case j = 0 and we consider p. According to Lemma 2, if Request(p) is satisfied at p
then p executes QR-action and we have p.Q = R and p.HQ = Height(p) at p. Consider that
in first configuration of round 0 p satisfies Error(p), then p can execute QE-action and as the
daemon is weakly fair at the end of round 0 we have p.Q = A and p.HQ = Height(p). At the
first configuration of round 1, p satisfies Request(p) and it can execute QR-action. Since the
daemon is weakly fair, thus the proposition is verified because at the last configuration of round
1 we have p.Q = R and p.HQ = Height(p) at p.
Induction case: We assume that in round j = k − 1 the proposition is true for any processor at
height h, k − j ≤ h ≤ k in P(root(T), p). We have to show that if at height less than k in T
there is no processor q ∈ T such that QR-action is enabled at q, then in round j + 1 for any
processor q ∈ P(root(T), p) at height h, k − (j + 1) ≤ h ≤ k, we have q.Q = R ∧ q.HQ =

31

Height(p). So, we consider the processor x ∈ P(root(T), p) at height k − (j + 1) in T . If
QE-action is enabled at x in the beginning of round j then as the daemon is weakly fair we
have (x.Q = A∧ x.HQ = Height(x))⇒ ¬Error(x) at the first configuration of round j + 1.
Since there is no processor s ∈ T, s 6= p at height lower than k such that QR-action is enabled
at s, then |PrioRC(x)| > 0 and Chx = q such that q.Q = R and q.HQ = Height(p). Either
Height(p) < x.HQ, then QRC-action is enabled at x in round j+1. Or Height(p) ≥ x.HQ,
then as the daemon is weakly fair we have (∀s ∈ Child(x) :: s.Q = W ⇒ s.HQ 6= x.HQ), so
Transmit(x) is satisfied (remind that x has no request to send so x.Req 6= REP and x.Q = A)
and QRC-action is enabled at x in round j + 1. In all the above cases, as the daemon is weakly
fair in the last configuration of round j + 1 so we have x.Q = R and x.HQ = Height(p) at
x ∈ P(root(T), p), which verifies the proposition. Therefore, since |P(root(T), p)| = k in at
most k + 1 rounds we have ∀q ∈ P(root(T), p), q.Q = R ∧ q.HQ = Height(p). 2

Lemma 9. Let an allowed tree T in a static forest F and a processor p ∈ T at height k with a
local request of highest priority in T transmitted to root(T). In at most k+ 1 additional rounds,
every processor q ∈ T waits for an acknowledgement if q transmits p’s request.

Proof. According to Lemma 8, since p.Req = WAIT ∧ p.Q = R ∧ p.HQ = Height(p) at
processor p ∈ T at height k then in at most k + 1 rounds we have ∀q ∈ P(root(T), p), q.Q =
R ∧ q.HQ = Height(p).

We show by induction the following proposition: If at height less than k in T there is no
processor q ∈ T such that QR-action is enabled at q, and ∀q ∈ P(root(T), p), q.Q = R ∧
q.HQ = Height(p), then in at most j + 1 rounds we have ∀q ∈ P(root(T), p), q.Q = W ∧
q.HQ = Height(p) at height ≥ k − j in T .
In the base case j = 0 and we consider p. We have (∀q ∈ P(root(T), p), q.Q = R ∧ q.HQ =
Height(p)), in particular for Parent(p) and p. Thus, the proposition is verified for p because
QW -action is enabled at p in round 0, and in the first configuration of round 1 we have p.Q = W
and p.HQ = Height(p) at p (since the daemon is weakly fair).
Induction case: We assume that in round j = k − 1 the proposition is true for any processor at
height h, k − j ≤ h ≤ k in P(root(T), p). We have to show that if at height less than k in T
there is no processor q ∈ T such that QR-action is enabled at q, then in round j + 1 for any
processor q ∈ P(root(T), p) at height h, k − (j + 1) ≤ h ≤ k, we have q.Q = W ∧ q.HQ =
Height(p). By induction hypothesis, in the first configuration of round j + 1 we have for any
processor s ∈ P(root(T), p) at height ≥ j we have s.Q = W ∧ s.HQ = Height(p). Thus,
∃s ∈ Child(q), s.Q = W ∧ s.HQ = q.HQ, and q.Q = R so QW -action is enabled at q in
round j + 1. So, since the daemon is weakly fair we have q.Q = W and q.HQ = Height(p)
at q, in the last configuration of round j + 1, which verifies the proposition. Therefore, since
|P(root(T), p)| = k in at most k + 1 additional rounds we have ∀q ∈ P(root(T), p), q.Q =
W ∧ q.HQ = Height(p). 2

Lemma 10. Let an allowed tree T in a static forest F and a processor p ∈ T at height k with a
local request of highest priority in T transmitted to root(T). In at most k+ 1 additional rounds,
every processor q ∈ T transmits the acknowledgement to p’s request if q has transmitted p’s
request.

Proof. According to Lemmas 8 and 9, in at most 2(k+ 1) rounds we have ∀q ∈ P(root(T), p),
q.Q = W ∧ q.HQ = Height(p).

32

We show by induction the following proposition: If at height less than k in T there is no
processor q ∈ T such that QR-action is enabled at q, and ∀q ∈ P(root(T), p), q.Q = W ∧
q.HQ = Height(p), then in at most j + 1 rounds we have x.Q = A ∧ x.HQ = Height(p) at
processor x ∈ P(root(T), p) of height ≤ j in T .
In the base case j = 0 and we consider x = root(T). We have (∀q ∈ P(root(T), p), q.Q =
W ∧ q.HQ = Height(p)), in particular for root(T). The proposition is verified for x because
we have (x.Q = W ⇒ Answer(x)) and QA-action is enabled at x in round 0. Thus, in the
first configuration of round 1 we have x.Q = W ∧ x.HQ = Height(p) at x (since the daemon
is weakly fair).
Induction case: We assume that in round j the proposition is true for every processor at height
≤ j in P(root(T), p). We have to show that if at height less than k in T there is no processor
q ∈ T such that QR-action is enabled at q, then in round j+ 1 for processor x ∈ P(root(T), p)
at height j + 1, we have x.Q = A ∧ x.HQ = Height(p). By induction hypothesis, in the first
configuration of round j+1 we have Parent(x).Q = A∧Parent(x).HQ = x.HQ∧x.Q = W
at x, so QA-action is enabled at x in round j + 1. Therefore, since the daemon is weakly fair
we have x.Q = A and x.HQ = Height(p) at x, in the first configuration of round j + 1 which
verifies the proposition. Moreover, we have |P(root(T), p)| = k because p is at height k in T .
According to formal description of Algorithm 2, if x.HQ = Height(x) when QA-action is
executed at x then we have x.Req = REP . So we have x = p, and in most k + 1 additional
rounds we have p.Req = REP ∧ p.Q = A ∧ p.HQ = Height(p). 2

Lemma 11. Let the set of configurations B ⊆ C such that in every γ ∈ B there is no request
and every processor p ∈ V has received an acknowledgement. In every configuration γ ∈ B, for
every processor p ∈ V no action of Algorithm 2 is enabled.

Proof. Since there is no request in γ then for every processor p ∈ V we have p.Req 6= ASK
and p.Req 6= WAIT . Moreover, observe that according to formal description of Algorithm 2
for every processor p ∈ V we have p.Q 6= A either when p.Req = WAIT or when p.Req =
OUT or p.Req = ASK with a descendant x of p such that x.Req = WAIT . However, as
∀p ∈ V, p.Req 6= ASK and therefore p.Req 6= WAIT this implies we have ∀p ∈ V, p.Q = A
in γ.

Assume, by the contradiction, that ∃γ ∈ B such that ∃p ∈ V with an enabled action of
Algorithm 2. If QE-action is enabled at p then this implies that p.Q 6= A, a contradiction. If
QR-action is enabled at p then this implies that p.Req = ASK, a contradiction since ∀p ∈
V, p.Req 6= ASK. If QRC-action is enabled at p then there is a child q of p such that q.Q 6= A
(i.e., |PrioRC(p)| > 0), a contradiction because ((∀p ∈ V, p.Q = A) ⇒ |PrioRC(p)| = 0).
If QW -action is enabled at p then this implies that p.Q = R, a contradiction because ∀p ∈
V, p.Q = A. If QA-action is enabled at p then this implies that p.Q = W , a contradiction
because ∀p ∈ V, p.Q = A. 2

Lemma 12. Let a tree T in a static forest F . From any configuration where a processor p ∈ T
executes QR-action, the execution satisfies Specification 2.

Proof. We have to show that starting from any configuration the execution of Algorithm 2 veri-
fies all the properties of Specification 2.

We first show that Property (Liveness 1) of Specification 2 is satisfied. Let an allowed tree
T in a static forest F . From any configuration according to Lemmas 2 and 8 a processor in T
which has a local request of highest priority in T sends this request to root(T) in finite time

33

with Algorithm 2. Assume, by the contradiction, that there is a processor p ∈ T which has
infinitely often a request to send but it can not send its request to root(T), although there are a
finite number of requests sent in T . This implies either that an infinite time is needed to send
a request from p to root(T), a contradiction with Lemmas 2 and 8, or the request sent by p is
never the request of highest priority in T , a contradiction with the hypothesis of a finite number
of requests sent in T . This satisfies Property (Liveness 1) of Specification 2.

We now show that Property (Liveness 2) of Specification 2 is satisfied. Let a processor p ∈ T
which has sent a request in an allowed tree T and waits for the acknowledgement to its request.
According to Theorem 1, the execution of Algorithm 2 is not done. Moreover, by Lemma 6 a
processor which has sent a request with highest priority in T receives an acknowledgement from
root(T) in finite time. Thus, at least one processor receives an acknowledgement from root(T)
in a finite time, the processor waiting for the acknowledgement to the request of highest priority
in T . This satisfies Property (Liveness 2) of Specification 2.

We now show that Property (Safety 1) of Specification 2 is satisfied. According to Lemma 6,
a processor p which has sent a local request in an allowed tree T receives at least one acknowl-
edgement to its request. Moreover, by Lemma 7 a processor p receives at most one acknowl-
edgement to a sent request. This satisfies Property (Safety 1) of Specification 2.

We now show that Property (Safety 2) of Specification 2 is satisfied. Assume, by the con-
tradiction, that there is a processor p sending a request in a not allowed tree T which receives
an acknowledgement from root(T). Since root(T) is the root of a not allowed tree, we have
¬Allowed(root(T)) and Parent(root(T)) ∈ Neigroot(T). So, there is a cycle in T because
every processor in T has a parent. Moreover, if p receives an acknowledgement from root(T)
then root(T) can execute QA-action. This implies that Parent(root(T)).Q = A because
Answer(p) ⇒ Parent(root(T)).Q = A. So, either root(T).Q = R or root(T).Q =
W ∧ root(T).HQ 6= Parent(root(T)).HQ then Parent(root(T)) executes QRC-action
(because Transmit(Parent(root(T))) ⇒ RequestT (Parent(root(T)))), a contradiction.
Otherwise, we have Parent(root(T)).Q = A ∧ (∀q ∈ Child(Parent(root(T))), q.Q =
W ∧ q.HQ = Parent(root(T)).HQ) given by an initial configuration of the system, a contra-
diction. This satisfies Property (Safety 2) of Specification 2. 2

By Theorem 1 and Lemmas 11 and 12, the result below follows:

Theorem 2. Algorithm 2 is snap-stabilizing for Specification 2 under a weakly fair daemon.

9.1.3. Proof assuming an unfair daemon
Lemma 13. Let any allowed tree T in a static forest F and any processor p ∈ T with a local
request of highest priority in T . If there is no new request with higher or equal priority than p’s
request in T , then p’s request is transmitted to root(T) in at most 2n steps, with n the number of
processors in the network.

Proof. According to Lemma 3, if there is no new request with higher or equal priority than p’s
request in T then every processor q ∈ P(root(T), p)\{p} executes QRC-action to transmit
p’s request to root(T). Observe that |P(root(T), p)| ≤ n and QR-action is disabled at every
processor q ∈ P(root(T), p)\{p}. Suppose that for every processor q the enabled action of
highest priority is QE-action, then after executing QE-action we have q.Q = A and q.HQ =
Height(q) and QE-action is disabled at q according to Lemma 1. Then, QRC-action is the
enabled action of highest priority at q. As |P(root(T), p)| ≤ n, in at most 2n steps p’s request
is transmitted to root(T). 2

34

Lemma 14. Let any allowed tree T in a static forest F and any processor p ∈ T with a local
request of highest priority in T transmitted to root(T). If there is no new request with higher
or equal priority than p’s request in T , then p receives an acknowledgement from root(T) in at
most 2n steps, with n the number of processors in the network.

Proof. We assume there is no new request with higher or equal priority than p’s request in
T . Thus according to Lemma 3, we have q.Q = R and q.HQ = Height(p) for every pro-
cessor q ∈ P(root(T), p). Moreover, the following actions are disabled for every processor
q ∈ P(root(T), p): QE-action because there exists a child s of q such that s.HQ = q.HQ ∧
s.Q 6= A (in case of p, p.Req = WAIT); QR-action because q.Req 6= ASK or Height(q) >
q.HQ = (Chq).HQ; and QRC-action because q.Q = R ∧ (∀s ∈ Child(q), s.Q = W ∧
s.HQ = q.HQ). According to Lemmas 4 and 6, since there is no new request with higher
or equal priority than p’s request in T thus every processor q ∈ P(root(T), p) executes QW -
action to wait for an acknowledgement to p’s request and then executes QA-action to transmit
the acknowledgement from root(T) to p. Observe that |P(root(T), p)| ≤ n, thus in at most 2n
steps p receives the acknowledgement from root(T) to its local request. 2

Lemma 15. Let any allowed tree T in a static forest F . In at most O(n2) steps, at least one
processor p with a local request receives an acknowledgement from root(T) to its request.

Proof. Assume without loss of generality that forest F is composed of a single tree T con-
taining the n processors of the network. By Lemma 3, a request of highest priority stops the
transmission of the acknowledgement of a request of lowest priority at a processor q ∈ T be-
cause (Chq).HQ < q.HQ ⇒ RequestT (q). Moreover, by Lemma 7 it is also the case at a
processor q ∈ T if there is a new request with the same priority than the previous request of
highest priority because Retransmit(q) ⇒ RequestT (q). According to Lemma 13, if there is
no new request with higher or equal priority than p’s request in T then in at most 2n steps the
processor p receives an acknowledgement. However, since there is at most n requests in parallel
in T then the acknowledgement of p’s request can be stopped at most n− 1 times. 2

Corollary 4. Let a static forest of trees F and a given set of requests. If there is no new re-
quest in F then in at most O(n3) steps every processor with a local request has received an
acknowledgement to its request.

Proof. First observe that given a static forest F , we can have a local request from at most each
processor in F , i.e., at most n processors have a local request to send. According to Lemma 15,
in at most O(n2) steps at least one processor sending a request receives an acknowledgement
and as we have at most n processors with a local request in F , then the corollary follows. 2

9.2. Proof of Spanning Tree algorithm
To prove the correctness of the BFS algorithm (Algorithm 1), we first introduce some useful

definitions, and we show that in an illegitimate configuration there is always at least one enabled
processor (Theorem 3). Then, we establish that in at most Θ(d2) rounds the BFS algorithm con-
structs a BFS tree (Lemmas 19 and 20). We show that the BFS algorithm is a silent algorithm
(Lemma 21), which allows us to conclude that the BFS algorithm satisfies Specification 1 under
a weakly fair daemon (Lemma 22). To establish the step complexity of the BFS algorithm under
an unfair daemon, we first give several additional definitions, particularly we define a topolog-
ical change in the forest of trees which mainly represents the parent changes. First of all, we

35

show that any processor can be connected at most once to the normal tree via the same neighbor
(Lemma 24). Based on this result, we then prove that at most 2∆m + mn requests are initiated
by the BFS algorithm to construct a BFS tree (Lemma 29) starting from any configuration, since
in any execution there are at most 2∆n+ n2 topology changes (Corollary 9) and each topology
change produce at most ∆ requests (Lemma 28). Finally, we show that starting from any config-
uration the BFS algorithm constructs a BFS tree in at most O(∆mn3 +mn4) steps (Lemma 30),
since each request is handled using at most O(n3) steps by the Question-Answer algorithm.

9.2.1. Definitions
We give below the definitions used in this section, in particular we define precisely the notion

of tree and normal tree.

Definition 7 (Tree). ∀p ∈ V such that Allowed(p) ∨ (p.P).L ≥ p.L, we define a set Tree(p)
of processors as follows: ∀q ∈ V, q ∈ Tree(p) if and only if there exists a unique path P(p, q).

Definition 8 (Normal tree). A tree T rooted at processor root(T) is called a normal tree if
it contains only processors p such that either (i) (p = root(T) ∧ Allowed(p)), or (ii) (p.S =
C∧p.L = (p.P).L+1). Any tree T ′ rooted at processor root(T ′) such that¬Allowed(root(T ′))
is called an abnormal tree.

In the following, we consider there is only one processor p ∈ V which is allowed to send
an acknowledgement to a request, the root r, i.e., Allowed(p) ≡ (p = r). Therefore, there is
only one normal tree, the tree Tree(r) rooted at r. Moreover, given two processors u, v ∈ V we
define by dH(u, v) the distance (in hops) between u and v in the subgraph H .

Remark 1. The system always contains one normal tree: the tree rooted at processor r.

Remark 2. All actions of Question-Answer algorithm are disabled for every processor p ∈
V \{r} such that p.S = E or p.L 6= (p.P).L+ 1 or (∃q ∈ Neigp :: p.L > q.L+ 1).

The above remark comes from the conditional composition of Algorithm BFS. In the
two first cases, a processor p cannot execute Question-Answer algorithm because Predicate
GoodT (p) is not satisfied, whereas the third case does not satisfy Predicate GoodL(p).

Definition 9 (Locally healthy processor). Let a tree T ∈ F . A processor p ∈ T is called
locally healthy if p satisfies the following predicate: p.S = C ∧ p.L = (p.P).L + 1 ∧ ¬GP -
REP (p).

9.2.2. Proof assuming a weakly fair daemon
Theorem 3. Let the set of configurations B ⊆ C such that every configuration γ ∈ B satisfies
Definition 3. ∀γ ∈ (C − B),∃p ∈ V such that p is enabled in γ.

Proof. Assume, by the contradiction, that ∃γ ∈ (C − B) such that ∀p ∈ V no action is enabled
at p in γ. Since γ 6∈ B, there is at least one abnormal tree T in γ. Consider first every node
p ∈ T such that p.S = C. According to formal description of Algorithm 1, every processor
p ∈ V, p 6= r, has a parent (i.e., p.P ∈ Neigp). So, if p = root(T) then we have (p.P).L ≥
p.L (see Definition 7), and E-action is enabled at p, a contradiction. If ∃p ∈ T such that
(p.P).S = E, then E-action is enabled at p, a contradiction. Now, in any abnormal tree T

36

we have ∀p ∈ T, p.S = E. Since γ 6∈ B, then there is at least one abnormal tree T or ∃q ∈
Neigp, q.L − p.L > 1 for a processor p ∈ V . So, ∃p ∈ Tree(r), such that GP -REP (p).
In this case, either p.Req = OUT then A-action is enabled at p, a contradiction. Hence,
by the contradiction, ∀p ∈ Tree(r), p.Req 6= OUT . If p.Req = ASK then according to
Lemma 18 in a finite time p.Req = REP . Thus, we assume that p.Req = REP . Either,
GP -REP (p) then there exists a processor q ∈ Neigp such that C-action is enabled at q since
((GP -REP (p) ∧ p.Req = REP) ⇒ (∃q ∈ Neigp, Connect(q))), a contradiction. Or, ¬GP -
REP (p) then O-action is enabled at p, a contradiction. 2

Lemma 16. Let an abnormal tree T of height h. From any configuration, in at most h+1 rounds
we have ∀p ∈ T, p.S = E.

Proof. We show by induction the following proposition: In at most j + 1 rounds, we have
∀p ∈ T, (dT (root(T), p) ≤ j ⇒ p.S = E).
In base case j = 0. Consider any processor p such that (p.P).L ≥ p.L. If p.S 6= E then
E-action is enabled at p in round 0. Therefore, since the daemon is weakly fair then in the first
configuration of round 1, we have p.S = E at p which verifies the proposition.
Induction case: We assume that in round j = h − 1 we have ∀q ∈ T, (dT (root(T), q) ≤ j ⇒
q.S = E). We have to show that in round j + 1 we have ∀p ∈ T, (dT (root(T), p) ≤ j + 1 ⇒
p.S = E). Consider any node p ∈ T of height j + 1 in T . By induction hypothesis, we have
(p.P).S = E and if p.S 6= E then E-action is enabled at p in round j. Thus, since the daemon
is weakly fair then in the first configuration of round j + 1 we have p.S = E and we have
also ∀q ∈ T, (dT (root(T), q) ≤ j ⇒ q.S = E). Therefore, in at most h + 1 rounds we have
∀p ∈ T, (dT (root(T), p) ≤ h⇒ p.S = E). 2

Lemma 17. Let a normal tree T in a static forest F and a processor p ∈ T at height k with a
local request. From any configuration, in at most O(k2) rounds the request of p is transmitted to
root(T).

Proof. We show by induction the following proposition: For any node p ∈ T at height j ≥ 0
in T such that p.Req = WAIT , in at most O(j2) rounds we have ∀q ∈ P(root(T), p), q.Q =
R ∧ q.HQ = Height(p).
In the base case j = 0 and we consider p = root(T). According to Lemma 8, in at most
j + 1 = 1 round we have p.Q = R ∧ p.HQ = Height(p), which verifies the proposition.
Induction case: We assume that for j = k − 1 after O(j2) rounds for each node p ∈ T at
height k − 1 in T such that p.Req = WAIT we have ∀q ∈ P(root(T), p), q.Q = R and
q.HQ = Height(p). Consider any node p ∈ T of height j + 1 in T . We have to show
that in at most O((j + 1)2) rounds we have ∀q ∈ P(root(T), p), (Height(q) ≤ j + 1 ⇒
(q.Q = R ∧ q.HQ = Height(p))). According to Lemmas 9 and 10, in at most O(j) additional
rounds we have x.Req 6= REP and x.Q = A at each node x of height j in T (in particular
at node x = p.P). According to Lemma 8, in at most j + 1 additional rounds we have ∀q ∈
P(root(T), p), (Height(q) ≤ j + 1 ⇒ (q.Q = R ∧ q.HQ = Height(p))). Thus, in at most
j2 + (j − 1) + (j + 1) < O(j2) rounds we have ∀q ∈ P(root(T), p), (Height(q) ≤ j + 1 ⇒
(q.Q = R ∧ q.HQ = Height(p))), and the proposition is verified at p on height j + 1 in T . 2

Lemma 18. Let a normal tree T in a static forest F and a processor p ∈ T at height k with a
local request. From any configuration, in at most O(k2) rounds p receives an acknowledgement
to its local request.

37

Proof. Let a processor p ∈ T such that p.Req = ASK of height k in T . According to
Lemma 17, from any configuration in at mostO(k2) rounds we have ∀q ∈ P(root(T), p), q.Q =
R∧ q.HQ = Height(p). Thus, we can apply Lemma 10 and in at most k+ 1 additional rounds
we have p.Req = REP ∧ p.Q = A ∧ p.HQ = Height(p) at p. 2

Lemma 19. From any configuration, in at most O(d2) rounds Algorithm BFS reaches a con-
figuration γ ∈ C satisfying Definition 3, with d the diameter of the network.

Proof. Note that by definition of Predicate Allowed(p) ≡ (p = r) and according to Property
(Safety 2) of Specification 2, only the nodes sending a request in the tree rooted at r can receive
an acknowledgement to a request. Moreover, we have the following constant values at r: r.S =
C, r.P = ⊥, and r.L = 0.

We first show by induction on the distances of the network the following proposition: in at
most O(j2) rounds, ∀p ∈ V, (dG(r, p) ≤ j ⇒ (p ∈ Tree(r) ∧ (∀q ∈ Neigp, q ∈ Tree(r) ∧
q.L− p.L ≤ 1))).

In base case j = 0. We have first that r ∈ Tree(r). To verify the proposition at r, we must
consider any neighbor q of r in the network such that r = MinChPar(q).

• First consider that q 6∈ Tree(r), q ∈ T with T an abnormal tree of the forest. Either
case (A) dG(root(T), q) ≤ j then according to Lemma 16 in at most O(1) rounds q has
detected it is in an abnormal tree, thus we have (q.S = E ⇒ GP -REP (r)). In this case,
E-action is not enabled at q and according to Property (Liveness 2) of Specification 2
and to Lemma 18 in at most O(j2) = O(12) rounds we have r.Req = REP at r. Thus,
q can execute C-action, so in O(1) additional rounds we have q.S = C, q.P = r, and
q.L = 1 at q. Or case (B) dG(root(T), q) > j, we must consider two sub-cases: (B1)
dG(root(T), q) = j + 1 = 2 or (B2) dG(root(T), q) > 2.

– In the sub-case (B1), dG(root(T), q) = 2. According to Lemma 16 in at most
j + 1 = O(1) rounds q.P has detected it is in an abnormal tree T and we have
(q.P).S = E, thus q can execute E-action and in O(1) additional rounds we have
q.S = E leading to the case (A).

– In the sub-case (B2), dG(root(T), q) > 2. E-action is not enabled at q and
dG(root(T), q) > 2⇒ q.L− r.L > 1. Thus, according to Property (Liveness 2)
of Specification 2 and to Lemma 18 in at most O(j2) = O(12) rounds we have
r.Req = REP at r. Then, C-action is the enabled action with the highest priority
at q and in O(1) additional rounds it is executed by q to obtain q.S = C, q.P = r,
and q.L = 1.

• Otherwise, consider that q ∈ Tree(r) then we have q.S = C and E-action is not enabled
at q. We must consider the case such that q.L− r.L > 1 at q. We have (q.L− r.L > 1⇒
GP -REP (r)) and according to Property (Liveness 2) of Specification 2 and to Lemma 18
in at mostO(j2) = O(12) rounds we have r.Req = REP at r. So q can executeC-action
and in O(1) additional rounds we have q.S = C, q.P = r, and q.L = 1 at q.

Therefore, since the daemon is weakly fair in at most O(1) rounds for every neighbor q of r the
parent of q is r (i.e., q ∈ Tree(r)) and q.L− r.L ≤ 1, which verifies the proposition.

Induction case: We assume the proposition is verified for every node at distance j− 1 from r
in the network. We have to show the proposition is also verified for every node at distance j from

38

r. Consider any node p at distance j from r. By induction hypothesis, we have p ∈ Tree(r). Let
any node q ∈ Neigp such that p = MinChPar(q).

• First consider that q 6∈ Tree(r), q ∈ T . Either case (A) dG(root(T), q) ≤ j, then accord-
ing to Lemma 16 in at most j + 1 rounds q has detected it is in an abnormal tree T and we
have (q.S = E ⇒ GP -REP (p)). In this case,E-action is not enabled at q and according
to Property (Liveness 2) of Specification 2 and to Lemma 18 in at most O(j2) rounds we
have p.Req = REP at p. Thus, q can execute C-action, so in O(1) additional rounds we
have q.S = C, q.P = p, and q.L = p.L+1 at q. Or case (B) dG(root(T), q) > j, we must
consider two sub-cases: (B1) dG(root(T), q) = j + 1 or (B2) dG(root(T), q) > j + 1.

– In the sub-case (B1), dG(root(T), q) = j + 1. According to Lemma 16 in at most
j + 1 rounds q.P has detected it is in an abnormal tree T and we have (q.P).S = E,
thus q can executeE-action and inO(1) additional rounds we have q.S = E leading
to the case (A).

– In the sub-case (B2), dG(root(T), q) > j + 1. E-action is not enabled at q and
dG(root(T), q) > j+1⇒ q.L−p.L > 1. Thus, according to Property (Liveness 2)
of Specification 2 and to Lemma 18 in at mostO(j2) rounds we have p.Req = REP
at p. Then, C-action is the enabled action with the highest priority at q and in O(1)
additional rounds it is executed by q to obtain q.S = C, q.P = p, and q.L = p.L+1.

• Otherwise, consider that q ∈ Tree(r) then we have q.S = C and E-action is not enabled
at q. We must consider the case such that q.L− p.L > 1 at q. We have (q.L− p.L > 1⇒
GP -REP (p)) and according to Property (Liveness 2) of Specification 2 and to Lemma 18
in at most O(j2) rounds we have p.Req = REP at p. So q can execute C-action and in
O(1) additional rounds we have q.S = C, q.P = p, and q.L = p.L+ 1 at q.

Therefore, since the daemon is weakly fair in at most O(j2) rounds for every neighbor q of p we
have q ∈ Tree(r) and q.L−p.L ≤ 1, which verifies the proposition. Note that, at distance j from
r when the proposition is verified for any processor p ∈ Tree(r) then p can execute O-action.
So, since the daemon is weakly fair in at most O(j2) rounds we have ∀p ∈ V, (dG(r, p) ≤ j ⇒
(p ∈ Tree(r) ∧ p.Req = OUT).

We now show that the configuration γ reached by Algorithm BFS in O(d2) rounds verifies
Definition 3. Let d the diameter of the network G. In the proof above, any processor p ∈ V
at distance d from r belongs to the subgraph Tree(r) in at most O(d2) rounds, otherwise G
is not a connected network. Moreover, there is a path between any processor p ∈ V and r
in Tree(r), so the subgraph Tree(r) is connected. Observe that, the subgraph Tree(r) is a
spanning tree of the network G. Indeed, every processor p ∈ V has a parent in Tree(r) except
r which has no parent (i.e., there is an unique path between p and r) and Tree(r) is connected,
so the subgraph Tree(r) contains no cycle. Thus, these remarks imply that the configuration γ
verifies Claims 1 and 2 of Definition 3. To show the last Claim of Definition 3, assume by the
contradiction that Tree(r) is not a breadth first search tree. This implies that ∃p ∈ Tree(r)
such that (∃q ∈ Neigp :: q.L < (p.P).L). That is, we have p.L − q.L > 1 which contradicts
the proposition verified by every processor p ∈ Tree(r) according to the induction proof above.
Therefore, Claim 3 of Definition 3 is verified, which finishes to show the lemma. 2

Corollary 5. From any configuration, in at most O(d2) rounds there is no abnormal tree in
forest F , with d the diameter of the network.

39

Now, in the following lemma we will establish a lower bound on the round complexity of
Algorithm BFS.

Lemma 20. Algorithm BFS reaches a configuration γ ∈ C satisfying Definition 3 in Ω(d2)
rounds, with d the diameter of the network.

Proof. To show the lower bound we will use the network illustrated in Figure 5(a). This is a
star network where the root r is at one extremity of a branch of the star. This topology can be
generalized by extending the length k of the branches (here k = 2) or by adding more branches
to the star, however the lower bound is preserved.

(a)

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(0,C),

(b)

OUT,

(A,0)

(0,C),

OUT,

(A,0)

(4,C),

OUT,

(A,3)

(3,C),

OUT,

(A,3)

(1,C),

OUT,

(A,3)

(2,C),

OUT,

(A,3)

(3,C),

OUT,

(A,0)

(4,C),

OUT,

(A,0)

(4,C),

OUT,

(A,3)

(3,C),

(c)

rrr

Figure 5: An example used to show the lower bound on round complexity of Algorithm BFS. (a) the network topology,
(b) the initial configuration, and (c) the legitimate configuration.

We consider the initial configuration given in Figure 5(b) with dn2 e trees in the forest F .
Moreover, for each processor p, the values of the variables are separated in three parts: the first
pair (p.L, p.S) related to Algorithm 1, followed by the shared variable p.Req, and a last pair
(p.Q, p.HQ) related to Algorithm 2. In the initial configuration, each processor has the same
state: (0, C), OUT, (A, 0).

We will now determine the number of rounds necessary to Algorithm BFS to reach a legiti-
mate configuration:

• In the first round, every processor p, p 6= r, executes E-action of Algorithm 1 to set p.S to
E, since we have (p.P).L ≥ p.L⇒ AbnormalTree(p).

• By recurrence following the increasing order on network distances i, 0 ≤ i ≤ d− 1:

1. Processors at distance i send a local request to Algorithm 2 and receive an acknowl-
edgement from Algorithm 2 after 3i + 3 rounds according to Lemmas 8, 9 and 10,
since the request of processors i has the highest priority in the network.

2. Processors at distance i + 1 can hook to their neighbor at distance i since an ac-
knowledgement from the root r has been given. To this end, in round 3i + 4 these
processors p execute C-action of Algorithm 1 to set their variables p.S, p.P and p.L
accordingly.

3. Finally, in round 3i + 5 processors at distance i execute O-action of Algorithm 1 to
set their variable Req to OUT since all their neighbors at distance i + 1 are con-
nected (i.e., they have no neighbor satisfying GP -REP ()). This allows to reach the
legitimate configuration in Figure 5(c).

By summing up all the rounds, Algorithm BFS needs 3i+ 5 rounds to add each layer i+ 1
to the BFS tree. Since there are d layers in a BFS tree, we have the following equation which
shows the lemma:

∑d−1
i=0 3i+ 5 = 3× d(d+1)

2 + 5 = Ω(d2) rounds. 2

40

From Lemmas 19 and 20, we have the following result.

Corollary 6. From any configuration, in Θ(d2) rounds Algorithm BFS reaches a configuration
γ ∈ C satisfying Definition 3, with d the diameter of the network.

Lemma 21. In every configuration γ ∈ C satisfying Definition 3, for every processor p ∈ V no
action of Algorithm 1 is enabled in γ.

Proof. Observe first that since γ satisfies Definition 3, then for every processor p ∈ V we
have ∀q ∈ Neigp, |p.L − q.L| ≤ 1. Moreover, there is a single tree spanning every processor
p ∈ V , thus there exists no abnormal tree and by Definition 7 for every processor p ∈ V we have
p.S = C ∧ p.L = (p.P).L + 1. These two observations imply that every processor p ∈ V is
locally healthy in γ (see Definition 9).

Assume, by the contradiction, that ∃γ ∈ C satisfying Definition 3 such that ∃p ∈ V with an
enabled action of Algorithm 1 at p. If E-action is enabled at p then (p.P).S = E or (p.P).L ≥
p.L, a contradiction because p is a locally healthy processor in γ. If C-action is enabled at p and
p.S = C then ∃q ∈ Neigp such that p.L− q.L > 1, a contradiction because p is locally healthy.
If A-action is enabled at p then ∃q ∈ Neigp such that either q.S = E, a contradiction because
we have ∀p ∈ V, p.S = C in γ, otherwise ∃q ∈ Neigp, q.L− p.L > 1, a contradiction because
p is locally healthy. Finally, if O-action is enabled at p then p.Req = REP and p can execute
O-action in step γ 7→ γ′. In configuration γ′, we have p.S = C ∧ p.Req = OUT so O-action
is disabled. Moreover, there is no request because every processor p ∈ V is locally healthy in γ′,
a contradiction. 2

By Lemmas 11 and 21, we have the following corollary.

Corollary 7. In every configuration γ ∈ C satisfying Definition 3, every action of Algorithm
BFS is disabled at each processor p ∈ V in γ.

Lemma 22. From any configuration, the execution satisfies Specification 1.

Proof. We have to show that starting from any configuration the execution of Algorithm BFS
verifies Property [TC1] and [TC2] of Specification 1.

According to Lemma 19 and Corollary 7, from any configuration Algorithm BFS reaches
a configuration γ ∈ C in finite time and γ is a terminal configuration, which verifies Property
[TC1] of Specification 1. Moreover, according to Lemma 19 the terminal configuration γ reached
by Algorithm BFS satisfies Definition 3, which verifies Property [TC2] of Specification 1. 2

Theorem 3 and Lemma 22 imply the following theorem.

Theorem 4. Algorithm BFS is snap-stabilizing for Specification 1 under a weakly fair daemon.

9.2.3. Proof assuming an unfair daemon
Definition 10 (Topological change). Given a forest F of trees in a configuration γ ∈ C. A
topological change inF is obtained by the execution of one of the following actions at a processor
p ∈ V in step γ 7→ γ′: p executes E-action, or p executes C-action.

Remark 3. For every processor p ∈ Tree(r), E-action is disabled at p.

41

Remark 4. E-action, C-action, and A-action are disabled at every locally healthy processor
p ∈ V .

Proposition 1. Every p ∈ V is hooked on to the neighbor q such that ∀s ∈ Neigp, q.L ≤ s.L.

Proof. According to formal description of Algorithm 1, a processor hooks on to a neighbor
using C-action. Assume, by the contradiction, that there is a processor p ∈ V such that ∃s ∈
Neigp, (p.P).L > s.L. We must consider two cases: s is in an abnormal tree or not. If s is in an
abnormal tree then either s.S = E then s 6∈ MinChPar(p) ⇒ ¬Connect(p) a contradiction,
or s.S = C then by Property (Safety 2) of Specification 2 s never receives an acknowledgement
and we have that s.Req 6= REP ⇒ ¬Connect(p), otherwise C-action is enabled at p, a
contradiction. If s is in a normal tree then by Property (Liveness 2) of Specification 2 we have
that s.Req = REP and C-action is enabled at p, a contradiction. 2

Lemma 23. Let any abnormal tree T ∈ F and the set of processors B = {p ∈ V : p 6∈
T ∧ (∃q ∈ Neigp :: q ∈ T)}. In an execution, only processors in B can hook on to T .

Proof. Consider any abnormal tree T ∈ F in configuration γ ∈ C. According to formal de-
scription of Algorithm 1, a processor p must execute C-action to hook on to a tree, i.e., there is
a neighbor q such that q.Req = REP . Suppose that every processor q ∈ B executes C-action
and they are hooked on to T in configuration γk. Note that after executing C-action, we have
q.Req = OUT at every processor q ∈ B. Assume, by the contradiction, that there is a processor
p 6∈ T in configuration γk which hooks on to T in step γk 7→ γk+j , j > 0. This implies that
p hooks on to a neighbor q ∈ B (by definition of B) such that q.Req = REP , a contradiction
by Property (Safety 2) of Specification 2 because q can not receive an acknowledgement from
root(T) since T is an abnormal tree. 2

Corollary 8. Let any abnormal tree T ∈ F and the set of processors B = {p ∈ V : p 6∈
T ∧ (∃q ∈ Neigp :: q ∈ T)}. In an execution, at most |B| processors can hook on to T .

Proposition 2. Let a processor p ∈ V which hooks on to a tree T in configuration γi ∈ C. If
another processor q ∈ V hooks on to T by p in γi+j , j > 0, then T is a normal tree.

Proof. According to Lemma 23, the expansion of an abnormal tree T ′ is limited at distance one
from T ′. After p hooks on to T , to allow the processor q to hook on to T by p then p receives an
acknowledgement from root(T). Therefore, T is a normal tree by Specification 2. 2

Lemma 24. Let any abnormal tree T ∈ F . A processor p ∈ V can hook on to T at most once
by the same neighbor q ∈ T .

Proof. Assume, by the contradiction, that there is a configuration γk ∈ C such that there is a
processor p ∈ V which hooks on to T by the same neighbor q ∈ T a second time. To hook
on to T , p must execute C-action, i.e., there is a neighbor x ∈ T of p such that x.S = C
and x.Req = REP . According to Proposition 1, p hooks on to the neighbor x ∈ V such that
x.S = C ∧ (∀s ∈ Neigp, x.L ≤ s.L). Suppose that p hooks on to T by the neighbor q a
first time in step γi−1 7→ γi ∈ C, then p hooks on to another neighbor s of p, s 6= q, in step
γj−1 7→ γj ∈ C, j > i. Now, we must consider several cases in configuration γk, i < j < k.
If p is hooked on to s in γj because q.S = E and s.Req = REP in γi then since q ∈ T
we have q.S = E in γk and q 6∈ MinChPar(p) ⇒ ¬Connect(p), a contradiction. Otherwise

42

s.S = q.S = C and p is hooked on to s in γj , i < j < k, because s.L < q.L and s.Req = REP .
When p hooks on to q the first time in step γi−1 7→ γi, we have s.S = E or s.L > q.L. Since we
have s.S = C ∧s.L < q.L∧s.Req = REP and p hooks on to s in step γj−1 7→ γj , this implies
that s is in a normal tree in γj according to Proposition 2. Thus, we have s.S = C ∧ s.L < q.L
in γk and q 6∈MinChPar(p)⇒ ¬Connect(p), a contradiction. 2

Lemma 25. In an execution, every processor p ∈ V \{r} produces at most 2∆ topological
changes in forest F while p 6∈ Tree(r), with ∆ the maximum degree of a processor in the
network.

Proof. To hook on to a tree, a processor p ∈ V must executeC-action. According to Lemma 24,
p cannot hooks on to an abnormal tree T ∈ F twice by the same neighbor q of p. Since a proces-
sor can have at most ∆ neighbors, p can hook on at most ∆ times to an abnormal tree. Observe
that E-action has a higher priority than C-action and E-action can be executed between two
executions of C-action, i.e., at most ∆ times while p 6∈ Tree(r). Therefore, by Definition 10
the lemma follows. 2

Lemma 26. In an execution, every processor p ∈ V \{r} produces at most n topological changes
in forest F while p ∈ Tree(r), with n the number of processors in the network.

Proof. Observe that for every processor p ∈ Tree(r) we have p.S = C. Moreover, by Remark 3
for every processor p ∈ Tree(r) we have that E-action is disabled. So, by Definition 10 the
only topological change in F that a processor p ∈ Tree(r) can produce is to execute C-action
in order to reduce its level in Tree(r). Thus, by Proposition 1 each execution of C-action by a
processor p ∈ Tree(r) in step γi 7→ γi+1 implies that p hooks on to the neighbor with the lowest
level in γi+1 and p.L in γi is higher than p.L in γi+1. Therefore, since the size of Tree(r)
is bounded by n then any processor p can hook on to at most n − 1 processors by executing
C-action while p ∈ Tree(r). 2

Lemma 27. In an execution, every processor p ∈ V \{r} produces at most 2∆ + n topological
changes in forest F .

Proof. This comes from Lemmas 25 and 26. 2

Corollary 9. From any configuration, Algorithm 1 produces at most 2∆n + n2 topological
changes in forest F .

Lemma 28. In an execution, each topological change in forest F generates at most ∆ requests.

Proof. Let any processor p ∈ V which produces a topological change in forest F . By Defi-
nition 10, we must consider two cases: p.S = E (in this case p 6= r) or p.S = C ∧ (∃q ∈
Neigp, q.L− p.L > 1). If p.S = E then we can have p.S = E ⇒ GP -REP (q) at a neighbor
q of p, so since a processor can have at most ∆ neighbors this can generate at most ∆ requests.
Otherwise we have p.S = C ∧ (∃q ∈ Neigp, q.L−p.L > 1) at p, then p sends a request in order
to allow each neighbor q such that q.L− p.L > 1 to hook on to p. Therefore, at most ∆ requests
are generated by a topological change at p. 2

Lemma 29. From any configuration, Algorithm 1 produces at most 2∆m+mn requests to reach
a configuration satisfying Definition 3.

43

Proof. This comes from Corollary 9 and Lemma 28. 2

Corollary 10. In an execution, A-action and O-action are executed at most 2∆m+mn times
in the network.

Lemma 30. From any configuration, at most O(∆mn3 +mn4) steps are needed by Algorithm
BFS to reach a configuration satisfying Definition 3.

Proof. By Corollary 9, from any configuration Algorithm 1 generates at most 2∆n+n2 topolog-
ical changes to reach a configuration satisfying Definition 3. Thus, by Definition 10 this implies
that E-action and C-action are executed at most ∆n + n2 times. Moreover, by Corollary 10
from any configuration A-action and O-action are executed at most 2∆m+mn times to send a
local request. According to Corollary 4, an acknowledgement to a request is received in at most
O(n3) steps. Therefore, from any configuration in at most O(∆mn3 + mn4) steps a legitimate
configuration is reached. 2

10. Conclusion

In this paper we define a particular class of distributed algorithms, called fully polynomial
algorithms, having good properties suitable for large scale systems. These algorithms are char-
acterized by a round complexity polynomial on the network diameter and a step complexity
polynomial on the network size. Moreover, we show that this class of distributed algorithms is
not empty for the global distributed task of spanning tree construction. To this end, we proposed
the first fully polynomial stabilizing algorithm constructing a Breadth First Search tree in Θ(d2)
rounds and in O(n6) steps for any topology network, with d the diameter and n the number
of nodes in the network. Moreover, a distributed daemon without any fairness assumptions is
considered.

Several open questions follow from this work:

• There is a need to classify other global distributed tasks such as leader election, Propaga-
tion of Information with Feedback, routing table construction ..., to determine if there exist
also fully polynomial algorithms for these problems.

• We show an upper bound on the step complexity of our algorithm. However, is it possible
to improve the step complexity of the algorithm while preserving a round complexity of
O(d2)?

• In the same way, is it possible to design a fully polynomial stabilizing algorithm for the
spanning tree construction problem with an optimal round complexity of Θ(d)?

The positive result proposed in this paper for the spanning tree construction problem allows
to consider the design of stabilizing algorithms for large scale systems. Therefore, it is crucial to
continue the investigation of totally effective fault-tolerant distributed algorithms (with optimal
round and step complexities) for global tasks.

44

References

[1] B. Bollobás, O. Riordan, The diameter of a scale-free random graph, Combinatorica 24 (1) (2004) 5–34.
[2] A. Cournier, S. Rovedakis, V. Villain, The first fully polynomial stabilizing algorithm for bfs tree construction,

in: 15th International Conference on Principles of Distributed Systems, Vol. 7109 of Lecture Notes in Computer
Science, Springer, 2011, pp. 159–174.

[3] E. Dijkstra, Self-stabilizing systems in spite of distributed control, Communications of the ACM 17 (11) (1974)
643–644.

[4] S. Dolev, Self-Stabilization, MIT Press, 2000.
[5] G. Tel, Introduction to distributed algorithm, Cambridge University Press, 2e edition, 2000.
[6] A. Bui, A. Datta, F. Petit, V. Villain, State-optimal snap-stabilizing pif in tree networks, in: Workshop on Self-

stabilizing Systems, IEEE Computer Society, 1999, pp. 78–85.
[7] A. Cournier, S. Devismes, V. Villain, Light enabling snap-stabilization of fundamental protocols, ACM Transac-

tions on Autonomous and Adaptive Systems 4 (1).
[8] S. Devismes, T. Masuzawa, S. Tixeuil, Communication efficiency in self-stabilizing silent protocols, in: 29th IEEE

International Conference on Distributed Computing Systems, 2009, pp. 474–481.
[9] T. Masuzawa, Silence is golden: Self-stabilizing protocols communication-efficient after convergence, in: 13th

International Symposium on Stabilization, Safety, and Security of Distributed Systems, 2011, pp. 1–3.
[10] T. Masuzawa, T. Izumi, Y. Katayama, K. Wada, Brief announcement: Communication-efficient self-stabilizing

protocols for spanning-tree construction, in: 13th International Conference on Principles of Distributed Systems,
2009, pp. 219–224.

[11] S. Kutten, D. Zinenko, Low communication self-stabilization through randomization, in: 24th International Sym-
posium on Distributed Computing, 2010, pp. 465–479.

[12] F. Gärtner, A survey of self-stabilizing spanning-tree construction algorithms, Tech. rep., EPFL (October 2003).
[13] A. Arora, M. Gouda, Distributed reset (extended abstract), in: 10th Conference on Foundations of Software Tech-

nology and theoretical Computer Science, 1990, pp. 316–331.
[14] S. Dolev, A. Israeli, S. Moran, Self-stabilization of dynamic systems assuming only read/write atomicity, in: 9th

ACM symposium on Principles of distributed computing, 1990, pp. 103–117.
[15] Y. Afek, S. Kutten, M. Yung, Memory-efficient self-stabilizing protocols for general networks, in: 4th International

Workshop on Distributed Algorithm, Vol. LNCS 486, Springer, 1991, pp. 15–28.
[16] N.-S. Chen, H.-P. Yu, S.-T. Huang, A self-stabilizing algorithm for constructing spanning trees, Information Pro-

cessing Letters 39 (3) (1991) 147–151.
[17] S.-T. Huang, N.-S. Chen, A self-stabilizing algorithm for constructing breadth-first trees, Information Processing

Letters 41 (2) (1992) 109–117.
[18] A. Cournier, Mémoire d’Habilitation à Diriger les Recherches : Graphes et algorithmique distribuée stabilisante,

Université de Picardie Jules Verne (2009).
[19] J. Burman, S. Kutten, Time optimal asynchronous self-stabilizing spanning tree, in: 21st International Symposium

on Distributed Computing, 2007, pp. 92–107.
[20] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, G. Varghese, Time optimal self-stabilizing synchronization,

in: 25th Annual ACM Symposium on Theory of Computing, 1993, pp. 652–661.
[21] A. Datta, L. Larmore, P. Vemula, Self-stabilizing leader election in optimal space, in: 10th International Symposium

on Stabilization, Safety, and Security of Distributed Systems, Vol. 5340 of Lecture Notes in Computer Science,
Springer, 2008, pp. 109–123.

[22] Z. Collin, S. Dolev, Self-stabilizing depth-first search, Information Processing Letters 49 (6) (1994) 297–301.
[23] A. Cournier, S. Devismes, V. Villain, A snap-stabilizing dfs with a lower space requirement, in: 7th International

Symposium on Self-Stabilizing Systems, Vol. 3764 of Lecture Notes in Computer Science, Springer, 2005, pp.
33–47.

[24] C. Johnen, J. Beauquier, Distributed self-stabilizing depth-first token circulation with constant memory, in: 2nd
Workshop on Self-Stabilizing System, 1995, pp. 4.1–4.15.

[25] C. Johnen, Memory-efficient self-stabilizing algorithm to construct bfs spanning trees, in: 3rd Workshop on Self-
stabilizing Systems, 1997, pp. 125–140.

[26] B. Ducourthial, S. Tixeuil, Self-stabilization with path algebra, Theoretical Computer Science 293 (1) (2003) 219–
236.

[27] A. K. Datta, L. L. Larmore, P. Vemula, Self-stabilizing leader election in optimal space under an arbitrary scheduler,
Theoretical Computer Science 412 (40) (2011) 5541–5561. doi:10.1016/j.tcs.2010.05.001.
URL https://doi.org/10.1016/j.tcs.2010.05.001

[28] A. K. Datta, L. L. Larmore, P. Vemula, An O(n)-time self-stabilizing leader election algorithm, Journal of Parallel
and Distributed Computing 71 (11) (2011) 1532–1544. doi:10.1016/j.jpdc.2011.05.008.
URL https://doi.org/10.1016/j.jpdc.2011.05.008

45

[29] A. Kosowski, L. Kuszner, A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves,
in: 6th International Conference on Parallel Processing and Applied Mathematics, Vol. 3911 of LNCS, Springer,
2005, pp. 75–82.

[30] A. Cournier, A new polynomial silent stabilizing spanning-tree construction algorithm, in: 16th International Col-
loquium on Structural Information and Communication Complexity, Vol. 5869 of Lecture Notes in Computer Sci-
ence, Springer, 2009, pp. 141–153.

[31] A. Cournier, S. Devismes, F. Petit, V. Villain, Snap-stabilizing depth-first search on arbitrary networks, The Com-
puter Journal 49 (3) (2006) 268–280.

[32] S. Devismes, C. Johnen, Silent self-stabilizing bfs tree algorithms revisited, Journal of Parallel and Distributed
Computing 97 (2016) 11–23. doi:https://doi.org/10.1016/j.jpdc.2016.06.003.
URL http://www.sciencedirect.com/science/article/pii/S0743731516300685

[33] K. Altisen, A. Cournier, S. Devismes, A. Durand, F. Petit, Self-stabilizing leader election in polynomial steps,
Information and Computation 254 (2017) 330–366. doi:10.1016/j.ic.2016.09.002.
URL https://doi.org/10.1016/j.ic.2016.09.002

[34] A. Cournier, S. Devismes, V. Villain, Snap-stabilizing pif and useless computations, in: 12th International Confer-
ence on Parallel and Distributed Systems, IEEE Computer Society, 2006, pp. 39–48.

[35] E. J. H. Chang, Echo algorithms: Depth parallel operations on general graphs, IEEE Transactions on Software
Engineering 8 (4) (1982) 391–401. doi:10.1109/TSE.1982.235573.
URL https://doi.org/10.1109/TSE.1982.235573

[36] A. Segall, Distributed network protocols, IEEE Transactions on Information Theory 29 (1) (1983) 23–34.
doi:10.1109/TIT.1983.1056620.
URL https://doi.org/10.1109/TIT.1983.1056620

[37] A. Datta, S. Gurumurthy, F. Petit, V. Villain, Self-stabilizing network orientation algorithms in arbitrary rooted
networks, Studia Informatica Universalis 1 (1) (2001) 1–22.

46

