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Abstract

Richardson extrapolation is a classical technique from numerical analysis that can improve
the approximation error of an estimation method by combining linearly several estimates ob-
tained from different values of one of its hyperparameters, without the need to know in details
the inner structure of the original estimation method. The main goal of this paper is to study
when Richardson extrapolation can be used within machine learning, beyond the existing ap-
plications to step-size adaptations in stochastic gradient descent. We identify two situations
where Richardson interpolation can be useful: (1) when the hyperparameter is the number of
iterations of an existing iterative optimization algorithm, with applications to averaged gradient
descent and Frank-Wolfe algorithms (where we obtain asymptotically rates of O(1/k2) on poly-
topes, where k is the number of iterations), and (2) when it is a regularization parameter, with
applications to Nesterov smoothing techniques for minimizing non-smooth functions (where we
obtain asymptotically rates close to O(1/k2) for non-smooth functions), and ridge regression.
In all these cases, we show that extrapolation techniques come with no significant loss in per-
formance, but with sometimes strong gains, and we provide theoretical justifications based on
asymptotic developments for such gains, as well as empirical illustrations on classical problems
from machine learning.

1 Introduction

Many machine learning methods can be cast as looking for approximations of some ideal quantity
which cannot be readily computed from the data at hand: this ideal quantity can be the predictor
learned from infinite data, or an iterative algorithm run for infinitely many iterations. Taking theirs
roots in optimization and more generally numerical analysis, many accelerations techniques have
been developed to tighten these approximations with as few changes as possible to the original
method.

While some acceleration techniques add some simple modifications to a known algorithm, such
as Nesterov acceleration for the gradient descent method (Nesterov, 1983), extrapolation techniques
are techniques that do not need to know the fine inner structure of the method to be accelerated.
These methods are only based on the observations of solutions of the original method.

Extrapolation techniques work on the vector-valued output xt ∈ R
d of the original method that

depends on some controllable real-valued quantity t, which can be the number of iterations or some
regularization parameter, and more generally any parameter that controls both the running time
and the approximation error of the algorithm. When t tends to t∞ (which is typically 0 or +∞),
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Figure 1: Illustration of Richardson extrapolation for t∞ = 0 and xt = x∗ + t∆ + O(t2). Iterates
(in black) with their first-order expansions (in red). The deviations (represented by circles) are of
order O(t2). Adapted from Dieuleveut et al. (2019).

we will assume that xt has an asymptotic expansion of the form

xt = x∗ + gt +O(ht),

where x∗ is the desired output, gt ∈ R
d is the asymptotic equivalent of xt − x∗, and ht = o(‖gt‖).

The key question in extrapolation is the following: from the knowledge of xt for potentially several
t’s, how can we better approximate x∗, without the full knowledge of gt?

For exponentially converging algorithms, there exist several “non-linear” schemes that combine
linearly several values of xt with weights that depend non-linearly on the iterates, such as Aitken’s ∆2

process (Aitken, 1927) or Anderson acceleration (Anderson, 1965), which has recently been shown to
provide significant acceleration to linearly convergent gradient-based algorithms (Scieur et al., 2016).
In this paper, we consider dependence in powers of t, where Richardson extrapolation excels (see,
e.g., Richardson, 1911; Joyce, 1971; Gautschi, 1997).

We thus assume that
gt = tα ·∆,

and ht = tβ is a power of t such that ht = o(‖gt‖), where α ∈ R is known but ∆ ∈ R
d is unknown,

that is
xt = x∗ + tα∆+O(tβ).

In all our cases, α = −1 when t∞ = +∞ and α = 1 when t = 0. Richardson extrapolation is simply
combining two iterates with different values of t so that the zero-th order term x∗ is preserved, while
the first-order term cancels, for example:

2xt − x21/αt

= 2(x∗ + tα∆+O(tβ))− (x∗ + 2tα∆+O(tβ))

= x∗ +O(tβ).

See an illustration in Figure 1 for α = 1, β = 2, and t∞ = 0. Note that: (a) the choice of 21/α 6= 1
as a multiplicative factor is arbitrary and chosen for its simplicity when |α| = 1, and (b) Richardson
extrapolation can be used with m+1 iterates to remove the firstm terms in a asymptotic expansion,
where the powers of the expansion are known and not the associated vector-valued constants (see
examples in Section 3).

The main goal of this paper is to study when Richardson extrapolation can be used within
machine learning, beyond the existing explicit applications to step-size adaptations in stochastic
gradient descent (Durmus et al., 2016; Dieuleveut et al., 2019), and implicit wide-spread use in “tail-
averaging” (see more details in Section 2.1).

We identify two situations where Richardson interpolation can be useful:

2



• t = k is the number of iterations of an existing iterative optimization algorithm converging
to x∗, where then α = −1 and t∞ = +∞, and Richardson extrapolation considers, for k

even, x
(1)
k = 2xk − xk/2. We consider in Section 2, averaged gradient descent and Frank-Wolfe

algorithms (where we obtain asymptotically rates of O(1/k2) on polytopes, where k is the
number of iterations).

• t = λ is a regularization parameter, where then α = 1 and t∞ = 0, and Richardson extrapola-

tion considers x
(1)
λ = 2xλ − x2λ. We consider in Section 3, Nesterov smoothing techniques for

minimizing non-smooth functions (where we obtain asymptotically rates close to O(1/k2) for
non-smooth functions), and ridge regression (where we obtain estimators with lower bias).

As we will show, extrapolation techniques come with no significant loss in performance, but with
sometimes strong gains, and the goal of this paper is to provide theoretical justifications for such
gains, as well as empirical illustrations on classical problems from machine learning. Note that we
aim for the simplest asymptotic results (most can be made non-asymptotic with extra assumptions).

2 Extrapolation on the Number of Iterations

In this section, we consider extrapolation based on the number of iterations k, that is, for the
simplest case

x
(1)
k = 2xk − xk/2,

for optimization algorithms aimed at minimizing on R
d (or potentially a subset thereof) a function

f , which we will always assume convex, three-times differentiable with Hessian eigenvalues bounded
by L, and a unique minimizer x∗ ∈ R

d such that f ′′(x∗) is positive definite. We will consider
f(x)− f(x∗) as the performance measure. Note that these assumptions, in particular convexity, are
made to make the asymptotic analysis simpler, and that non-convex extensions could be considered.

If xk is converging to x∗, then so is xk/2, and thus also x
(1)
k = 2xk−xk/2. Given our assumptions

on f , then even if there are no cancellations, because we have assumed that our performance measure
is smooth, the convergence rate is at most a constant times the original rate for xk/2 (see a detailed
argument in Appendix A based on local quadratic approximations for unconstrained minimization).

Therefore, performance is never significantly deteriorated (the risk is essentially to lose half of
the iterations). The potential gains depend on the way xk converges to x∗. The existence of a
convergence rate of the form f(xk) − f(x∗) = O(1/k) or O(1/k2) is not enough, as Richardson
extrapolation requires a specific direction of asymptotic convergence. As illustrated in Figure 2,
some algorithms are oscillating around their solutions, while some converge with a specific direction.
Only the latter ones can be accelerated with Richardson extrapolation, while the former ones are
good candidates for Anderson acceleration (Anderson, 1965; Scieur et al., 2016).

We now consider three algorithms: (1) averaged gradient descent, where extrapolation is at its
best, as it transforms an O(1/t2) convergence rate into an exponential one, (2) accelerated gradient
descent, where extrapolation does not bring anything, and (3) Frank-Wolfe algorithms, where the
situation is mixed (sometimes it helps, sometimes it does not).

2.1 Averaged gradient descent

We consider the usual gradient descent algorithm

xk = xk−1 − γf ′(xk−1),

where γ 6 1/L is a step-size, with Polyak-Ruppert averaging (Polyak and Juditsky, 1992; Ruppert,
1988):

x̄k =
1

k

k−1
∑

i=0

xi.
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Figure 2: Left: Oscillating convergence, where Richardson extrapolation does not lead to any gain.
Right: non-oscillating convergence, with a main direction ∆ (in red dotted), where Richardson ex-
trapolation can be beneficial if the oscillations orthogonal to the direction ∆ are negligible compared
to convergence along the direction ∆.

Averaging is key to robustness to potential noise of the gradients (Polyak and Juditsky, 1992;
Nemirovski et al., 2009). However it comes with the unintended consequence of losing the expo-
nential forgetting of initial conditions for strongly convex problems (Bach and Moulines, 2011).

A common way to restore exponential convergence (up to the noise level in the stochastic case)
is to consider “tail-averaging”, that is, to replace x̄k by the average of only the latest k/2 iter-
ates (Jain et al., 2018). As shown below for k even, this corresponds exactly to Richardson extrap-
olation:

2

k

k−1
∑

i=k/2

xi =
2

k

k−1
∑

i=0

xi −
2

k

k/2−1
∑

i=0

xi = 2x̄k − x̄k/2.

Asymptotic analysis. With our assumptions on f (see the beginning of Section 2), we can show
(see Appendix B for a detailed proof) that

x̄k = x∗ +
1

k
∆+O(ρk),

where ∆ =
∑∞

i=0(xi − x∗) and ρ ∈ (0, 1) depends on the condition number of f ′′(x∗). Note that:
(a) before Richardson extrapolation, the asymptotic convergence rate will be of the order O(1/k2),
which is better than the usual O(1/k) upper-bound for the rate of gradient descent, but with a
stronger assumption that in fact leads to exponential convergence before averaging, (b) while ∆ has
a simple expression, it cannot be computed in practice, (c) that Richardson extrapolation leads to
an exponentially convergent algorithm from an algorithm converging asymptotically in O(1/k2) for
functions values, and (d) that in the presence of noise in the gradients, the exponential convergence
would only be up to the noise level. See Figure 3 (left plot) for an illustration.

2.2 Accelerated gradient descent

In the section above, we considered averaged gradient descent, which is asymptotically converging as
O(1/k2) and on which Richardson extrapolation could be used with strong gains. It is possible also
for the accelerated gradient descent (Nesterov, 1983), which has a (non-asymptotic) convergence
rate of O(1/k2) for convex functions?

It turns out that the behavior of the iterates of accelerated gradient descent is exactly of the
form depicted in the left plot of Figure 2: that is, the iterates xk oscillate around the optimum (see,
e.g., Su et al., 2016; Flammarion and Bach, 2015), and Richardson extrapolation is of no help, but
is not degrading performance too much. See Figure 3 (right plot) for an illustration.
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Figure 3: Left: averaged gradient descent on a logistic regression problem in dimension d = 400,
and with n = 4000 observations minx∈Rd f(x) = 1

n

∑n
i=1 log(1 + exp(−bix⊤ai)), with (ai, bi) ∈

R
d×{−1, 1}. The covariance matrix of inputs has eigenvalues 1/j, j = 1, . . . , d; the lowest eigenvalue

is 1/100 and therefore we can see the effect of strong convexity starting at around k = 100 iterations;
moreover, for the regular averaged recursion, the line in the log-log plot has slope −2. Right:
accelerated gradient descent on a quadratic optimization problem in dimension d = 1000 and a
Hessian whose eigenvalues are 1/j2, j = 1, . . . , d; with such eigenvalues, the local linear convergence
is not observed and we have a line of slope −2.

2.3 Frank-Wolfe algorithms

We now consider Frank-Wolfe algorithms (also known as conditional gradient algorithms) for mini-
mizing a smooth convex function f on a compact convex set K. These algorithms are dedicated to
situations where one can easily minimize linear functions on K (see, e.g., Jaggi, 2013, and references
therein). The algorithm has the following form:

x̄k ∈ argmin
x∈K

f(xk−1) + f ′(xk−1)
⊤(x− xk−1)

xk = (1− ρk)xk−1 + ρkx̄k.

That is, the first order Taylor expansion of f at xk−1 is minimized, ending up typically in an
extreme point x̄k or K and a convex combination of xk−1 and x̄k is considered. While some form
of line search can be used to find ρk, we consider so-called “open loop” schemes where ρk = 1/k or
ρk = 2/(k + 1) (Dunn and Harshbarger, 1978; Jaggi, 2013).

In terms of function values, these two variants are known to converge at respective ratesO(log(k)/k)
and O(1/k). Moreover, as illustrated in Figure 4, they are known to zig-zag towards the optimal
point. Avoiding this phenomenon can be done in several ways, for examples through optimizing over
all convex combinations of the x̄i’s for i 6 k (Von Hohenbalken, 1977), or through so-called “away
steps” (Guélat and Marcotte, 1986; Lacoste-Julien and Jaggi, 2015). In this section, we consider
Richardson extrapolation and assume for simplicity that K is a polytope (which is a typical use case
for Frank-Wolfe algorithms). Note here that we are considering asymptotic convergence rates, and
even without extrapolation (but with a local strong-convexity assumption), we can beat the O(1/k)
rates for the step-size ρk = 2/(k + 1).1

Assumptions. We let x∗ denote the minimizer of f on K, which we assume unique, on top of
the differentiability properties from the beginning of Section 2 (which include local strong convexity

1Note that: (a) the lower bound with dependence O(1/k) from Canon and Cullum (1968) only applies to Frank-
Wolfe algorithms with line-search, and (b) that our bounds are local and the constants have to depend on dimension
so as to not contradict the lower bound from Jaggi (2013).
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Figure 4: Frank-Wolfe algorithm zigzagging. Starting from x0, the algorithm always moves towards
one of the extreme points of K, with an average direction of ∆.
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Figure 5: Frank-Wolfe for the “constrained logistic Lasso”, that is, minx∈Rd f(x) such that‖x‖1 6 c,
with f(x) = 1

n

∑n
i=1 log(1+exp(−bix⊤ai)). We consider n = 400 observations in dimension d = 400,

sampled from a standard normal distribution, and with a constraint on the ℓ1-norm. Left: step size
1/k with slopes −1 (blue) and −2 (red). Right: step size 2/(k + 1), with slope approximately −2
for the two curves.
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Figure 6: Frank-Wolfe for the dual of robust regression. We consider the dual of absolute loss
regression with n = 400 observations in dimension d = 200, sampled from a standard normal
distribution, with a squared Euclidean norm penalty. The primal problem is infy∈Rd

1
n‖b−Ax‖1 +

λ
2 ‖y‖22 while the dual problem is sup‖x‖∞61 −f(x), with f(x) = − 1

nx
⊤b+ 1

2n2λx
⊤AA⊤x. Left: step

size 1/k with slopes −1 (blue) and −2 (red). Right: step size 2/(k + 1), with slope −2 for the two
curves.

around x∗). In order to show our asymptotic result, we assume that x∗ is “in the middle of a
face” of K. In mathematical words, if the minimizer x∗ is strictly in a (m− 1)-dimensional face of K
which is the convex hull of extreme points y1, . . . , ym ∈ R

d, then miny∈K f ′(x∗)
⊤y is attained only by

elements of the convex hull of y1, . . . , ym. This assumption is sufficient to show that the corresponding
optimal face of K is eventually identified, and is often referred to as constraint qualification in
optimization (Nocedal and Wright, 2006).

Asymptotic expansion. As shown in Appendix C, for ρk = 1/k, then

xk = x∗ +
1

k
∆1 +O(1/k2),

where ∆1 is orthogonal to the span of all yi − x∗, i = 1, . . . ,m, while the remainder term is within
this span. This characterizes the zig-zagging phenomenon, and implies that

f(xk)− f(x∗) =
1

k
∆⊤

1 f
′(x∗) +O(1/k2).

Thus, without extrapolation, we get a convergence rate in O(1/k). Moreover, as expected, we show
that

f(2xk − xk/2)− f(x∗) = O(1/k2),

that is, Richardson extrapolation allows to go from an O(1/k) to an O(1/k2) convergence rate. In
the left plots of Figure 5 and Figure 6, we can observe the benefits of Richardson extrapolation
on two optimization problems with the step-size ρk = 1/k. Note that: (a) asymptotically, there is
provably no extra logarithmic factor like we have for the non-asymptotic convergence rate, and (b)
that the Richardson extrapolated iterate may not be within K, but is O(1/k) away from it (in our
simulations, we simply make the iterate feasible by rescaling).

For ρk = 2/(k + 1), we show in Appendix C that

xk = x∗ +
1

k(k + 1)
∆2 +O(1/k2),
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and thus we already get an performance of O(1/k2) without extrapolation, and Richardson extrap-
olation does not lead to any acceleration. In the right plots of Figure 5 and Figure 6, we indeed see
no benefits (but no strong degradation).

Note that here (and for both step-sizes), higher order Richardson would not lead to further
cancellation as within the span of the supporting face, we have an oscillating behavior similar to the
left plot of Figure 2. Moreover, although we do not have a proof, the closed loop algorithm exhibits
the same behavior as the step ρk = 1/k, both with and without extrapolation, which is consistent
with the analysis of Canon and Cullum (1968). It would also be interesting to consider the benefits
for Richardson extrapolation for strongly-convex sets (Garber and Hazan, 2015).

3 Extrapolation on the Regularization Parameter

In this section, we explore the application of Richardson extrapolation to regularization methods.
In a nutshell, regularization allows to make an estimation problem more stable (less subject to
variations for statistical problems) or the algorithm faster (for optimization problems). However,
regularization adds a bias that needs to be removed. In this section, we apply Richardson extrapo-
lation to the regularization parameter to reduce this bias. We consider two applications where we
can provably show some benefits: (a) smoothing for non-smooth optimization in Section 3.1, and
(b) ridge regression in Section 3.2.

Other applications include the classical use within integration methods, where the technique is
often called Richardson-Romberg extrapolation (Gautschi, 1997), and for bias removal in constant-
step-size stochastic gradient descent for sampling (Durmus et al., 2016) and optimization (Dieuleveut et al.,
2019).

3.1 Smoothing non-smooth problems

We consider the minimization of a convex function of the form f(x) = h(x) + g(x), where h is
smooth and g is non-smooth. These optimization problems are ubiquitous in machine learning
and signal processing, where the lack of smoothness can come from (a) non-smooth losses such as
max-margin losses used in support vector machines and more generally structured output classifi-
cation (Taskar et al., 2005; Tsochantaridis et al., 2005), and (b) sparsity-inducing regularizers (see,
e.g., Bach et al., 2012, and references therein). While many algorithms can be used to deal with this
non-smoothness, we consider a classical smoothing technique below.

Nesterov smoothing. In this section, we consider the smoothing approach of Nesterov (2005)
where the non-smooth term is “smoothed” into gλ, where λ is a regularization parameter, and
accelerated gradient descent is used to minimize h+ gλ.

A typical way of smoothing the function g is to add λ times a strongly convex regularizer to
the Fenchel conjugate of g (see an example below); as shown by Nesterov (2005), this leads to a
function gλ which has a smoothness constant (defined as the maximum of the largest eigenvalues
of all Hessians) proportional to 1/λ, with a uniform error of λ between g and gλ. Given that
accelerated gradient descent leads to an iterate with excess function values proportional to 1/(λk2)
after k iterations, with the choice of λ ∝ 1/k, this leads to an excess in function values proportional
to 1/k, which improves on the subgradient method which converges in O(1/

√
k).

Richardson extrapolation. If we denote by xλ the minimizer of h+ gλ and x∗ the global min-

imizer of f = h + g, if we can show that xλ = x∗ + λ∆ + O(λ2), then x
(1)
λ = 2xλ − x2λ = O(λ2)

and we can expand f(x
(1)
λ ) = f(x∗) +O(λ2), which is better than the O(λ) approximation without

extrapolation.
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Then, with λ ∝ k−2/3, to balance the two terms 1/(λk2) and λ2, we get an overall convergence
rate for the non-smooth problem of k−4/3. We now make this formal for the special (but still quite
generic) case of polyhedral functions g, and also consider m-step Richardson extrapolation, which
leads to a convergence rate arbitrarily close to O(1/k2).

Polyhedral functions. We consider a polyhedral function of the form

g(x) = max
i∈{1,...,m}

a⊤i x− bi = max
i∈{1,...,m}

(Ax− b)i,

where A ∈ R
m×d and b ∈ R

m. This form includes traditional regularizers such as the ℓ1-norm of
grouped ℓ1-ℓ∞-norms.

We assume that the function h+g has a unique minimizer x∗ for which h′′(x∗) is positive definite
(with the same regularity assumptions than smooth functions from previous sections, that is, h
three-times differentiable with bounded derivatives). The optimality conditions are the existence of
η∗ ∈ R

m in the simplex ∆m (defined as the vectors in R
m with non-negative components summing

to one), such that, for the support I ⊂ {1, . . . ,m} of η∗ (that is, the set of non-zeros),

h′(x∗) +A⊤η∗ = 0,

and
max

i∈{1,...,m}
(Ax∗ − b)i attained for all i ∈ I.

Our only further assumptions are to assume that (a) this maximizer is only attained for i ∈ I, and
(2) the submatrix AI obtained by taking the the rows of A indexed by I has full rank, another
classical form of constraint qualification.

We consider the smoothing of g as:

gλ(x) = max
η∈∆m

η⊤(Ax− b)− λϕ(η),

for some strongly convex function ϕ, typically, the negative entropy
∑m

i=1

{

ηi log ηi − ηi
}

, or 1
2‖η‖22.

We denote by xλ a minimizer of h(x) + gλ(x), and ηλ the corresponding dual variable. We show in
Appendix D that for the quadratic and entropic penalties:

xλ = x∗ + λ∆+O(λ2),

with ∆ = h′′(x∗)
−1A⊤

I

[

AIh
′′(x∗)

−1A⊤
I

]−1
(η∗)I for the quadratic penalty, and a similar expression

for the entropic penalty.
This implies that (see Appendix D for details) the smoothing technique asymptotically adds a

bias of order λ
f(xλ) = f(x∗) +O(λ),

where we recover the usual upper-bound in O(λ), confirming the result from Nesterov (2005). The
key other consequence is that

f(x
(1)
λ ) = f(2xλ − x2λ) = f(x∗) +O(λ2),

which shows the benefits of Richardson extrapolation.

Multiple-step Richardson extrapolation. Given that one-step Richardson extrapolation al-
lows to go from a bias of O(λ) to O(λ2), a natural extension is to consider m-step Richardson
extrapolation (Gautschi, 1997), that is, a combination of m+ 1 iterates:

x
(m)
λ =

m+1
∑

i=1

α
(m)
i xiλ,
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Figure 7: Richardson extrapolation for Nesterov smoothing on a penalized Lasso problem, with
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where the weights α
(m)
i are such that the first m powers in the Taylor expansion of xλ cancel out.

This can be done by solving the linear system based on the following equations:

m+1
∑

i=1

α
(m)
i = 1 (1)

∀j ∈ {1, . . . ,m},
m+1
∑

i=1

α
(m)
i ij = 0. (2)

Using the same technique as Pagès (2007, Lemma 3.1), this is a Vandermonde system with a closed
form solution (see proof in Appendix E.3):

α
(m)
i = (−1)i−1

(

m+ 1

i

)

.

We show in Appendix D that if h is sufficiently smooth, we have:

f(xλ) = f(x∗) +O(λm+1).

Thus, within the smoothing technique, if we consider λ ∝ 1/k2/(m+2), to balance the terms 1/(λk2)
and λm+1, we get an error for the non-smooth problem of 1/k2(m+1)/(m+2), which can get arbitrarily
close to 1/k2 when m gets large. The downsides are that (a) the constants in front of the asymptotic
equivalent may blow up (a classical problem in high-order expansions), and (b) m-step extrapolation
requires running the algorithm m times (this can be down in parallel). In our experiments below,
3-step extrapolation already brings in most of the benefits.

Experiments. We consider the penalized Lasso problem:

min
x∈Rd

1

2n

n
∑

i=1

(bi − x⊤ai)
2 + λ‖x‖1,

where (ai, bi) ∈ R
d × R for i = 1, . . . , n, for d = 100 and n = 100, and with input data distributed

as a standard normal vector. We use either a dual entropic penalty or a dual quadratic penalty for
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smoothing each component |xj | of the ℓ1-norm of x. Plots for the quadratic penalty are presented
here in Figure 7, while plots for the entropic penalty are presented in Figure 9 in Appendix D with
the same conclusions.

In the left plot of Figure 7, we illustrate the dependence of f(xλ) − f(x∗) on λ for Richardson
extrapolation with various orders, while in the right plot of Figure 7, we study the effect of extrap-
olation to solve the non-smooth problem. For a series of regularization parameters equal to 2i for
i between −18 and 1 (sampled every 1/5), we run accelerated gradient descent on h + gλ and we
plot the value of f(x) − f(x∗) for the various estimates, where for each number of iterations, we
minimize over the regularization parameter. This is an oracle version of varying λ as a function of
the number of iterations (a detailed evaluation where λ depends on k could also be carried out). In
Figure 7, we plot the excess function values as a function of the number of iterations, taking into
account that m-step Richardson extrapolation requires m-times more iterations. We see that we get
a strong improvement approaching 1/k2.

From non-linear programming to linear programming. When we use the entropic penalty,
the smoothing framework is generally applicable in most non-linear programming problems (see, e.g.,
Cominetti and Dussault, 1994). It is interesting to note that typically when applying the entropic
penalty, the deviation to the global optimizer is going to zero exponentially in −1/λ for some of the
components (see a proof for our particular case in Appendix D), but not for the corresponding dual
problem (which is our primal problem).

Another classical instance of entropic regularization in machine learning leads to the Sinkhorn
algorithm for computing optimal transport plans (Cuturi, 2013). For that problem, the entropic
penalty is put directly on the original problem, and the deviation in estimating the optimal transport
plan can be shown to be asymptotically exponential in −1/λ (Cominetti and San Mart́ın, 1994), and
thus there Richardson extrapolation is not helpful (unless one wants to estimate the Kantorovich
dual potentials).

3.2 Improving bias in ridge regression

We consider the ridge regression problem, that is, wλ is the unique minimizer of

min
w∈Rd

1

2n
‖y − Φw‖22 +

λ

2
‖w‖22,

where Φ ∈ R
n×d is a feature vector and y ∈ R

n a vector of responses (Friedman et al., 2001).
The solution may be obtained in closed form by solving the normal equations, as wλ = (Φ⊤Φ +
nλI)−1Φ⊤y.

The regularization term λ
2 ‖w‖22 is added to avoid overfitting and control the variability of wλ

due to the randomness in the training data (the higher the λ, the more control); however, it does
create a bias that goes down as λ goes to zero. Richardson extrapolation can be used to reduce this

bias. We thus consider w
(1)
λ = 2wλ − w2λ and more generally

w
(m)
λ =

m
∑

i=0

α
(m)
i wiλ,

with the same weights as defined in Eq. (1) and Eq. (2). In order to compute w
(m)
λ , either m ridge

regression problems can be solved, or a closed-form spectral formula can be used based on a single
singular value decomposition of the kernel matrix (see Appendix E.3 for details).

Theoretical analysis. Following Bach (2013), we assume for simplicity that Φ is deterministic
and that y = z + ε, where ε has zero mean and covariance matrix σ2I. We consider the in-sample
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error of ŷλ = Φwλ = K(K + nλI)−1y = Ĥλy, where K = ΦΦ⊤ is the usual kernel matrix, and Ĥλ

is the smoothing matrix, which is equal to I for very small λ and equal to zero for very large λ. We
consider the so-called “in-sample generalization error”, that is, we want to minimize

1

n
E‖ŷλ − z‖22 = bias(Ĥλ) + variance(Ĥλ),

where

bias(Ĥλ) =
1

n
‖(Ĥλ − I)z‖22

variance(Ĥλ) =
σ2

n
tr Ĥ2

λ.

The bias term is increasing in λ, while the variance term in decreasing in λ, and there is thus a
trade-off between these two terms. To find the optimal λ, assumptions need to be made on the
problem, regarding the eigenvalues of K, and the components of z in the eigenbasis of K. That is,
following the notations of Bach (2013, Section 4.3), we assume that the eigenvalues of K are Θ(nµi)
(that is bounded from above and below by constants times nµi) and the coordinates of z in the
eigenbasis of K are Θ(

√
nνi). The precise trade-off depends on the rates at which µi and νi decay

to zero.
A classical situation is µi ∼ i−2β and νi ∼ i−2δ, where β > 1/2 and δ > 1/2 (to ensure finite

energy). As detailed in Appendix E:

• the variance term is equivalent to σ2

n λ
−1/2β and does not depend on z or δ;

• the bias term depends on both δ and β: for signals which are not too smooth (i.e., not too
fast decay of νi, and thus small δ), that is if δ < 2β + 1/2, then the bias term is equivalent to
λ(2δ−1)/2β and we can thus find the optimal λ as (σ2/n)β/δ leading to predictive performance of
(σ2/n)1−1/2δ, which happens to be optimal Caponnetto and De Vito (2007). However, when
δ > 2β + 1/2, a phenomenon called “saturation” occurs, and the bias term is equivalent to
λ2 (independent of δ), and the optimized predictive performance is (σ2/n)1−1/(4β+1), which is
not optimal anymore.

As shown in Appendix E, by reducing the bias, with m-step Richardson interpolation, we can
show that the variance term is bounded by a constant times the usual one, while the bias term is
equivalent to λ(2δ−1)/2β for a wider range of δ, that is, δ < 2(m+1)β+1/2, which recovers for m = 0
the non-extrapolated estimate. This leads to optimal statistical performance for a wider range of
problems.

Experiments. As an illustration, we consider a ridge regression problem with data uniformly
sampled on the unit sphere in dimension d = 40 with n = 200 observations, and y generated as a
linear function of the input plus some noise. We consider the rotation invariant kernel equal to the
expectation k(x, x′) = Eτ (1 + x⊤x′)σ(τ⊤x)σ(τ⊤x′), for τ uniform on the sphere. This is equal to,
for σ(α) = 1α>0 (see Cho and Saul, 2009; Bach, 2017):

k(x, y) ∝ (1 + x⊤x′)
[

π − arccos(x⊤x′)
]

.

When the number of observations n tends to infinity, the eigenvalues of 1
nK are known to converge to

the eigenvalues of a certain infinite-dimensional operator (Koltchinskii and Giné, 2000). As shown
by Bach (2017), the corresponding eigenvalues of the kernel matrix decay as i−1−1/d. We consider z
generated as a linear function so that νi has a finite number of non zero components in the eigenbasis
of K.

In the left plot of Figure 8, we consider 1-step and 3-step Richardson extrapolation and plot the
generalization error (averaged over 10 replications) as a function of the regularization parameter: we
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Figure 8: Left: regularization path for the classical iterate wλ, one step of Richardson w
(1)
λ and 3

steps w
(3)
λ . Right: optimal error as a function of the order of the Richardson step.

can see that as expected, (a) with extrapolation the curves move to the right (we can use a larger
λ for a similar performance, which is advantageous as iterative algorithms are typically faster), and
(b) the minimal error is smaller (which is true here because we learn a smooth function). In the right
plot of Figure 8, we study the effect of increasing the order m of extrapolation, showing that the
larger the better with some saturation. Withm infinite, there will be overfitting as the corresponding
spectral filter is non-stable, but this happens very slowly (see Appendix E.3 for details).

4 Conclusion

In this paper, we presented various applications of Richardson extrapolation to machine learning
optimization and estimation problems, each time with an asymptotic analysis showing the potential
benefits. For example, when using the number of iterations of an iterative algorithm to perform
extrapolation, we can accelerate Frank-Wolfe algorithms to have an asymptotic rates of O(1/k2) on
polytopes for the step-size ρk = 1/k and locally strongly-convex functions (this is achieved without
extrapolation for the step-size ρk = 2/(k+1)). When extrapolating based on the regularization pa-
rameter, we can accelerate Nesterov smoothing technique to have asymptotic rates close to O(1/k2).

We also highlighted situations where Richardson extrapolation does not bring any benefits (but
does not degrade performance much), namely when applied to accelerated gradient descent or the
Sinkhorn algorithm for optimal transport.

The analysis in this paper can be extended in a number of ways: (1) while the paper has focused
on asymptotic analysis for simplicity, non-asymptotic analysis could be carried out to study more
finely when acceleration starts, (2) we have focused on deterministic optimization algorithms, and
extensions to stochastic algorithms could be derived, along the lines of the work of Dieuleveut et al.
(2019), (3) we have primarily focused on convex optimization algorithms but non-convex extensions,
like done by Scieur et al. (2018) for Anderson acceleration, could also lead to acceleration
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A Preliminary considerations

We have assumed that f : R
d → R is three-times differentiable, and has a unique constrained

minimizer x∗ on R
d, such that f ′′(x∗) is invertible and that the third derivatives of f are uniformly

bounded. Thus, using a Taylor expansion, there exists a constant c such that

1

2
(x− x∗)

⊤f ′′(x∗)(x− x∗) 6 c⇒ f ′′(x) <
1

2
f ′′(x∗).

This implies that locally around x∗ the function is strongly-convex. Moreover, another consequence
is that a bound f(x) − f(x∗) 6 c/2 implies that we stay in the region of strong-convexity 1

2 (x −
x∗)

⊤f ′′(x∗)(x − x∗) 6 c. Indeed, using the Taylor formula with integral remainder, for 1
2 (x −

x∗)
⊤f ′′(x∗)(x− x∗) 6 c (where the lower bound on Hessians above holds), we have f(x)− f(x∗) >

1
4 (x− x∗)

⊤f ′′(x∗)(x− x∗), and thus f(x)− f(x∗) 6 c/2 is incompatible with 1
2 (x− x∗)

⊤f ′′(x∗)(x−
x∗) > c.

Thus, if we have some decreasing rate εk for f(xk) − f(x∗), then, asymptotically, the quadratic
Taylor expansion of f around x∗ is asymptotically valid, and thus up to negligible terms:

f(x
(1)
k )− f(x∗) =

1

2
(x

(1)
k − x∗)

⊤f ′′(x∗)(x
(1)
k − x∗)

=
1

2
(xk − 2xk/2 − x∗)

⊤f ′′(x∗)((xk − 2xk/2 − x∗)

6 (xk − x∗)
⊤f ′′(x∗)(xk − x∗) + 4(xk/2 − x∗)

⊤f ′′(x∗)(xk/2 − x∗)

6 2εk + 8εk/2 6 10εk/2.

We thus obtain in the worst case a constant factor approximation when using Richardson extrapo-
lation.

B Asymptotic expansion for averaged gradient descent

In this particular case of unconstrained gradient descent, f(xk)− f(x∗) 6
1
γk‖x0 − x∗‖2 (Nesterov,

2013), this implies from Appendix A, that for k larger than some k0, all iterates are such that
f ′′(xk) <

1
2f

′′(x∗), and thus we are in the strongly convex case, where ‖xk − x∗‖ 6 c′ρk, where c′, ρ
depend on the lowest eigenvalue µ of f ′′(x∗) as c

′ = ‖xk0
− x∗‖ρ−k0 and ρ = (1− γµ/2).

Thus, with x̄k = 1
k

∑k−1
i=0 xi, k(x̄k − x∞) tends to

∑∞
i=0(xi − x∗) when k → +∞ (since the series

is convergent), and

k(x̄k − x∗)−
∞
∑

i=0

(xi − x∗) = −
∞
∑

i=k

(xi − x∗),

leading to k(x̄k − x∗)−
∑∞

i=0(xi − x∗) = O(ρk), and thus, with ∆ =
∑∞

i=0(xi − x∗) (which is hard
to compute a priori),

x̄k = x∗ +
1

k
∆+O(ρk).

C Asymptotic expansion for Frank-Wolfe

We consider the step-sizes ρk = 1
k and ρk = 2

k+1 , for which the respective convergence rates for

f(xk) − f(x∗) are of the form c
k and c log k

k , for constants c depending on the smoothness of f and
the diameter of the compact set (see, e.g., Jaggi, 2013). When running Frank-Wolfe (with any of
the classical versions with open-loop step-sizes), we thus have f(xk) − f(x∗) = O((log k)β/k) with
β ∈ {0, 1}, and, following the same reasoning as in Appendix B, xk has to converge to x∗ at rate
xk − x∗ = O((log k)β/2/

√
k).
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Because of affine invariance of the Frank-Wolfe algorithm, we can assume without loss of gener-
ality that f ′′(x∗) = I.

The assumption which is made implies that there exists σ > 0 such that the ball of center x∗ and
radius σ intersected with the affine hull of y1, . . . , ym is included in the convex hull of y1, . . . , ym, as
well α ∈ (0, 1) such that if cos(f ′(x∗), z) > 1− α, then miny∈K z⊤y is attained only by elements of
the convex hull of y1, . . . , ym.

Thus, for k large enough, that is greater than some k0 (which can be quantified from σ, α and
other quantities), all elements of argminy∈K f ′(xk−1)

⊤y are in the convex hull of y1, . . . , ym, that
is, only the correct extreme points are selected. Denoting Π the orthogonal projection on the span
of y1 − x∗, . . . , ym − x∗, we have:

xk = (1− ρk)xk−1 + ρkx̄k where x̄k ∈ argmin
y∈K

f ′(xk−1)
⊤y,

and thus, subtracting x∗:

xk − x∗ = (1− ρk)(xk−1 − x∗) + ρk(x̄k − x∗),

leading to, using the projections Π and I −Π:

Π(xk − x∗) = (1− ρk)Π(xk−1 − x∗) + ρk(x̄k − x∗),

and, because x̄k − x∗ is in the span of y1 − x∗, . . . , ym − x∗,

(I −Π)(xk − x∗) = (1− ρk)(I −Π)(xk−1 − x∗).

We now consider these two terms separately.

Convergence of (I −Π)(xk − x∗). For ρk = 2
k+1 , we have, in closed form for k > k0:

(I −Π)(xk − x∗) =
k − 1

k + 1
(I −Π)(xk−1 − x∗) =

k0(k0 + 1)

k(k + 1)
(I −Π)(xk0

− x∗).

For ρk = 1
k , we have:

(I −Π)(xk − x∗) =
k − 1

k
(I −Π)(xk−1 − x∗) =

k0
k
(I −Π)(xk0

− x∗).

Convergence of Π(xk − x∗). We now look at the convergence of Π(xk − x∗). We have

‖Π(xk − x∗)‖2 = ‖(1− ρk)Π(xk−1 − x∗) + ρk(x̄k − x∗)‖2

= (1− ρk)
2‖Π(xk−1 − x∗)‖2 + ρ2k‖x̄k − x∗‖2 + 2(1− ρk)ρk(x̄k − x∗)

⊤Π(xk−1 − x∗).

Because of the ball assumption (that is the existence of a ball around x∗ that is contained in the
supporting face of K), we have

f ′(xk−1)
⊤(xk−1 − x̄k) = max

y∈K

f ′(xk−1)
⊤(xk−1 − y) > f ′(xk−1)

⊤(xk−1 − x∗) + ‖Πf ′(xk−1)‖σ,

which leads to
f ′(xk−1)

⊤(x∗ − x̄k) > ‖Πf ′(xk−1)‖σ.
Moreover, using a Taylor expansion with f ′′(x∗) = I, we have f ′(xk−1) = f ′(x∗)+f

′′(x∗)(xk−1−
x∗) + O((log k)β/k) = f ′(x∗) + (xk−1 − x∗) + O((log k)β/k). Moreover, by optimality of x∗,
f ′(x∗)

⊤(x̄k − x∗) = 0. Therefore we have, for ρk = O(1/k):

‖Πxk − x∗‖2 6 (1− ρk)
2‖Πxk−1 − x∗‖2 + ρ2kdiam(K)2 − 2(1− ρk)ρk‖Πf ′(xk−1)‖σ +O((log k)β/k2)

6 (1− ρk)
2‖Πxk−1 − x∗‖2 − 2(1− ρk)ρk‖Πxk−1 − x∗‖σ +O((log k)β/k2).
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For ρk = 1/k, we get

k2‖Πxk − x∗‖2 6 (k − 1)2‖Πxk−1 − x∗‖2 − 2
√

(k − 1)‖Πxk−1 − x∗‖2σ +O(log k).

For ρk = 2/(k + 1), we get

k2‖Πxk − x∗‖2 6 (k − 1)2‖Πxk−1 − x∗‖2 − 2
√

(k − 1)‖Πxk−1 − x∗‖2σ +O(1).

We then can use the following simple lemma on sequences2: if uk > 0 such that u0 = 0 and

uk 6 uk−1 −A
√
uk−1 +Bvk−1 for (vk) non-decreasing and positive, then uk 6 B2

A2 v
2
k +Bvk.

This leads to a bound in O(1) for k2‖Πxk − x∗‖2 for ρk = 2/(k + 1), and in O((log k)2) for
ρk = 1/k.

Note that this is similar to the proof of the convergence of Frank-Wolfe algorithms to an in-
terior point of the feasible set, for which we have a rate of convergence of f(xk) − f(x∗) =
O(1/k2) (Chen et al., 2010).

Putting things together. We then have for ρk = 1
k ,

xk = x∗ +
k0
k
(I −Π)xk0

+O((log k)2/k2),

which leads to f(xk)− f(x∗) =
k0

k f
′(x∗)

⊤(I − Π)xk0
+O((log k)2/k2), which can be put back into

the original bound, to obtain the bound without the logarithmic factor (since we have now replaced
O(log(k)/k) by O((log k)2/k2) = o(1/k) in the start of the proof). The dependence in k can here
lead to an acceleration.

For ρk = 2
k+1 ,

xk = x∗ +
k0(k0 + 1)

k(k + 1)
(I −Π)xk0

+O(1/k2),

which leads to f(xk) − f(x∗) =
k0(k0+1)
k(k+1) f

′(x∗)
⊤(I − Π)xk0

+ O(1/k2). The dependence in k does

not lead to an acceleration.
Note that the terms in O(1/k2) are not amenable to Richardson extrapolation because they are

oscillating.

D Nesterov smoothing

We denote by xλ the minimizer of h(x) + gλ(x), and ηλ the corresponding dual variable. The dual
variable ηλ is unique because of the strong-convexity of ϕ, while the primal variable is unique due
to the same reasoning as in Appendix A (when λ tends to zero, xλ has to be close to x∗, and in the
neighborhood of x∗, h is strongly-convex).

The primal problem is

min
x∈Rd

h(x) + λϕ∗
(Ax− b

λ

)

,

while the dual problem is
max
η∈∆m

−λϕ(η) − h∗(−A⊤η)− η⊤b.

2The proof is by induction. This is true for k = 0. If this is true for k − 1, then either (a) uk−1 > B
2

A2
vk−1,

then uk 6 uk−1 6 B
2

A2
v2
k
+ Bvk because vk−1 6 vk , or (b) uk−1 6 B

2

A2
vk−1 and then uk 6 uk−1 + Bvk−1 6

B
2

A2
v2
k−1

+ Bvk−1 6 B
2

A2
v2
k
+ Bvk .
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The primal and dual solutions xλ and ηλ are related through duality for ϕ, that is,

ηλ = ∂ϕ∗
(Axλ − b

λ

)

,

and through duality for h, that is,
xλ = ∂h∗(−A⊤ηλ).

Since we consider functions ϕ which are uniformly bounded, then we know that f(xλ)−f(x∗) = O(λ)
and thus because the function is locally strongly convex, we have: xλ − x∗ = O(λ1/2).

D.1 Quadratic penalty

With a quadratic penalty, and small enough λ, the solution ηλ will have the same sparsity pattern,
using standard techniques from active set methods Nocedal and Wright (2006)—that is, show that
the dual solution constrained to the same active set leads to a globally optimal primal/dual solution.

Moreover, because, once restricted to I, the dual function is locally strongly convex, and because
ϕ is bounded, the deviation in dual function values is less than O(λ) and thus ηλ − η∗ = O(λ1/2)
(which is a bound we are going to improve below).

The optimality conditions for the dual problem become (stationarity with respect to ηI):

0 = −λ(ηλ)I +AI∂h
∗(−A⊤

I (ηλ)I)− bI .

Since h is twice differentiable at x∗, h
′′(x∗) is invertible, and x∗ ∈ ∂h∗(−A⊤η∗), by the implicit

function theorem, h∗ is twice differentiable at −A⊤η∗, and its Hessian is h′′(x∗)
−1. We can thus

further expand the optimality condition above as

0 = −λ(ηλ)I +AI∂h
∗(−A⊤

I (η∗)I)−AI∂
2h∗(−A⊤

I (η∗)I)A
⊤
I ((ηλ)I − (η∗)I)− bI +O(‖ηλ − η∗‖2).

Since ∂2h∗(−A⊤
I (η∗)I) = h′′(x∗)

−1 and bI = AI∂h
∗(−A⊤

I (η∗)I) (because of optimality of x∗ and
η∗), this leads to 0 = −λ(ηλ)I + AIh

′′(x∗)
−1A⊤

I ((ηλ)I − (η∗)I) + O(‖ηλ − η∗‖2). Since we know
already that ηλ − η∗ = O(λ1/2), this leads to ηλ − η∗ = O(λ), which in turn leads to

(ηλ)I = (η∗)I − λ
[

AIh
′′(x∗)

−1A⊤
I

]−1
(η∗)I +O(λ2),

which is the desired expansion for the dual variable. We then get:

xλ = ∂h∗(−A⊤ηλ) = x∗ + λh′′(x∗)
−1A⊤

I

[

AIh
′′(x∗)

−1A⊤
I

]−1
(η∗)I +O(λ2) = x∗ + λ∆+O(λ2).

Thus, 2xλ − x2λ = O(λ2), and

h(xλ) + g(xλ) = h(x∗) + g(x∗) + λh′(x∗)
⊤∆+ g(x∗ + λ∆)− g(x∗) +O(λ2)

= h(x∗) + g(x∗) +
[

g(x∗ + λ∆)− g(x∗) + λh′(x∗)
⊤∆

]

+O(λ2).

Since by optimality h′(x∗) ∈ −∂g(x∗), the term
[

g(x∗ + λ∆) − g(x∗) + λh′(x∗)
⊤∆

]

resembles
a Taylor expansion of g at x∗, but in general, we cannot have a term in O(λ2) because of the
non-smoothness of g. For example, for the ℓ1-norm, we get

[

g(x∗ + λ∆) − g(x∗) + λf ′(x∗)
⊤∆

]

=
λ‖∆Ic‖1 + λf ′(x∗)

⊤∆, is not zero, and only O(λ).
For Richardson extrapolation, we get:

h(2xλ − x2λ) + g(2xλ − x2λ) = h(x∗) + g(x∗) +O(λ2),

and thus an improvement from O(λ) to O(λ2).
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D.2 Entropic penalty

For ϕ(η) =
∑m

i=1

{

ηi log ηi − ηi
}

, we have ϕ′(η)i = log ηi, and we cannot use anymore thet fact that
ηλ has the same sparsity pattern as η∗, since all components of ηλ are non zero. However, since the
entropy is bounded over the simplex, we still have ηλ − η∗ = O(λ1/2), and from the same reasoning
as for the quadratic penalty, xλ − x∗ = O(λ1/2).

Thus, by writing primal-dual optimality conditions, we get:

−λ log ηλ +Axλ − b = 0

h′(xλ) +A⊤ηλ = 0.

This implies that for i /∈ I,
log ηi ∼ (Ax∗ − b)i − sup

j
(Ax∗ − bj),

which is strictly negative by assumption. Thus (ηIc)λ = O(ρ−1/λ) for a certain ρ ∈ (0, 1). We now
show that (ηI)λ = (η∗)I + λ∆+O(λ2). From the optimality conditions, we get:

0 = −λ(log(η)λ)I +AI∂h
∗(−A⊤ηλ)− bI ,

which leads to, with an additional Taylor expansion,

0 = −λ(log(η)∗)I+AI∂h
∗(−A⊤

I (η∗)I)−AI∂
2h∗(−A⊤

I (η∗)I)A
⊤(ηλ−η∗)−bI+O(‖ηλ−η∗‖2)+O(λ‖ηλ−η∗‖).

Since ∂2h∗(−A⊤
I (η∗)I) = h′′(x∗)

−1 and bI = AI∂h
∗(−A⊤

I (η∗)I) (because of optimality of x∗ and
η∗), with moreover (ηIc)λ = O(ρ−1/λ), this leads to

−λ(log(η)∗)I−AIh
′′(x∗)

−1A⊤
I ((ηλ)I−(η∗)I) = O(‖(ηλ)I−(η∗)I‖2)+O(λ‖(ηλ)I−(η∗)I‖)+O(ρ−1/λ),

which in turn leads to

(ηλ)I = (η∗)I − λ
[

AIf
′′(x∗)

−1A⊤
I

]−1
(log(η∗))I +O(λ2),

which is the desired expansion for the dual variable. We then get:

xλ = ∂h∗(−A⊤ηλ) = x∗ + λh′′(x∗)
−1A⊤

I

[

AIh
′′(x∗)

−1A⊤
I

]−1
(log(η∗))I +O(λ2) = x∗ + λ∆+O(λ2).

Note that following Cominetti and Dussault (1994), we could get a single proof for all ϕ(η) =
∑n

i=1 ψ(ηi), with replacing log η∗ by ψ′(η∗), with a condition to ensure that the zero variables lead
to vanishing terms.

D.3 Higher-order expansions

In order to use m-step Richardson extrapolation, we need to have a bound of the form

xλ = x∗ +
m
∑

i=1

∆iλi +O(λm+1).

We only consider for simplicity the quadratic penalty, where we simply need an expansion of (ηλ)I
(minor modifications would lead to a proof for the entropic penalty since there ηIc is exponentially
small).

The expansion can be obtained from the implicit function theorem applied to the equation
0 = −λ(ηλ)I + AI∂h

∗(−A⊤
I (ηλ)I) − bI , which is of the form H((ηλ)I , λ) = 0, where H has high-

order derivatives as long as h∗ is sufficiently differentiable, and the partial derivative with respect
to (ηλ)I is an invertible matrix. The high-order differentiability of h∗ around −A⊤η∗ comes from
the implicit function theorem, applied to the definition of the gradient of the Fenchel conjugate.
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Figure 9: Richardson extrapolation for Nesterov smoothing on a penalized Lasso problem, with
regularization by the entropic penalty. Left: dependence of f(xλ) − f(x∗) on λ, for Richardson
extrapolation of order m, we indeed recover a slope of m+1 in the log-log plot. Right: Optimization
error vs. number of iterations; where we go from a slope of -1 (blue curves) to improved slopes of
−4/3 (red curve) and −8/5 (black curve). See text for details.

E Ridge regression

E.1 Standard extrapolation

We have ŷλ = K(K + nλI)−1y = Ĥλy, and thus 2ŷλ − ŷ2λ = [(2Ĥλ − Ĥ2λ)]y, and we can compute
explicitly

2Ĥλ − Ĥ2λ − I = 2K(K + nλI)−1 −K(K + 2nλI)−1 − I

= 2nλ
[

(K + 2nλI)−1 − (K + nλI)−1
]

= −2(nλ)2(K + nλI)−1(K + 2nλI)−1.

Thus,

bias(2Ĥλ − Ĥ2λ) 6 4n3λ4z⊤(K + nλI)−4z

variance(2Ĥλ − Ĥ2λ) 6
σ2

n

[

4 tr[K(K + nλI)−1]2 + tr[K(K + 2nλI)−1]2
]

6
5σ2

n
tr[K(K + nλI)−1]2.

We have bias(2Ĥλ− Ĥ2λ) 6 4bias(Ĥλ) and variance(2Ĥλ− Ĥ2λ) 6 5variance(Ĥλ), so the two terms
never incur more than a constant factor.

However, the bias can be much improved. Following Bach (2013, Section 4.3), if the eigenvalues
of K are Θ(nµi) and the coordinates of z in the eigenbasis of K are Θ(

√
nνi), we can compute

equivalents (up to constant terms) of the bias and variance terms, for different types of decays. See

Table 1 with m = 0. Since the optimal predictive performance is (σ
2

n )1−1/(2δ), the only potential
gains to go from m = 0 (no extrapolation) to m > 0 (extrapolation) occur when (νi) has a fast
decay (that is, first, third and fifth lines).

For the first line in Table 1, we will show that the bias term for Richardson extrapolation is of
the order λ4 if 2δ > 8β+1, and equal to λ(2δ−1)/2β when 2δ < 8β+1. We will thus increase the
regime of validity of the bias term that leads to optimal performance, from 2δ<4β+1 to 2δ<8β+1.
More generally, as we show below in Appendix E.2, the bias for m-step extrapolation is proportional
to n2m+1λ2m+2z⊤(K + nλI)−2m−2z, and we bound it directly following closely the computations
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(µi) (νi) var. bias optimal λ pred. perf. condition

i−2β i−2δ σ2

n λ
−1/2β λ2(m+1) (σ

2

n )1/(2(m+1)+1/2β) (σ
2

n )1−1/(4(m+1)β+1) if 2δ>4(m+ 1)β+1

i−2β i−2δ σ2

n λ
−1/2β λ(2δ−1)/2β (σ

2

n )β/δ (σ
2

n )1−1/(2δ) if 2δ<4(m+ 1)β+1

i−2β e−κi σ2

n λ
−1/2β λ2(m+1) (σ

2

n )1/(2(m+1)+1/2β) (σ
2

n )1−1/(4(m+1)β+1)

e−ρi i−2δ σ2

n log 1
λ (log 1

λ)
1−2δ exp(−(σ

2

n )−1/(2δ)) (σ
2

n )1−1/(2δ)

e−ρi e−κi σ2

n log 1
λ λ2(m+1) (σ

2

n )1/2 (σ
2

n ) log( n
σ2 ) if κ > 2ρ

e−ρi e−κi σ2

n log 1
λ λκ/ρ (σ

2

n )ρ/κ (σ
2

n ) log( n
σ2 ) if κ < 2ρ

Table 1: Variance, bias, optimal regularization parameter, corresponding prediction performance,
for several decays of eigenvalues and signal coefficients, and m-th order Richardson extrapolation
(we always assume δ > 1/2, β > 1/2, ρ > 0, κ > 0, to make the series summable). All entries
are functions of i, n or λ and are only asymptotically bounded below and above, i.e., correspond
to the asymptotic notation Θ(·). Adapted from Bach (2013), changes due to potential Richardson
extrapolation are highlighted in red.

of Bach (2013, Appendix C.2):

n2m+1λ2m+2z⊤(K + nλI)−2m−2z = n2m+2λ2m+2
n
∑

i=1

νi
(nµi + nλ)2m+2

= λ2m+2
n
∑

i=1

νi
(µi + λ)2m+2

= λ2m+2
n
∑

i=1

i−2δ

(i−2β + λ)4
6 2λ2m+2

∫ n

1

t−2δ

(t−2β + λ)2m+2
dt

= 2λ2m+2

∫ n

1

t4(m+1)β−2δ

(1 + λt2β)2m+2
dt.

If 2δ − 4(m+ 1)β > 1, then we have an upper bound of 2λ2m+2

∫ n

1

t4(m+1)β−2δdt = O(λ2m+2).

If 2δ − 4(m+ 1)β < 1, then we can further bound

2λ2m+2

∫ n

1

t4(m+1)β−2δ

(1 + λt2β)2m+2
dt = 2λ2m+2

∫ λn2β

λ

[(u/λ)1/2β ]4(m+1)β−2δ+1

(1 + u)2m+2

1

2β
du

with the change of variable u = λt2β ,

= 2λ2m+2−(2m+2)+δ/β−1/(2β)

∫ λn2β

λ

u(4(m+1)β−2δ+1))/((4(m+1)β)

(1 + u)2m+2

1

2β
du

= O(λ(2δ−1)/(2β)),

because the integral in convergent. The bias term for the third and fifth lines of Table 1 needs
modifications in exactly the same way the corresponding proof from Bach (2013, Appendix C.2).

In order to find the optimal regularization parameter, we minimize with respect to λ, that leads
to λ2(m+1)+1/2β ∝ (σ2/n), leading to an optimal prediction performance proportional to (σ2/n)τ ,

with τ = 2(m+1)

2(m+1)+ 1

2β

= 1−
1

2β

2(m+1)+ 1

2β

= 1− 1
4(m+1)β+1 .

E.2 Multiple extrapolation steps

Using m steps of Richardson interpolation, we prove that we can get this regime as long as 2δ <
4(m+ 1)β+1, and thus with no limit if m is large enough.
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We thus consider

Ĥ
(m)
λ =

m+1
∑

i=1

α
(m)
i Ĥiλ =

m+1
∑

i=1

α
(m)
i K(K + nλiI)−1 = I − nλ

m+1
∑

i=1

iα
(m)
i (K + nλiI)−1,

using
∑m+1

i=1 α
(m)
i = 1. We then use

(K + nλiI)−1

= (K + nλI)−1/2
[

I + nλ(i− 1)(K + λI)−1
]−1

(K + nλI)−1/2

= (K + nλI)−1/2
m−1
∑

j=0

(−1)j
[

nλ(K + nλ(i − 1)I)−1
]j
(K + nλI)−1/2

+(−1)m(K + nλI)−1/2
[

nλ(i − 1)(K + nλI)−1
]m[

I + nλ(K + λ(i − 1)I)−1
]−1

(K + nλI)−1/2

=
m−1
∑

j=0

(−1)j(nλ)j(K + nλI)−j−1(i− 1)j + (−1)m(nλ)m(K + nλI)−m(i− 1)m(K + nλiI)−1,

where we have used the sum of a geometric series, with A = nλ(i− 1)(K + λI)−1:

(I +A)−1 =

m−1
∑

j=0

(−1)jAj + (−1)m(I +A)−1Am.

Putting things together, we get

Ĥ
(m)
λ − I = −nλ

m+1
∑

i=1

iα
(m)
i

m−1
∑

j=0

(−1)j(nλ)j(K + nλI)−j−1(i− 1)j

−nλ
m+1
∑

i=1

iα
(m)
i (−1)m(nλ)m(K + nλI)−m(i − 1)m(K + nλiI)−1.

The first term is exactly zero by definition of the Richardson weights α
(m)
i , and we are left with

(−1)m+1
[

Ĥ
(m)
λ − I

]

= (nλ)m+1
m+1
∑

i=1

iα
(m)
i (i− 1)m(K + nλI)−m(K + nλiI)−1.

Thus
(nλ)−m−1(K + nλI)−m/2−1/2

[

Ĥ
(m)
λ − I

]

(K + nλI)−m/2−1/2

has an operator norm bounded by a constant that depends on m (and not on other quantities like
λ or n). This allows to bound the bias as

bias(Ĥ
(m)
λ ) =

1

n
‖(Ĥ(m)

λ − I)z‖2 6 �mn
2m+1λ2m+2z⊤(K + nλI)−2m−2z.

Similarly to the case m = 1, (Ĥ
(m)
λ )2 is upper-bounded by a sum of matrices which are all less than

K2(K + nλI)−2 (for the order between symmetric matrices), leading to a bound on the variance
term as:

variance(Ĥ
(m)
λ ) = σ2 tr[Ĥ

(m)
λ ]2 6 △m

σ2

n
tr[K(K + nλI)−1]2.

Here �m and △m are constants that could be explicitly computed. As shown in the section, these
constants have to diverge when m tends to +∞.
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E.3 Explicit expression

Expression for α
(m)
i . We first give a proof for the explicit expression for α

(m)
i . One approach

is to solve Vandermonde matrices like done by Pagès (2007) in a similar context, but given the
conjecture, we can simply check that it satisfies Eq. (1) and Eq. (2).

For Eq. (1), we have:

m+1
∑

i=1

(−1)i−1

(

m+ 1

i

)

= 1−
m+1
∑

i=0

(−1)i
(

m+ 1

i

)

= 0,

using the binomial formula. For Eq. (2), we have:

m+1
∑

i=1

(−1)i−1

(

m+ 1

i

)

i =

m+1
∑

i=1

(−1)i−1(m+ 1)

(

m

i− 1

)

= (m+ 1)× 0 = 0,

and, more generally for any j ∈ {1, . . . ,m},
m+1
∑

i=j

(−1)i−1

(

m+ 1

i

)

i(i− 1) · · · (i− j + 1) =
m+1
∑

i=j

(−1)i−1(m+ 1)m · · · (m− j + 2)

(

m− j + 1

i− j

)

= 0,

also using the binomial formula. This shows that
∑m+1

i=j (−1)i−1
(

m+1
i

)

ij = 0 for all j ∈ {1, . . . ,m},
which finishes the proof of the formula for α

(m)
i .

Expression for the smoothing matrix. We can now provide an explicit expression for the
extrapolated smoothing matrix. We have:

Ĥ
(m)
λ =

m+1
∑

i=1

α
(m)
i Ĥiλ

=

m+1
∑

i=1

α
(m)
i K(K + nλiI)−1 = I − nλ

m+1
∑

i=1

iα
(m)
i (K + nλiI)−1

= I − nλ

m+1
∑

i=1

i(−1)i−1

(

m+ 1

i

)

(K + nλiI)−1 = s(K/(nλ)),

where s : Rn×n → R
n×n is a spectral function defined on symmetric matrices from a function (note

the classical overloaded notation) s : R → R, by keeping eigenvectors unchanged and applying s
to eigenvalues (Golub and Van Loan, 1989, Chapter 11). We have, using a representation by an
integral and the binomial formula:

s(µ) = 1−
m+1
∑

i=1

i(−1)i−1

(

m+ 1

i

)

1

µ+ i
= 1−

m+1
∑

i=1

(m+ 1)(−1)i−1

(

m

i− 1

)
∫ 1

0

tµ+i−1dt

= 1− (m+ 1)

∫ 1

0

tµ
[

m+1
∑

i=1

(−1)i−1

(

m

i− 1

)

ti−1
]

dt

= 1− (m+ 1)

∫ 1

0

tµ(1 − t)mdt = 1− (m+ 1)
Γ(1 + µ)Γ(1 +m)

Γ(2 +m+ µ)
,

using the expression of the Beta function in term of the Gamma function Γ (Abramowitz et al.,
1988). We can simply the expression as follows:

s(µ) = 1− (m+ 1)!

(µ+ 1)(µ+ 2) · · · (µ+m+ 1)
.
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This provides a new closed-form expression for Richardson extrapolation, as well as it provides an

equivalent when m tends to +∞, as s(µ) ∼ 1 − Γ(1+µ)
mµ . Therefore, when m → +∞, and µ > 0,

then s(µ) tends to one (which implies that the constants �m and △m cannot remain bounded).
Therefore, the variance term converges to σ2, but very slowly: the method does not blow up, but
does not learn either.
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