
HAL Id: hal-02470705
https://hal.science/hal-02470705

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resolving the H_0 tension with diffusion
Alejandro Perez, Daniel Sudarsky, Edward Wilson-Ewing

To cite this version:
Alejandro Perez, Daniel Sudarsky, Edward Wilson-Ewing. Resolving the H_0 tension with diffusion.
General Relativity and Gravitation, 2021, 53 (1), pp.7. �10.1007/s10714-020-02781-0�. �hal-02470705�

https://hal.science/hal-02470705
https://hal.archives-ouvertes.fr
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The tension between the value of the Hubble constant H0 determined from local supernovae data
and the one inferred from the cosmic microwave background based on the ΛCDM cosmological model
may indicate the need for new physics. Here, we show that this ‘Hubble tension’ can be resolved in
models involving an effective energy flux from the matter sector into dark energy resulting naturally
from a combination of unimodular gravity and an energy diffusion process. The scheme is one where
dark energy has the standard equation of state w = −1. This proposal provides an alternative
phenomenological paradigm accounting for the observations, while offering a general framework to
study diffusion effects coming from novel fundamental physical processes.

I. INTRODUCTION

Over the last 30 years there has been a spectacular de-
velopment of precision cosmology, with the state of the
art including high resolution observations of the cosmic
microwave background (CMB) by the Planck collabora-
tion [1, 2], detailed studies of baryon acoustic oscillations
by BOSS [3], and extensive supernovae observations [4–
6]. This trend is expected to continue in the near future
with information coming from gravitational wave obser-
vations by the LIGO collaboration [7], as well as the data
from ongoing and future missions like GAIA, EUCLID,
and the James Webb Space Telescope.

While these observations are, for the most part, con-
sistent with the ΛCDM concordance cosmology based on
a still mysterious dark sector including cold dark mat-
ter (CDM) and a cosmological constant Λ, the increased
precision has brought with it further problematic aspects
to our current understanding.

Dark matter was introduced phenomenologically in or-
der to account for local gravitational effects, as observed
in the rotation curves of galaxies, and to offer a viable
paradigm for structure formation [8]. However, it re-
mains unclear whether dark matter is indeed simply an
invisible contribution to the matter content of the uni-
verse, or an effect due to modifications of general rel-
ativity [9]. Furthermore, while dark energy is perhaps
most simply explained by a cosmological constant, from
a theoretical perspective it remains unclear why its value
is so small (and, in particular, why quantum vacuum
fluctuations do not appear to contribute as naively ex-
pected [10]). Dark energy is estimated to contribute
about 70% to the mean energy density of the universe
today, as first extracted from supernovae measurements
[11, 12]. The situation has motivated numerous phe-
nomenological alternatives to a cosmological constant,
such as quintessence and modified gravity theories [9].
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However, it is safe to say that no fully satisfactory fun-
damental explanation of these issues seems available at
the moment.

More recently, a statistically significant tension has
grown between the values of the Hubble expansion rate
today, H0, extracted from supernovae data, and the one
inferred from the CMB observations based on the ΛCDM
model [13, 14], with a higher value for H0 preferred by
supernovae data. This discrepancy is currently reported
to be at the level of 4.2σ, for studies based on super-
novae observations calibrated using Cepheid stars [4, 5]
(although the tension is significantly reduced when using
a different distance ladder calibration based on stars ly-
ing on the tip of the red giant branch [6]). Could this
H0 tension be offering a clue concerning some unknown
aspect about the fundamental nature of gravity and mat-
ter?

Various proposals have been put forward in order to
alleviate this tension. These typically involve modifying
the standard ΛCDM cosmology in its dark sector: for
example, dark radiation [13], early dark energy [15] or
dynamical dark energy [16], and interacting dark mat-
ter/energy models [17–19]. The tension can also be al-
leviated (although only partially) for example either by
allowing for the variation of Newton’s constant (and post-
Newtonian parameters) [20], or by allowing for a more
general equation of state (w 6= −1) for the dark energy
sector, with the data preferring the inclusion of regimes
where w < −1 [2]. From a theoretical viewpoint, the last
possibility seems rather problematic, as it would imply
the violation of all energy conditions by the dark energy.
Particularly worrying is the violation of the dominant
energy condition, because, in any field theoretical model,
that would imply the existence of a tachyonic degree of
freedom and acausal energy fluxes.

Recently, a new mechanism has been proposed that
generates an effective cosmological constant out of small
departures from the strict conservation of energy momen-
tum in the matter sector [21]. Although within the con-
text of general relativity violations of the conservation of
the stress-energy tensor are inconsistent, a slight modifi-
cation of the theory known as unimodular gravity permits

ar
X

iv
:2

00
1.

07
53

6v
3 

 [
as

tr
o-

ph
.C

O
] 

 1
4 

Ja
n 

20
21

mailto:alejandro.perez@cpt.univ-mrs.fr
mailto:sudarsky@nucleares.unam.mx
mailto:edward.wilson-ewing@unb.ca


2

a specific kind of violation generating a time-dependent
Λ in the resulting effective Einstein equations [21]. This
framework must, of course, be complemented with de-
tailed input concerning the form and magnitude of the
violations of energy-momentum conservation. If such vi-
olations are due to a diffusive process resulting from the
space-time micro-structure or granularity in the fabric
of space-time at the Planck scale, arising in conjunction
with curvature (and therefore absent in the Minkowski
space-time [22, 23]), the result is a cosmological constant
of the order of magnitude of its observed value [24, 25].
It seems, therefore, natural to consider whether a related
mechanism could be at play in late cosmological times
leading to an effective modification of the cosmological
evolution that could resolve the H0 tension.

A simple analysis indicates that the specific model con-
sidered in [24, 25] is not able to account for any signif-
icant modification of Λ in the late universe. However,
[26] considers a related diffusion mechanism, connected
in this case with the physics of black holes, which natu-
rally places its occurrence after decoupling, and thus the
relevant time period for a possible resolution of the H0

discrepancy.

The purpose of the present work is to explore, in a
rather general manner, the possibility that a process tak-
ing place at relatively late times, involving an effective vi-
olation of local energy conservation in the matter sector
within the context of unimodular gravity, might resolve
the H0 discrepancy; due to the resulting growth of the
dark energy at post-CMB times changing the late cos-
mic evolution. Such models could be regarded, at the
phenomenological level, as versions of some models with
interacting matter and dark energy such as those consid-
ered in [17–19], but the perspective offered by the uni-
modular framework implies the origin of the interaction
comes from a diffusive process (see also [27]).

The investigation of a possible diffusion mechanism
is opened by the perspective adopted here. A possible
model is proposed in [26] where the rotational energy of
black holes is dissipated via friction produced by funda-
mental space-time granularity. The details of the energy
diffusion during cosmological evolution is determined by
the fundamental diffusion equation for each black hole
Ė = F (M,J) together with the expression for the num-
ber density of black holes as a function of their mass,
angular momentum, and the cosmic time n(M,J, t). In
this model the detailed analysis of its effects necessitates
the theoretical modelings of the cosmic evolution of black
hole abundances. The viability of these models will be
constrained in part by astrophysical bounds on the envi-
sioned energy dissipation.

The outline of the paper is the following: in Sec. II, we
review the framework of unimodular gravity that allows
for the effective energy transfer from the matter to the
dark energy sector. In Sec. III, we review the main ob-
servational inputs that lead to the H0 tension and their
dependence on the cosmological model. In Sec. IV, we
consider some phenomenological models that can resolve

theH0 tension. We then offer, in Sec. V, a brief recount of
some intermediate red-shift observations that seem to fa-
vor some general features of the phenomenological mod-
els considered in this work, and we end with a discussion
in Sec. VI. To avoid confusion, in the remainder of the
paper we will refer to the standard cosmological model
as GR-ΛCDM.

II. UNIMODULAR GRAVITY AND
VIOLATIONS OF ENERGY MOMENTUM

CONSERVATION

General Relativity is incompatible with any violation
of the conservation of the stress-energy tensor as a conse-
quence of the (contracted) Bianchi identities of the Ein-
stein tensor, i.e., ∇aGab = 0. There is, however, a simple
modification of general relativity, known as unimodular
gravity (UG) [28], introduced by Einstein himself in 1919,
that is more permissive in this regard. The field equa-
tions of UG are simply the trace-free part of the Einstein
equations, namely

Rab −
1

4
Rgab = 8πG

(
Tab −

1

4
Tgab

)
, (1)

which can be written in the more convenient form

Rab −
1

2
Rgab +

1

4
(R+ 8πGT ) gab = 8πGTab. (2)

Unimodular gravity can be derived from the Einstein-
Hilbert action by restricting the variational problem
to variations that preserve the (four) volume-form,
gabδg

ab = 0 (alternatively, it is possible to add a con-
straint to the action that requires the volume element
of the metric to have a specific value). This is arguably
the simplest modification of gravity that completely triv-
ializes the problem of the large contributions to the cos-
mological constant from vacuum fluctuations in quantum
field theory by fully decoupling vacuum energy from the
dynamics of the metric [29].

As a side remark, note that such a modification could
be natural if at a more fundamental level, as the full
quantum gravity regime is approached, there are space-
time related structures not fully characterized by the
metric description and the metric corresponds to some
sort of ‘mean field’ or effective description of space-time,
perhaps due to a fundamental granularity or a four-
volume distribution of singular quantum events. Indeed,
unimodular gravity is the gravitational theory emerging
from Sorkin’s causal set approach [30] and also from the
thermodynamical arguments given by Jacobson [31, 32].

Returning to the trace-free Einstein equations, taking
the divergence of (2) and using the Bianchi identities one
finds

1

4
∇a (R+ 8πGT ) = 8πG∇bTab ≡ Ja, (3)

where we have introduced the current of energy mo-
mentum violation Ja = 8πG∇bTab. The invariance of
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unimodular gravity under volume-preserving diffeomor-
phisms implies that dJ = 0 [21], and therefore (3) can be
integrated, leading to

Rab −
1

2
Rgab +

(
Λ0 +

∫
`

J

)
gab = 8πGTab, (4)

where Λ0 is a constant of integration and the ‘energy
violation current’ J is integrated along any arbitrary
path ` from some reference event to the point where the
equation is evaluated. Clearly, this generates an effec-
tive Λ(xa) = Λ0 +

∫
`
J which depends on the space-time

point. The independence of Λ(xa) on the choice of path `
is guaranteed by the integrability condition dJ = 0. An
analogous system of equations can also be obtained by
allowing for certain types of interactions between scalar-
field dark energy and the matter fields in Einstein gravity
[33, 34].

In the case that the stress-energy tensor is conserved,
J = 0 and (4) reduces to the Einstein equations, with
the integration constant Λ0 becoming the cosmological
constant. However, in contrast to general relativity, the
energy-momentum conservation ∇bTab = 0 does not fol-
low directly from the equations of motion, and, in fact, it
is usually postulated as an additional assumption. This
assumption can be replaced by the demand that the mat-
ter action be diffeomorphism invariant (related to the as-
sumption that space-time geometry and matter fields are
smooth to all scales). For our purposes, the central obser-
vation is that, in the context of UG, this extra assump-
tion can be relaxed, leading to a changing cosmological
‘constant’ Λ(t).

There are, indeed, various reasons to consider the pos-
sibility that ∇bTab 6= 0. First of all, the classical set-
ting, where general relativity is typically applied, can be
nothing more than a very good approximation. At some
point, a quantum description of matter is required and
that implies that, at a minimum (in the so-called semi-

classical approximation), Tab must be replaced by 〈T̂ab〉
(the expectation value of the (renormalized) energy mo-
mentum operator in a suitable state). The viability of
a semiclassical approximation has been a subject of sub-
stantial debate and controversy [35–37]. In fact, such
considerations seem to connect, to a large extent, to con-
ceptual difficulties inherent to quantum theory. One of
these difficulties is that none of the currently proposed
approaches addressing the measurement problem allows
for the conservation of energy-momentum at the semi-
classical level [38].

Another motivation for∇bTab 6= 0 comes from ideas in-
timately tied to quantum gravity. While there does not
yet exist a completely satisfactory quantum theory for
gravity, many approaches to the subject predict the ex-
istence of some sort of space-time discreteness, in which
case the rationale for ∇bTab = 0 (smoothness at all scales
or diffeomorphism invariance) is lost. This opens the
door for what could be naively interpreted as an ‘energy
diffusion’ resulting from the interaction of the matter sec-
tor and the microscopic structure of space-time [24, 25].

It is interesting to point out that in a standard quan-
tum mechanical context one should also expect diffusion
to be associated with decoherence with the Planckian
microscopic structure. This would lead to an apparent
violation of unitarity from the perspective of the effec-
tive treatment, and thus has been shown to be poten-
tially useful for the resolution of the information loss
paradox in the context of black hole evaporation [39–42].
A contrasting picture is offered by spontaneous collapse
modifications of quantum mechanics where unitarity and
energy conservation are broken fundamentally. Such an
alternative could be helpful in dealing with certain dif-
ficulties faced by the current paradigm of structure for-
mation in cosmology [43, 44] as well as in resolving the
black hole information loss problem in a different way
[45–49]. Such modifications of the quantum theory exist
in versions that can both lead to energy diffusion as well
as energy increase [50].

For the remainder of the paper, we will avoid further
discussion of the possible fundamental source of the vi-
olation of ∇bTab = 0, and we will rather focus on the
phenomenology of ∇bTab 6= 0 in unimodular cosmology,
and especially on its possible effects in the context of the
H0 tension.

As noted in [21], the homogeneous and isotropic
Friedman-Lemâıtre-Robertson-Walker cosmological set-
ting is one where the integrability condition dJ = 0 is
automatically satisfied as a result of the assumed sym-
metries. We will consider here the spatially flat case cor-
responding to the metric:

ds2 = −dt2 + a2(t) d~x2, (5)

where the expansion rate of the universe is given by the
Hubble rate H = ȧ/a, with the dot denoting a derivative
with respect to cosmic time t. For simplicity, we choose
the normalization of the scale factor a(t) so that its value
today is a(t0) = 1. Due to spatial homogeneity, the cur-
rent Ja can only have a non-trivial (dt)a component, and
can only depend on t, thus we write

J = Λ̇(t) dt. (6)

The Friedman and Raychaudhuri equations for uni-
modular gravity follow directly from (4): they are ex-
actly the same as in general relativity, except that Λ is
no longer a constant:

H2 =
8πG

3

∑
i

ρi+
Λ(t)

3
, Ḣ = −4πG

∑
i

(ρi+pi), (7)

where the index i denotes the different matter fields in the
space-time. It is often convenient to rewrite the Friedman
equation as 1 =

∑
i Ωi + ΩΛ, with Ωi = 8πGρi/3H

2 and
ΩΛ = Λ/3H2.

The growth in Λ resulting from the energy diffusion in
the matter sector is governed by Λ̇ = 8πG∇aTta. Given
that we are mostly interested in late-time (post-CMB)
physics, and at late times the contribution from radia-
tion to the Friedman equation is negligible, we will focus
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our attention on the energy density ρm of dark matter
and baryonic matter. That is, we will make the assump-
tion that the growth in Λ(t) is entirely due to diffusion
from ρm (a physical motivation for this exists within the
framework of [24, 25]). As is usual in cosmology, we will
work in the approximation in which matter is taken to
have vanishing pressure, and thus the modified continuity
equation for ρm is simply

ρ̇m + 3Hρm = − Λ̇(t)

8πG
. (8)

Expressing everything in terms of the redshift variable
z ≡ (1− a)/a, this can be rewritten as

(1 + z)3 d

dz

(
ρm(z)

(1 + z)3

)
= − 1

8πG

dΛ(z)

dz
. (9)

Specific solutions can be found, for example, by con-
sidering in detail a particular diffusion process as done in
[24, 25], or by proposing a phenomenological model for
Λ(z) which can be integrated to find ρm(z), or vice versa.
In the present work we will adopt the second strategy.

III. THE H0 TENSION IN STANDARD AND
MODIFIED MODELS

The present value of the Hubble parameterH0 = H(t0)
can be measured by different methods. One of the
most direct and accurate ways to do it is by studying
the magnitude of type Ia supernovae and their redshift
z = (1 − a)/a. Inferring the luminosity distance dL of
each supernova from its apparent and absolute magni-
tudes gives a relation dL(z). In general, we might write
dL(z) if we have the value of H(z′) for z′ in the interven-
ing cosmological regime between the light emission at z
and its detection at z = 0, namely:

dL = (1 + z)

∫ z

0

H(z′)−1dz′. (10)

If we just want to focus on small values of the redshift z,
we could instead consider a Taylor expansion of the scale
factor a(t) as a function of cosmic time and write

a(t) = 1 +H0∆t− q0

2
H2

0 (∆t)2 +
j0
6
H3

0 (∆t)3 + . . . (11)

where ∆t = t − t0, q0 is the deceleration and j0 is the
jerk parameter (and recall that a0 = 1). A short calcu-
lation shows that, for small z, the relation between the
luminosity distance and the redshift is [51, 52]

dL =
z

H0

[
1+

1− q0

2
z− 1− q0 − 3q2

0 + j0
6

z2+. . .

]
. (12)

The best fit to this relation for type Ia supernovae data
for redshifts z . 0.15 gives H0 = 73.5±1.4 km s−1 Mpc−1

[5], based on the Cepheid distance ladder; the tip of

the red giant branch distance ladder gives a lower value,
H0 = 69.8 ± 2.5 km s−1 Mpc−1 [6]. For observations at
small z, the observational constraints on j0 and higher
order terms are weak, and the determination of H0 is
relatively insensitive to uncertainties in q0, j0, etc.

Concrete cosmological models correspond to specific
values of such parameters. For instance, a spatially flat

GR-ΛCDM cosmology with Ω
0

m = 0.3 and Ω
0

Λ = 0.7,
corresponds to q0 = −0.55 and j0 = 1 (see Sec. V);
we put bars on these parameters to denote that they
correspond to the ones extracted from the data using the
GR-ΛCDM flat model, see below.

Given a particular cosmological model, it is also pos-
sible to infer the value of H0 via observations of the
CMB. For instance, assuming a spatially flat GR-ΛCDM
cosmology, comparing the CMB data to the theoreti-
cal predictions calculated by a Boltzmann code gives
H0 = 67.4 ± 0.5 km s−1 Mpc−1 [2]. There is a ∼ 10%
difference compared to the supernovae data based on the
Cepheid distance ladder that is statiscally significant at
a level of 4.2σ [5], although the tension decreases when
the analyis is carried out using the tip of the red giant
branch distance ladder [6].

We can gain some insight into how H0 can be inferred
from the CMB without having to rely on a full Boltzmann
code in which many other effects are considered simulta-
neously, by considering a simpler (and yet nonetheless
accurate) calculation. The angular location of the acous-
tic peaks in the CMB has been measured extremely ac-
curately, and the extracted angular scale θ provides an
excellent approximation to the ratio of the radius of the
sound horizon rs (the distance sound waves can travel
from the time of reheating to recombination, which is
entirely determined by pre-CMB physics) to the radius
of the surface of last scattering RLS (entirely determined
by post-CMB physics),

θ ≈ rs

RLS

, (13)

with RLS given by

RLS =

∫ t0

tls

dt

a(t)
=

∫ zLS=1090

z0=0

dz

H(z)
, (14)

using dt = (aH)−1da = −a dz. A given cosmological
model determines H(z) via the Friedman equation, and
that can be used in the expression above to evaluate RLS.
For the GR-ΛCDM model,

H(z)2 = H
2

0

[
Ω

0

r(1 + z)4 + Ω
0

m(1 + z)3 + Ω
0

Λ

]
, (15)

where H0, Ω
0

i are the value of the Hubble parameter and
the contributions to critical density today in the GR-

ΛCDM model. Although both Ω
0

r and Ω
0

m are relevant in
the previous equation because radiation is an important
contribution close to the CMB time, the calculations that
follow will evaluate the Friedman equation at z = 0 where
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the contribution from radiation can be neglected. For

that reason we only need the explicit value of Ω
0

m [2],

Ω
0

m = 0.315± 0.007, (16)

where quantities with a bar refer to the GR-ΛCDM con-
cordance model. If θ and rs are known then by combining
(13) and (14), in the GR-ΛCDM model H0 is given by

H0 =
θ

rs

zLS∫
0

dz√
Ω

0

r(1 + z)4 + Ω
0

m(1 + z)3 + Ω
0

Λ

. (17)

In the unimodular gravity type of models that we will
consider here, the Friedman equation will be modified.
However, these modifications occur at redshift values
z < zLS. For the purpose of the present work, we will
assume that the matter and radiation densities at the
CMB time correspond to those measured by the Planck
collaboration. We will denote by H0 the value of H0

that is inferred from the CMB data based on GR-ΛCDM
cosmology. This value will generally differ from the value
H0 predicted by the models that deviate from GR-ΛCDM
that are proposed in the following section.

To simplify the analysis of the equations, it is conve-
nient to express various contributions to the Friedman

equation in units of H
2

0. Consequently, for models de-
viating from GR-ΛCDM we define the following dimen-
sionless quantities

ρ̊m(z) =
Gρm(z)

H
2

0

, ρ̊r(z) =
Gρr(z)

H
2

0

, (18)

and

Λ̊(z) =
Λ(z)

H
2

0

. (19)

The Friedman equation in the modified models becomes

H(z)2 = H
2

0

[
8π

3

(
ρ̊m(z) + ρ̊r(z)

)
+

Λ̊(z)

3

]
. (20)

The evaluation of the Friedman equation at z = 0 pro-
duces the value of the Hubble constant in the modified
model H0, according to

H0 = H0

√
8π

3

(
ρ̊m(0) + ρ̊r(0)

)
+

Λ̊(0)

3
. (21)

As noted above, in general, H0 differs from H0 how-
ever, the direct substitution of (18) and (19) in (20)
clearly shows that the standard Friedman equation con-
tinues to hold for all values of z and, in particular, at
z = 0.

In the following section, we will present some illustra-
tive models that modify the GR-ΛCDM dynamics and
exhibit the potential of these ideas to resolve the H0 ten-
sion.

IV. TWO SIMPLE MODELS

In this section we consider two simple models that, for
a suitable choice of parameters, can resolve the H0 ten-
sion. These models are simple illustrations of the poten-
tial interest of the approach presented here and are not
meant to provide concrete, definite models but rather a
framework to study the effects of diffusion in cosmology.
The general idea illustrated by these models paves the
way for potentially multiple concrete realizations of spe-
cific forms of the diffusion mechanism which, in a realistic
scenario, should be validated by further analysis.

More precisely, a convincing resolution of the H0 ten-
sion will require on the one hand a clear understanding
of the fundamental physics behind the diffusion process,
together with a solid modelling of the cosmological and
astrophysical conditions that produce it (possible steps
aiming at such a scenario are proposed in [26]), and on
the other hand a Bayesian analysis comparing this frame-
work to the standard GR-ΛCDM cosmology based on
CMB, supernovae and baryon acoustic oscillation obser-
vations (note that this will require extending cosmologi-
cal perturbation theory to include diffusion effects). As
the goal of this paper is to illustrate the potential via-
bility of diffusion as a physical effect that could address
the H0 tension, and not to promote a specific diffusive
mechanism, these two steps lie outside the scope of this
paper and are left for future work.

Here we will consider two simple phenomenological
models: one where the cosmological constant undergoes
a sudden increase approximated by a step function, and
another where the matter density decreases—due to en-
ergy transfer into the dark energy sector—at a faster rate
than in GR-ΛCDM, and show that diffusion processes
can offer a viable pathway to resolve the H0 tension.

A. Sudden transfer model

A particularly simple model that captures the poten-
tial of the general framework to solve the H0 tension is a
sudden transfer of energy from the matter density to Λ
at some instant z?. Specifically,

ρm(z) = ρ0
m (1 + z)3

[
θ+(z − z?) + α θ−(z − z?)

]
, (22)

with 0 < α < 1, and θ+(x) is the Heaviside function
(equal to unity for x ≥ 0 and zero otherwise), and
θ−(x) = 1 − θ+(x). Here ρ0

m is the energy density of
matter today as inferred from the CMB data for a GR-
ΛCDM cosmology. Note that due to the form of ρm(z),
this sudden jump model predicts the same value of ρm
at the surface of last scattering as in GR-ΛCDM.

This model represents a simple idealization of a rapid
diffusion process (instantaneous in terms of the scale of
the universe but that could be extended in astrophysical
time depending on the value of z?). Sudden transition
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0.24

0.26

0.28

0.30

Figure 1. This figure shows the region of the parameter space
for 1 < z? < 5 where the H0 tension is alleviated or resolved
for the sudden jump model with Λ̊∞ = 2.055. Here α is
plotted using a linear scale. The lines denote the 1σ and 2σ
contours (assuming Gaussian uncertainty), and the dashed
line indicates where the value of H0 according to the sudden
jump model exactly agrees with Hsn

0 . The predicted value
of Ω0

m according to the sudden jump model is shown by the
colour (in the grey region, Ω0

m < 0.23). Near z? ∼ 1.5, in the
best fit region Ω0

m ∼ 0.25; while near z? ∼ 5, in the best fit
region Ω0

m ∼ 0.26.

models where the energy density of dark matter increases
very rapidly have also been considered in, e.g., [53].

To simplify calculations and comparisons with the GR-
ΛCDM model, it is convenient to work in terms of ρ̊m(z)
defined in (18),

ρ̊m(z) ≡ Gρm(z)

H
2

0

(23)

=
3Ω

0

m

8π
(1 + z)3

[
θ+(z − z?) + α θ−(z − z?)

]
.

Solving the modified continuity equation (9) gives

Λ̊(z) ≡ Λ(z)

H
2

0

= Λ̊∞ + ∆̊ θ−(z − z?), (24)

with

∆̊ = 3(1− α)(1 + z?)3 Ω
0

m. (25)

The standard GR-ΛCDM cosmology is recovered for α =
1, and in this limit Λ̊∞ = 2.055 gives Ω0

Λ = 0.685.
Using equations (23) and (24), H0 can be computed

from (21). Due to the sudden drop in the matter energy
density at z?, the contribution of matter to the Friedman
equation today as predicted by this model will be smaller
than the value predicted by GR-ΛCDM, which implies
that α < 1 for the ratio

α ≡ ρ0
m

ρ0
m

=
Ω0
mH

2
0

Ω
0

mH
2

0

< 1. (26)

0.24

0.26

0.28

0.30

Figure 2. This figure shows the region of the parameter space
for 5 < z? < 10 where the H0 tension is alleviated or resolved
for the sudden jump model with Λ̊∞ = 2.055. Here α is
plotted using a linear scale. The lines denote the 1σ and 2σ
contours (assuming Gaussian uncertainty), and the dashed
line indicates where the value of H0 according to the sudden
jump model exactly agrees with Hsn

0 . The predicted value
of Ω0

m according to the sudden jump model is shown by the
colour (in the grey region, Ω0

m < 0.23). In the best fit region
Ω0

m ∼ 0.26.

0.24

0.26

0.28

0.30

Figure 3. This is the same diagram as in Figure 2, but now
considering larger values of z? in the sudden transfer model
and using a logarithmic scale for 1−α. As in Figure 2, Λ̊∞ =
2.055. In the best fit region Ω0

m ∼ 0.26.

Note that the value of Λ for z > z? could be positive or
negative, depending on the value of Λ̊∞. In the results
plotted in Figs. 1–3, we consider a positive Λ̊∞, while in
Fig. 4 a negative Λ̊∞ is allowed and is in fact preferred for
larger z?. Note that in the case of a negative Λ̊∞, as the
cosmological constant was initially negative, there would
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0.24

0.26

0.28

0.30

Figure 4. This figure shows the region of parameter space
where the H0 tension is alleviated or resolved for the sudden
jump model with α = 0.999. Here Λ̊∞ is plotted using a linear
scale. The lines denote the 1σ and 2σ contours (assuming
Gaussian uncertainty), and the dashed line indicates where
the value of H0 according to the sudden jump model exactly
agrees with Hsn

0 . The predicted value of Ω0
m according to

the sudden jump model is shown by the colour (in the grey
region, Ω0

m < 0.23 or Ω0
m > 0.315). Note that for α = 0.999

a negative value of Λ̊∞ is preferred for z? & 30. In the best
fit region Ω0

m ∼ 0.26.

occur a dynamical transition from an early negative Λ era
to the current (late-time) nearly de Sitter space-time, as
proposed in [54].

To find which parameters for the sudden transfer
model resolve the H0 tension without requiring any mod-
ifications to pre-CMB physics, we demand that the in-
ferred result for H0—computed from (21)—be compat-
ible with Hsn

0 (the value directly measured from local
supernovae data). The results are shown in Figs. 1–4. In

Figs. 1–3, the best fit region for Λ̊∞ = 2.055 is shown
(for different values of z?), while in Fig. 4, the best fit
region for α = 0.999 is shown. In Figs. 2–4, the best fit
region corresponding to a predicted value of H0 in agree-
ment with supernova observations implies Ω0

m ∼ 0.26 for
the sudden jump model, and a ∼ 1σ departure occurs for
Ω0
m ∼ 0.27. However, this is no longer the case if smaller

values of z? of order 1 are considered in which case lower
values of Ω0

m are preferred as can be seen in Fig. 1; for
example, for z? ∼ 1 the best fit region has Ω0

m ∼ 0.24
and for z? ∼ 1.5 the best fit region has Ω0

m ∼ 0.25. Also,

note that for fixed Λ̊∞, as z? becomes larger α becomes
closer and closer to 1 in the region where the H0 tension
is resolved.

B. Anomalous decay of the matter density

For the second phenomenological model, we assume
that

ρm(z) = ρm(z)

[
θ+(z−z?)+

(
1 + z

1 + z?

)γ
θ−(z−z?)

]
, (27)

with ρm(z) = ρ0
m (1+z)3. In this model, the matter den-

sity in the past of z? behaves like normal dust (with an
initial value on the surface of last scattering matching the
predicted value in the GR-ΛCDM model), but from z?

on (to smaller values of z) diffusion decreases the matter
density anomalously as parametrized by γ. The energy
lost is captured by dark energy according to equation (9).

In terms of the dimensionless density (18),

ρ̊m(z)≡ Gρm(z)

H
2

0

(28)

=
3Ω

0

m

8π
(1 + z)3

[
θ+(z − z?) +

(
1 + z

1 + z?

)γ
θ−(z − z?)

]
,

where, because this model is based on a deformation of
the standard ΛCDM model, the ΛCDM matter contribu-

tion to the critical density parameter Ω
0

m in (16) natu-
rally appears. As matter is diffusing into the dark energy
sector,

α ≡ ρ0
m

ρ0
m

=
Ω0
mH

2
0

Ω
0

mH
2

0

= (1 + z?)−γ < 1, (29)

where the ratio α is expressed as a function of the pa-
rameters of the new model in the last equality.

The solution to the continuity equation then implies
that, in terms of the dimensionless quantity (19),

Λ̊(z)≡ Λ(z)

H
2

0

(30)

=Λ̊∞ −
3γ Ω

0

m

(γ + 3)

[(
z + 1

z? + 1

)γ
(z + 1)3 − (z? + 1)3

]
,

for z ≤ z? and

Λ̊(z) = Λ̊∞, (31)

for z ≥ z?. As before, Λ̊∞ is a constant of integration
and a free parameter in the model. The standard GR-
ΛCDM cosmology is recovered for γ = 0, and in this limit
Λ̊∞ = 2.055 gives Ω0

Λ = 0.685.
As for the first model, to find the parameters for which

the anomalous decay model can resolve the H0 tension
without requiring any modifications to pre-CMB physics,
we calculate the inferred value for H0 using (21) and
require that it be compatible with Hsn

0 ; the results are
shown in Figs. 5–7. In Figs. 5 and 6, the best fit region
for Λ̊∞ = 2.055 is shown (for small and large values of
z? respectively), while in Fig. 7, the best fit region for
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0.24

0.26

0.28

0.30

Figure 5. This figure shows the region of the parameter space
for small z? where the H0 tension is alleviated or resolved
for the anomalous decay model with Λ̊∞ = 2.055. Here γ
is plotted using a linear scale. The lines denote the 1σ and
2σ contours (assuming Gaussian uncertainty), and the dashed
line indicates where the value of H0 according to the sudden
jump model exactly agrees with Hsn

0 . The predicted value
of Ω0

m according to the sudden jump model is shown by the
colour (in the grey region, Ω0

m < 0.23). In the best fit region
Ω0

m ∼ 0.26.

γ = 10−3 is shown. Note that for a fixed choice of Λ̊∞,
as z? increases a smaller value of γ preferred.

In all three figures, the best fit region corresponding
to a predicted value of H0 in agreement with supernova
observations implies Ω0

m ∼ 0.26 and a ∼ 1σ departure
occurs for Ω0

m ∼ 0.27; this is similar to what was found
for the sudden jump model. Again, this is no longer the
case for smaller z? ∼ 1 in which case the best fit region
has a smaller Ω0

m.
Note that it is not surprising that (for z? & 5) the best

fit regions for H0 in both of the two models considered
here give Ω0

m ∼ 0.26. This is because in both cases α ≈ 1
for the best fit region (see Fig. 3 for the sudden transfer
model and Fig. 6 together with Eq. (29) for the anoma-

lous decay model) and therefore Ω0
m ≈ (H

2

0/H
2
0 )Ω

0

m ≈
0.26 for H0 close to the value preferred by supernovae
observations. Note that for smaller values of z?, the best
fit region will have a smaller value for α (see for example
Fig. 1), and therefore a smaller predicted Ω0

m as well.

V. OBSERVATIONS AT INTERMEDIATE
REDSHIFTS

It may be possible to have a ‘direct’ detection of a
growing Λ from observations at intermediate redshifts
1 < z < 10.

From the Friedman and Raychaudhuri equations for
unimodular gravity with a varying Λ (7), and considering

0.24

0.26

0.28

0.30

Figure 6. This is the same diagram as in Figure 5, but now
considering larger values of z? in the anomalous decay model
and using a logarithmic scale for γ. As in Figure 5, Λ̊∞ =
2.055. As for smaller values of z?, in the best fit region Ω0

m ∼
0.26.

that pressureless matter together with Λ dominate the
dynamics (i.e., ρ = ρm and p = 0), the deceleration and
jerk parameters defined in (11) would be given by

q0 = −1 +
3

2
Ω0
m, j0 = 1 +

Λ̇(0)

2H3
0

. (32)

For z > 1, it is better to do a Taylor expansion for ob-
servables like dL around y = z/(1 + z) rather than z [55]
(see also, e.g., [56] for other possible perturbative expan-
sions); but in any case the prefactors to yn in this Taylor
series depend only on q0, j0, etc.

It is clear that, in the limit where Λ is constant,
the standard GR-ΛCDM cosmological model is recovered
with the standard prediction j0 = 1. On the other hand,
in the context of unimodular gravity, with energy being
‘transferred’ from matter fields to the dark energy sector,
we would have Λ̇ > 0, and thus j0 > 1. We note that
the effect of dissipation in unimodular gravity on the jerk
parameter has also been studied in [57].

Type Ia supernovae have been observed up to redshifts
z ≈ 2.3, and these observations strongly disfavour models
with q0 ≈ −0.55 but all other terms in the expansion
(including j0) vanishing [58]. Future observations may
serve to solidly constrain the value of j0.

Also, the papers [59, 60] report a measurement of the
deceleration parameter using local observations (super-
novae of type Ia with redshifts 0.023 ≤ z ≤ 0.15) with

q0 = −1.08± 0.29, (33)

which is 1.9σ away from the ΛCDM value q0 = −0.55.
Taken at face value, this result would suggest Ω0

m < 0.14
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0.24

0.26

0.28

0.30

Figure 7. This figure shows the region of parameter space
where the H0 tension is alleviated or resolved for the anoma-
lous decay model with γ = 10−3. Here Λ̊∞ is plotted using
a linear scale. The lines denote the 1σ and 2σ contours (as-
suming Gaussian uncertainty), and the dashed line indicates
where the value of H0 according to the sudden jump model
exactly agrees with Hsn

0 . The predicted value of Ω0
m accord-

ing to the sudden jump model is shown by the colour (in the
grey region, Ω0

m < 0.23 or Ω0
m > 0.315). In the best fit region

Ω0
m ∼ 0.26.

(see also [61]). Even though these results must be taken
with caution, they illustrate the point that there is,
at present, a rather important degree of uncertainty
concerning the amount of (dark and baryonic) matter
present in the universe today, a fact that seems to leave
room for a level of energy diffusion of the magnitude re-
quired in the models considered here that can resolve the
H0 tension.

It is clear that observations at larger z could poten-
tially provide stronger constraints on the jerk parameter
and potentially differentiate between the predictions of
the GR-ΛCDM cosmology and UG models with diffu-
sion. It must however be noted that such constraints can
only be considered as valid within a particular functional
form of the parametrizations appearing in these models,
as it is clear that the value of the derivative of a function
f(z) at a certain point (say z = 0) is compatible with
infinitely many different functions.

Interestingly, it has recently been claimed that quasars
and gamma ray bursts can also be used as standard can-
dles (using a non-linear relation between ultraviolet and
x-ray emission for quasars, and the Amati relation for
gamma ray bursts), and the result of an analysis of ob-
servations at redshifts 1 . z . 7 gives j0 > 1 at a 4σ
confidence level [62] (however see also [63, 64]).

VI. DISCUSSION

We have presented a general scenario that can resolve
the H0 tension. The new perspective is motivated by
the proposal in [24, 25] for a fundamental account of the
nature and value of dark energy. The model does not re-
quire problematic equations of state for the components
of the cosmic pie. However, it does require violations
of the local conservation of energy momentum (i.e., de-
viations from ∇aTab = 0), and thus a modified version
of GR that can accommodate these: unimodular grav-
ity. We have provided only a brief motivation for this
possibility here, because that has been (and will be) the
subject of other works. The present analysis has focused
on the essential aspects of the phenomenology. The ba-
sic effect can be seen as an effective ‘flow of energy’ from
the matter sector to dark energy (or ‘cosmological con-
stant’) sector. The viability of the model depends on
its ability to sucessfully overcome several constraints. It
must not disrupt the conditions in the CMB in any sub-
stantial manner, avoiding any negative repercussion re-
garding the success of the GR-ΛCDM model. It must,
of course, resolve or substantially reduce the H0 tension,
thus accommodating the late time supernovae observa-
tions, and it must not lead to an excessive reduction in
amounts of the energy density of the matter sector. The
last point is essential so as not to be in conflict with
late time observations of that sector. In other words,
the amount of dark matter that, according to the viable
scenarios, was converted into dark energy in the period
between the surface of last scattering and the present,
cannot be more than a small fraction of its initial value.

Concerning this last point, CMB observations, com-
bined with the assumption of GR-ΛCDM, imply that
Ω0

Baryons ∼ 0.05 and Ω0
DM ∼ 0.26; however, direct present

day observations indicate that most of the implied bary-
onic matter must be invisible (i.e., is not accounted for
in the star gas and dust that forms the galaxies and the
intergalactic media), namely Ω0

Visible−Baryons ∼ 0.02 [65].

(Some recent reports indicate that Ω0
Visible−Baryons might

account for a larger fraction of Ω0
Baryons than previously

suspected [66], but substantial uncertainties remain [67].)
On the other hand, the dark matter in galaxies and clus-
ters is known to be about 10 times the amount of lu-
minous matter (which itself is a fraction of the baryonic
matter as a substantial part of it seems to be in the in-
tergalactic media). Thus the portion of the dark matter
component that we can directly infer from galaxy surveys
today is of the order of ∼ 0.20. That is, we have strong
confidence that at present there is at least Ω0

Matter ∼ 0.22.
Taking into account the claims of a substantial presence
of baryonic matter in the intergalactic media, we could
say that a conservative constraint in this regard ought
to be Ω0

Matter ∼ 0.25. The point is that given the un-
certainties in the amount of matter directly observed or
indirectly inferred to be present in today’s universe there
seems to be room for an important missing fraction com-
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pared to the GR-ΛCDM value of Ω0
Matter ∼ 0.31. Thus

we consider that our models are viable in this regard if
the fraction of Ω0

Matter that was lost via our mechanism in
the period from the last scattering surface to the present
is smaller than, say, 20%. As can be seen in the figures of
the previous sections, the models we have presented pass
this test for various ranges of the parameters compati-
ble with the other requirements. Notice that the strong
constraints on Ω0

Baryons coming from nucleosynthesis are
not relevant in the present analysis because all the mod-
ifications introduced by our models happen after recom-
bination, and diffusion effects can cause the amplitude of
ρBaryons to decrease faster than what would be expected
from cosmological expansion alone.

The simplicity of the two models considered here and
their effectiveness in resolving the H0 tension illustrates
the potential of the perspective that we put forward here.
A more realistic model would require, in addition, a de-
tailed account of the fundamental mechanism behind the
diffusion process as well as the astrophysical description
of the sources, their abundance and dynamical evolution
during the recent cosmological history. Thus, the frame-
work presented here naturally calls for further studies
involving the simultaneous analysis of parametrizations
characterizing these two combined aspects of the prob-
lem, with best fit studies based on the wide range of avail-
able data regarding cosmological observations. One such
possibility of more complete scenario is the natural gener-
alization of the fundamental mechanism of [24, 25] that
would include black holes as diffusive sources [26]. We
should note that proposals having some resemblance to
the present one, but motivated by rather different phys-
ical ideas have been put forward in [57, 68].

More generally, unimodular gravity, combined with
the relaxation of the assumption of conservation of the
energy-momentum tensor of matter, represents, at a clas-
sical level, a relatively mild modification of GR which
ought to be subjected to studies and constraining obser-

vational tests, just like other modified gravity theories.
The present work together with the results of [24, 25]
clearly exhibits its potential.

Finally, note that in this paper we have been working
under the assumption that the cosmological parameters
at the last scattering surface are those determined by
the Planck analysis of their data. That analysis in turn
has been carried out under the assumption of the va-
lidity of the standard GR-ΛCDM model. Our modified
model calls for a reevaluation of those parameters, given
the Planck observations, but carried out with the modi-
fied cosmic evolution, in particular by using a Boltzmann
code updated to include the diffusion effects of either of
the models considered here (or perhaps another model
entirely). This would naturally lead to small changes
in the preferred values of some cosmological parameters,
but we expect these resulting changes to be of higher or-
der and lead only to small modifications of the results
derived here based on the ratio of the sound horizon and
the radius of the surface of last scattering. That more
complete and complex analysis will be the subject of a
forthcoming paper.
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[61] E. Ó. Colgáin, “A hint of matter underdensity at low
z?,” JCAP 09 (2019) 006, arXiv:1903.11743.

[62] E. Lusso, E. Piedipalumbo, G. Risaliti, M. Paolillo,
S. Bisogni, E. Nardini, and L. Amati, “Tension with the
flat ΛCDM model from a high-redshift Hubble diagram
of supernovae, quasars, and gamma-ray bursts,” Astron.
Astrophys. 628 (2019) L4, arXiv:1907.07692.

[63] T. Yang, A. Banerjee, and E. O. Colgáin, “On
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