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Abstract 
Developing an accurate and reliable multi-step ahead prediction model is a key problem in many 

Prognostics and Health Management (PHM) applications. Inevitably, the further one attempts to predict 

into the future, the harder it is to achieve an accurate and stable prediction due to increasing uncertainty 

and error accumulation. In this paper, we address this problem by proposing a prediction model based 

on Long Short-Term Memory (LSTM), a deep neural network developed for dealing with the long-

term dependencies in time-series data. Our proposed prediction model also tackles two additional 

issues. Firstly, the hyperparameters of the proposed model are automatically tuned by a Bayesian 

optimization algorithm, called Tree-structured Parzen Estimator (TPE). Secondly, the proposed model 

allows assessing the uncertainty on the prediction. To validate the performance of the proposed model, 

a case study considering steam generator data acquired from different French nuclear power plants 

(NPPs) is carried out. Alternative prediction models are also considered for comparison purposes.      

 

Keywords 
prognostics and health management, time-series forecasting, multi-step ahead prediction, long-short 

term memory, nuclear power plant prognostics, steam generator.  
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Nomenclature 

 

Abbreviations 

AI Artificial intelligence 

ANN Artificial neural network 

ARMA Autoregressive moving average 

ARIMA Autoregressive integrated moving average 

BO Bayesian optimization 

CNN Convolutional neural network 

DBN Deep belief network 

EDF Électricité de France 

EI Expected improvement 

FNN False nearest neighbor 

FIS Fuzzy interference system 

LSTM Long short-term memory 

MAPE Mean absolute percentage error 

MASE Mean absolute scaled error 

MC Monte Carlo 

MIMO Multi-input multi-output 

MLP-MIMO Multi-output multilayer perceptron neural network using MIMO strategy 

MLP-REC Single-input multilayer perceptron neural network using recursive strategy 

MSE Mean square error 

NF Neuro-fuzzy 

NPP Nuclear power plant 

PHM Prognostics and health management 

PWR Pressurized water reactor 

RBM Restricted Boltzmann machine 

RMSE Root mean square error 

RNN Recurrent neural network 

RS Random search 

RUL Remaining useful life 

SG Steam generator 

SVM Support vector machine 

SVR-MIMO Multi-Input Multi-Output support vector regression using MIMO strategy 

SVR-REC Single-input support vector regression using recursive strategy 

TPE Tree-structured Parzen estimator 

WRL Wide range level 
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Symbols 

 output of the LSTM cell state at time t  

 potential values of the LSTM cell state at time t 

d embedding dimension 

 prediction model 

 one-step ahead prediction model 

 direct prediction model for the horizon time t+h 

 MIMO prediction model 

 output of the LSTM forget gate at time t  

 output of the repeating network module of a LSTM at time t  

H prediction horizon  

 output of the LSTM input gate at time t  

L number of hidden layers in the LSTM network 

max_iter number of optimization iterations 

Ninit number of TPE startup iterations 

NMC number of MC dropout realizations 

 output of the LSTM output gate at time t  

 probability of being in the bad group in the TPE algorithm  

 probability of being in the good group in the TPE algorithm 

r(l) vector of independent Bernoulli random variables at layer l of the LSTM network 

t time t  

 observed value at time t  

 predicted value at time t  

y(l) output vector of the hidden layer l of the LSTM network  

ỹ(l) thinned output vector of the hidden layer l obtained by using dropout 

z(l) input vector of the hidden layer l of the LSTM network  

 weight and bias of the LSTM cell state, respectively  

 weight and bias of the LSTM forget gate, respectively 

 weight and bias of the LSTM input gate, respectively  

 weight and bias of the LSTM output gate, respectively  

 a network layer in the repeating network module of a LSTM 
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 hyperparameter set  

 selected hyperparameter set  

 
 
1 Introduction 

In recent years, prognostics and health management (PHM) has attracted increasing attention from 

academic researchers and practitioners in different industrial sectors. The primary characteristic of 

PHM is that it can enable estimation and prediction of the health state of components and systems, by 

making use of past, present and future knowledge, information and data on their operations, and this 

capability can be used to identify malfunctions and anticipate failure patterns [1]. This allows 

estimating the remaining useful life (RUL) of components and systems, and scheduling the maintenance 

interventions for the most opportune and convenient instances. By so doing, the availability and 

reliability of the assets can be maximized, with reduced unscheduled shutdowns and maintenance costs.   

Developing models for efficient PHM is a challenging task, with several issues to be addressed. 

Among them, determining an appropriate horizon for the prediction, i.e. how far into the future the 

model should predict and with what accuracy, is crucial and application dependent, in the sense that it 

depends on the use that is made of the prediction, typically for taking some decisions [2]. For instance, 

the selected horizon should be suitably long to allow that maintenance actions be timely carried out. 

This often requires long-term predictions in practice. However, long-term predictions are known to 

suffer from increasing uncertainties, which may arise from the accumulation of prediction errors or 

from the complex interactions and correlations in the underlying process at different time steps. This 

has challenged and somewhat limited the research on long-term prognostics for many years [3], [4]. To 

address this problem, the main focus of this paper is the development of a prognostic framework for 

the long-term prediction of parameters relevant to the operation of the steam generators (SGs) in nuclear 

power plants (NPPs).  

Depending on the information and data available for the model development, prognostic 

approaches can be divided into two main categories: model-based and data-driven approaches [5]. 

Model-based approaches predict the degradation evolution by formalizing it into physical analytical or 

q

*q
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computational models. These approaches are used in applications where the model of the degradation 

process exists and is not too complicated, e.g. models of fatigue crack growth [6], [7], of capacity 

degradation in Lithium-ion batteries [8], [9]. Alternatively, data-driven approaches utilize condition 

monitoring data collected from sensors to learn and predict the component or system behavior and 

degradation via statistical and artificial intelligent (AI) models, such as autoregressive integrated 

moving average (ARIMA) [10], artificial neural network (ANN) [11]–[14], neuro-fuzzy (NF) [2] and 

support vector machine (SVM) [15]–[17]. Due to the data-adaptive nature, data-driven approaches are 

quite appropriate for prognostic real-world applications where models are not available whereas 

obtaining condition monitoring data is becoming convenient with smart sensors.  

When applying data-driven approaches to prediction, models like ANN, NF and SVM are usually 

limited in extracting and utilizing the temporal information of the given data which is necessary for 

prediction purposes. More specifically, these approaches consider each time step independently and 

make the prediction as a static mapping, which often takes into account only the current state of the 

process [18]. Recently, a connectionist neural network model called recurrent neural network (RNN) 

has been proposed to account for the dynamics [19]. RNN is a network with feedback connections from 

the hidden and output layers to the preceding ones, by which the dynamics of sequential data can be 

captured and the memories of the previous patterns are retained via cycles in the network. In the last 

decade, RNNs have been extensively investigated for a variety of prognostic applications, including 

engine systems [20]–[23], lithium-ion batteries [24]–[26], rolling element bearings [27]–[30] and fuel 

cells [31], [32]. Zhang et al. [24] utilized a RNN to extract the long-term dependencies underlying in 

the battery capacity degradation process. The obtained results showed that RNN outperformed the 

classical data-driven models in prediction robustness and accuracy. In [30], the RNN model was 

modified with an incremental learning technique, which was then applied for predicting the long-term 

propagation of rolling element bearing degradation to failure. RNN has also been used in the 

construction of health indicators for generator bearings of wind turbines [33]. The obtained RNN-based 

health indicator showed its effectiveness for improving the prediction performance of the bearing 

RULs. 
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In this paper, a variational model of RNN, which is called long short-term memory (LSTM), is 

employed for developing a prognostic framework for SGs in NPPs. An important feature of the 

proposed framework is the ability to deal with a long-term prediction horizon. A multi-input multi-

output (MIMO) prediction strategy and LSTM network are integrated to predict the equipment health 

conditions for multiple steps ahead. The proposed framework also handles two practical problems in 

prediction model development. On one hand, the performance of the prediction model depends on the 

time-series data acquired from sensors: any anomalous or missing data that can degrade the 

performance should be dealt with. On the other hand, an optimal model setting for different available 

datasets is crucial to successfully apply the prediction model to practical problems. The effective 

handling of these two issues is another contribution of this work.  

In summary, the main contributions of this paper are as follows: 

(1) A data preprocessing module consisting of an outlier removal and a missing data imputation 

methods is introduced for filtering and preparing the data for the prediction task.  

(2) Automatic hyperparameter optimization based on the Tree-structured Parzen Estimator (TPE) 

algorithm is performed. The obtained results are compared to the conventional random search 

(RS) algorithm with respect to different data scenarios.   

(3) Dropout regularization and Monte Carlo (MC) techniques are integrated to assess the prediction 

uncertainty of the proposed model.  

(4) A case study using the data of SGs in French NPPs measured during the period 1992-2007 is 

carried out to evaluate the performance of the proposed LSTM-based framework for long-term 

prediction. To the authors’ knowledge, this is the first study using LSTM for the long-term 

prediction and used on NPP SGs. Other prediction models are considered for comparison 

purposes. 

The rest of the paper is organized as follows. Section 2 presents a brief introduction of time series 

prediction approaches. Section 3 introduces the LSTM neural network. The proposed multi-step ahead 

prediction model is presented in Section 4. Section 5 describes the experimental case study, and the 

obtained results and their discussion are presented in Section 6. Finally, Section 7 concludes the paper. 
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2 Time series prediction: background and related work 

Time series is a sequence of observations collected over time from a particular measured variable 

of an engineering component or system. In general, the main objectives of time series analysis are: 

characterization, modeling and prediction (also called forecasting) [34]. Firstly, characterization aims 

to extract inherent structural characteristics of the measured variable, e.g. temporal trend, variance and 

seasonality. Then, the extracted information may be used to formulate an appropriate model for 

capturing long-term behavior of the system (modeling), or to estimate the evolution of the variable in 

the future (prediction). This section presents a brief introduction of time series prediction approaches 

and further discusses the strategies for multi-step ahead prediction.  

2.1 Time series prediction 

The beginning of time series prediction might be set in 1927 when Yule [35] introduced the first 

autoregressive technique for predicting the annual number of sunspots. In that original work, the 

prediction of the next time step was estimated as a weighted sum of previous observations of the time 

series. This idea has become the basis of data-driven approaches for time series prediction since then.  

Among data-driven approaches, statistical models which attempt to express the future values as a 

linear function of the historical data have been popular and widely used in many applications of time 

series prediction, such as wind energy generation [36]–[39], weather forecasting [40]–[42], market 

demand forecasting [43], [44] and nuclear component prognostics [10]. Erdem and Shi [36] used an 

autoregressive moving average (ARMA) for predicting wind speed and direction. Kavasseri and 

Seetharamen [38] proposed a variant model of ARIMA which was called fractional-ARIMA in order 

to extract the long dependency features of the time series data and enhance the prediction accuracy over 

long-term horizons. In a nuclear application, Nguyen et al. [10] applied an ARIMA model to predict 

the long-term evolution of the tube supporting plate clogging degradation of NPP SGs for the first time, 

in which the predictions were performed up to 3 months ahead.  

Although statistical models have shown their notable prediction accuracy and flexibility in different 
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time series applications, one of their major drawbacks is the presumed linear form of the associated 

data, which has limited their applicability to many modern dynamic systems where the collected data 

are usually nonlinear and non-stationary [45], [46]. To address this problem, several machine learning 

algorithms have been employed in the time series prediction area, such as SVM [47]–[49], ANNs [50]–

[53] and fuzzy interference system (FIS) [54], [55]. Unlike statistical approaches, machine learning 

models can automatically learn arbitrary complex mappings between inputs and outputs directly from 

the historical data and perform accurate predictions without any assumption about the mapping 

functions required. In addition, another advantage of machine learning approaches is the recently rapid 

advancements of information science technologies, particularly Big Data and deep learning techniques, 

which are offering opportunities for new developments in time series analysis. Kuremoto et al. [56] 

proposed a deep belief network (DBN) with restricted Boltzmann machines (RBMs) to address 

problems of initialization and local optima in chaotic time series forecasting, which was shown to 

outperform conventional shallow learning models. Wang et al. [57] presented a prediction model for 

probabilistic wind power prediction based on a convolutional neural network (CNN) model to 

automatically extract deep invariant structures and hidden nonlinear features exhibited at separated 

frequency bands of the data. A specialized kind of deep neural networks proposed for sequential data 

analysis is RNNs, which aim to capture the dynamics of sequential data and be able to retain the 

memories of the previous patterns via cycles of feedback connections between the network layers [19]. 

Wang and Li [46] presented a hybrid model integrating a RNN model and an optimal feature extraction 

technique for multi-step ahead wind speed prediction. Likewise, Li et al. [58] utilized LSTM RNN for 

predicting 5 steps ahead of the wind speed time series.  

2.2 Multi-step ahead prediction strategies 

Given a univariate time series of the observations collected up to time t, , the main 

goal is to predict the H next observations , which can be formulated as below:  

 , (1) 

where f is the prediction model and d is the embedding dimension (or the number of lagged values). 

{ }1 2, ,..., tx x x

{ }ˆ , [1, ]t hx h H+ Î

{ }1 2 1 1ˆ ˆ ˆ, ,..., ( , ,..., )t t t H t t t dx x x f x x x+ + + - - +=
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Depending on the desired horizon H, a prediction method can be classified into short-, medium-, 

or long-term prediction. As aforementioned, the further in the future one attempts to predict, the harder 

it is to achieve an accurate prediction due to the increasing uncertainty and accumulation of errors. To 

address this problem, there are three popular prediction strategies, namely recursive, direct and MIMO 

predictions, which are described as follows [2].    

2.2.1 Recursive prediction strategy 

The recursive strategy attempts to train a model focused solely on one-step ahead prediction: 

  (2) 

where fR is the one-step ahead prediction model.  

After the model is trained, the predictions are recursively estimated. In other words, intermediate 

predictions are used as inputs for predicting next values until the prediction at the time horizon H, , 

is obtained: 

  (3) 

An advantage of the recursive strategy is its low computational cost since only one single model is 

required for training. However, the prediction errors of the previous steps can easily accumulate in the 

next predictions, resulting in the decrease of accuracy in the long run. Besides, this prediction strategy 

does not take into account the data dependencies among time steps.    

2.2.2 Direct prediction strategy 

In contrast to the recursive strategy which uses a single model, the direct strategy [59] constructs a 

set of H different models for different time steps and the same input data are used for feeding all the 

models as below: 

  (4) 

1 1 1ˆ ( , ,..., )t R t t t dx f x x x+ - - +=

ˆt Hx +

1 1 1

2 1 2

1 2 1
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where  is the direct prediction model tuned to perform the prediction  at time  . 

In the direct strategy, each prediction model is trained and dedicated to a certain horizon, so the 

error accumulation can be avoided. However, training different prediction models will greatly increase 

the prediction complexity and time consumption, and, like the recursive strategy, the direct strategy 

does not take into account the dependencies among time-series observations.   

2.2.3 MIMO prediction strategy 

Unlike the recursive and direct approaches, the MIMO approach is a multiple output strategy, in 

which the output of the prediction model is a vector of future values predicted by using only one model 

[60]:   

  (5) 

where fMIMO is the multiple output prediction model. In this sense, the objective function during the 

model training is to simultaneously minimize the prediction errors on different horizons. By so doing, 

the MIMO strategy can preserve the temporal stochastic dependencies of sequential data, addressing 

the limitation of the recursive and direct approaches. On the other hand, the computational cost of the 

MIMO approach is less than that of the direct approach because it requires only one model to be trained. 

 

3 Long short-term memory (LSTM) 

3.1 Network architecture 

LSTM is a variant of RNNs developed for dealing with the long-term dependency problem, which 

is also known as “vanishing gradients” or “exploding gradients” problem [61]. In general, an LSTM 

consists of a chain of repeating network modules, in which each module contains four interacting layers, 

as illustrated in Fig. 1 [62].  

,D hf ˆt hx + , [1, ]t h h H+ Î

{ }1 2 1 1ˆ ˆ ˆ, ,..., ( , ,..., )t t t H MIMO t t t dx x x f x x x+ + + - - +=
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Fig. 1. The schematic of a repeating network module in a LSTM network. 

The key element of a LSTM network is the cell state C, which is depicted as the horizontal line 

running through the top of the diagram in Fig. 1. This cell state plays a role as a network memory, 

where information is added or removed via regulated structures called gates, which can optionally let 

information through. They are composed of a sigmoid neural network layer and a pointwise 

multiplication operation. An LSTM consists of three gates, including forget, input and output gates, in 

order to protect and control the cell state. Details on the LSTM procedure are described as follows.   

At time t, an input  is fed to the network. The forget gate first decides which information from 

the previous output  is discarded or kept, and then the output of the forget gate is calculated as:    

 , (6) 

where  are the input weights and bias of the forget gate, respectively,  is a nonlinear 

function (e.g. sigmoid function) and “ . ” means matrix multiplication.  

The next step is to determine which new information will be stored in the cell state, leading to the 

two following calculations. First, the input gate decides which states will be updated; then, a tanh layer 

generates a vector of new values  that could be added to the cell state, as follows: 

 , (7) 

 , (8) 

where  and  are the input weights and bias of the input gate and the cell state layer, 

respectively. The outputs obtained from the forget gate, input gate and tanh layer are, then, used to 

tx

1th -

[ ]( )1,t f t t ff W h x bs -×= +

( , )f fW b s

tC!

[ ]( )1, it ti ti W h x bs -×= +
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update the new cell state : 

 . (9) 

Finally, the network output  is generated by the output gate and a tanh function, as: 

 , (10) 

 , (11) 

where  are the input weights and bias of the output gate, respectively.  

3.2 Dropout regularization 

A well-known and critical problem of deep neural networks such as LSTM is overfitting [63]. That 

is, when the training data is limited, complicated mappings between the inputs and outputs that are 

learned by the network might be the result of sampling noise, which only exist in the training set but 

not in the real test set. One way to regularize such a network is averaging the outputs of all possible 

configurations of the parameters, in which each configuration is weighted by its posterior probability 

given by the training data [64]. This method can be applied only for simple or small networks. With 

large neural networks, the computation for training many different network architectures or training 

one architecture on different data sets is very expensive. Dropout is a technique that addresses this issue 

[64]. 

A motivation for dropout comes from a theory of sexual reproduction [65], in which new genes are 

naturally selected to spread throughout the population based on their competitiveness and less co-

adaptation which may reduce the chance of a new gene improving the fitness of an individual. Likewise, 

dropout aims to train each hidden unit in a neural network with a randomly chosen sample of other 

units. By dropping a unit out, we temporarily remove it from the network along with all its connections 

during the training process as illustrated in Fig. 2, in order to prevent units from high co-adaptation. By 

so doing, each hidden unit becomes more robust and is able to create useful features on its own without 

relying on other units, which helps the network avoid overfitting. 

tC

1t t t t tC C Cf i-= * + * !
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(a) (b) 

Fig. 2. An example of a dropout network model [64]: (a) A fully connected 2-hidden layers network; (b) The 

network obtained by applying dropout. Crossed units are excluded. 

Consider a neural network with L hidden layers, in which the input and output vectors of layer l 

(for 𝑙 ∈ {1,… , 𝐿}) are denoted as z(l) and y(l), respectively. w(l) and b(l) are the weights and biases of layer 

l, respectively. For a standard neural network, the feed-forward operation can be described as: 

 , (12) 

 , (13) 

where f is the activation function and i denotes the index of hidden unit, as illustrated in Fig. 3(a).  

With a dropout network (Fig. 3(b)), a vector of independent Bernoulli random variables r(l) with 

probability p is used at each hidden layer l to generate the thinned outputs ỹ(l) as follows: 

 , (14) 

 , (15) 

where * denotes an element-wise product. The thinned outputs are, then, used as inputs to the next layer 

of the feed-forward operation: 

 , (16) 

 , (17) 

zi
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(a) Standard network (b) Dropout network 

Fig. 3. Comparison of the basic operations of a standard and dropout network [64]. 

The dropout technique was shown to significantly reduce overfitting and improve the performance 

of standard neural networks in a wide variety of application domains, including handwriting 

recognition, speech recognition, image processing, object classification and computational biology 

[64]. In this paper, dropout is used in the input and hidden layers of the proposed LSTM model in order 

to prevent overfitting and quantify the uncertainty information of the multi-step ahead predictions, 

which is further described in Section 4.3.  

  

4 Proposed LSTM-based prognostic framework 

In this section, we present a prognostic framework for the multi-step ahead prediction of the time-

series data from SGs, as illustrated in Fig. 4.  

  

Fig. 4. The flowchart of the proposed multi-step ahead prediction framework for SGs. 

The proposed framework consists of three main stages: data preprocessing, model selection and 

multi-step ahead prediction. Firstly, the data preprocessing stage is responsible for preparing the data 

for training and testing the prediction model. Then, in the second stage, a LSTM-based model is built 
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for the MIMO prediction using the training data and its hyperparameters are automatically optimized 

with the objective function of minimizing the validation error. In the last stage, the performance of the 

trained prediction model is validated for multi-step ahead prediction and a MC dropout technique is 

used to capture the prediction uncertainty. The procedure of the proposed framework can be 

summarized as in Algorithm 1, where max_iter is the number of optimization iterations and NMC is the 

number of MC dropout realizations. The details of each stage are given in the following sections.  

Algorithm 1. Procedure of the proposed multi-step prediction framework 

Input: A raw time series data collected up to time t:  

Output: Predictions of H next observations and their uncertainty information 

Preprocessing stage 

1. Detect and remove outliers  

2. Impute missing data points 

Model selection stage 

3. for i in {1,…,max_iter} do 

a. Select the optimal network hyperparameters at the ith trial with TPE 

b. Validate the hyperparameters by using k-fold cross-validation 

c. Update the fitness value with the average training error measured over k folds 

4. Select the best hyperparameter setting with the lowest fitness value 

Multi-step ahead prediction stage 

5. for i in {1,…,NMC} do 

a. Build a LSTM-based prediction model with the selected hyperparameters 

b. Perform the predictions for H steps ahead  by using the MIMO 

prediction strategy 

6. Calculate the mean and confidence interval of the predictions over NMC realizations 

4.1 Data preprocessing 

As mentioned in Section 1, the quality of the observation data for training is one of the most 

important factors for the successful performance of a prediction model. Due to the errors during sensor 

measurements or signal transmission, the acquired observations may include missing and anomalous 

data points, e.g. outliers, which can negatively impact the model performance.  In this study, we adopt 

{ }1 2, ,..., tx x x

{ }ˆ , [1, ]t hx h H+ Î
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a raw data preprocessing module focusing on the two following tasks: 1) detecting and removing 

outliers; 2) imputing missing data points, the number of which may increase after removing outliers. 

The first problem is addressed by using the Isolation Forest, an outlier detection technique built on 

the basis of decision trees [66]. This technique is based on an assumption that outliers are few, different 

and susceptible to a mechanism called isolation. In comparison with conventional distance and density 

measures, isolation has been proved to be a much more effective indicator to detect anomalies. In 

addition, Isolation Forest also requires a small linear time complexity. Further details on the algorithm 

of Isolation Forest can be found in [66]. Once outliers are reduced, a local polynomial regression 

technique is used to reconstruct missing data samples and reduce noises. The preprocessed data is later 

used for training and testing the prediction model in the following stages.  

4.2 Model selection 

4.2.1 Prediction horizon 

Several research works have been carried out on determining an optimal horizon of prediction in 

order to provide predictions accurately and timely, and to ensure the usefulness of the prognostic model. 

However, to the authors’ knowledge, there is no general rule reported for dealing with this issue. We 

have carried out a review on the horizons selected in recent prediction studies for industrial applications 

during 2015-2019 [15], [58], [67]–[91] and the result is summarized in Fig. 5. The result shows that 

multi-step ahead prediction has been less studied than single-step ahead prediction, and that most of 

the works were carried out with horizons ranging from 3 to 6 steps ahead. To demonstrate the 

effectiveness of the proposed model, a prediction horizon of 15 steps ahead is investigated in this study. 
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Fig. 5. Prediction horizons of recent studies. 

4.2.2 Hyperparameter optimization 

In machine learning, hyperparameters define the model architecture and control the learning 

process, e.g. the number of hidden layers, activation function type and learning rate. Automatic 

hyperparameter optimization is playing a fundamental role in the development of machine learning 

models, including the recent deep neural networks, e.g. LSTM, whose learning performance greatly 

depends on a number of hyperparameter choices [92]. Automatic hyperparameter optimization has 

several important advantages, such as: 1) reduction of the human effort in deploying machine learning, 

which is important in application because different hyperparameter configurations are needed for 

different datasets [93]; 2) improvement of the performance of machine learning models, by choosing 

the most appropriate (according to specified objectives) hyperparameters values for the target 

application at hand [94], [95]; 3) increase of the reproducibility of results, as automatic hyperparameter 

optimization is clearly more reproducible than manual tuning by human and allows fair comparisons 

between different models by giving them the same level of tuning for the specific application [96].  

In this study, we implement a variant of Bayesian optimization (BO), called Tree-structured Parzen 

Estimator (TPE) [97], to automatically optimize the hyperparameters of the proposed prediction model. 

A common advantage of BO approaches is that they require less function evaluations than other 

classical optimization approaches, such as grid search or RS. This is because these approaches learn 

and select the best hyperparameter sets based on their distributions describing the fitness scores in the 

previous iterations. Thus, the number of samples drawn from the hyperparameter search space is 

probabilistically guided and reduced, allowing for proper evaluations of the most promising candidates 

for hyperparameter choices.  

Recently, TPE has been put forward to address the limitation of the conventional BO approaches 

in working with categorical and conditional parameters, and, thus, to improve the hyperparameters 

selection process [97]. It has, then, been widely used to tune machine learning models in various 

applications, such as image processing [96], [98]–[101], electricity price forecasting [102], solar 

irradiance forecasting [103], rail defect prediction [104], occupational accident prediction [105]. 
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Parzen-window density estimation, which is also known as kernel density estimation, is a non-

parametric way to build a probability density function from empirical data. In the TPE algorithm, each 

sample from the empirical data defines a Gaussian distribution with a mean equal to the hyperparameter 

value and a specified standard deviation. At the start-up iterations, a random search is employed to 

initialize the distributions by sampling the response surface )𝜃(,), 𝑦(,), 𝑖 = 1,… , 𝑁,2,34, where  

denotes the hyperparameter set, y is the corresponding value on the response surface, i.e. the validation 

loss or the fitness value, and Ninit is the number of start-up iterations. Then, the hyperparameter space 

is divided into two groups, namely good and bad samples, based on their fitness values and a predefined 

threshold value y* (usually set to 15% [92]), as follows: 

  (18) 

where  and  are the probabilities that the hyperparameter set  is in the good and bad 

groups, respectively. Fig. 6 illustrates an example of the TPE initialization process for the 

hyperparameter distributions, with y* = 15% and Ninit = 100. The red points are the samples with the 

lowest fitness values after evaluation, thus being classified into the good group whereas the 

others form the bad group . In this way, the selection of optimal hyperparameters does not rely on 

the best observation, but on a set of best observations and their distributions. Then, the more iterations 

one used for initialization, the better distribution we get at the beginning. An Expected Improvement 

(EI) is, then, calculated as follows: 

  (19)  

q

p(θ | y) =
Prgood (θ ) if y < y*

Prbad (θ ) if y ≥ y*
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Fig. 6. Samples classification from the TPE initialization process. 

At each iteration, the hyperparameter configuration  that maximizes the EI is chosen. Fig. 7 

shows the flowchart of the TPE optimization procedure.   

 

Fig. 7. Flowchart of the TPE optimization procedure. 

4.3 Multi-step ahead prediction 

In the testing stage, the MIMO prediction strategy introduced in Section 2.2.3, is used to predict 

the future values. As mentioned in Section 4.2.1, the prediction horizon h is set to 15-step ahead in this 

study, as shown in Fig. 8. 
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Fig. 8. Multi-step ahead prediction procedure. 

To further assess the prediction performance, we adopt a Monte Carlo (MC) dropout technique 

[106] in order to capture the uncertainty information of the multi-step ahead predictions of the proposed 

model. It is important to note that the standard LSTM network is not capable to quantify the prediction 

uncertainty itself. In the MC dropout technique, a dropout probability is applied to all the weight layers 

in the network, which represents the network weights drawn from a Bernoulli distribution. Thus, the 

prediction uncertainty can be quantified by running several forward passes through the network. In this 

study, we perform NMC=100 stochastic forward passes, in which network units of each layer are 

randomly dropped out, and obtain the mean and confidence interval of the predictions.   

 

5 Experimental study 

5.1 SG data 

In this paper, the prediction performance of the proposed model is evaluated on the SG data of 

French NPPs. SGs in pressurized water reactors (PWRs) are heat exchangers which use the heat from 

the primary reactor coolant to produce steam in the secondary side and, thus, drive the turbine 

generators. In addition, the SGs act as a safety barrier between the radioactive primary side and the 

non-radioactive secondary side. Due to their critical role in NPPs, any degradation mechanism in SGs 

should be monitored and prevented at the early stages of propagation. A widely used method of 

degradation monitoring is the analysis of the wide range level (WRL) dynamic behavior recorded by 

control sensors [107], [108].  

WRL is one of the condition monitoring variables measured from the NPP SGs. It is estimated from 

the difference between the pressure measured at two difference heights, i.e. the dome and the bottom 

of the downcomer, as illustrated in Fig. 9 (label 18) [108]. Due to its nature, WRL is very sensitive to 
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the temperature, the flow rate of the feed-water and the circulation ratio of the SG. Usually, WRL 

variations are monitored during slow transients and during manual control at low power load [108]. 

Among critical SG degradation mechanisms, clogging is a phenomenon where the flow holes of the 

tube support plates are partially or completely blocked by deposits, leading to the reduction of the 

circulation flow rate in the SGs [108]. Clogging in SG is a slow process which may take several years. 

In [109], it has been shown that the WRL of a SG is closely related to the clogging degradation. Thus, 

the predictions of WRL can be converted to the clogging degradation state. 

 

Fig. 9. The front-cut schematic of a 51B-model SG [108]. 

The original SG data employed in this study were collected from six SGs of two different 900-MW 

NPPs, which are operated by Électricité de France (EDF). Each plant consists of three SGs. The WRL 

data were recorded during the stationary regimes in which the power demand percentage is stably 

maintained greater than 90%, at an interval of 3 days from July 1992 to June 2007. Fig. 10 shows the 
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temporal evolution of the WRL observations of the two NPPs. The names of the plants are omitted for 

confidentiality reasons.  

  
(a) Plant No. 1 (b) Plant No. 2 

Fig. 10. Raw WRL measurements recorded from control sensors of different NPPs. 

5.2 Data preprocessing 

Before being used for the model development, the raw SG data are preprocessed by using the 

Isolation Forest and local regression approaches described in Section 4.1. Fig. 11 shows the results of 

applying the Isolation Forest for reducing outliers in the data of SG 1 of plant No. 2. In Fig. 11(a), the 

solid line indicates the normal measurements whereas the detected outliers are highlighted as circled 

points, which are later eliminated in Fig. 11(b). An interesting observation in Fig. 11(a) is the 

anomalous spike between 1997 and 1999. Without the outlier detection step, this sudden spike could 

highly impact, in a negative manner, on the prediction accuracy. After reducing the outliers, imputations 

for missing data samples are given. The preprocessed data of all SGs after the preprocessing stage are 

shown in Fig. 12.   

  
(a) Original signal with outliers highlighted (b) Modified signal after outlier removal 

Fig. 11. Applying the Isolation Forest to the data of SG 1 of plant No. 2. 
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(a) Plant No. 1 (b) Plant No. 2 

Fig. 12. The results of the preprocessing stage for all SG data. 

 

6 Results and discussion 

After the preprocessing stage, each SG data series is divided into a training set and a testing set. 

The data for the first 11 years, from July 1992 to December 2002, which include a total of 1230 samples 

at a 3-day interval, are selected to train the proposed prediction model and the next 5-year data with 

510 samples are employed to test the model performance.  

Before constructing the proposed model, we employ the false nearest neighbor (FNN) algorithm 

[110] to determine the appropriate embedding dimension d of the data series. The main idea of the FNN 

algorithm is to find the minimum dimension where the distances between the nearest neighbors in the 

time series do not significantly change in the next higher dimensional embedding. Fig. 13 shows the 

result of applying FNN to the data of SG 1 of plant No. 1. A threshold for identifying the minimum 

embedding dimension is set to 0. In this Figure, the minimum embedding dimension value is found at 

12. We summarize the optimal embedding dimensions identified for all the SGs data series in Table 1.   

   

Fig. 13. FNN result for SG 1 of plant No. 1. 
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Table 1. Minimum embedding dimensions for all SGs. 

 

In this study, we carry out three comparisons to evaluate the performance of the proposed 

prognostic model. The first comparison is conducted to analyze the viability of TPE in tuning the 

proposed model during the training stage. As a standard optimization approach, RS is considered for 

benchmarking purposes. Another comparison is, then, carried out to specifically validate the efficacy 

of dropout in the proposed prediction framework. In the third comparison, four hybrid prediction 

models, including single-output support vector regression using recursive strategy (SVR-REC), multi-

output support vector regression using MIMO strategy (SVR-MIMO), single-output multilayer 

perceptron neural network using recursive strategy (MLP-REC) and multi-output multilayer perceptron 

neural network using MIMO strategy (MLP-MIMO), are employed as the benchmark models for 

comparison with the proposed model in multi-step ahead predictions. In this performance evaluation, 

three prediction accuracy metrics are considered, including root mean square error (RMSE), mean 

absolute percentage error (MAPE) and mean absolute scaled error (MASE). Their definitions are given 

as follows: 

 , (20) 

 , (21) 

 , (22) 

where N is the number of testing observations, x and 𝑥6 are the observed and predicted values, 

respectively. 
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6.1 Automatic hyperparameter optimization  

The proposed prediction model is constructed with one LSTM layer with 64 neurons. Four major 

hyperparameters of the model are to be tuned, including dropout rate, activation function type, 

optimizer type and learning rate. The details of the hyperparameter search space are shown in Table 2. 

For a fair comparison, the TPE and RS algorithms are evaluated by using the same model configurations 

and hyperparameter search space. The number of optimization trials is selected as 30 for the two 

algorithms. In addition, a k-fold cross-validation (k = 3 in this study) is adopted to prevent overfitting 

during training the model. The mean square error (MSE) is used as the objective function for model 

selection. In other words, at each optimization trial, the hyperparameter configuration with the lowest 

average prediction error evaluated by cross-validation is chosen. To achieve the training convergence, 

the number of training epochs is set to 100.  

Table 2. Hyperparameters of the proposed prediction model. 

 

Fig. 14 shows the comparison of the TPE and RS hyperparameter searches over 30 trials for SG 1 

of plant No. 1. The corresponding training loss is also given in Fig. 15. In particular, the TPE algorithm 

uses the first 20 startup trials for initializing the distributions of the good and bad hyperparameter sets, 

as mentioned in Section 4.2.2. This initialization process is performed by employing a standard RS. 

Therefore, in Figs. 14 and 15, we can observe a similar performance between TPE and RS in both 

hyperparameter searching and their obtained training losses during the first 20 trials. However, the 

performance of TPE is quickly improved after the initialization. It much more focuses on the good 

hyperparameter configurations which was found in the previous trials, leading to faster converge and 

lower training loss than RS within 30 trials.   

Hyperparameter Type of distribution Value set or Range

Dropout rate Uniform float [0, 0.5]

Activation function Categorical {Linear, Sigmoid, Tanh, ReLU}

Optimizer Categorical {SGD, RMSprop, Adam}

Learning rate Uniform float [0.0001, 0.1]
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RS 

    

TPE 

    
 (a) Dropout rate (b) Activation function (c) Optimizer (d) Learning rate 

Fig. 14. Hyperparameters tuning process over 30 trials by TPE (top Figures) and RS (bottom Figures) for SG 1 

of plant No.1.  

  
(a) RS (b) TPE 

Fig. 15. Training loss versus trials of TPE and RS for SG 1 of plant No. 1. 

In Table 3, we show the performance comparison between TPE and RS, in terms of their obtained 

best training loss for all SGs. The results obviously show that the optimal configurations found by TPE 

generally outperform the best ones found by RS in the considered case studies. Thus, the optimal 

hyperparameter configurations found by TPE are used for prediction in the next stage.   

Table 3. The best training loss obtained by TPE and RS in hyperparameter tuning for all SGs.  

 

Plant No. 1 No. 2

SG 1 2 3 1 2 3

Random search 0.0487 0.0479 0.0307 0.0358 0.0321 0.0343

TPE 0.0440 0.0370 0.0319 0.0350 0.0314 0.0270
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6.2 Dropout regularization 

In this section, a comparison is carried out between the proposed prediction model and a model 

with the same architecture but trained without dropout. The other hyperparameters are kept identical 

between the two models, as described in Section 6.1. The probability of the used dropout is 

automatically optimized by TPE. We employ all the six SG datasets to comprehensively evaluate 

dropout during both the training and test phases in terms of RMSE. The comparative results are shown 

in Fig. 16. The result shows that the prediction model trained without dropout has lower training errors 

but much higher test errors, which may be an indication of the presence of overfitting. In contrast, the 

dropout model significantly reduces the overfitting problem with lower test errors for all the datasets. 

The average error reduction of the dropout model is 51.91%, which strongly indicates the efficacy of 

dropout in reducing overfitting and improving the prediction performance of the neural network.   

  

(a) Training phase (b) Test phase 

Fig. 16. Training and test errors for the network architecture trained without and with dropout. 

6.3 Performance evaluation  

The WRL measurements of the six SGs are used for validating the developed prediction model for 

multi-step ahead prediction. It is important to remind that the prediction horizon used in this study is 

15 steps ahead, which equals 45 operating days of the SGs. After the training is finished, the prediction 

model is used to continuously predict 15-step ahead in the next 5 years. Fig. 17 illustrates the prediction 

results of the proposed model for all SGs. The predicted values are shown as the dashed line, whereas 

the solid line depicts the actual observations. The 95% confidence interval of the predictions, obtained 

via MC simulations, is depicted as the grey region. The results show that the proposed model is able to 
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keep track with the changes of the WRL data while achieving accurate predictions, which are very close 

to the actual data for all SGs. Moreover, the 95% confidence bounds of the predictions are narrow and 

close to the target values, indicating predictions with a high precision. In industrial applications, these 

results are of crucial importance for accurately estimating the equipment RUL.       

  
(a) SG 1 of plant No. 1 (b) SG 2 of plant No. 1 

  

(c) SG 3 of plant No. 1 (d) SG 1 of plant No. 2 

  

(e) SG 2 of plant No. 2 (f) SG 3 of plant No. 2 

Fig. 17. Multi-step ahead prediction results by the proposed model for all SGs. 

The prediction results obtained by the proposed model are, then, evaluated with respect to the four 
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benchmark models, i.e. SVR-REC, SVR-MIMO, MLP-REC and MLP-MIMO, in terms of prediction 

accuracy. For a fair comparison, the hyperparameters of the compared models are optimized by using 

TPE with 30 trials. The details of the hyperparameter search spaces of the compared models are shown 

in Table 4. 

Table 4. Hyperparameters of the benchmark models.  

 
 

The comparative results of the proposed model and the four benchmark models for multi-step ahead 

predictions are shown in Fig. 18. Table 5 summarizes the prediction results in terms of the three 

accuracy indicators for different SG data. As can be seen in Fig. 18 and Table 5 (values in bold), the 

proposed prediction model outperforms the four other benchmark models and achieves higher accuracy 

for all SGs. The results indicate the accurate and efficient learning of the proposed prediction model 

for the long-term dependencies of the SG data.  

  
(a) SG 1 of plant No. 1 (b) SG 2 of plant No. 1 

Model Hyperparameter Value set or Range

SVR
(including SVR-REC 
and SVR-MIMO)

Kernel function {Linear, RBF, Poly, Sigmoid}

Degree (of the polynomial kernel function) [2, 4]

Regularization parameter (C) [0.01, 100]

Kernel coefficient (gamma) [0.01, 10]

MLP
(including MLP-REC 
and MLP-MIMO)

Hidden layer size [1, 5]

Activation function {Logistic, Tanh, ReLU}

Optimizer {LBFGS, SGD, Adam}

Learning rate {Constant, Invscaling, Adaptive}

Regularization parameter (alpha) [0.0001, 0.01]
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(c) SG 3 of plant No. 1 (d) SG 1 of plant No. 2 

  

(e) SG 2 of plant No. 2 (f) SG 3 of plant No. 2 

Fig. 18. Multi-step ahead predictions using different models for all SGs. 

Table 5. Comparison of the prediction performance in multi-step ahead predictions for all SGs.  

 
 

The average computational time of training the proposed prediction model is 3.2 hours, on a 

GPGPU node comprising 2 Intel Xeon CPU E5-2695 (24 cores at 2.40 Hz with 32 GB of RAM) and 2 

Method
SG 1 SG 2 SG 3

RMSE MAPE MASE RMSE MAPE MASE RMSE MAPE MASE

Plant No. 1

SVR-REC 0.0382 2.0775 15.2484 0.0333 2.1970 10.2221 0.0508 3.3173 12.1521

SVR-MIMO 0.0283 1.6511 12.2085 0.0331 2.3878 10.8281 0.0640 5.1793 19.2863

MLP-REC 0.0597 2.7824 20.8682 0.0656 3.3349 15.3398 0.0577 3.3597 13.4886

MLP-MIMO 0.0339 1.7074 11.8887 0.1888 15.1554 62.2885 0.1867 15.2453 52.7662

Proposed model 0.0212 1.0950 8.6166 0.0239 1.6973 5.8214 0.0426 2.7230 4.0846

Plant No. 2

SVR-REC 0.0572 3.6462 12.8555 0.0906 4.7909 7.0354 0.0242 1.5005 6.1132

SVR-MIMO 0.0401 3.1774 11.8732 0.0849 4.7575 7.4570 0.0247 1.7842 7.5984

MLP-REC 0.0751 3.0309 11.2367 0.0862 4.7819 7.4403 0.0734 3.4535 14.2511

MLP-MIMO 0.0607 4.8530 17.4741 0.0888 5.4251 7.5992 0.0499 4.1168 17.2689

Proposed model 0.0281 2.0117 8.6455 0.0791 4.4033 9.3923 0.0206 1.3992 7.9604
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Nvidia Tesla K40m graphic cards (with 12 GB of GRAM). It is important to note that SG data used in 

this paper were recorded at an interval of 3 days. After being trained, the proposed model can be used 

to perform a 15-step ahead prediction, which is equivalent to 45 operating days ahead of the SGs. Due 

to this reason, the proposed prediction framework can be applied for a real-time time series prediction 

of the considered application.  

The authors have tested the proposed framework on data from several nuclear power plants, with 

satisfactory results. Unfortunately, for industrial confidentiality, the data cannot be disclosed and 

shared. 

 
7 Conclusion and Future Work 

This paper presents an original multi-step ahead prediction framework for PHM applications. The 

framework integrates three consecutive steps: (1) data preprocessing, (2) adaptive model building and 

(3) multi-step ahead prediction. Initially, the problems of abnormal outliers and missing data samples 

are addressed by employing two preprocessing techniques: Isolation Forest and local regression. Then, 

a LSTM RNN is constructed for making predictions over a long-term horizon, in which the network 

hyperparameters are automatically optimized by a TPE algorithm. A dropout regularization and a cross-

validation techniques are applied to address the overfitting problem during the training phase. Finally, 

the performance of the proposed model is evaluated for multi-step ahead predictions with a MIMO 

prediction strategy employed. A MC dropout is adopted to quantify the prediction uncertainty.   

The proposed multi-step ahead prediction framework can be used for the predictions of time series 

of NPP operating parameters. A case study concerning the real WRL measurements of SGs which were 

acquired from different NPPs in France over a period of 16 years is carried out for validating the 

proposed framework. The experimental results show that the developed prediction framework is able 

to adaptively estimate the optimal setting for its architecture and capture the underlying long-term 

dependencies inherent in the given data, for achieving accurate predictions over a long horizon, up to 

45 days ahead, outperforming conventional prediction approaches.  

However, for the application of NPP SGs used in this study, sufficient information and data for 
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performing a multivariate prediction are not provided, e.g. the information of the interdependency 

between measured variables and degradations (or failures), the interdependency within the variables, 

and the maintenance reports of the NPP SGs. Future research will be performed to develop a 

multivariate time series prediction model and integrate the proposed framework within a RUL 

estimation task for PHM and predictive maintenance.  
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