
HAL Id: hal-02470766
https://hal.science/hal-02470766v1

Preprint submitted on 7 Feb 2020 (v1), last revised 11 May 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for manipulating quaternions in
floating-point arithmetic
Mioara Joldeş, Jean-Michel Muller

To cite this version:
Mioara Joldeş, Jean-Michel Muller. Algorithms for manipulating quaternions in floating-point arith-
metic. 2020. �hal-02470766v1�

https://hal.science/hal-02470766v1
https://hal.archives-ouvertes.fr

Algorithms for manipulating quaternions in
floating-point arithmetic

Mioara Joldeş∗ and Jean-Michel Muller†
∗ CNRS, LAAS, Toulouse, France

† CNRS, LIP, Université de Lyon, France

Abstract—Quaternions form a set of four global but not
unique parameters, which can represent three-dimensional
rotations in a non-singular way. They are frequently used
in computer graphics, drone and aerospace vehicle control.
Floating-point quaternion operations (addition, multiplica-
tion, reciprocal, norm) are often implemented “by the book”.
Although all usual implementations are algebraically equiv-
alent, their numerical behavior can be quite different. For
instance, the arithmetic operations on quaternions as well
as conversion algorithms to/from rotation matrices are sub-
ject to spurious under/overflow (an intermediate calculation
underflows or overflows, making the computed final result
irrelevant, although the exact result is in the domain of
the representable numbers). The goal of this paper is to
analyze and then propose workarounds and better accuracy
alternatives for such algorithms.

Keywords. Floating-point arithmetic, quaternions,
rounding error analysis.

INTRODUCTION

The quaternions were invented by W.R. Hamilton in
1853 [9], [14], in his attempt to extend the algebra of
complex numbers in a three dimensional space. They are
“numbers” of the form q = q0 + q1i + q2j + q3k, where
q0, q1, q2 and q3 are real numbers called the components
of q, and i, j and k are symbols that follow the non-
commutative multiplication rules given in Table I. The
number q0 is the scalar part of q, while q1i+ q2j + q3k is
its vector part.

TABLE I
THE QUATERNION MULTIPLICATION TABLE

× 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Almost at the same time and motivated by the geo-
metrical solution of the Euler problem of the product of
two rotations, O. Rodrigues provided a set of four global
(not affected by singularities), non minimal and non
unique parameters representing a rotation and known
as the Euler-Rodrigues parameters [20]. If these four
parameters are substituted for the qi components of the
quaternion, then the multiplication rules of Table I are
exactly the ones of the multiplication of two rotations.

Indeed, the components of a normalized quaternion are
defined by their relations to the Euler axis-angle repre-
sentation of a rotation (the scalar part is directly related
to the main angle of the rotation, while the vector part is
proportional to the axis rotation vector). Relying on the
powerful algebra defined by Hamilton, this parametriza-
tion of the rotation group SO(3) is particularly appealing
from a computational point of view, compared to the
main alternatives such as Euler angles, Euler axis-angle
representation or Gibbs vector. In particular, quaternions
represent 3D-rotations in a more compact (4 real num-
bers instead of 9) and numerically efficient manner than
rotation matrices [14]. Due to this property, quaternions
are frequently used in computer graphics [24], computer
vision and robotics [5], and drone and aerospace vehicle
control [25]. They have also been used for processing
bivariate signals [6], and several applications to modern
physics are related in [8].

Let us now examine the arithmetic operations that can
be performed on quaternions.

A quaternion can be multiplied (resp. divided) by
a real number λ: this is done by multiplying (resp.
dividing) its components by λ.

The sum of q = q0 + q1i+ q2j + q3k and r = r0 + r1i+
r2j + r3k is

q+r = (q0+r0)+(q1+r1) ·i+(q2+r2) ·j+(q3+r3) ·j, (1)

and the product of q · r of q and r is π0 + π1i+ π2j+ π3k,
with 

π0 = q0r0 − q1r1 − q2r2 − q3r3,
π1 = q0r1 + q1r0 + q2r3 − q3r2,
π2 = q0r2 − q1r3 + q2r0 + q3r1,
π3 = q0r3 + q1r2 − q2r1 + q3r0.

(2)

Note that (2) is easily deduced from Table I and beware
that quaternion multiplication is not a commutative op-
eration: in general, q · r 6= r · q.

The norm of q = q0 + q1i+ q2j + q3k is

|q| =
√
q20 + q21 + q22 + q23 . (3)

The conjugate of the quaternion q = q0 + q1i+ q2j+ q3k
is defined as q = q0− q1i− q2j− q3k. It satisfies qq = |q|2.

This allows one to define the reciprocal of q as

q−1 =
q

|q|2
. (4)

Since multiplication is not commutative, there is no
unambiguous notion of division, and notation q/r (un-
less q is real) should be avoided, since it would not be
clear whether it would mean q · r−1 or r−1 · q.

While it is commonly known that arithmetic operations
on quaternions are numerically stable, few articles re-
cently tackled their error analysis [22], [23], focusing
mainly on overflows/underflows and statistical tests.

The goal of this paper is to give and analyze algo-
rithms for manipulating quaternions in floating-point
arithmetic.

The setting is the following: we assume an underly-
ing radix-2, precision-p floating-point arithmetic, with
subnormal numbers available, and correctly-rounded
(to nearest) floating-point operations, similar to default
mode of the binary arithmetic specified by the IEEE
754 Standard [1]. We also define emin and emax as the
extremal floating-point exponents, so that the largest
finite floating-point number is

Ω = 2emax+1 − 2emax−p+1,

the smallest positive nonzero number is

α = 2emin−p+1,

and the smallest positive normal number is 2emin .
We denote u = 2−p the rounding unit, v = u/(1 + u),

and RN the round-to-nearest, ties-to-even function. We
remind the reader (see for instance [16]) that for any t
between 2emin and Ω, we have

|RN(t)− t| ≤ v · |t| =
(

u

1 + u

)
· |t| < u · |t|.

We are interested in obtaining bounds on the compo-
nentwise and normwise relative errors of the arithmetic
operations on quaternions. If q̂ = q̂0 + q̂1i + q̂2j + q̂3k
approximates q = q0 + q1i + q2j + q3k, then the compo-
nentwise relative error of that approximation is

max
n=0,...,3

∣∣∣∣ q̂n − qnqn

∣∣∣∣ ,
(with the convention that if qn = 0 then |(q̂n − qn)/qn| is
replaced by 0 if q̂n = 0, and by +∞ otherwise), and the
normwise relative error is∣∣∣∣ q̂ − qq

∣∣∣∣ ,
(with the convention that if q = 0 then the normwise
error is 0 if q̂ = 0, and +∞ otherwise).

In the following, we will also use other norms than
the “standard” one (3): the “infinite norm” defined as

||q||∞ = max{|q0|, |q1|, |q2|, |q3|},

and the “1-norm” defined as

||q||1 = |q0|+ |q1|+ |q2|+ |q3|.

These norms satisfy: ||q||∞ ≤ |q| ≤ 2 · ||q||∞,
||q||∞ ≤ ||q||1 ≤ 4 · ||q||∞,
|q| ≤ ||q||1 ≤ 2 · |q|.

(5)

Adding quaternions is straightforwardly and very ac-
curately done using (1). Straightforward use of (2), (3)
or (4) for multiplying two quaternions, or computing
the norm or the reciprocal of a quaternion is more
problematic because the intermediate operations that
appear in these formulas can easily lead to spurious
overflows or underflows, i.e., an intermediate calculation
underflows or overflows whereas the exact final result
(or its components if it is a quaternion) is well within
the domain of normal representable numbers. In such
a case, instead of a reasonably good approximation
to that exact result, we can obtain NaNs, infinities,
or very inaccurate results. Some libraries [2], [4], [3]
essentially implement formulas (2), (3) or (4). This is not
necessarily a problem if the input operands are known
to lie in a domain in which overflow and underflow
are impossible or harmless: for example, a quaternion
associated to a 3D rotation has norm 1. For building a
“general” library, however, this issue must be addressed
(furthermore, some papers mention applications that use
nonunit quaternions [21], [8]). We will do this by using
scaling techniques similar to the ones that are sometimes
used in complex arithmetic [11], [7], [19].

I. SCALING A QUATERNION

Let q = q0 + q1i + q2j + q3k be a quaternion, where
q0, q1, q2, and q3 are binary floating-point numbers. The
goal is to compute a (real) scaling factor F such that
• F is a power of 2 (so that a multiplication by F is

errorless);
• ||q/F ||∞ is not far from, and below, 1 (typically it

will be between 1/16 and 1).
We can use two functions specified by the IEEE 754

Standard [1, p. 32]:
• scaleB(x, k), which returns (in a binary format,

which is the case considered in this paper) x · 2k
(where x is a FP number and k is an integer). In the
C language, that function is called logb;

• logB(x), which returns (in a binary format) blog2 |x|c
(where x is a FP number). In the C language, that
function is called scalbn.

A natural solution is to choose, as a scaling factor, the
power of 2 immediately larger than the largest of |q0|,
|q1|, |q2|, and |q3|, i.e.,

F∞(q) = 2blog2 ||q||∞c+1,

however, on many recent architectures, ||q||1 = |q0| +
|q1| + |q2| + |q3| will be computed more quickly than
||q||∞ = max{|q0|, |q1|, |q2|, |q3|}. Hence it may be prefer-
able to use

F1(q) = 2blog2 ||q||1c+1.

The definition of F∞ implies that

1

2
≤ max

i=1,...,4

|qi|
F∞(q)

< 1, (6)

and, using (5), we obtain

1

8
≤ max

i=1,...,4

|qi|
F1(q)

< 1. (7)

II. COMPUTING THE NORM OF A QUATERNION

Let q = q0 + q1i + q2j + q3k be a quaternion, where
q0, q1, q2, and q3 are binary floating-point numbers.
Algorithm 1 presents the classical method for computing
its norm defined by Eq. (3).

ALGORITHM 1: Naive algorithm for computing
the norm of q = q0 + q1i+ q2j + q3k.

1: ŝ0 ← RN(q20)
2: ŝ1 ← RN(q21)
3: ŝ2 ← RN(q22)
4: ŝ3 ← RN(q23)
5: σ̂0 ← RN(ŝ0 + ŝ1)
6: σ̂1 ← RN(ŝ2 + ŝ3)
7: σ̂ ← RN(σ̂0 + σ̂1)
8: N̂ ← RN

√
σ̂)

9: return N̂

Unless we have some preliminary information on q
(e.g., we know in advance lower and upper bounds on
the values |qi|) that allows us to be sure that the terms q2i
will not be too large or too tiny, Algorithm 1 should not
be used without a preliminary test and/or a preliminary
scaling of the terms qis, because:
– spurious overflow may occur, leading to a returned
result equal to +∞ even in cases where the exact result
is far below the overflow threshold. Just consider, in
binary32 arithmetic, the case q0 = 265, q1 = q2 = q3 = 0,
for which |q| = 265 and N̂ = +∞;
– spurious underflow may occur, leading to poor ac-
curacy (this is an issue only when all |qi|s are small:
when this is not the case, the underflowing terms will
be negligible in front of the largest one, so that a large
relative error on these terms will not undermine the com-
putation). An example of a poor result due to spurious
underflow in binary32 arithmetic is q0 = (3/2) × 2−75

and q1 = q2 = q3 = 0, for which |q| = q0 ≈ 3.97× 10−23,
and the computed value is 11863283/298 ≈ 3.74× 10−23.

For now, let us assume that no underflow or overflow
occurs, and let us bound the error of Algorithm 1. By
convention, we associate to an exact mathematical value
say s, the corresponding computed value (after round-
ing) written with a “hat”, say ŝ. Without any difficulty,
we obtain

∀i, si(1− v) ≤ ŝi ≤ si(1 + v),

hence
∀i, σi(1− v)2 ≤ σ̂i ≤ σi(1 + v)2,

and
σ(1− v)3 ≤ σ̂ ≤ σ(1 + v)3.

This gives
√
σ(1− v)3/2 ≤

√
σ̂ ≤
√
σ(1 + v)3/2,

and

N(1− v)5/2 ≤ N̂ = RN(
√
σ̂) ≤ N(1 + v)5/2.

Therefore when no underflow or overflow occurs, the
relative error of Algorithm 1 is bounded by (1+v)5/2−1,
which is less than (5/2)u.

Now, assume that we “scale” the input values, i.e., we
divide q0, q1, q2 and q3 by F = F1(q) or F∞(q) (whichever
is the fastest to compute on the system being used), to get
new input values q′0, q′1, q′2 and q′3. Note that in practice
we do not actually perform a division by F , but rather
use functions scaleB and logB (unless they are poorly
implemented). That is, we compute

c = logB(|q1|) + 1 or logB(|q|) + 1,

and
q′n = scaleB(qn,−c).

From (6) and (7), we find
1

8
≤ max{|q′0|, |q′1|, |q′2|, |q′3|} ≤ 1. (8)

Then we apply Algorithm 1 to the scaled inputs, and
perform a final multiplication of the obtained result by
F . Due to the scaling, spurious overflow can no longer
happen. If no underflow occurs, then, since multiplying
or dividing by F is errorless, the previously computed
error bound still applies.

If an underflow occurs (either in one of the divisions
by F or later on), one can show using (8) that the error
on the corresponding terms has very little influence on
the sum σ̂, so that the error bound remains valid.

III. COMPUTING THE PRODUCT OF TWO QUATERNIONS

A. The naive multiplication algorithm
The “naive” way of implementing quaternion mul-

tiplication consists in directly translating (2), i.e., in
computing

π̂0 = RN
(

RN
(
RN(q0r0)− RN(q1r1)

)
−RN

(
RN(q2r2) + RN(q3r3)

))
π̂1 = RN

(
RN
(
RN(q0r1) + RN(q1r0)

)
+RN

(
RN(q2r3)− RN(q3r2)

))
π̂2 = RN

(
RN
(
RN(q0r2)− RN(q1r3)

)
+RN

(
RN(q2r0) + RN(q3r1)

))
π̂3 = RN

(
RN
(
RN(q0r3) + RN(q1r2)

)
−RN

(
RN(q2r1)− RN(q3r0)

))

(9)

Similarly to what we did for the calculation of the
norm of a quaternion, let us first analyze the error
committed by using (9) when no underflow or overflow
occurs. Then, we will see how scaling the inputs can
allow one to avoid spurious overflows.

1) Accuracy of the naive multiplication algorithm: Con-
sider the calculation of π̂0 (i.e., Line 1 of (9)) — the
reasoning with the calculation of π̂1, π̂2, and π̂3 is similar.
We have,

RN(q0r0) = q0r0 · (1 + ε), with |ε| ≤ v,

and a similar relation holds for the other products q1r1,
q2r2, and q3r3. Therefore,

RN(q0r0)− RN(q1r1) = q0r0 − q1r1 + (|q0r0|+ |q1r1|) · ε1

with |ε1| ≤ v, therefore,

RN
(
RN(q0r0)− RN(q1r1)

)
= q0r0 − q1r1 + (q0r0 − q1r1) · ε2
+(|q0r0|+ |q1r1|) · ε1 · (1 + ε2),

with |ε2| ≤ v, and a similar relation holds for q2r2 +q3r3.
We therefore obtain

RN
(
RN(q0r0)− RN(q1r1)

)
− RN

(
RN(q2r2) + RN(q3r3)

)
= q0r0 − q1r1 − q2r2 − q3r3

+
(
|q0r0 − q1r1|+ |q2r2 + q3r3|

)
· ε′2

+
(
|q0r0|+ |q1r1|+ |q2r2|+ |q3r3|

)
· ε′1 · (1 + ε′2),

with |ε′1|, |ε′2| ≤ v, therefore

π̂0 = RN
(

RN
(
RN(q0r0)− RN(q1r1)

)
−RN

(
RN(q2r2) + RN(q3r3)

))
= q0r0 − q1r1 − q2r2 − q3r3

+ (q0r0 − q1r1 − q2r2 − q3r3) · ε3
+
(
|q0r0 − q1r1|+ |q2r2 + q3r3|

)
· ε′2 · (1 + ε3)

+
(
|q0r0|+ |q1r1|+ |q2r2|+ |q3r3|

)
· ε′1 · (1 + ε′2)(1 + ε3),

with |ε3| ≤ v.
This gives,

π̂0 = π0 + π0ε3 +
(
|q0r0|+ |q1r1|+ |q2r2|+ |q3r3|

)
ε4, (10)

with |ε4| ≤ 2v + 3v2 + v3. There is a similar equation
(deduced through symmetries) for π1, π2, and π3. We
therefore obtain

Lemma 1 (Componentwise absolute error of the “naive”
quaternion multiplication algorithm). When no underflow
or overflow occurs, the values π̂0, π̂1, π̂2, and π̂3 computed
as indicated in (9) satisfy

|πn − π̂n| ≤ u · |πn|+
(

2u
1+u + 3u2

(1+u)2 + u3

(1+u)3

)
·Mn

≤ u · |πn|+
(
2u+ u2

)
·Mn, n = 0, 1, 2, 3

with 
M0 = |q0r0|+ |q1r1|+ |q2r2|+ |q3r3|
M1 = |q0r1|+ |q1r0|+ |q2r3|+ |q3r2|
M2 = |q0r2|+ |q1r3|+ |q2r0|+ |q3r1|
M3 = |q0r3|+ |q1r2|+ |q2r1|+ |q3r0|.

Lemma 1 does not allow one to bound the componen-
twise relative error of the quaternion product, because
|πn|/Mn can be very large. An example (that also works
for the “naive” product of complex numbers, and was
given in [10]) is q0 = 2p − 2, q1 = 2p − 1, q2 = q3 = 0,
r0 = 2p, r1 = 2p − 1, r2 = r3 = 0, for which π0 = −1 and
π̂0 = 0: the relative error on π0 is equal to 1. Now, let us
try to bound the normwise relative error of the quaternion
product. From (10) and the similar equations for π1, π2,
and π3, one obtains

|π − π̂|2

|π|2
≤

3∑
n=0

(πnv +Mnw)2

π2
0 + π2

1 + π2
2 + π2

3

, (11)

with w = 2v + 3v2 + v3. From (11), we obtain

|π − π̂|2

|π|2

≤ v2 +
2vw ·

∑3
n=0Mnπn + w2 ·

∑3
n=0M

2
n

π2
0 + π2

1 + π2
2 + π2

3

≤ v2 +
(2vw + w2)(M2

0 +M2
1 +M2

2 +M2
3)

π2
0 + π2

1 + π2
2 + π2

3

≤ v2 +
(2vw + w2)(M2

0 +M2
1 +M2

2 +M2
3)

|q|2 · |r|2

(12)

(by noting that π2
0 + π2

1 + π2
2 + π2

3 = |q · r|2 = |q|2 · |r|2).
In (12), the term M2

0 /(|q|2 · |r|2) is of the form

〈a|b〉2

|a|2 · |b|2
,

with a = q and b = r. The term M2
1 /(|q|2 · |r|2) is of

the same form with a = q and b = (r1, r0, r3,−r2), the
term M2

2 /(|q|2 · |r|2) is of the same form with a = q and
b = (r2,−r3, r0, r1), and the term M2

3 /(|q|2 · |r|2) is of
the same form with a = q and b = (r3, r2,−r1, r0). The
Cauchy-Schwarz inequality implies that all these terms
are less than or equal to 1. Therefore, we obtain

|π − π̂|2

|π|2
≤ v2 + 4 · (2v + w2)

≤ 33v2 + 72v3 + 60v4 + 24v5 + 4v6.
(13)

Hence, the normwise relative error of the quaternion
product implemented as indicated in (9) is bounded by√

33v2 + 72v3 + 60v4 + 24v5 + 4v6,

which is less than
√

33 · u+ u2 ≈ 5.75u+ u2.
If an FMA instruction is available, one can replace (9)

by



π̂0 = RN
(

RN
(
q0r0 − RN(q1r1)

)
−RN

(
q2r2 + RN(q3r3)

))
π̂1 = RN

(
RN
(
q0r1 + RN(q1r0)

)
+RN

(
q2r3 − RN(q3r2)

))
π̂2 = RN

(
RN
(
q0r2 − RN(q1r3)

)
+RN

(
q2r0 + RN(q3r1)

))
π̂3 = RN

(
RN
(
q0r3 + RN(q1r2)

)
−RN

(
q2r1 − RN(q3r0)

))

(14)

By doing this, the calculations will be faster, and
frequently more accurate. However, the error bound will
remain unchanged.

2) Scaling the naive multiplication algorithm to avoid
spurious overflow: Still consider the product of q = q0 +
q1i+ q2j+ q3k and r = r0 + r1i+ r2j+ r3k. Let us scale q
and r by F1(q) and F1(r), respectively, i.e., we compute
“scaled quaternions” q′ and r′ defined by q′i = qi/F1(q)
and r′i = ri/F1(r). We then apply the naive algorithm to
the scaled operands in order to compute q′ ·r′. We finally
obtain the desired product q · r by multiplying each
component of q′ · r′ by the product of the scaled factors.
Again, the scaling as well as the final multiplication can
be implemented using functions logB and scaleB.The
scaling ensures

1

2
≤ ||q′||1; ||r′||1 < 1.

Therefore, using (5),

1

4
≤ |q′|; |r′| < 1, (15)

and
1

8
≤ ||q′||∞; ||r′||∞ < 1. (16)

Eq. (16) implies that none of the intermediate or final
results in (9) can overflow. Underflow is more difficult
to handle. Eq (15) implies that

1

16
≤ |q′ · r′| < 1,

from which we deduce, using (5) again,

1

32
≤ ||q′ · r′||∞ < 1.

Which implies that, even if underflow can occur during
the intermediate calculations (and, in such a case, it can
significantly worsen the componentwise error), it cannot
have a significant impact on the normwise error.

B. A more accurate algorithm
Since the calculations that appear in (2) are dot

products, one can use accurate dot-product algorithms
published in the literature (here we will consider an
algorithm published in [18]) to perform them. These
algorithms use, as basic building blocks, Algorithms 2
and 3 (for proofs and explanations, see for instance [16]).

ALGORITHM 2: 2Sum(x, y). The 2Sum algo-
rithm [15], [13]. The returned results satisfy s+t =
x+ y.

s← RN(x+ y)
x′ ← RN(s− y)
y′ ← RN(s− x′)
δx ← RN(x− x′)
δy ← RN(y − y′)
t← RN(δx + δy)
return (s, t)

ALGORITHM 3: Fast2Mult(x, y). The Fast2Mult
algorithm (see for instance [12], [17], [16]). It
requires the availability of a fused multiply-add
(FMA) instruction for computing RN(xy−w). The
returned results satisfy w + e = xy.

w ← RN(xy)
e← RN(xy − w)
return (w, e)

Using Alg. 5.3 in [18], π0 is computed as shown in
Algorithm 4 (the calculation of π1, π2, and π3 is similar).
Using Proposition 5.5 of [18], we obtain

ALGORITHM 4: Calculation of π0 using Ogita,
Rump and Oishi’s algorithm (Alg. 5.3 in [18]).

1: (s0, e0)← Fast2Mult(q0, r0)
2: (s1, e1)← Fast2Mult(−q1, r1)
3: (s2, e2)← Fast2Mult(−q2, r2)
4: (s3, e3)← Fast2Mult(−q3, r3)
5: σ ← e0
6: S ← s0
7: for i = 1 to 3 do
8: (S, ρ)← 2Sum(S, si)
9: σ ← RN(σ + RN(ρ+ ei)

10: end for
11: π̂0 ← RN(S + σ)
12: return π̂0

Lemma 2 (Componentwise error of the quaternion mul-
tiplication algorithm derived from Ogita, Rump and
Oishi’s dot-product algorithm [18]). When no underflow
or overflow occurs, the values π̂0, π̂1, π̂2, and π̂3 computed
as indicated in Algorithm 4 satisfy

|πn − π̂n| ≤ u · |πn|+
1

2

(
4u

1− 4u

)2

·Mn.

When Mn/|πn| is large, this is a much better bound
than the one given by Lemma 1. Let us now give a bound
on the normwise relative error. This will be very similar
to what we did in Section III-A1, so we refer to that
section for the detailed explanations. We have,

|π − π̂|2

|π|2

≤

3∑
n=0

(
πnu+

1

2

(
4u

1− 4u

)2

·Mn

)2

π2
0 + π2

1 + π2
2 + π2

3

≤ u2 +

(
u ·
(

4u
1−4u

)2
+ 1

4 ·
(

4u
1−4u

)4) 3∑
n=0

M2
n

|q|2 · |r|2

≤ u2 + 4u ·
(

4u
1−4u

)2
+
(

4u
1−4u

)4
.

(17)

The obtained quantity is less than (u + 32u2)2 as soon
as p ≥ 4 (i.e., as soon as u ≤ 1/16), which always holds
in practice. Therefore, we obtain,

Lemma 3 (Nomwise error of the quaternion multiplica-
tion algorithm derived from the dot-product algorithm
in [18]). If p ≥ 4 and if no underflow or overflow occurs,
the normwise error obtained when using Algorithm 4 for per-
forming a quaternion multiplication is bounded by u+ 32u2.

The scaling method suggested in Section III-A2 can be
used as well with Algorithm 4.

IV. COMPUTING THE RECIPROCAL OF A QUATERNION

Let us first analyze the error due to computing the
reciprocal of q using Formula (4), and assuming that
underflow and overflow do not occur. The term |q|2
is obtained as variable σ̂ at Line 7 of Algorithm 1. As
shown in the analysis of that algorithm, it satisfies

|q|2 · (1− v)3 ≤ σ̂ ≤ |q|2 · (1 + v)3,

therefore, for n = 0, . . . , 3, and with qn = qn if n = 0,
−qn otherwise, we have∣∣∣∣ qn|q|2

∣∣∣∣ · (1− v)

(1 + v)3
≤
∣∣∣∣RN

(
qn
σ̂

)∣∣∣∣ ≤ ∣∣∣∣ qn|q|2
∣∣∣∣ · (1 + v)

(1− v)3
.

Hence, the componentwise and normwise relative errors
of computing the reciprocal using (4) are bounded by

(1 + v)

(1− v)3
− 1 = 4u+ 5u2 + 2u3.

To avoid spurious overflow (and make underflow
harmless) we can “scale” q by F1(q) (i.e., we obtain a
quaternion q′ = q/F1(q)). This gives, using (5), 1/4 ≤
|q′| < 1. Therefore, in the calculation of |q′|2, no overflow
occurs, and a possible underflow has no incidence on the
accuracy of the result). Then, since∣∣∣∣ q′|q′|2

∣∣∣∣ =
1

|q′|
,

we deduce, using (5) again, that

1

2
<

∣∣∣∣∣∣∣∣ q′|q′|2
∣∣∣∣∣∣∣∣
∞
≤ 4. (18)

Hence no overflow can occur during the division of q
by |q′|2. An underflow is possible on some (but not all)
of the components of the result, leading to a possibly
poor componentwise relative error. However, Eq. (18)
implies that a possible underflowing component will
be negligible in front of the largest component, so that
the underflow will have no significant impact on the
normwise relative error.

V. CONVERSION TO/FROM A ROTATION MATRIX

Using quaternions for efficiently performing interme-
diate calculations involving rotations requires being able
to efficiently convert rotations matrices to and from
quaternions.

Converting from a quaternion to a rotation matrix is
not difficult. Assume that the rotation matrix is

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,

and let q0 + q1i+ q2j+ q3k be a quaternion associated to
the same rotation. We have [23]:

R = 2×

 (q20 + q21)−
1
2

q1q2 − q0q3 q1q3 + q0q2
q1q2 + q0q3 (q20 + q22)−

1
2

q2q3 + q0q1
q1q3 − q0q2 q2q3 + q0q1 (q20 + q23)−

1
2

 . (19)

Applying (19) naively can lead to a large componen-
twise relative error. Consider for example the compu-
tation of the first diagonal element of R in the case
q0 = 1/2 − u and q1 = 1/2 + u. Computing r11 as
RN(RN(RN(q20)+RN(q21))−1/2) leads to a computed re-
sult equal to 0 whereas the exact result is 2u2. However,
the normwise relative error remains small. To define
the normwise error we have to consider a norm for R.
Let us choose ||R||∞ = maxi,j |Rij |. One easily shows
that evaluating the rij naively leads to an absolute error
on each component less than 7

2u. Hence, if R̂ is the
computed value of R,

||R̂ − R||∞
||R||∞

≤
7
2u

||R||∞
.

Since R is a rotation matrix, it is orthogonal: the sum of
the squares of the elements of any column in R is 1. As
a consequence, at least one element has absolute value
larger than 1/

√
3. Hence, ||R||∞ ≥

√
3/3. Therefore, the

normwise relative error is bounded by 7
2

√
3u ≤ 6.063u.

Converting from a rotation matrix to a quaternion is
significantly more difficult. Several solutions have been
suggested and we refer to [23] for a recent presentation
of them. Let us here analyse one possible solution, which
is also employed in the Patrius Library of CNES (French

Space Agency) [3]. First, one can observe from Eq. (19)
that

|q0| = 1
2

√
1 + r11 + r22 + r33,

|q1| = 1
2

√
1 + r11 − r22 − r33,

|q2| = 1
2

√
1− r11 + r22 − r33,

|q3| = 1
2

√
1− r11 − r22 + r33.

(20)

One can choose q0 > 0, and to be consistent with that
choice q1 must have the sign of r32−r23, q2 must have the
sign of r13 − r31, and q3 must have the sign of r21 − r12.
Straightforward use of Eq. (20) leads to possible large
inaccuracies. However, since the norm of the obtained
quaternion will be 1, at least one of its components is of
absolute value larger than 1/2. For that component, the
corresponding value of ±r11 ± r22 ± r33 in Eq. (20) will
be larger than 0. We can then compute that component
using Eq. (20), and then deduce the other components
using the following relations [23]:

4q2q3 = r23 + r32,
4q1q3 = r31 + r13,
4q1q2 = r21 + r12,
4q0q1 = r32 − r23,
4q0q2 = r13 − r31,
4q0q3 = r21 − r12.

(21)

Hence, we will do the following: we start by suc-
cessively computing the terms ±r11 ± r22 ± r33 that
appear in Eq. (20) as RN(±r11 ± RN(r22 ± r33)). As
soon as we have found a term strictly larger than a
certain fixed threshold η, we compute the component
corresponding to that term using Eq. (20), and then we
deduce the other components using Eq. (21) (i.e., for
each term, we need a floating-point addition/subtraction
followed by a division). The threshold is selected based
on statistical trials in [22]: for instance it has the value
η = −0.25 in [22] or it is fixed to η = −0.19 in the Patrius
Library. Let us evaluate the maximum relative error of
this algorithm for a generic threshold η = −2−e, for
e ∈ N, 0 < e < p. For the sake of simplicity, we assume
that the component that is directly computed (i.e., the
one for which RN(±r11 ± RN(r22 ± r33)) > −2−e) is q0.

We have successively computed s1 = RN(r22+r33) and
s2 = RN(r11 + s1). Since s2 > −2−e, we have r11 + s1 ≥
−2−e + 2−eu/2. Also, since the coefficients of a rotation
matrix are all of absolute value ≤ 1, we have |r22+r33| ≤
2, so that |s1| ≤ 2 (which implies |s2| ≤ 3) and |s1−(r22+
r33)| ≤ u. All this gives r11+r22+r33 ≥ −2−e−u+2−eu/2,
so that

4q20 = 1 + r11 + r22 + r33 ≥ 1− 2−e − u+ 2−eu/2. (22)

Denoting the righthand side of (22) by

f(e, u) = (1− 2−e)− u(1− 2−e−1),

we have q20 ≥
f(e,u)

4 .

Also, since |s2| ≤ 3, |s2 − (r11 + s1)| ≤ 2u, hence we
always have

|s2 − (r11 + r22 + r33)| ≤ 3u. (23)

Now consider the addition

s3 = RN(1 + s2),

we have |s3| ≤ 4 and |s3 − (1 + s2)| ≤ 2u, therefore,
combined with (23),

|s3 − (1 + r11 + r22 + r33)| ≤ 5u. (24)

Using this result and (22), we have

(1 + r11 + r22 + r33)
[
1− 5u

f(e,u)

]
≤ s3

≤ (1 + r11 + r22 + r33)
[
1 + 5u

f(e,u)

]
,

which implies

q0

[
1− 5u

f(e, u)

] 1
2

≤ 1

2

√
s3 ≤ q0

[
1 +

5u

f(e, u)

] 1
2

,

therefore, the computed value of q0, namely q̂0 =
1
2RN

√
s3, satisfies

q0

[
1− 5u

f(e, u)

] 1
2

(1−u) ≤ q̂0 ≤ q0
[
1 +

5u

f(e, u)

] 1
2

(1 +u).

Hence, the relative error on q̂0 satisfies

lb(e, u) ≤ q̂0 − q0
q0

≤ ub(e, u),

where the functions to be studied are:

lb(e, u) :=

[
1− 5u

f(e, u)

] 1
2

(1− u)− 1,

and

ub(e, u) :=

[
1 +

5u

f(e, u)

] 1
2

(1 + u)− 1.

Since the Taylor series at u = 0 of lb(e, u) and ub(e, u)

is convergent as soon as |u| < 2e+1−2
12·2e−1 (with e < 0), one

obtains after a classical but tedious analysis:

lb(e, u) = −
(

1 +
5

2 (1− 2−e)

)
u−5 (5 + 2 · 2−e)

8 (1− 2−e)
2 u2−Rl(u

3),

ub(e, u) =

(
1 +

5

2 (1− 2−e)

)
u+

15 (1− 2 · 2−e)
8 (1− 2−e)

2 u2+Ru(u3),

where both |Rl| and |Ru| are bounded by 280u3 as
soon as u ≤ 1/32 and e < 1.

For instance, for η = −1/8 (i.e. e = 3), the relative error
on q̂0 is bounded by

27

7
u+ 7u2,

as soon as u ≤ 1/128 (i.e., as soon as p ≥ 7, which
always holds in practice).

Now, consider the calculation of

q1 =
r32 − r23

4q0
,

which is approximated by

q̂1 =
1

4
RN

(
RN(r32 − r23)

q̂0

)
,

(the analysis is the same for q2 and q3). Without difficulty,
we obtain

|q1| ·
(1− u)2

(1 + ub(e, u))
≤ q̂1 ≤ |q1| ·

(1 + u)2

(1 + lb(e, u))
.

For instance, by fixing η = −1/8 as above, this error
becomes:

|q1| ·
(1− u)2(

1 + 27
7 u+ 7u2

) ≤ q̂1 ≤ |q1| · (1 + u)2(
1− 27

7 u− 7u2
) ,

hence the relative error on q1 is bounded by

(1 + u)2(
1− 27

7 u− 7u2
) − 1,

which is less than

41

7
u+ 40u2

as soon as u ≤ 1/128 (i.e., p ≥ 7), which always holds in
practice. Therefore, we conclude

Lemma 4. When the threshold η is −1/8 and as soon as
p ≥ 7, the componentwise relative error of computing the
quaternion coefficients from the rotation matrix coefficients
using the method presented in this section is bounded by 41

7 u+
40u2.

The bound of Lemma 4 also holds for the nomwise
relative error.

CONCLUSION

We have given relative error bounds for the major
operations required for manipulating quaternions in
floating-point arithmetic. These bounds are small, which
confirms the fact that quaternions are easy to manipu-
late.

ACKNOWLEDGEMENT

We thank a lot Denis Arzelier for his advice.

REFERENCES

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2019
(Revision of IEEE 754-2008), pages 1–84, July 2019.

[2] J. Burkardt. Quaternions: Quaternion arithmetic. Available in
C and Fortran90 at http://people.math.sc.edu/Burkardt/f_src/
quaternions/quaternions.html, 2018.

[3] France CNES (National Centre for Space Studies). CNES Patrius
Java Library. Available at https://patrius.cnes.fr/index.php/,
2019.

[4] R. Eisele. Quaternion.js, javascript library of quaternions.
Available at https://github.com/infusion/Quaternion.js/blob/
master/quaternion.js, 2016.

[5] O.D. Faugeras and M. Hebert. The representation, recognition,
and locating of 3-d objects. The International Journal of Robotics
Research, 5(3):27–52, 1986.

[6] Julien Flamant, Pierre Chainais, and Nicolas Le Bihan. A complete
framework for linear filtering of bivariate signals. IEEE Transac-
tions on Signal Processing, 66(17):4541–4552, September 2018.

[7] B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C, 2nd edition. Cambridge University Press,
New York, NY, 1992.

[8] P R Girard. The quaternion group and modern physics. European
Journal of Physics, 5(1):25–32, jan 1984.

[9] W. R. Hamilton. Lectures on quaternions. Hodges and Smith,
Dublin, 1853.

[10] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller.
Further analysis of Kahan’s algorithm for the accurate com-
putation of 2 × 2 determinants. Mathematics of Computation,
82(284):2245–2264, October 2013.

[11] W. Kahan. Branch cuts for complex elementary functions. In The
State of the Art in Numerical Analysis, pages 165–211. Clarendon
Press, Oxford, 1987.

[12] W. Kahan. Lecture notes on the status of IEEE-754. Available at
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.
PDF, 1997.

[13] D. E. Knuth. The Art of Computer Programming, volume 2.
Addison-Wesley, Reading, MA, 3rd edition, 1998.

[14] Jack B. Kuipers. Quaternions and rotation sequences. In Pro-
ceedings of the International Conference on Geometry, Integrability and
Quantization, pages 127–143, Sofia, Bulgaria, 2000. Coral Press
Scientific Publishing.

[15] O. Møller. Quasi double-precision in floating-point addition. BIT,
5:37–50, 1965.

[16] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-
Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume
Melquiond, Nathalie Revol, and Serge Torres. Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2018. ACM G.1.0;
G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-3-319-76525-9.

[17] Y. Nievergelt. Scalar fused multiply-add instructions produce
floating-point matrix arithmetic provably accurate to the penulti-
mate digit. ACM Transactions on Mathematical Software, 29(1):27–48,
2003.

[18] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product.
SIAM Journal on Scientific Computing, 26(6):1955–1988, 2005.

[19] D. M. Priest. Efficient scaling for complex division. ACM
Transactions on Mathematical Software, 30(4), December 2004.

[20] O. Rodrigues. Des lois géométriques qui régissent les déplace-
ments d’un système solide dans l’espace, et de la variation des
coordonnées provenant de ses déplacements considérés indépen-
damment des causes qui peuvent les produire (in french). J. de
Mathématiques Pures et Appliquées, 5:380–440, 1840.

[21] C. Rucker. Integrating rotations using nonunit quaternions. IEEE
Robotics and Automation Letters, 3(4):2979–2986, Oct 2018.

[22] Soheil Sarabandi and Federico Thomas. Accurate computation of
quaternions from rotation matrices. In International Symposium on
Advances in Robot Kinematics, pages 39–46. Springer, 2018.

[23] Soheil Sarabandi and Federico Thomas. A Survey on the Com-
putation of Quaternions From Rotation Matrices. Journal of
Mechanisms and Robotics, 11(2), 03 2019. 021006.

[24] Ken Shoemake. Animating rotation with quaternion curves. In
Proceedings of the 12th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’85, page 245–254, New York,
NY, USA, 1985. Association for Computing Machinery.

[25] Chao Song, Genaro Islas, and Klaus Schilling. Inverse dynam-
ics based model predictive control for spacecraft rapid attitude
maneuver. IFAC-PapersOnLine, 52(12):111 – 116, 2019. 21st IFAC
Symposium on Automatic Control in Aerospace ACA 2019.

