Stef Graillat
email: stef.graillat@sorbonne-universite.fr

Vincent Lefèvre
email: vincent.lefevre@ens-lyon.fr

Jean-Michel Muller
email: jean-michel.muller@ens-lyon.fr

Alternative Split Functions and Dekker's Product

Keywords: Floating-point arithmetic, split functions, accurate products

We introduce algorithms for splitting a positive binary floating-point number into two numbers of around half the system precision, using arithmetic operations all rounded either toward -∞ or toward +∞. We use these algorithms to compute "exact" products (i.e., to express the product of two floating-point numbers as the unevaluated sum of two floatingpoint numbers, the rounded product and an error term). This is similar to the classical Dekker product, adapted here to directed roundings.

I. INTRODUCTION

It is sometimes useful to express the exact product of two floating-point numbers a and b as an unevaluated sum r 1 + r 2 of two floating-point numbers. This for instance makes it possible to implement a "double word" (sometimes called "double-double") arithmetic, i.e., to mimic an arithmetic that has roughly twice the precision of the underlying floating-point arithmetic [START_REF] Hida | C++/Fortran-90 double-double and quad-double package[END_REF], [START_REF]Algorithms for quad-double precision floating-point arithmetic[END_REF], [START_REF] Joldeş | Tight and rigourous error bounds for basic building blocks of double-word arithmetic[END_REF]. This also is a basic building block of accurate algorithms for computing dot products of vectors (see for instance [START_REF] Ogita | Accurate sum and dot product[END_REF]) and evaluating polynomials [START_REF] Graillat | Algorithms for accurate, validated and fast computations with polynomials[END_REF].

If a fused multiply-add (FMA) instruction is available, obtaining r 1 and r 2 from a and b is very easily done [START_REF] Kahan | Lecture notes on the status of IEEE-754[END_REF], [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Section 4.4]: just compute first the floating-point (hence, rounded) product r 1 of a and b. One can show that if no underflow or overflow occurred when computing r 1 and the sum of the exponents of a and b is greater than or equal to the minimum exponent plus the precision minus 1, the number r 2 = ab -r 1 is a floating-point number, therefore it is exactly computed with one FMA operation.

If no FMA instruction is available, one needs to "split" the input operands into parts small enough, so that the product of two such parts fit exactly in a floating-point number. Two classical algorithms for doing that are Veltkamp's splitting [START_REF] Veltkamp | ALGOL procedures voor het berekenen van een inwendig product in dubbele precisie[END_REF], [START_REF]ALGOL procedures voor het rekenen in dubbele lengte[END_REF] and Dekker's product [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]. They require rounded-to-nearest operations (for a recent presentation of splitting algorithms with rounded to nearest operations, see [START_REF] Jeannerod | On various ways to split a floating-point number[END_REF]). In case of directed roundings, those algorithms are no more valid.

The purpose of this paper is to show that calculations similar to Veltkamp's splitting and Dekker's product can be done with directed roundings (more precisely, with operations either rounded toward +∞ or rounded toward -∞). This can be of interest on systems on which changing the rounding mode is an expensive operation, or even an impossible one (for instance, with the GCC compiler, the directed roundings are not supported correctly unless the -frounding-math switch is provided; but the implementation of this switch is incomplete, so that in practice, GCC currently assumes that the same rounding mode is used everywhere1). Moreover, directed roundings are heavily used in interval arithmetic or stochastic arithmetic [START_REF] Graillat | Tight interval inclusions with compensated algorithms[END_REF].

In the following, we assume a radix-2, precision-p floatingpoint (FP) arithmetic. We assume an unbounded exponent range (which means that our results apply to "real life" floating-point arithmetic such as the one specified by the IEEE 754-2019 standard [START_REF]IEEE standard for floating-point arithmetic[END_REF], provided that underflow and overflow do not occur). Hence, throughout this paper, the floating-point numbers are the numbers of the form

x = M x • 2 ex-p+1 ,
where M x and e x are integers, with

|M x | ≤ 2 p -1.
The number e x is the floating-point exponent of x. We denote, as usual, ulp(x) = 2 ex-p+1 and u = 2 -p (the so-called "rounding unit"). RU(t) (a.k.a. t rounded toward +∞) is the smallest floating-point number larger than or equal to t, RD(t) (a.k.a. t rounded toward -∞) is the largest floating-point number less than or equal to t, and RN is the round-to-nearest function (with any choice in case of a tie).

We will need the following definition.

Definition 1: A real number x fits in t bits if there exist two integers L x and N x such that

|L x | ≤ 2 t -1 and x = L x • 2 Nx .
For instance, a real number is a floating-point number if it fits in p bits.

Section II presents a splitting algorithm for rounded toward -∞ arithmetic (i.e., when a T b is called, with T ∈ {+, -, ×}, the value that is effectively calculated is RD(aTb)). In Section III, we adapt the previous splitting algorithm to rounded toward +∞ arithmetic. In Section IV, we show that Dekker's original strategy can be used, with the splitting algorithms presented in this paper, for computing the exact product of two FP numbers.

II. SPLITTING ALGORITHM FOR ROUND-TOWARD -∞

A. From Veltkamp's splitting to the new algorithm

We aim at splitting a floating-point number a into two numbers a h and a ℓ such that a = a h + a ℓ and a h is an approximation to a that fits in a given (significantly less than p) number of bits, with the consequence that a ℓ also fits in a small number of bits. For computing the exact product of two FP numbers, we will actually need a h to fit in ⌊p/2⌋ bits, and if we write a ℓ = A ℓ • ulp(a), we will try to have a maximum value of |A ℓ | as small as possible in order to be less than some upper bound (in practice, we will need A 2 ℓ to be less than 2 p). Veltkamp's splitting algorithm achieves this goal with operations rounded to nearest. With Veltkamp's splitting, a h is the number a rounded to nearest in precision ⌊p/2⌋, which allows the maximum possible value of |A ℓ | to be minimized. We wish to obtain a similar behavior with operations rounded toward -∞ (a h will still fit in ⌊p/2⌋ bits, but it will not necessarily be the ⌊p/2⌋-bit number nearest to a).

The proof of our algorithm will be rather involved (see Section II-C), but let us first explain the rough idea behind it.

Veltkamp's algorithm works by first building a number

c = RN 2 ⌈p/2⌉ + 1 • a ,
in order to round the input a in a smaller precision, as follows:

a h = RN RN(a -c) + c = RN(a -c) + c.
Note that for a given a, the exact value of c does not necessarily matter: in short, only the exponent of a-c matters, so that the rounding occurs at the expected ulp.

In our case, the operations are rounded toward -∞ instead of to nearest. Just replacing the rounding function RN

RD x + ulp(x) 2 , (1)
we can try to "emulate" the calculation of RN(a -c) that appears in Veltkamp's algorithm by replacing it by RD(a *c), where a * is slightly larger than a (with a difference that roughly corresponds to the term "ulp(x)/2" in (1)). This is done by choosing

a * = RD (a • k) ,
where k is some adequately chosen constant slightly larger than 1. This will not always round the number a to the nearest ⌊p/2⌋-bit number, but this will be enough to get an acceptable bound on |A ℓ |. This gives Algorithm 1 and Theorem 1 below. Note: A "quick-and-dirty" reasoning to minimize the bound on |A ℓ | allowed us to hint the adequate value of k; that reasoning was close to what is rigorously explained at the end of the proof of Theorem 1.

B. The splitting algorithm

Consider Algorithm 1 below. Note that the requirement a ≥ 0 is important: there are negative values for which the algorithm does not work (an example is p = 24 and a = -8391339). This is not a problem for implementing high-precision multiplication: it suffices to handle the signs separately.

ALGORITHM 1: SplitRD. Splitting algorithm for round-toward -∞. We assume a ≥ 0.

1: uses s = ⌈p/2⌉ and k = RN 1 + 2 3 • 2 -⌊p/2⌋ . 2: a * ← RD(a • k) 3: c ← RD((2 s + 1) • a *) 4: d ← RD(a * -c) 5: a h ← RD(c + d) 6: a ℓ ← RD(a -a h) 7: return (a h , a ℓ)
Algorithm 1 satisfies: Theorem 1: Assuming p ≥ 2, the two numbers a h and a ℓ returned by Algorithm 1 satisfy:

• a h + a ℓ = a; • a h fits in p -s = ⌊p/2⌋ bits, it is a multiple of 2 s ulp(a),
and

a h ≤ 2 ea+1
, where e a is the floating-point exponent of a;

• a ℓ is of the form A ℓ • ulp(a),
where

|A ℓ | is an integer satisfying |A ℓ | ≤ 4 3 • 2 ⌈p/2⌉-1 + 5 2 , A 2 ℓ < 2 p and |a ℓ | < 2 ea-p/2+1 .
The proof given in Section II-C assumes p ≥ 6 for p even and p ≥ 11 for p odd (in particular for the last properties of Theorem 1). For smaller precisions p, we have run exhaustive tests showing that all these properties remain satisfied as soon as p ≥ 2.

Before giving this proof, let us give an example to illustrate how the algorithm works. Consider the case p = 11, for which k = 1045/1024 = 1.0000010101 × 2 0 , and take a = 2047 = 11111111111 2 .

We successively obtain:

• a * = 2088 = 100000101000 2 ; • c = 135680; • d = -133632; • a h = 2 11 ; • a ℓ = -1.
Finally, in Algorithm 1, the fact that the rounding is toward -∞ is important. For instance, if we replace in the algorithm the round-toward -∞ rounding function RD by the roundtoward +∞ rounding function RU, the algorithm does not work for p = 53 and a = 2 52 + 1: the returned value of a ℓ is -2 27 + 1, whose square is larger than 2 53 .

C. Proof of Theorem 1

Let λ be such that

k = 1 + λ • 2 s-p = 1 + λ • 2 -⌊p/2⌋ .
The choice of k in Algorithm 1 implies λ ≈ 2/3 but temporarily, let us just assume 0 < λ ≤ 1 (we will explain the choice of k and λ later on). Note that this implies 1 < k < 2, and therefore the number ulp(a *) is equal to ulp(a) or to 2 • ulp(a).

Line 2 of the algorithm gives

0 ≤ a • k -a * < ulp(a • k) ≤ 2u • a • k = a • k • 2 1-p . Now, consider Line 3. We have 0 ≤ (2 s + 1) • a * -c < ulp(c), so that -2 s a * ≤ a * -c < -2 s a * + ulp(c).
The number a * can be written

a * = 2 e • (1 + n • 2 1-p), (2)
where e = e a * is the floating-point exponent of a * and n is an integer such that 0 ≤ n ≤ 2 p-1 -1. We have:

• if n = 0 then a * is a power of 2. Hence c = (2 s + 1) • a * , so that a * -c = -2 s a * , which implies ulp(a * -c) = 2 s ulp(a *); • if n = 1 then (2 s + 1) • a * is equal to 2 e • 2 s + 1 + 2 1-⌊p/2⌋ + 2 1-p ,
which is less than 2 e • (2 s + 3) as soon as p ≥ 2.

If p ≥ 3, then 2 s + 3 < 2 s+1 , therefore ulp(c) = ulp(2 s a *) = 2 e+s+1-p ; • if n ≥ 2 then, since c = RD((2 s + 1) • a *) ≤ 2 s+1 • a * , we have ulp(c) ≤ 2 s+1 ulp(a *) = 2 s+e+2-p ≤ n • 2 s+e+1-p .
Therefore, if n ≥ 1 and p ≥ 3, we have

-2 s a * ≤ a * -c ≤ -2 s a * + n • 2 s+e+1-p . (3)
Replacing a * in the right-hand part of (3) by the expression given in (2), we obtain -2 e+s . Hence, in all cases, we have

ulp(a * -c) = 2 e+s+1-p = ulp(2 s a *) = 2 s ulp(a *). (4)
This allows us to deal with Line 4 of the algorithm. From (4), we deduce that the floating-point number d computed at that line is the largest multiple of 2 s ulp(a *) less than or equal to a * -c. Therefore, one can write

a * -c = d + f, with 0 ≤ f < 2 s ulp(a *). When ulp(a *) = ulp(a), this obviously gives 0 ≤ f < 2 s ulp(a). (5)
Let us show that (5) remains true even when ulp(a *) = 2 • ulp(a). When this is the case, we have

2 e-1 < a < 2 e and ulp(a) = 2 e-p . (6
)

2 e ≤ a * < 2 e • k = 2 e • (1 + λ • 2 s-p),
so that

2 e -c ≤ a * -c < 2 e -c + λ • 2 e+s-p . (7)
Since 2 s ulp(a *) = 2 e+s-p+1 , the number 2 e is a multiple of 2 s ulp(a *). Also, c ≥ 2 s a * implies ulp(c) ≥ 2 s ulp(a *), therefore c is a multiple of 2 s ulp(a *). As a consequence, 2 e -c is a multiple of 2 s ulp(a *). Therefore, from [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF], the number

f = (a * -c) mod 2 s ulp(a *)
is less than λ•2 e+s-p , which, from [START_REF] Kahan | Lecture notes on the status of IEEE-754[END_REF], is equal to λ•2 s ulp(a), which (since λ ≤ 1) is less than or equal to 2 s ulp(a), so that (5) still holds. Now, consider Line 5 of Algorithm 1. From

2 s a * ≤ c ≤ (2 s + 1) • a * ,
we deduce

(2 s -1) • a * ≤ c -a * ≤ -d = |d|, (8)
Also, since a * ≥ a ≥ 0, we have

d = RD(a * -c) ≥ RD(-c) = -c, so that |d| = -d ≤ c ≤ (2 s + 1) • a * . (9)
From (8) and (9), we obtain

1 ≤ c |d| ≤ 2 s + 1 2 s -1 . (10)
If p ≥ 3, then s ≥ 2, so that [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF] gives

1 ≤ c |d| ≤ 5 3 .
Therefore, Sterbenz Lemma [START_REF] Sterbenz | Floating-Point Computation[END_REF], [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF] implies that the operation performed at Line 5 is exact, i.e., we have

a h = c + d = a * -f. (11)
Since c and d are multiples of 2 s ulp(a *), a h is a multiple of 2 s ulp(a *) (and therefore a multiple of 2 s ulp(a)). Also a h = a * -f is less than or equal to a * . It follows that a h fits in p -s = ⌊p/2⌋ bits.

There remains to consider the computation of a ℓ at Line 6 of Algorithm 1. We have

a ℓ = RD(a -a h) = RD(a -a * + f). (12)
From (9) we obtain c + d ≥ 0, so that a h ≥ 0.

If a h = 0, then a ℓ is computed exactly (incidentally, in such a case, one can show that a = 0, so that a ℓ = 0 too). Now assume a h > 0. We have

a -a h = a -a * + f = (a -a • k) + (a • k -a *) + f. (13)
In [START_REF]IEEE standard for floating-point arithmetic[END_REF], the term

(a -a • k) is equal to -λ • a • 2 -⌊p/2⌋
, the term (a • k -a *) lies in the interval [0, ulp(a *)), and the term f lies in [0, 2 s ulp(a)). Therefore,

-λ • a • 2 -⌊p/2⌋ ≤ a -a h < -λ • a • 2 -⌊p/2⌋ + ulp(a *) + 2 s ulp(a) ≤ -λ • a • 2 -⌊p/2⌋ + (2 s + 2) ulp(a). (14
)
The number a -a h is a multiple of ulp(a). From [START_REF] Sterbenz | Floating-Point Computation[END_REF], its absolute value is less than or equal to

max λ • a • 2 -⌊p/2⌋ ; -λ • a • 2 -⌊p/2⌋ + (2 s + 2)ulp(a) ,
which is less that 2 p ulp(a) as soon as 2 s +2 ≤ 2 p , i.e., as soon as p ≥ 2. Hence, under the hypothesis p ≥ 3 of the theorem, a -a h is a floating-point number, therefore a ℓ = a -a h . Now, there remains to explain the choice of k (hence, the choice of λ) in Algorithm 1, and to bound |a ℓ | as tightly as possible. Let e a be the floating-point exponent of a. If e a is fixed, in [START_REF] Sterbenz | Floating-Point Computation[END_REF], the left-hand bound attains its maximum absolute value, slightly less than

2λ • 2 -⌊p/2⌋ • 2 ea , when a = 2 -2 -p+1 • 2 ea ,
and the right-hand bound attains its maximum absolute value, equal to

-λ • 2 -⌊p/2⌋ + (2 s + 2) • 2 1-p • 2 ea ,
when a = 2 ea . Therefore, we have

-2λ • 2 -⌊p/2⌋ ≤ a ℓ 2 ea ≤ -λ • 2 -⌊p/2⌋ + (2 s + 2) • 2 1-p . (15)
The best choice of λ (i.e., the one for which the bound on |a ℓ | is as small as possible) is when the absolute values of both bounds of (15) are equal, i.e. when

3λ • 2 s-p = (2 s + 2) • 2 1-p , i.e., when λ = 2 + 2 s 3 • 2 1-s ≈ 2 3 .
This explains the choice k = RN 1 + 2 3 • 2 -⌊p/2⌋ in Algorithm 1. In the following, we assume that k has this value. We have

1 + 2 3 • 2 -⌊p/2⌋ -2 -p ≤ k ≤ 1 + 2 3 • 2 -⌊p/2⌋ + 2 -p , therefore, 2 3 -2 -⌈p/2⌉ ≤ λ ≤ 2 3 + 2 -⌈p/2⌉ . (16)
Using (15) and (16), we obtain

|a ℓ | 2 ea ≤ max 4 3 • 2 -⌊p/2⌋ + 2 -p+1 ; -2 3 • 2 -⌊p/2⌋ + 2 -p + 2 -⌊p/2⌋+1 + 2 2-p , i.e., |a ℓ | 2 ea ≤ max 4 3 • 2 -⌊p/2⌋ + 2 -p+1 ; 4 3 • 2 -⌊p/2⌋ + 5 • 2 -p = 4 3 • 2 -⌊p/2⌋ + 5 • 2 -p .
Hence,

a ℓ = A ℓ • ulp(a) = A ℓ • 2 ea-p+1 , with |A ℓ | ≤ 4 3 • 2 ⌈p/2⌉-1 + 5 2 . (17
)
• If p is even, (17) gives

|A ℓ | ≤ 4 3 • 2 p/2-1 + 5 2 , hence A 2 ℓ ≤ 16 9 • 2 p-2 + 20 3 • 2 p/2-1 + 25 4 ,
which is less than 2 p as soon as p ≥ 6.

• If p is odd, (17) gives |A ℓ | ≤ 4 3 • 2 (p-1)/2 + 5 2 , hence A 2 ℓ ≤ 16 9 • 2 p-1 + 20 3 • 2 (p-1)/2 + 25 4 ,
which is less than 2 p as soon as p ≥ 11.

It remains to show that a

h ≤ 2 ea+1
, where e a is the floatingpoint exponent of a. This is an immediate consequence of the fact that

|A ℓ | ≤ 2 3 • 2 s + 5 2 < 2 s as soon as p ≥ 5,
and

a h ≤ a + |a ℓ | < 2 ea+1 + |A ℓ | • ulp(a) < 2 ea+1 + 2 s ulp(a),
where both a h and 2 ea+1 are multiples of 2 s ulp(a).

III. SPLITTING ALGORITHM ASSUMING ROUND-TOWARD +∞

One easily derives from Algorithm 1 a splitting algorithm for the round-toward +∞ rounding function RU: this is Algorithm 2 below. The proof immediately follows from Theorem 1, by using the relation

RU(x) = -RD(-x),
by noting that the constant k ′ of Algorithm 2 is the opposite of the constant k of Algorithm 1, and by using the fact (shown when proving Theorem 1) that the last operation is exact.

ALGORITHM 2: SplitRU. Splitting algorithm for round-toward +∞. We assume a ≥ 0.

1: uses s = ⌈p/2⌉ and k ′ = -RN 1 + 2 3 • 2 -⌊p/2⌋ . 2: a * ← RU(a • k ′) 3: c ← RU((2 s + 1) • a *) 4: d ← RU(a * -c) 5: a h ← -RU(c + d) 6: a ℓ ← RU(a -a h) 7: return (a h , a ℓ)
We have, Theorem 2: Assuming p ≥ 2, the two numbers a h and a ℓ returned by Algorithm 2 satisfy:

• a h + a ℓ = a; • a h fits in p -s = ⌊p/2⌋ bits, it is a multiple of 2 s ulp(a),
and

a h ≤ 2 ea+1
, where e a is the floating-point exponent of a;

• a ℓ is of the form A ℓ • ulp(a),
where |A ℓ | is an integer satisfying

|A ℓ | ≤ 4 3 • 2 ⌈p/2⌉-1 + 5 2 , A 2 ℓ < 2 p and |a ℓ | < 2 ea-p/2+1 . IV. EXACT MULTIPLICATION USING ALGORITHM 1 FOR SPLITTING THE OPERANDS
We have slightly adapted Dekker's classical multiplication algorithm [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF], by using the round-to -∞ rounding function RD (instead of the round-to-nearest function RN), and by using Algorithm 1 for splitting the operands. This gives Algorithm 3 below. ALGORITHM 3: Dekker's product with rounding toward -∞. It returns two FP numbers r 1 and r 2 such that r 1 + r 2 = ab. We assume a ≥ 0 and b ≥ 0.

Require: s = ⌈p/2⌉ Ensure: r 1 + r 2 = a • b 1: (a h , a ℓ) ← SplitRD(a) 2: (b h , b ℓ) ← SplitRD(b) 3: r 1 ← RD(a • b) 4: t 1 ← RD(-r 1 + RD(a h • b h)) 5: t 2 ← RD(t 1 + RD(a h • b ℓ)) 6: t 3 ← RD(t 2 + RD(a ℓ • b h)) 7: r 2 ← RD(t 3 + RD(a ℓ • b ℓ)) 8: return (r 1 , r 2)
We have, Theorem 3: If p ≥ 11, the two floating-point numbers r 1 and r 2 returned by Algorithm 3 satisfy

r 1 + r 2 = a • b.
Proof. Without loss of generality, we assume 1 ≤ a < 2 and 1 ≤ b < 2. If p ≥ 11, the analysis of Algorithm 1 shows that a h and b h are multiples of

2 s-p+1 , a h ≤ 2, b h ≤ 2, |a -a h | < 2 -p/2+1 , and |b -b h | < 2 -p/2+1 . Theorem 1 implies that a h • b h , a h • b ℓ , a ℓ • b h , and a ℓ • b ℓ are exactly computed, i.e., RD(a h • b h) = a h • b h , RD(a h • b ℓ) = a h • b ℓ , RD(a ℓ • b h) = a ℓ • b h , and RD(a ℓ • b ℓ) = a ℓ • b ℓ .
We have

ab -a h b h = (a -a h) • b + (b -b h) • a h , therefore |ab -a h b h | ≤ 2 -p/2+3 . Since |ab -r 1 | < ulp(ab) ≤ 2 -p+2 , we deduce |-r 1 + a h b h | ≤ 2 -p/2+3 + 2 -p+2 . (18)
Since r 1 is a floating-point number such that |r 1 | ≥ 1, it is a multiple of ulp(1) = 2 -p+1 . Since a h and b h are multiples of 2 s-p+1 , their product a h b h is a multiple of 2 2s-2p+2 ≥ 2 -p+2 . Therefore, -r 1 + a h b h is a multiple of 2 -p+1 , and (18) with p ≥ 5 implies that it is a floating-point number. As a consequence,

t 1 = -r 1 + a h b h . Now, we have ab = a h b h + a h b ℓ + a ℓ b h + a ℓ b ℓ , therefore, |t 1 + a h b ℓ | = |-r 1 + a h b h + a h b ℓ | = |-r 1 + ab + (a h b h + a h b ℓ -ab)| ≤ |-r 1 + ab| + |a ℓ (b h + b ℓ)| . (19)
2 -p+2 + 2 -p/2+3/2
if p is even, and less than

2 -p+2 + 2 -p/2+2
if p is odd. Furthermore, since a h is a multiple of 2 s-p+1 and b ℓ is a multiple of 2 -p+1 , we deduce that |t 1 + a h b ℓ | is a multiple of 2 s-2p+2 . Therefore:

• if p is even, then

2 s-2p+2 = 2 -3p/2+2 .
Hence the number |t 1 + a h b ℓ | is of the form

K • 2 s-2p+2 ,
where K is an integer and

|K| ≤ 2 p-1/2 + 2 p/2 < 2 p
(as soon as p ≥ 4);

• if p is odd, then 2 s-2p+2 = 2 -3p/2+5/2 .

Hence the number |t

1 + a h b ℓ | is of the form K • 2 s-2p+2 ,
where K is an integer and |K| ≤ 2 p-1/2 + 2 p/2-1/2 < 2 p (as soon as p ≥ 3). Therefore, in all cases, t 1 + a h b ℓ is a floating-point number. This gives

t 2 = t 1 + a h b ℓ = -r 1 + a h b h + a h b ℓ . Now, t 2 + a ℓ b h = (-r 1 + ab) -a ℓ b ℓ .
Hence,

|t 2 + a ℓ b h | ≤ |-r 1 + ab| + |a ℓ b ℓ | ≤ 2 -p+2 + 2 -p+2 ≤ 2 -p+3 . (20)
Again, since t 2 is a multiple of 2 s-2p+2 , b h is a multiple of 2 s-p+1 and a ℓ is a multiple of 2 -p+1 , the number t 2 + a ℓ b h is a multiple of 2 s-2p+2 . Therefore, t 2 + a ℓ b h is of the form

K • 2 s-2p+2 ,
where K is an integer of absolute value less than 2 -p+3 /2 s-2p+2 < 2 p . Therefore, t 2 + a ℓ b h is a floating-point number, which gives

t 3 = t 2 + a ℓ b h = -r 1 + a h b h + a h b ℓ + a ℓ b h . Finally, t 3 + a ℓ b ℓ = -r 1 + ab.
From this, we deduce that

|t 3 + a ℓ b ℓ | is less than 2 -p+2 .
Since it is a multiple of 2 -2p+2 , it is a floating-point number, therefore

r 2 = -r 1 + ab,
which is what we wanted to show.

Important remark: we have seen in the proof of Theorem 3 that the operations performed at lines 4 to 7 of Algorithm 3 are exact operations. Therefore, one obtains exactly the same results if the rounding function RD is replaced by another one. From this, one easily deduces that if the available rounding function is RU, it suffices to replace the calls to SplitRD (i.e., Algorithm 1) at lines 1-2 by calls to SplitRU (i.e., Algorithm 2), and to replace RD by RU at lines 3-7, to obtain an exact multiplication algorithm that only uses rounding toward +∞.

V. TIMINGS

Veltkamp's algorithm (using rounding function RN), Algorithm 1 (using rounding function RD) and Algorithm 2 (using rounding function RU) have been implemented in C using the floating-point type double. The x86_64 assembly code, generated under a Debian/unstable machine with the -frounding-math -std=c11 -O3 -march=native GCC-compatible options, has been analyzed. For each algorithm, in the code of the function, one can see the instructions matching the operations from the algorithm. The negation is implemented by a XOR, i.e., an integer operation. Since the code of the function needs to follow the ABI, the assembly code also contains some "move" instructions. A GCC 10 preversion (provided by the gcc-10 Debian package) and Clang 9 generate similar code, while GCC 9.2.1 can generate an additional move instruction. But when the function is inlined, these move instructions are no longer needed.

We obtain timings in the following way: an array of random inputs has been generated (not too many so that they can fit into the cache), and each input is tested in an internal loop; the function should automatically be inlined by the compiler. An external loop runs the internal loop a large number of times so that the test lasts long enough to get meaningful timings. Two multiplications are done on the floating-point values returned by the function, and the result is accumulated, in order to make sure that all results are used, and avoid some optimizations related to the context. The running time is measured with the clock function.

The code has been tested on an Intel Xeon CPU E5-2609 v3 with the GCC 10 preversion. We could also see that the compiler automatically vectorized the code (the multiplications used for the test are also vectorized, but the accumulation is not, in order to conform to IEEE 754). The -fno-tree-vectorize option can be provided to avoid automatic vectorization; we checked that in the generated code. With an array of 32, 64, 128 or 256 inputs, without vectorization, Algorithm 1 takes about 10% more time than Veltkamp's algorithm (the overhead is included in the timings) and Algorithm 2 takes about 17% more time; with vectorization, all 3 algorithms take the same time. The code has been tested on other machines, and the following increases with our algorithms have been observed: (+4%, +7%) on a POWER9 machine, (+15%, +15%) on an AArch64 (64-bit ARM) machine, up to (+17%, +34%) on an AMD Opteron machine.

Importantly enough, modifying the test code just by adding a fesetround(FE_TONEAREST) before executing Veltkamp's algorithm instead of using our algorithms can yield a loss of a factor 5.

In short, the timings depend very much on the context (the caller code, the processor, the compiler options, etc.), but in any case, there are no significant differences in terms of delay between the classical Veltkamp-Dekker algorithms and the algorithms introduced in this paper, which makes our algorithms attractive when used in applications that already use a directed rounding.

The source code for the exhaustive tests mentioned in Section II-B and for the timings is available at https://hal.archives-ouvertes.fr/hal-02470782

CONCLUSION

We have proposed alternatives to Veltkamp's splitting and Dekker's product for rounded toward -∞ and rounded toward +∞ arithmetics. This can be of interest on architectures on which changing the rounding mode is an expensive operation, or even an impossible one.

According to exhaustive tests in small precisions, the chosen value k = RN 1 + 2 3 • 2 -⌊p/2⌋ in Algorithm 1 seems to be the best possible one together with RD 1 + 2 3 • 2 -⌊p/2⌋ , which is different from k for some values of p. Both of these choices yield a maximum value of |A ℓ | equal to ⌊ 4 3 •2 ⌈p/2⌉-1 ⌋. Future work could consist in proving these properties in any precision.

 For p ≥ 11, Theorem 1 implies that |a ℓ | is bounded by 2 -p/2+1/2 if p is even, and by 2 -p/2+1 if p is odd. Therefore, from (19), we conclude that |t 1 + a h b ℓ | is less than

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=34678#c1

ACKNOWLEDGMENTS

The authors wish to thank the reviewers for their helpful comments.