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2Institut de mécanique céleste et de calcul des éphémérides – Observatoire de Paris, UMR 8028 du CNRS, 77 avenue Denfert-Rochereau,
F-75014 Paris, France
3M. V. Lomonosov Moscow State Univrsity – Faculty of Physics, Leninskie Gory, Moscow 119991, Russia

Accepted 2015 September 9. Received 2015 August 30; in original form 2015 May 14

ABSTRACT
Modelling the motion of Triton, the main satellite of Neptune, is specific. Earlier researchers
built Triton’s ephemeris by numerical integration of the equations of its motion. However,
these ephemeris can be accessed only by using online ephemeris server or by borrowing a
special calculating program and huge data file from authors of the ephemeris. In addition,
the interval of the earlier ephemeris is limited. In this paper, simple and easily programmable
formulae are presented for computing Triton’s ephemeris for any instant of time. The formulae
are based on a new analytical theory of Triton’s motion all necessary perturbing factors being
taken into consideration. The parameters of the theory are fit to all published observations
made from 1847 to 2012 (10 254 observations in total). After the parameters were fit to
observations, the root-mean-square residuals were 0.228 arcsec, the weighted average residual
being 0.036 arcsec. The new ephemeris of Triton slightly differs from those produced by other
authors because of differences in the sets of used observations. The new ephemeris of Triton
are put on our online ephemeris server. It is shown that the available observations do not allow
to determine reliably the quadratic term in the orbital longitude of Triton. Such a term would
be an additional indicator of the accuracy of the theory and observations.

Key words: astrometry – ephemerides – planets and satellites: individual: Neptune satellites.

1 IN T RO D U C T I O N

Theories of motion of the planets and their satellites are necessary
for generating the ephemeris of these bodies and carrying out space
missions to them. In addition, the models of satellite motions based
on observations enable to define satellite orbital deceleration or
acceleration caused by the tides from the viscoelastic bodies of the
planets or of the satellites themselves (Lainey et al. 2009, 2012;
Emelyanov & Nikonchuk 2013).

Observations of a satellite are carried out from the date of its
discovery up to current date. The properties of orbital motion are
such that the accuracy of the ephemeris essentially depends upon
the interval of observations that were used to define the parame-
ters of motion. Hence, to obtain more precise ephemeris, we need
observations covering longer time interval.

Considerable dependence of the ephemeris precision on the time
interval had been proven in earlier investigations (Desmars et al.
2009; Emelyanov 2010; Jacobson et al. 2012). If the observations
made by spacecrafts at very short time intervals, though having
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high precision, they could make little contribution to the ephemeris
precision.

When solving equations of satellite’s motion, it is necessary to
take into consideration all relevant perturbations so that the solution
would have the accuracy higher than that of observations. To this
end, numerical integration of the equations of motion is generally
used because, for most natural planetary satellites, construction of
analytical theory is difficult enough due to the complexity of the
formulae of the perturbation theory. However, there are planetary
satellites for which it is quite possible to construct analytical theory
with sufficient precision. The Neptunian moon Triton is one of
them.

In calculating ephemeris, analytical theories of motion have sig-
nificant advantages over numerical models. The latter can be used
only either via online ephemeris server or with a special calculating
program and huge data file provided by the authors of the ephemeris.
On the contrary, an analytical theory can be described by a set of
rather simple formulae that can be easily programmed for ephemeris
calculation. Furthermore, ephemeris built by numerical integration
are always obtained for some limited time interval, while analytical
theory of motion enables to calculate satellite coordinates for any
moment of time. That is why we used the opportunity to construct
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analytical theory of Triton’s motion and use it for producing Triton’s
ephemeris.

Triton is fairly massive Neptunian satellite, other satellites be-
ing rather small and exerting negligible influence on its motion.
The parameters of the Triton–Neptune system have the following
approximate values (Jacobson, Riedel & Taylor 1991). Neptune’s
equatorial radius is 25 225 km, Triton’s radius being 1350 km.
The ratio of the satellite’s mass to that of the planet is 0.0002089.
As will be shown below, Triton moves in almost circular orbit
around its planet once every 5.87685421025 d at a mean distance
of 354 700 km. Angular distance between Neptune and Triton,
as seen from Earth, is 16 arcsec. Inclination of Triton’s orbit to
the planet’s equator is about 156.◦82. Right ascension and declina-
tion of Neptune’s north pole is about 299.◦4 and 43.◦5, respectively.
Triton’s motion is influenced by Neptune’s oblateness and solar
attraction.

The model of Triton’s motion presented in Jacobson (2009) was
elaborated by numerical integration of the equations of motion
where influence of the planet’s oblateness and perturbations from
the Sun and some planets were taken into account. To determine Tri-
ton’s orbit, Jacobson used all published Earth-based observations of
the satellite and observations available to him from private commu-
nications. Observations made by the Voyager spacecraft were used
as well. In total, the observations cover the interval from 1847 to
2008. Triton’s ephemeris, available via the HORIZONS ephemeris
server (Giorgini et al. 1996), can be obtained for the time interval
from 1800 to 2200.

An attempt to build alternative model of Triton’s motion based
on ground-based observations made from 1975 to 2006 was also
undertaken by Zhang (Zhang et al. 2014). However, since the model
of Triton’s motion used in Jacobson (2009) is based on larger series
of observations, it is Jacobson’s results that were considered in this
research.

In Jacobson (2009) a simplified analytical model of the satellite’s
motion based on the precessing Keplerian ellipse is also offered.
Parameters of such an orbit, called mean elements, were chosen in
a way that the satellite’s coordinates could be best fit to the results
of numerical integration at the 400 yr time interval, from 1800 to
2200. The precessing ellipse model assumes that in a certain coordi-
nate system orbital semimajor axis a, eccentricity e and inclination
I remain constant while the longitude of the ascending node �,
the argument of pericentre � and the mean longitude λ are linear
functions of time. In Jacobson (2009) the axis around which the or-
bital plane is precessing with constant inclination is the line normal
to the Laplace plane. The coordinates of the direction of this axis
referred to the Earth equator are given. Although using the Laplace
plane allows partially to take into consideration solar perturbations
on the precessing orbit, the precessing ellipse model turns out to
be only approximate because it does not take account of periodic
perturbations in the elements of Keplerian orbit.

In this paper, we prove that the precessing ellipse model proposed
in Jacobson (2009) does not conform to the properties of Triton’s
perturbed motion. The perturbed value of the mean anomaly has
no secular change, as against the case for the unperturbed Keple-
rian motion, but exhibits periodic oscillations around zero with an
amplitude of several degrees.

We offer simple and easily programmable formulae for calcu-
lation of Triton’s ephemeris at any instant of time. The formulae
are based on a new analytical theory of Triton’s motion where all
main perturbing forces were taken into account. The accuracy with
which the motion of Triton can be presented by using this theory is
hundreds times better than that of its observations.

The parameters of the theory were fit to all published observations
made between 1847 and 2012. Thus, compared to the model in
Jacobson (2009) where the observation time interval ends in 2008,
Triton’s ephemeris proposed in this paper are based on longer time
interval of observations.

2 A NA LY SI S O F TRI TO N’S O RBI T FROM
N U M E R I C A L I N T E G R AT I O N O F T H E
E QUAT I O N S O F MOT I O N

Applying the methods used in the theory of perturbations to the
problem of Triton’s motion leads to the expansion of the disturb-
ing function in powers of small parameters, the perturbations being
represented as the series. The small parameters of the expansions
are the coefficients defining perturbation factors as well as orbital
eccentricity of the satellite. For practical purposes, only the most
significant terms are left in the series. To find out which perturba-
tions should be taken into consideration in the analytical theory of
Triton’s motion, we analysed the way in which the elements of the
satellite orbit change. The analysis was performed on the basis of
numerical integration of the equations of motion.

We introduce the following notations for the elements of the
Keplerian orbit: a is the orbital semimajor axis, e the eccentricity
and I the inclination of the orbit to a certain reference plane. Other
elements are: M the mean anomaly, ω the angular distance of peri-
centre to the ascending node of the orbit (argument of pericentre)
and � the longitude of the ascending node. The orbital elements
are referred to a non-rotating planetocentric coordinate system. As
mentioned above, in Jacobson (2009) the coordinate system was
referred to the Laplace plane.

The elements of the Keplerian osculating orbit were computed
from the results of numerical integration of the equations of mo-
tion with all relevant perturbing factors taken into consideration.
The results of numerical integration were obtained by using the
HORIZONS online ephemeris service (Jet Propulsion Laboratory,
California Institute of Technology, USA). We used the telnet inter-
face of the server.

Triton’s planetocentric coordinates and velocities referred to the
Earth’s equator were obtained for a series of time instants with a
stepsize of 0.25 d at a 400 yr time interval between 1800 and 2200.
After that, the coordinates and the velocities were transformed in
the coordinate system referred to the Laplacian plane (Jacobson
2009). The resulting values of coordinates and velocities were used
to compute at each moment of time the elements a, e, I, M, ω, and
� of the Keplerian osculating orbit.

The changes in the element M over a time-scale of five revolutions
of the satellite are shown in Fig. 1. It is seen that the perturbed value
of the mean anomaly M oscillates near zero with an amplitude of
about 17◦. Note that the mean anomaly was calculated directly from
coordinates and velocities of the satellite and no secular changes
were excluded from obtained values. The question arises: how in the
world is it possible for this satellite to revolve around the planet?
The explanation can be found in Fig. 2 which shows the change
of the argument of pericentre ω over a time-scale of about three
satellite revolutions. It is seen that the line of apses is rotating
with an angular velocity which is approximately equal to that of
the satellite’s rotation around the planet. Thus, the motion of the
satellite along its orbit is determined by the argument of latitude
u = M + ω (its mean rate of change we denote thereafter as u̇).

As applied here to the Triton motion, this effect is generally
known. The possibility of perturbed circular orbital motion of a
satellite around the oblate planet with non-zero eccentricity of
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Figure 1. The change of Triton’s mean anomaly M over a time-scale of five
revolutions in its orbit.

Figure 2. The change of Triton’s argument of pericentre ω over a time-scale
of three revolutions in its orbit.

Keplerian osculating orbit is mentioned by Beletskii (1963). The
properties of motion with low eccentricity is discussed also by
Greenberg (1981).

These results prove that the precessing ellipse model proposed in
Jacobson (2009) does not correspond to the properties of Triton’s
Keplerian osculating orbit because the changes in M and ω have
quite different character.

Note that Jacobson took the eccentricity of Triton’s orbit to be
0.00001.

Analysis of changes in the osculating Keplerian elements ob-
tained from numerical integration of the equations of motion re-
vealed that the amplitudes of the short-period perturbations in the
elements I, u and � do not exceed 0.00001 rad, whereas those in
a are not greater than 3.5 km which makes 0.00001 from the value
of the semimajor axis (354 700 km). Taking into consideration the
mean distance between the Earth and Neptune, we conclude that
the 1 arcsec error in the satellite’s topocentric angular coordinates
would correspond to 22 000 km error in orbital position.

When determining the necessary precision of the theory of
Triton’s motion, the starting point was the accuracy of the best
Earth-based observations used in Jacobson (2009). If expressed in
topocentric angular coordinates, this accuracy is 0.03 arcsec, which
corresponds to 660 km in Triton’s orbital position.

It follows from the analysis given above that the short-period per-
turbations and oscillations in the satellite’s distance to the planet’s

centre are approximately 200 times less than the accuracy of obser-
vations. That is why in our model of Triton’s motion the short-period
perturbations are neglected and the orbit is assumed to be circular.
Moreover, it follows from Lagrange equations (Murray & Dermott
2010) that there are no long-period perturbations of the first order
in the semimajor axis a. Hence, we assume a to be constant.

At this stage only the changes in the elements over a time-scale of
several revolutions of the satellite were examined. Obviously, when
examining Triton’s motion at the 400 yr interval, it is necessary to
take into account long-period perturbations whose amplitudes are
much greater than those of the short-period perturbations.

3 T H E A NA LY T I C T H E O RY O F T R I TO N ’ S
M OT I O N

Having taken into consideration the above-given analysis of Triton’s
orbit, we have come to the construction of the analytical theory with
the view of using it to generate Triton’s ephemeris.

In our theory, we take into account secular perturbations caused
by Neptune’s non-sphericity as well as secular and long-period
perturbations resulting from solar attraction.

Neptune’s non-sphericity is mainly described by the second har-
monic coefficient J2 in the expansion of the potential function of
Neptune’s gravitational field. This term does not give any long-
period perturbations of the first order. As for the long-period per-
turbations resulting from fourth harmonic coefficient as well as
second-order perturbations, we esteem that, with the accuracy as-
sumed above, they can be neglected.

All secular perturbations in the elements u and � are taken into
account by including linear terms into their perturbations. The corre-
sponding coefficients u̇ and �̇ will be afterwards fit to observations.
In this way, all secular perturbations in these elements will be taken
into consideration, including those from the Sun.

The planet’s rotation axis precesses synchronously with the mo-
tion of Triton’s orbital plane around the vector of summary angular
momentum of both planet and satellite. The constant angle between
these axes is about 0.◦506 (Jacobson 2009). Orbital inclinations re-
ferred to both the planet’s rotation axis and the vector of summary
angular momentum also remain constant. As demonstrated in Ja-
cobson (2009), such model of motions of the planet and the satellite
is the most realistic. Only solar perturbations can produce small
deviations from it.

We use coordinate system referred to the fixed vector of sum-
mary angular momentum of both planet and satellite. The z-axis
of the coordinate system is directed along this vector, the x-axis
pointing to the node of the xy-plane over the Earth equator so that
the y-axis forms a sharp angle with the Earth equator. Hereafter,
we shall refer to this system as the orbital coordinate system. Since
the orbital inclination and the longitude of the ascending node are
determined from observations, practically the orbital coordinate
system is defined by the condition that the inclination is constant,
provided that long-period solar perturbations are excluded.

Let xg, yg and zg be the axes of planetocentric coordinate sys-
tem referred to the Earth equator. The coordinates in these two
coordinate systems are interrelated via the right ascension α0 and
declination δ0 of the z-axis. The coordinates xg, yg and zg are cal-
culated by the formulae:

xg = − sin α0 x − cos α0 sin δ0 y + cos α0 cos δ0 z,

yg = cos α0 x − sin α0 sin δ0 y + sin α0 cos δ0 z,

zg = cos δ0 y + sin δ0 z. (1)
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Figure 3. Coordinate systems centred at Neptune. The main planes are
shown with the lines of intersection with an unit sphere.

The parameters α0 and δ0 are not known in advance, they can be
determined only from observations of the satellite.

The elements of the Keplerian osculating orbit are not affected
by long-period perturbations of first order caused by the second
zonal harmonic with coefficient J2 in the expansion of the planet’s
gravitational potential. Thus, if we have neglected the second-order
perturbations and the solar perturbations, the satellite would move
in plane orbit which is precessing with constant angular velocity
and constant inclination to the main reference plane.

In our model, the elements a, I, u and � give the satellite’s position
in the orbital coordinate system relative to the planet’s centre. Three
of them are functions of time:

I = I0 + δI (t),

u = u0 + u̇(t − t0) + δu(t),

� = �0 + �̇(t − t0) + δ�(t),

(2)

where I0, u0, u̇, �0, �̇ are constants, t0 is a given initial epoch and
δI(t), δu(t), δ�(t) are long-period perturbations of the corresponding
elements.

Due to assumed simplifications, the formulae of Keplerian motion
converted into the following simple relationships:

x = a (cos u cos � − sin u sin � cos I ),

y = a (cos u sin � + sin u cos � cos I ),

z = a sin u sin I .

(3)

A scheme describing the geometry of the problem is presented
in Fig. 3.

To complete the model of Triton’s motion, with the assumptions
made above, we need to determine the long-period perturbations
δI(t), δu(t) and δ�(t) caused by the Sun’s attraction.

The expansion of the disturbing function R′ has been taken from
Murray & Dermott (2010). It is the series in powers of ratio a/a′,
where a′ is the semimajor axis of the Sun’s orbit around the planet.
The series begins with the term containing (a/a′)2.

Let us make some additional justified simplifications. Since the
semimajor axis a of Triton is 354 700 km and the mean distance
from Neptune to the Sun is 4504 449 760 km, we obtain that a/a′

= 0.000078757455. This means that we can neglect higher degrees

Table 1. The parameters of the model of solar motion.

Parameter Value from the Value from the
mean elements INPOP10 ephemeris

a′ (km) 4504449760 4499478064
i′, (◦) 27.923658 27.923678
�′ (◦) 200.788305 200.788181
u′

0 (◦) 258.329018 258.727508
u̇′ (deg d−1) 0.00598182615 0.00598084154

of this ratio, leaving only terms with (a/a′)2. We also assume that
the Sun moves in a circular orbit in the invariable plane. Let i′ and
�′ be the inclination and the longitude of the ascending node of the
Sun’s orbit in the orbital coordinate system. We assume that i′ and
�′ are known constant values, while the Sun’s argument of latitude
u′ is a known linear function of time u′ = u′

0 + u̇′(t − tS), where tS

is a given epoch. The values of i′, �′, u′
0 and u̇′ can be determined

from the mean elements of Neptune’s orbit (Simon et al. 1994).
After simplifications, the disturbing function is as follows:

R′ = Gm′a2

a′3

2∑
k=0

(2 − δ0,k)
(2 − k)!

(2 + k)!

2′∑
p′=0

F2k1(I )F2kp′ (i ′)

× cos[(2 − 2p′)u′ + k(�′ − �)] ,

where m′ is the mass of the Sun, δ0, k = 1 if k = 0, δ0, k = 0 if
k �= 0, and the prime of the second sum indicates that the term
with the indices k = 0 and p′ = 1, i.e. the secular term, is omitted.
F2k1(I) are the inclination functions. The resulting expression has
eight terms, two of which are equal because F200(i′) = F202(i′). The
necessary expressions for the inclination functions have been taken
from Kaula (1966).

The Lagrange equations for the elements δI(t), δu(t) and δ�(t)
were solved by using the small parameter method. The first-order
perturbations were defined with respect to the small parameter
(m′/m)(a/a′)3. In addition, it was taken into account that secular per-
turbations from the second zonal harmonics with the coefficient J2

in the elements u and � depend on I(t) which undergoes long-period
perturbations. Thus, perturbations proportional to (m′/m)(a/a′)3J2

were also taken into consideration.
To calculate the long-period perturbations resulting from the

Sun’s attraction, the above described approximate model of the
Sun’s circular motion around Neptune was used. This model’s pa-
rameters a′, i′ �′, u′

0 and u̇′ were taken in two versions. In the first
one, the parameters were calculated by using Neptune’s mean or-
bital elements taken from Simon et al. (1994). The second version of
the parameters of solar motion was calculated by the least-squares
method from heliocentric coordinates of the Sun computed with the
INPOP10 ephemeris (Fienga et al. 2011) for a series of time in-
stants with a stepsize 10 d for the time interval from 1800 to 2200.
Obtained parameters are given in Table 1. The date JD = 2451545.0
(TT) was taken as an initial epoch tS for the parameter u′

0. In these
versions, the values do not differ significantly. For the final variant
of the theory, we took the parameters of the Sun’s planar circular
orbit computed with the INPOP10 ephemeris.

At first, the long-period perturbations from the Sun were obtained
in analytical form. After this, the above-given parameters of solar
motion as well as the parameters of Triton’s motion found from
observations were substituted into the formulae. As a result, for any
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Table 2. The coefficients appearing in the formulae for the long-period
perturbations resulting from the Sun’s attraction.

i K
(i)
I (◦) K

(i)
u (◦) K

(i)
� (◦) k

(i)
1 k

(i)
2

1 0.0 −0.00012327 0.00063339 2 0
2 0.00096486 −0.00279453 −0.00178908 2 1
3 0.00664662 −0.04335625 −0.01560110 0 1
4 0.00004687 −0.00017215 −0.00009186 −2 1
5 0.00095975 −0.00233686 −0.00218071 2 2
6 − 0.00037627 0.00170605 0.00096231 0 2
7 − 0.00000225 0.00000730 0.00000536 −2 2

Figure 4. The long-period perturbations from the Sun in the elements of
Triton’s orbit.

given time instant, the perturbations can be calculated by using the
following simple formulae:

δI (t) =
7∑

i=1
K

(i)
I cos

[
k

(i)
1 u′ + k

(i)
2 (�′ − �)

]
,

δu(t) =
7∑

i=1
K (i)

u sin
[
k

(i)
1 u′ + k

(i)
2 (�′ − �)

]
,

δ�(t) =
7∑

i=1
K

(i)
� sin

[
k

(i)
1 u′ + k

(i)
2 (�′ − �)

]
,

(4)

where

u′ = u′
0 + u̇′(t − tS), � = �0 + �̇(t − t0). (5)

The coefficients involved in these formulae are given in Table 2.
The graphs illustrating the long-period perturbations from the

Sun in Triton’s elements I, u and � at the time interval from 1800
to 2200 are given in Fig. 4.

Now, we need to determine from observations the eight parame-
ters a, I0, u0, u̇, �0, �̇, α0 and δ0, two of which, u0 and �0, should
be attributed to the given initial epoch t0.

We have made an attempt to find from observations the coefficient
of the empiric quadratic term in the perturbations of the argument
of latitude u. The corresponding expression for the argument of
latitude can be presented in the following way

u = u0 + u̇(t − t0) + k̂(t − t0)2 + δu(t) , (6)

Table 3. Parameters of the model of Triton’s motion
obtained from numerical integration of the equations
of motion.

Parameter Value

a (km) 354758.98
I (◦) 156.86561883

u0 (◦) 32.66861530
u̇ (deg d−1) 61.2586972029

�0 (◦) 72.89882654
�̇(deg d−1) 0.001433819551

α0 (◦) 299.46088779
δ0 (◦) 43.40655561

where the coefficient k̂ is also to be determined from observations.
The quadratic term in the argument of latitude is translated to the
orbital longitude of the satellite. The reasons why this quadratic
term may appear is discussed in the Section 6.

After the parameters are determined, Triton’s planetocentric co-
ordinates referred to the Earth’s equator can be computed by using
the following chain of formulae: (5), (4), (6), (2), (3) and (1).

4 A NA LY SI S O F THE PRECI SI ON
O F T R I TO N ’ S A NA LY T I C A L T H E O RY
O F M OT I O N

When constructing the analytical theory of Triton’s motion, the
above described simplifications were applied. Before using the the-
ory for producing ephemeris, it is necessary to evaluate how ac-
curately it can represent the motion of the satellite. To this end,
the parameters of the orbit should be refined on the basis of some
precise reference model of motion. As such reference model, Tri-
ton’s ephemeris were used accessible at the HORIZONS ephemeris
server (Giorgini et al. 1996) and produced from the results obtained
in Jacobson (2009). We used the telnet interface of the ephemeris
server which can produce the satellite’s rectangular planetocentric
coordinates with an accuracy of 0.001 mm as well as velocities
referenced to the Earth’s equator. The coordinates and velocities
were taken for 584 161 time instants with the stepsize of 0.25 d at
a the time interval between 1800 and 2200. Using the least-squares
method, the coordinates were used to refine the eight parameters of
the theory, that is a, I0, u0, u̇, �0, �̇, α0 and δ0. The values of the
parameters that were obtained are given in Table 3. As an initial
epoch t0 of the parameters u0 and �0, the date JD= 2378520.5 (in
TT scale) was taken.

Having determined the parameters, the differences 	 between
the satellite’s planetocentric position calculated from the analytical
theory and that obtained from the initial coordinates were calculated
for each time instant. The root-mean-square value of these differ-
ences over all time instants turned out to be 3.3 km. This quantity
can serve as an evaluation of the theory’s precision. Thus, with
the obtained value of orbital radius 354700.30 km, relative error is
about 0.00001. Corresponding error in Triton’s topocentric position
is 0.00015 arcsec which is 200 times less than the errors of the best
on-ground observations of Triton.

We made estimates of the precision of Triton’s analytical theory
of motion and the precessing ellipse model as well. The differences
	 between the satellite’s positions based on the precessing ellipse
model and those based on the initial coordinates computed from
numerical integration were also calculated for a series of time in-
stants. In fact, these residuals are the errors of tested model. Fig. 5
demonstrates the dependences of the errors 	 on time for both the
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Figure 5. Residuals between Triton’s positions calculated from both the
analytical theory and the precessing ellipse model and the positions obtained
from numerical integration.

precessing ellipse model used in Jacobson (2009) and the analytical
theory proposed in this paper. It is seen from the graphs that the
errors of our theory do not exceed 4 km over the whole time interval
between 1800 and 2200. The errors of the precessing ellipse model
proposed in Jacobson (2009) exceed 20 km for the greater part of
the time interval, the root-mean-square value being equal to 30 km.
Note that the precessing orbit model is most probably designed for
giving a somewhat rough idea of the orbital properties.

Our analysis proves that the constructed analytical theory of
Triton’s motion has an accuracy that is satisfactory for producing
ephemeris at the 400 yr time interval.

5 O BSERVATIONS U SED TO D ETERMINE THE
O R B I T

Our main goal was to get the time interval of observations used
to define the parameters of the model of Triton’s motion to be
as long as possible. The main sources of data were publications
in scientific journals. In addition, small portions of observations
were sent by observers directly to the Natural Satellite Data Center
(Arlot & Emelyanov 2009). In the latter case, the bibliographic
reference contain only observer’s name, the year and the indication:
‘Communication to the Natural Satellite Data Center’.

Triton was discovered in 1846 and, since 1847, a lot of micro-
metric observations of the satellite have been made. This type of
observations gives us the value of the apparent angular distance
s between the planet and the satellite as well as the corresponding
position angle P measured from the direction to the true north of the
epoch of the date. In most cases, these two angles were measured at
different moments of time. Generally, using the observations pub-
lished during the 19th and at the beginning of the 20th centuries
posed many problems. For instance, it was not possible sometimes
to identify from publication the time-scale; sometimes it was not
clear whether reductions were made when data were prepared for
publication.

At the beginning of the 20th century photographic observations
began to be used, and at the end of this century observations made

with CCD cameras appeared. Such observations can be relative or
absolute. Relative observations provide us with Triton’s coordinates
relative to Neptune while absolute observations give us satellite
positions relative to stars. Absolute observations always have a
systematic error resulting from inaccuracy in star coordinates taken
from star catalogues.

We have also used the observations made by the Voyager 2
spacecraft in 1988–1989 (the results have been published in Ja-
cobson 1991). It is reported in Jacobson (2009) that the space-
craft trajectory was reconstructed, i.e. refined and transformed
into the International Celestial Reference Frame. The correspond-
ing computer file vgr2-nep081.bsp available at the Jet Propulsion
Laboratory (JPL; Acton et al. 2015) site http://naif.jpl.nasa.gov/
pub/naif/VOYAGER/kernels/spk/ allows to obtain refined coordi-
nates of the Voyager 2 spacecraft. Earlier, we used these coordi-
nates in Emelyanov & Arlot (2011) to fit the orbit of the Neptunian
moon Nereid to observations. The old Voyager 2 position published
in Jacobson (1991) were replaced by the positions calculated with
the SPICE software of JPL using the new kernel file. For the first
54 observations published in Jacobson (1991), the kernel file vgr2-
nep081.bsp does not allow to calculate the Voyager 2 positions. As
result, the only 359 observations of Triton made with Voyager 2
were used in our fit of the theory to the observations.

The type of observations is designated by two identifiers. The first
one describes photodetector: ‘microm’ is micrometric, ‘phot’ pho-
tographic, ‘CCD’ CCD camera, ‘Voyager 2’ the Voyager 2 space-
craft and ‘mer’ meridian circle. The second identifier describes the
way the satellite’s coordinates were measured: ‘abs’ means absolute
measurements and ‘rel’ the relative.

All observations were distributed into groups, so that each group
comprises observations of the same type made at the same obser-
vatory or obtained from the same source. The main principle was
the hypothesis that observations in a group have the same accuracy,
which was necessary to provide weights for conditional equations
used to refine the orbital parameters by the least-squares method.
As a result, we have obtained 57 groups of observations including
those made by Voyager 2.

When refining the orbital parameters, the residuals 	 were cal-
culated for each observation, so that one measurement of any co-
ordinate gave one residual. The way the residuals were calculated
depended on the type of the observation.

Let 	α and 	δ be the differences between observed and calcu-
lated values of right ascension and declination, respectively. These
differences can be determined for both relative and absolute obser-
vations made by photographic camera, CCD receiver or spacecraft.
Then, the residual 	 in right ascension is given by the formula

	 = 	α cos δ,

where δ is the planet’s declination calculated from the existing
theory of its motion. As for declination, it was assumed that
	 = 	δ.

For micrometric observations, when the angular distance between
the planet and the satellite is measured, the residual is the difference
between observed distance and that calculated from the theory, that
is 	 = 	s. If position angle is measured, the residual is

	 = s	P ,

where 	P is the difference between observed position angle and
that obtained from the theory, the value of s being taken from the
theory.

As to the Voyager 2 observations, the Triton’s coordinates were
measured at various distances ranging from 2.4 to 685 million
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kilometres. Thus, the same errors in angular coordinates gave
essentially different errors in the satellite’s orbital positions. In order
to be able to compare the accuracy of the Earth-based observations
with those made by the spacecraft, the residual 	 was normalized
by the mean geocentric distance of Triton. Normalized residuals are
given below.

When fitting the parameters of Triton’s motion, we calculated
the root-mean-square residuals σ k for each group of observations (k
is the group index) as well as the root-mean-square residual σ for
all observations. Table 4 gives data for all groups of observations
as well as the root-mean-square residuals obtained after parameters
were fitted.

In total, to fit the parameters of Triton’s orbit, 10 254 observa-
tions were used made at the 165 yr interval, since 1847 to 2012.
These observations gave 16 096 measurements of the satellite’s
coordinates.

6 D E T E R M I NAT I O N O F T H E O R B I T
O F T R I TO N A N D E VA L UAT I O N O F
T H E AC C U R AC Y O F O B S E RVATI O N S

Determination of the parameters of the analytic theory of Triton’s
motion was made by computing corrections to the parameters by the
least-squares method. For each measured coordinate, a conditional
equation was built.

Initial values of the parameters were taken from the results given
in Jacobson (2009). After the first refinement was made, the itera-
tions continued until corrections, diminishing with each iteration,
became 100 times less than their errors. In result, no more than six
iterations were necessary.

The errors of all observations are considered to be uncorrelated.
However, the observations that were used cannot be regarded as
having the same accuracy. That is why, when composing the con-
ditional equations, it is necessary to assign weighting factors to
each of them. As a priori, we have no knowledge of the accuracy
of observations, assigning the weighting factors to the conditional
equations was made in the following way. At the first iteration,
all observations were regarded as having the same accuracy. For
each group of observations, the root-mean-square residuals of ob-
servations σ k were determined as explained in the previous section.
At subsequent iterations, the weighting factors were assigned to the
equations by dividing the left- and right-hand sides of each equation
by σ k obtained at the previous iteration. That is, for each measure-
ment number i a weighting factor wi = 1/σ 2

k was assigned where k
is the number of the group to which belongs the observation.

We have also calculated the weighted root-mean-square value of
residuals for all observations σw by the formula

σw =

√√√√(
N∑

i=1

wi	
2
i

) (
N∑

i=1

wi

)−1

,

where N is the number of measurements. The least-squares method
provides us also with the evaluations of precision of the parameters
being determined.

When calculating the theoretical values of the measured coordi-
nates, the using of the planetary motion model is inevitable. If the
satellite’s right ascension and declination are measured, the errors in
calculated planetary coordinates are included into theoretical values
of the satellite coordinates. That is why it was important to choose
appropriate planetary theory among those available. The last ver-
sion INPOP13C (Fienga et al. 2015) of the INPOP theory (Fienga
et al. 2011) was chosen for our calculations.

We made an attempt to detect a quadratic term in the longitude
of Triton by the fit to the observations using the constructed ana-
lytical theory. This term may appear for three reasons only. First, it
can be an error in the theory. Some term of very long period being
omitted in the theory may appear as a quadratic term in the errors
of the mean longitude of Triton. Secondly, it may be a perturbation
force of dissipative properties that was neglected in the equations of
satellite motion. Thirdly, the errors of observations can be haphaz-
ardly distributed in time so that they produce a quadratic term in the
mean longitude of Triton. To exclude the first possible reason, we
performed a fit of all orbital parameters including the quadratic term
in the mean longitude to the model of motion generated with the JPL
ephemeris of Triton on the period of 200 yr. The JPL ephemeris of
Triton are based on a model of satellite motion where the perturbing
forces of gravitational nature only are taken into account. There is no
energy dissipation in this model. A quadratic terms being appeared
in the mean longitude errors could be explained as the errors in the
tested theory. In result of this experiment the value of the quadratic
term coefficient k̂ was found to be (−7.1 ± 4.5) 10−9 deg yr−2. This
value is negligible compared to the value of this coefficient ob-
tained from observations. This means that the quadratic term in the
mean longitude of Triton cannot be explained by the errors in the
constructed analytical theory. The question about the nature of the
quadratic term appeared from observations we reserve for following
investigations.

There were various ways of fitting the parameters. We considered
both the variant where the coefficient of the quadratic term in the
satellite’s longitude k̂ is refined and that where this coefficient is
put to zero. Obviously, the accuracy with which the parameter k̂

can be determined significantly depends upon the time interval of
the observations. In particular, the time interval can turn out to be
not sufficiently large for reliable determination of the parameter
k̂. We also considered variants both without observations made by
the Voyager 2 spacecraft and with them. The algorithm of fitting
the parameters allows to throw away those observations that have
residuals greater than some given value.

The differences in the measured and calculated values of the
satellite’s right ascension and declination contain systematic errors
of observations as well as errors of the planetary theory. The mean
values of errors at some time intervals can be significantly greater
than random errors. These systematic biases have nothing to do with
the model of the satellite motion around the planet, and that is why
it is desirable to find them and exclude from observations. We have
made this for several groups of observations, for some of which
the biases were determined separately for various time intervals.
Table 5 gives those systematic biases that were excluded from some
groups of observations.

Initially, all available observations (10 254 in total) were used,
which gave 16 096 conditional equations. For these observations,
residuals did not exceed 2.5 arcsec.

The root-mean-square residuals σ and its weighted average val-
ues σw , after the orbital parameters were fit to observations (for
various sets of the parameters and observations), are given in
Table 6. It can be concluded from these results that the addition
of quadratic term in orbital longitude to the theory does not im-
prove the agreement between theory and observations.

We have also examined the case where only those observations
are left that have residuals not greater than 1 arcsec. In this case,
the total number of observations decreased to 10 164, that is only
less than 1 per cent of observations were thrown away. For this
set of observations, we have obtained σ = 0.199 arcsec and σw =
0.036 arcsec. It is seen that, compared with the case of full set of
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Table 4. Composition of observations and description of groups of observations. Here, k is the group’s index, Nk the number of observations in the group, σ k

the root-mean-square residual in the group, 	Tk the interval of observations. The column ‘Type’ gives one of the types of observations as described in the text.
The names of the observatories are preceded by their IAU observatory codes (if they are known).

k Type Publication Place of observations 	Tk Nk σ k

1 microm, rel Lassell (1849a) 802 Cambridge 1847–1847 4 1.254
2 microm, rel Hall (1900) 802 Cambridge 1847–1847 24 0.859
3 microm, rel Lassell (1849a) 992 Liverpool 1848–1848 4 0.985
4 microm, rel Lassell (1849c) 992 Liverpool 1849–1849 5 0.858
5 microm, rel Lassell (1849b, 1850, 1851, 1852a,b, 1857) 992 Liverpool 1849–1856 91 0.816
6 microm, rel Lassell (1864) 992 Liverpool 1863–1863 20 0.365
7 microm, rel Winlock & Pickering (1888) 802 Cambridge 1866–1868 18 0.706
8 microm, rel Davis (1874); USNO (1875) 787 Washington 1873–1874 94 0.350
9 microm, rel USNO (1881); Hall (1876, 1877) 787 Washington 1875–1877 151 0.353

10 microm, rel Henry, Boinot & Sy (1886) 007 Paris 1883–1884 31 0.873
11 microm, rel Young (1888) H80 Halsted observatory 1883–1888 68 0.523
12 microm, rel Henry (1884a,b) 007 Paris 1884–1884 21 0.722
13 microm, rel Lohse (1887) 968 Haverhill 1885–1886 3 0.775
14 microm, rel Perrotin (1887) 020 Nice 1886–1887 27 0.266
15 microm, rel Parrish & Stone (1888) 780 Leander McCormick 1889–1889 18 0.655
16 microm, rel Barnard (1893, 1894, 1895) 662 Mount Hamilton 1892–1895 320 0.309
17 microm, rel Schaeberle (1895, 1897, 1898) 662 Mount Hamilton 1894–1897 133 0.148
18 phot, rel USNO (1911) 786 Washington 1894–1906 388 0.294
19 microm, rel Drew (1897, 1899) 690 Lowell Observatory 1896–1898 121 0.362
20 microm, rel Greenwich, Royal Observatory (1900) 000 Greenwich 1896–1898 28 0.778
21 microm, rel Barnard (1898, 1899) 754 Willams Bay 1897–1899 326 0.243
22 microm, rel Aitken (1899, 1904); Hussey (1899, 1902) 662 Mount Hamilton 1898–1902 91 0.264
23 phot, rel Greenwich, Royal Observatory (1899) 000 Greenwich 1899–1899 12 0.297
24 microm, rel Barnard (1901) 754 Williams Bay 1899–1901 361 0.235
25 phot, rel Kostinsky (1902) 084 Pulkovo 1899–1901 21 0.324
26 microm, rel See (1900); Hammond & Rice (1905); Hammond (1906, 1908); Dinwiddie

(1903)
786 Washington 1899–1908 269 0.325

27 phot, rel Balanovskii (1923) 084 Pulkovo 1899–1920 101 0.374
28 microm, rel Barnard (1903) 754 Williams Bay 1901–1903 223 0.290
29 phot, rel Perrine (1903) 662 Mount Hamilton 1902–1903 51 0.284
30 microm, rel Wirtz (1905) 522 Strasbourg 1903–1905 13 0.670
31 phot, rel Greenwich, Royal Observatory (1903, 1904, 1905, 1906, 1907, 1908) 000 Greenwich 1903–1908 294 0.234
32 phot, rel Barnard (1906a, 1907, 1909, 1910, 1912, 1913, 1915, 1916, 1917, 1919,

1927)
754 Williams Bay 1903–1922 986 0.291

33 microm, rel Barnard (1906b) 754 Williams Bay 1905–1906 32 0.331
34 phot, rel Albrecht & Smitil (1909) 662 Mount Hamilton 1905–1906 6 0.345
35 microm, rel Hall (1911); Hall & Burton (1913) 786 Washington 1908–1911 136 0.311
36 phot, rel Greenwich, Royal Observatory (1913) 000 Greenwich 1909–1910 59 0.169
37 no inf, rel Burton (1913) 786 Washington 1911–1912 85 0.193
38 microm, rel Hall & Burton (1919) 786 Washington 1912–1919 282 0.301
39 microm, rel Hall (1920); Bower & Hall (1923) 786 Washington 1919–1923 84 0.302
40 microm, rel Hall (1922) 786 Washington 1920–1920 46 0.231
41 microm, rel Neuimin & Pokrovskii (1926) 084 Pulkovo 1923–1923 118 0.362
42 microm, rel Crawford (1928) 662 Mount Hamilton 1928–1928 15 0.225
43 microm, rel Alden (1940, 1943) 077 Johannesburg 1939–1942 73 0.088
44 phot, rel Walker & Harrington (1988); Walker, Christy & Harrington (1978);

Harrington & Walker (1984)
689 Flagstaff 1975–1986 198 0.059

45 phot, abs Chanturia & Kisseleva (2006) 119 Abastumani 1986-1993 54 0.412
46 Voyager 2 Jacobson (1991) Voyager 2 1988-1989 359 0.008
47 CCD, rel Veiga & Vieira Martins (1996) 874 Itajuba 1989-1994 423 0.120
48 phot, abs Kulyk, Izakevich & Shatokhina (1990) 188 Majdanak 1990-1990 5 0.241
49 CCD, rel Veiga & Vieira Martins (1998) 874 Itajuba 1995-1997 759 0.186
50 mer, abs Arlot, Dourneau & Le Campion (2008) 999 Bordeaux 1995-2007 95 0.229
51 CCD, abs Qiao et al. (2007) 337 Sheshan 1996-2006 943 0.049
52 CCD, abs Stone (2001) 689 Flagstaff 1998-2000 124 0.118
53 CCD, abs Owen (1999) 673 Table Mountain 1999-1999 3 0.215
54 CCD, abs Vieira Martins et al. (2004) 874 Itajuba 2000-2002 66 0.205
55 CCD, abs Stone & Harris (2000); Stone (2000, 2001) 689 Flagstaff 2000-2012 874 0.138
56 CCD, abs Owen (2001) 673 Table Mountain 2001-2001 3 0.042
57 CCD, abs Qiao et al. (2014) 327 Pekin, 337 Sheshan 2007-2009 1095 0.065
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Table 5. Systematic biases that were determined and excluded
from the results of some groups of observations: 	α for right
ascension, 	δ for declination.

Group Time interval 	α 	δ

index (yr) (arcsec) (arcsec)

45 1986–1993 − 0.075 −0.330
50 1995–2007 − 0.005 −0.202
51 1996–2006 0.087 −0.052
55 2000–2012 − 0.009 −0.067
57 2007–2009 0.027 −0.075

Table 6. The root-mean-square residuals of observations after the parame-
ters were fit.

Observations k̂ = 0 with k̂ determined
used σ σw σ σw

(arcsec) (arcsec) (arcsec) (arcsec)

All observations 0.228 0.036 0.228 0.036
Without Voyager 2
observations 0.234 0.094 0.234 0.094

Figure 6. The residuals of the observations of the first type (	αcos δ, s	P).

observations, the weighted average residual did not change at all.
The fitted parameters a, I0, u0, u̇, �0, �̇, α0 and δ0 obtained for both
sets of observations differ at values and these differences are less
than their errors calculated by the least-squares method. It is to note
also that rough observations were taken into consideration with the
small weights assigned to them. For these reasons, we have chosen
the variant of the theory where all observations were used.

To see the residuals 	 for different dates of observations, we have
drawn the graphs of the residuals for two types of the measured
values. The first one is residuals in the right ascension and position
angle, that is the values

	α cos δ, s	P .

The residuals of the second type are the values 	δ and 	s. The
graphs are given in Figs 6 and 7.

The parameters of Triton’s motion obtained from observations
without taking into consideration the quadratic term in the orbital
longitude are given in Table 7. The case when all the parameters
were fit, including k̂, is illustrated in Table 8. Evaluations of the
errors in the parameters given in the tables were obtained by the
least-squares method (1σ ). Note that extra digits given in the tables

Figure 7. The residuals of the observations of the second type (	δ 	s).

Table 7. The parameters of Triton’s motion obtained from ob-
servations in the case when k̂ = 0.

Parameter Without the Voyager 2 With all
observations observations

a (km) 354703.78 354696.76
± 31.01 ± 11.84

I (◦) 158.029057 157.268439
± 0.210026 ± 0.140387

u0 (◦) 28.456422 31.791760
± 0.910969 ± 0.559837

u̇ (deg d−1) 61.25877585 61.25871809
± 0.00001557 ± 0.00000925

�0 (◦) 69.657290 73.395781
± 0.770769 ± 0.483272

�̇ (deg d−1) 0.001505781 0.001452458
± 0.000014488 ± 0.000008674

α0 (◦) 298.586 299.090
± 0.126 ± 0.081

δ0 (◦) 42.237 43.019
± 0.212 ± 0.136

Table 8. The parameters of Triton’s motion, including k̂, ob-
tained from observations.

Parameter Without the Voyager 2 With all
observations observations

a (km) 354704.98 354697.66
± 31.13 ± 11.84

I (◦) 158.030878 157.362584
± 0.210121 ± 0.143993

u0 (◦) 28.379690 31.179424
± 0.928935 ± 0.610095

u̇ (deg d−1) 61.25877878 61.25873359
± 0.00001705 ± 0.00001111

�0 (◦) 69.657839 72.127604
± 0.771176 ± 0.495714

�̇ (deg d−1) 0.001505879 0.001458494
± 0.000014496 ± 0.000008997

k̂ (deg yr−2) − 0.0000032 − 0.0000098
± 0.0000077 ± 0.0000039

α0 (◦) 298.583 299.017
± 0.126 ± 0.085

δ0 (◦) 42.237 42.930
± 0.213 ± 0.140
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Figure 8. The angular distances between Triton’s positions calculated from
both our theory and the JPL ephemeris (Jacobson 2009).

will be necessary for calculations of the Triton’s coordinates since
the values of these parameters should be strictly agreed with each
other.

We performed calculations of the coefficient k̂ in two versions
including the Voyager 2 observations and without them. The differ-
ence of the results turned out to be small in comparison with the
evaluation made with the least-squares method (1σ ). The values of
k̂ in two versions are comparables with their errors. The analysis of
the results of determination of k̂ from observations proves that the
accuracy of this parameter is not high.

In result, for calculating the ephemeris of Triton, we recommend
to use the parameters obtained with k̂ = 0, taking into consideration
all observations, including those made by the Voyager 2 spacecraft,
that is the values in the third column (with all observations) of
Table 7.

We have compared the ephemeris of Triton produced with our
analytical theory with the ephemeris described in the paper (Jacob-
son 2009) and available at the JPL HORIZONS ephemeris server
(Giorgini et al. 1996). For this, the satellite’s geocentric angular
coordinates were calculated for a series of time instants using the
recommended set of the parameters (k̂ = 0, Voyager 2 observa-
tions included). As the JPL model uses the DE431 planet and lunar
ephemeris, in this case we also used the DE431 ephemeris while
calculating the ephemerides. For each moment of time, topocentric
angular distance d between the satellite position obtained from both
our model and that described in Jacobson (2009) was obtained. In
fact, the value of d was calculated by the formula

d =
√

(	α cos δ)2 + (	δ)2,

where 	α and 	δ are the differences in the right ascensions and
declinations computed with both ephemeris. The graphs for d at the
time interval from 1850 to 2050 are given in Fig. 8. The graphs
demonstrate that until 2050 the differences between the satellite
positions computed with two different ephemerides will not exceed
0.047 arcsec. These differences are caused by the fact that the
ephemeris in comparison are based on differing sets of observations.

7 C O N C L U S I O N

The main result presented in this paper is the new analytical model
of motion of Neptune’s satellite Triton based on the observations.
The theory is used to generate the new ephemeris of Triton. The
newly produced model and ephemeris have the following advan-

tages compared with earlier results of other researchers. First, the
ephemeris can be computed for any time instants by using simple
formulae presented in this paper. Secondly, the model of motion is
based on the observations of Triton carried out at the time inter-
val between 1847 and 2012 which is 4 yr longer than that used in
Jacobson (2009).

To fit the parameters of Triton’s motion, 16 096 measurements of
the satellite coordinates were used obtained from 10 254 observa-
tions. The root-mean-square residual of observations in topocentric
angular coordinates is 0.228 arcsec. The corresponding weighted
average of the residuals turned out to be 0.036 arcsec.

The new ephemeris of Triton have been compared with those
obtained with the JPL ephemeris server and described in Jacobson
(2009). As the ephemeris are based on differing sets of observations,
the results should differ. At the time interval between 1850 and 2050,
the differences between Triton’s topocentric positions computed
with these different ephemeris do not exceed 0.047 arcsec.

An attempt has also been made to determine the coefficient k̂ of
the quadratic term in the satellite’s orbital longitude. The quadratic
term may be caused by a perturbation force of dissipative proper-
ties that was neglected in the equations of satellite motion or by the
errors of observations. We performed calculations of the coefficient
k̂ in two versions including the Voyager 2 observations and without
them. The difference of the results turned out to be small in compar-
ison with the evaluation made with the least-squares method (1σ ).
The values of k̂ in two versions are comparables with their errors.
It is clear that the available observations do not allow to determine
the quadratic term in orbital longitude reliably.

The new ephemeris of Triton are added to the Natural Satellites
Ephemeride Server MULTI-SAT (Emel’yanov & Arlot 2008).
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