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a b s t r a c t

Wepresentmodal and non-modal linear stability analyses of Poiseuille flow through a plane channelwith
a porous substrate modeled using the Volume Averaged Navier–Stokes (VANS) equations. Modal stability
analysis shows the destabilization of the flow with increasing porosity of the layer. The instability mode
originates from the homogeneous fluid region of the channel for all the values of porosity considered
but the governing mechanism changes. Perturbation kinetic energy analysis reveals the importance of
viscous dissipation at low porosity values while dissipation in the porous substrate becomes significant
at higher porosity. Scaling analysis highlights the invariance of the critical wavenumber with changing
porosity. On the other hand, the critical Reynolds number remains invariant at low porosity and scales
as Rec ∼ (H/δ)1.4 at high porosity where δ is the typical thickness of the vorticity layer at the fluid–
porous interface. This reveals the existence of a Tollmien–Schlichting-like viscous instability mechanism
at low porosity values, and Rayleigh analysis shows the presence of an inviscid instability mechanism
at high porosity. For the whole range of porosities considered, the non-modal analysis shows that the
optimal mechanism responsible for transient energy amplification is the lift-up effect, giving rise to
streaky structure as in single-phase plane Poiseuille flow. The present results strongly suggest that the
transition to turbulence follows the same path as that of classical Poiseuille flow at low porosity values,
while it is dictated by the modal instability for high porosity values.

1. Introduction

Flows over porous media are encountered across diverse nat-
ural and industrial processes such as porous river beds, transpi-
ration, water filtration, catalytic bed reactors, ground oil wells,
geological flows etc. Among the different specific applications we
mention cross-flow filtration in tubular membranes [1], convec-
tive/transpiration cooling in porous gas turbine blades [2], fluid
flow over flexible and rigid plant canopies and monami [3,4],
alteration of near-wall turbulence bywall suction [5] andbiological
flow through lungs and kidneys [6,7]. Clearly these applications
cover awide range of flow speeds and permeabilities, from laminar
to turbulent flows.

1.1. Models for porous media

Literature studies suggest discrepancies in modeling porous
media flows in terms of using appropriate transport equations.
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The starting empirical relation for modeling flow through porous
media was provided by Darcy (1856) but with specific restrictions
on the range of validity of the relation. This empirical relation was
not in good agreementwith the experimental results byWright [8]
andDybbs and Edwards [9]. Giorgi [10] derived themodeling equa-
tions for flows through rigid porous media using matching asymp-
totic conditions (Oseen approximation) considering the non-linear
Forchheimer term along with the Darcy term. Lage [11] provided
a detailed description of the limitations of Darcy equation and
the modified transport equations used for porous media flows.
Since then, different approaches have been used to simplify the
description of the porous region. Physics-based assumptions are
considered for the flow inside the porous layer and at the interface
to couple the flow between fluid and porous regions. One such
approachwas used byWagner and Friedrich [12]who assumedno-
slip conditions for azimuthal and axial velocity components with a
wall permeability condition for the radial velocity component to
study turbulent flow through circular permeable pipes. Another
approach reduces the flow inside the porous region to an adequate
boundary condition at the fluid–porous interface. This approach
was considered byHahn et al. [13] for direct numerical simulations
of turbulent channel flow over porous walls: it amounts to zero
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wall-normal velocity at the fluid–porous interface. Even though
these earlier approaches provided some insight into the effects of
wall permeability, they could not ascertain whether the assump-
tionswere reasonable enough. Another issue concerns the possible
strategies to model the multiphase porous region, being e.g. a
packed bed of cubes [14], spheres [15–17] or solid cylinders [18].
The first accurate transport equations for modeling the flow inside
the porous region, called Volume-Averaged Navier–Stokes (VANS)
equations were derived byWhitaker [19–21]. The VANS equations
were derived using the concept of volume averaging based on
the continuum approach, where the flow in the porous region is
treated as a continuum and coupled to the flow in the fluid region.
Different modeling approaches have been formulated for coupling
the flow at the fluid–porous interface. Beavers and Joseph [22]
and Ochoa-Tapia and Whitaker [23] proposed the use of jump
conditions tomatch the flow in the homogeneous fluid and porous
regions, circumventing the need to explicitlymodel the flow inside
the interface region. Ochoa-Tapia and Whitaker [23] showed that
the length constraints required for the validity of VANS equations
in the interface region are not fulfilled. In a related study, Ochoa-
Tapia and Whitaker [24] explicitly modeled the macroscopic flow
in the interface region by proposing a variable-porosity model,
which was used to compute the local variation in the permeability
in the (Darcy-)Brinkman equation. This was successfully validated
against experiments of Beavers and Joseph [22]. The direct nu-
merical simulations of turbulent porous channel flows by Breugem
and Boersma [14] also showed good agreement between the direct
approach where the flow has been simulated explicitly around the
pores (using an Immersed boundary method to enforce the no-
slip and no-penetration boundary conditions on the cubes defining
the porous phase) and the continuum approach (using the VANS
equations with variable-porosity model at the interface region).
The continuum approach is computationally more efficient than
the direct approach but the former requires a closure model for
the drag force and sub-filter scale stress, see Breugem et al. [16]
for details. In this paper, we follow the samemodeling approach as
in Breugem et al. [16].

1.2. Stability of flow over a porous layer

The porous layer destabilizes the flow as reported by Beavers
et al. [25] for the first time. The first experiments were performed
by Sparrow et al. [26] to predict the stability of laminar chan-
nel flow with a permeable wall. They also performed the two-
dimensional linear stability analysis using Darcy’s law with the in-
terface matching conditions proposed by Beavers and Joseph [22].
Their experimental and numerical results showed that the wall
permeability destabilizes the flow at lower Reynolds numbers
than for an impermeable wall. A detailed modal linear stability
analysis for channel surrounded with two adjacent porous walls
was presented by Tilton and Cortelezzi [27] using the VANS equa-
tions [21] with matching stress conditions in terms of interface
coefficient as given in Ochoa-Tapia and Whitaker [23,28]. Tilton
and Cortelezzi [27] neglected inertial effects in the porous region
for small values of permeability. These authors considered same
permeability values for both porous walls with fixed porosity,
height of porous layers, and interface coefficient. They concluded
that small increments in the wall permeability can significantly
decrease the stability of the channel flow as compared to classical
Poiseuille flow. Chang et al. [29] studied the linear stability of
Poiseuille flow over a porous layer by a two-domain approachwith
Navier–Stokes equations for the fluid region and Darcy equation
for the porous layer, with the coupling interface conditions as
in Beavers and Joseph [22] and Jones [30]. These authors found
the results to be independent of the interface conditions used.
Their work marked the existence of three competing modes hav-
ing different characteristics but driven by the shear stress of the

Poiseuille flow in the fluid region. The modal stability analysis was
further extended to specific cases of porousmaterials like foametal
and aloxite by Tilton and Cortelezzi [31] who examined the char-
acteristics of unstable modes for varying permeability, porosity,
height of the porous layer andmomentum transfer coefficient. The
instability of classical Poiseuille flow in a fluid–porous systemwas
studied by Liu et al. [32] using the Brinkman equation instead of
Darcy’s law. The interface condition used was the continuity of
tangential and normal components of velocity and stress tensor
as shown by Desaive et al. [33]. The flow instability character-
istics were different with the Brinkman equation since only two
instability modes appear. These authors therefore concluded that
the specific model chosen for the porous region, has to be verified
experimentally. A similar study of the instability of Poiseuille flow
in a channel with a porous substrate was performed by Hill and
Straughan [34], where the porous substrate was modeled using
Darcy’s lawwith an intermediate Brinkman porous transition layer
adjoining the channel region. This work was further extended
by Hill [35] by considering a three layer configuration but with
variable effective viscosity between the upper fluid region and
the lower homogeneous porous region. In both studies [34,35], it
has been observed that two different competing instability modes
exist. Amore recent linear stability analysis has been performed by
Li et al. [36] considering the same modeling approach as in Tilton
and Cortelezzi [27,31]. These authors reported the flow instability
for varying values of the porous filling ratio with a fixed value of
permeability. The main conclusion was that the configuration of a
porous layer surrounded by channelswasmore stable as compared
to the configuration of a channel surrounded by two porous walls.

Even though the modal stability of porous channel flows have
been extensively studied, a better understanding of the destabiliza-
tionmechanism is still needed. In this paper, we present a detailed
analysis to identify the origin, physical mechanism and the nature
of the instability responsible for the destabilization in porous chan-
nel flows.We perform the linear stability analysis using a primitive
variable approach and discretize the linearized VANS equations us-
ing a fourth-order dispersion-relation preserving finite-difference
scheme. First, we present an eigenmode analysis and identify the
origin of the instability modes. We perform the energy analysis
to get a clearer physical interpretation of the instability growth
mechanism. However most of the previous research do not say
much about the evolution of the nature of the instability mode as
we go from low to high porosity values. In this context, the study by
Singh et al. [37] classified the two different competing instability
modes in flow through submerged seagrass bed. From linear sta-
bility analysis and experiments, these authors labeled one of them
as a Kelvin–Helmholtz mode modified by vegetation drag and the
other one as an instability mode unrelated to a Kelvin–Helmholtz
mode originating from the interactions between the vegetated
and unvegetated regions. We make an attempt to ascertain the
characteristics of the instability mode by performing the scaling
analysis following a similar approach as in Singh et al. [37]. We de-
fine the vorticity thickness using the phenomenological estimate
of the velocity gradient at the interface, Beavers and Joseph [22].
However, new theoretical approaches have been presented in the
works of Minale [38,39] and Carotenuto et al. [40], where stress
conditions are used at the interface taking into account the mo-
mentum transfer from the fluid region to both the solid and fluid
phases in the porous region. We also perform a Rayleigh anal-
ysis at high porosity value to clearly characterize the instability
mode. To conclude, we perform a non-modal analysis to identify
the optimal mechanism possibly responsible for early transition
following the approach reviewed in Schmid [41]. The non-modal
transient growth analysis for a plane channel flow with a porous
substrate was studied by Scarselli [42] and Quadrio et al. [43]
using the modeling approach in Tilton and Cortelezzi [31]. They



found maximum transient growth with increasing permeability
associated with significant flow across the fluid–porous interface.
They also found that the variation of porosity and the momentum
transfer coefficient hadminimal effect on the transient energy am-
plification as compared to the effect on the linearly unstable region.

This paper is organized as follows. The problem statement with
the governing equations are presented in Section 2 whereas the
numerical methods with their validation are reported in Section 3.
The results and discussions for the modal analysis, energy analysis
and non-modal analysis are reported in Section 4. The main con-
clusions are provided in Section 5.

2. Problem statement

2.1. Governing equations

Weanalyze the instability in a plane channel flowwith a porous
substrate and denote the stream-wise, wall-normal and the span-
wise directions as x, y and z, respectively. The flow domain can be
divided into three different regions namely the homogeneous fluid
region, the interface region and the homogeneous porous region.
The homogeneous fluid region extends from y = 0 to y = H and
is delimited by an upper solid wall at y = H . The homogeneous
porous region extends from y = −H to y = −δi with a bottom
solid wall at y = −H . The homogeneous fluid and porous regions
are separated by an interface region extending from y = −δi
to y = 0, see Fig. 1. The porous region is modeled as a packed
bed of solid spheres with a specific value of the mean particle
diameter, dp, and of the fluid volume fraction, defining the porosity
ϵ [16]. In the porous region, the fluid flows only through the pores
where it can still be modeled by the Navier–Stokes equations (at
the microscopic scales). However at the macroscopic scales, the
flow is modeled by the Volume-Averaged Navier–Stokes (VANS)
equations. The derivation follows the work of Whitaker [21]. The
dimensionless VANS equations (in intrinsic form) are thus given
as [16],

∇ · [ϵu] = 0 (1)

∂u
∂t

= −
1
ϵ
∇ · [ϵu ⊗ u] − ∇p +

1
Reb

∇
2u +

1
ϵReb

∇ϵ · ∇u

−
1
Reb

Fo
Da

ϵ|u|u +
1
Reb

[
∇

2ϵ

ϵ
−

ϵ

Da

]
u

(2)

In the above, we denote by u both the fluid velocity in the fluid
region and u = 1/Vf

∫
Vf
u dV the volume-averaged fluid velocity

in the porous region, and by p the volume-averaged pressure. The
averaging volume corresponds to a control volume with contribu-
tion of solid and fluid phases i.e. V = Vf +Vs (Vf is the fluid volume
and Vs is the solid volume). The porosity ϵ is in general a function
of the spatial coordinates. The additional terms arising from the
interactions with the solid matrix will be better introduced in
conjunction with the derivation of the energy budgets.

For the configuration under investigation the porosity distribu-
tion ϵ varies only along the wall-normal direction, from a constant
value ϵc in the porous region to 1 in the homogeneous fluid region.
The continuity of the porosity is ensured by the interface region
with a porosity distribution function which varies rapidly over the
thickness δi of the interface layer as assumed in Breugem et al. [16].
Analytically, the porosity is given as,

ϵ =

⎧⎪⎪⎨⎪⎪⎩
1, 0 ≤ y ≤ H
− 6(ϵc − 1)(y/δi)5 − 15(ϵc − 1)(y/δi)4

− 10(ϵc − 1)(y/δi)3 + 1,
−δi ≤ y ≤ 0

ϵc, −H ≤ y ≤ −δi

(3)

Fig. 1. Schematic diagram of the flow configuration and the coordinate system
adopted.

The VANS equations become invalid in the interface region but
it has been shown in Breugem et al. [14] that a variable-porosity
model at the interface is able to accurately couple the flow in the
fluid region to that in the porous substrate.

The VANS equations (1) and (2) are non-dimensionalized with
the thickness of the fluid region H and the bulk velocity Ub in the
fluid region. The bulk Reynolds number is defined as Reb = UbH/ν,
ν being the kinematic viscosity of the fluid. The dimensionless
parameters for the porous region are the Darcy number, Da =

K/H2 and Forchheimer number, Fo = F̃Ub. The permeability K
and Forchheimer coefficient F̃ are defined as in Whitaker [21] and
Breugem et al. [16]:

K =
d2pϵ

3

180(1 − ϵ)2
, F̃ =

ϵ

100(1 − ϵ)
dp
ν

(4)

The value of permeability K varies with the local porosity in the
porous region and reaches infinity in the homogeneous fluid region
(ϵ = 1).

The impenetrability of the solid spheres into the solid wall
induces an unavoidable porosity variation in the real proximity of
the bottom solid wall and the VANS equations are also not valid
in this transition zone. However, the Brinkmann boundary layer
along the solidwall at y = −H has a thickness proportional to

√
Kc ,

which in our case ismuch smaller than the thicknessH considered.
Hence the solid wall at y = −H has negligible influence on the
flow in the interface and fluid regions as long as the thickness H
is sufficiently large, see Breugem et al. [16] for details. The mean
particle diameter inside the porous layer is dp = 0.01H and the
thickness of the interface region is chosen as δi = 0.02H [16]. Here
we did not vary δi as it is reported in Ghosh [44] that its effect is
not particularly significant for the computation of critical stability
parameters if this is chosen small enough as compared to

√
K (ϵc )/ϵc ,

the length scale associated with drag.

2.2. Base flow

The stream-wise and span-wise invariant laminar base flow
U = (U(y), 0, 0)T is solution to the following steady state VANS
equations,

0 = −
∂P
∂x

+
1
Reb

∂2U
∂y2

+
1

ϵReb

∂ϵ

∂y
∂U
∂y

−
1
Reb

Fo
Da

ϵ|U |U

+
1
Reb

[
1
ϵ

∂2ϵ

∂y2
−

ϵ

Da

]
U

(5)

It has been obtained numerically by solving the equation above
by means of the Newton method implemented in the SciPy li-
brary [45].



2.3. Linear stability equations

For the linear stability analysis, the flow variables are decom-
posed into base flow and infinitesimal perturbations, U i = Ui + ui
and p = P + p. The linear stability of the base flow U is dictated
by the fate of the infinitesimal perturbation ui. Their dynamics are
governed by the linearized VANS equations,

∂ui

∂t
= −

1
ϵ

∂

∂xj
(ϵUiuj + ϵuiUj) −

∂p
∂xi

+
1
Reb

∂2ui

∂x2j

+
1

ϵReb

(
∂ϵ

∂xj

∂ui

∂xj

)
−

1
Reb

Fo
Da

ϵ[Uui + Uiu] +
1
Reb

[
1
ϵ

∂2ϵ

∂x2j
−

ϵ

Da

]
ui

(6)

These equations can be written in compact form as,

∂

∂t

[
I 0
0 0

][
u
p

]
=

[
A −G
D 0

][
u
p

]
(7)

The expression of divergence D and gradient G operators and of A
are given in Appendix. Because of a minor bug in the generalized
eigenvalue solver in LAPACK,1 the procedure described in Edwards
et al. [46] has been used in order to project (7) onto a divergence-
free vector space. The resulting system then reads,

∂u
∂t

= Lu (8)

where L is the projection of the linearized Navier–Stokes operator.
The solution to this initial value problem (IVP) is formally given
by,

u(t) = exp(tL)u0 (9)

where u0 is the initial condition.

2.4. Modal stability analysis

Being the linear dynamical system (8) autonomous in time t and
homogeneous in the x and z directions, one can seek for solutions
using the normal-mode ansatz. The perturbationu(x, y, z, t) is thus
given by,

u(x, y, z, t) = û(y)e(iαx+iβz+λt) (10)

Introducing this ansatz in Eq. (8) results in the following ordinary
eigenvalue problem,

λû = Lû (11)

where λ = σ + iω is the eigenvalue, σ being the growth rate of the
instability, ω its circular frequency, α the real-valued stream-wise
wavenumber, and β the real-valued span-wise wavenumber.

2.4.1. Energy analysis
The perturbation kinetic energy budget provides information

on the nature of the instability growth mechanism. The energy
budget is obtained by multiplying the complex conjugate of the
perturbation velocity with the linearized VANS equations (6). Fur-
ther taking the conjugate, applying the commutative property for
the operations of conjugate derivative,

(
∂ f
∂x

)∗
=

∂ f ∗
∂x , and averaging,

the equation for the perturbation kinetic energy (PKE) E(y, t) =

1 For more details, see http://www.netlib.org/lapack/bug_list.html. To the au-
thors knowledge, this bug has not been corrected.
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)

(12)

The terms in curly bracket above correspond to the transport of
energy and only redistribute the energy within the flow domain.
These transport terms have no net contribution to the energy
budget in the homogeneous fluid and porous regions (ϵ = constant)
on account of the no-slip boundary condition at the walls and
periodicity. The first term inside the curly bracket represents the
transport due to perturbations (TRANS), the second term is the
velocity–pressure-gradient term (VPG) and the third one is the
viscous diffusion (VD) term.

Integrating Eq. (12) over the flow domain, the rate of change of
the perturbation kinetic energy is written as,∫ 1
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In the expression above, WS represents the production by the
Reynolds shear stresses, DIS viscous dissipation, FOR and DAR the
work of the Forchheimer and Darcy drag. These two terms are
non-zero only in the porous region. The last term, denoted as POR,
consists of two contributions: the first term corresponds to viscous
porous drag and the second term refers to viscous transport due to
local gradients of porosity.

Finally, using the normal mode expansion, it can easily be
shown that the normalized rate of change of the perturbation
kinetic energy Er , defined as,

Er =

1
Ω

∫
Ω

∂E
∂t

dΩ

1
Ω

∫
Ω

EdΩ
=

1
2LxLz

∫ 1

−1

∫ Lx

0

∫ Lz

0

∂E
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dz dx dy

1
2LxLz

∫ 1

−1

∫ Lx

0

∫ Lz

0
E dz dx dy

(14)

has to be equal to twice the growth rate σ of the eigenmode mode
under scrutiny. Here Ω represents the flow domain with Lx =

2π
α

and Lz =
2π
β

being the length of the domain in x and z directions

respectively.

2.5. Non-modal stability analysis

It is now well understood that linear modal stability only pro-
vides information about the asymptotic behavior of disturbances,
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while large transient amplifications at short time are still possi-
ble and indeed responsible for transition to turbulence in sim-
ple shear flows [41,47,48]. The short-time energy growth can be
several magnitudes higher than the initial perturbation energy as
seen in the case of viscous channel flows [48–50]. From a math-
ematical point of view, this large transient growth results from
the non-normality of the linearized Navier–Stokes operator. In
wall-bounded flows, themechanism responsible for themaximum
disturbance energy amplification is the lift-up effect, by which
stream-wise vortices create strong streaks [see e.g. the review
by Brandt [51]]. We perform here a transient growth analysis by
considering the initial value problem given by Eq. (8) and the
perturbation kinetic energy defined as,

E(u(t)) =
1
2

∫
Ω

uHQu dΩ

=
1
2

∫
Ω

uHFHFu dΩ

(15)

where Q is the symmetric positive definite matrix, with Cholesky
decomposition Q = FHF , assuring proper weighting of the per-
turbation velocity along the wall-normal direction. The optimal
energy amplification G(t) is written as,

G(t) = max
u0 ̸=0

E(u(t))
E(u0)

= max
u0 ̸=0

∥u(t)∥2
E

∥u0∥
2
E

= max
u0 ̸=0

∥ exp(tL)u0∥
2
E

∥u0∥
2
E

= ∥ exp(tL)∥2
E

= ∥F exp(tΛ)F−1
∥
2
2

(16)

where Λ is the diagonal eigenvalue matrix. Computing the norm
of the matrix exponential, the largest possible transient growth,
reduces to the computation of the largest singular value of the
last term on the right-hand side of Eq. (16). The corresponding
singular vectors provide the optimal perturbation and the associ-
ated optimal response. See Schmid and Brandt [48] formore details
about the relation between matrix norm and non-modal stability
analysis.

3. Numerical methods and validation

The eigenvalue problem introduced in the previous section is
discretized bymeans of a finite-difference (FD) scheme. The finite-
difference scheme is chosen as this method creates sparse matri-
ces resulting in significant reduction in computational resources,
when extending the present formulation to more complex flows,
e.g. duct flows with only one homogeneous direction. The most-
common FD schemes, however, give rise to dispersive errors at
higher wavenumbers and it is thus necessary to optimize the
coefficients over a range of wavenumbers in order to reduce these
errors. One such way of optimization is using dispersion-relation
preserving (DRP) schemes. DRP schemes are finite difference (FD)
schemes for which the coefficients are evaluated in Fourier space
over a designated scale of wavenumbers to reduce the numer-
ical error [52]. Here, we will consider fourth-order spatial dis-
cretization along the wall-normal direction resulting in a seven-
point stencil. We follow the approach of Kim and Lee [53] and
Bauer et al. [54] to derive the coefficients through the method of
minimization of the error between the actual and the modified
wavenumbers. We optimize the fourth order dispersion relation
preserving (FODRP) schemes over a specific range ofwavenumbers
(k ≤ π/2). As a consequence, only four points per wavelength are
required to obtain a good resolution. In the specific case of plane
channel flow with a porous substrate, we observe steep gradients
of the base flow near the two walls of the channel and at the
fluid–porous interface. Therefore, we incorporate a suitable grid

Table 1
Darcy number, Da for different values of porosity ϵc .
ϵc 0.3 0.6 0.9 0.95

Da 3.06e−08 7.50e−07 4.05e−05 1.90e−04

stretching function over the FODRP discretized grid in order to
increase the density of grid points in the vicinity of the walls and
at the interface.

Convergence tests and error analysis for the eigenvalue prob-
lem using FODRP schemes are presented in Ghosh [44]. The actual
number of grid points used is N = 193, which gives a convergence
error of 0.01%. The implementation of the numerical code has been
validated against the results of linear stability analysis of Poiseuille
flow and Couette flow by Schmid and Brandt [48], see Ghosh [44].

4. Result and discussions

4.1. Base flow

The base flow profile for the plane channel flow with a porous
substrate is shown for ϵc = 0, 0.3, 0.6, 0.9, 0.95 in Fig. 2. For
ϵc = 0, the flow is a regular Poiseuille flow in the upper fluid
region. When ϵc > 0, the flow displays an inflection point and
a distinct vorticity layer at the interface. In the limit ϵc → 1,
the classical Poiseuille parabolic flow is recovered over the entire
height of the channel. The velocity magnitude within the porous
region is negligible for ϵc = 0.3 and 0.6, while finite for ϵc = 0.9
and 0.95. As the bulk velocity is maintained constant over the fluid
region, a small reduction of the maximum velocity in the fluid
region of the channel is observed for ϵc = 0.9 and 0.95.

The VANS equations used for modeling the porous substrate as
densely packed bed of spheres implies dependence between the
porosity ϵc and the permeability Kc . Hence the reader is referred to
note that for the further results presented, any change in porosity
indicates change in permeability, see Table 1 for the dimensionless
permeability given by Darcy number Da at different values of
porosity ϵc .

4.2. Modal stability analysis

In the case of single-phase flows, the Squire theoremguarantees
that the flow first becomes linearly unstable to two-dimensional
waves. As the theorem cannot be extended directly to our problem,
we start by checking that a similar conclusion applies also to the
stability of a plane channel flow with a porous substrate described
by the VANS equations. Lauga and Cossu [55] show that the Squire
theorem can be extended to the case of slip channel flows, whereas
Zhang et al. [56] demonstrate that two-dimensional modes are
the first to become unstable in channel flow of polymer suspen-
sions although the Squire theorem cannot be extended to this
case directly. We therefore proceed by numerically investigating
the first modes that become unstable. The least stable eigenval-
ues in the α − β plane are shown in Fig. 3 for porosity values
of ϵc = 0.3 and 0.95. In both cases (and others not reported
here), the least stable eigenvalues are confined along the β =

0 axis and we thus assume that the flow first becomes linearly
unstable to two-dimensionalwaves. Similar conclusions have been
reached by Tilton and Cortelezzi [31] for a similar flow configura-
tion. Hence for the neutral curve calculations presented here, only
two-dimensional perturbations (i.e. β = 0) are considered.



Fig. 2. Base flow velocity profile as a function of the porosity ϵc . The insets I and II depict the close-up view of the velocity profile within the fluid and porous phase. The
parameters considered are Reb = 2000 and δi = 0.02 respectively.

Fig. 3. Contour plot of the growth rate of least stable mode in the α − β plane. The blue line represents the contour for growth rate = 0. The parameters considered are (a)
(Reb, ϵc ) = (8000, 0.3), (b) (Reb, ϵc ) = (3000, 0.95) and δi = 0.02 for both cases. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Neutral stability curves for different values of the porosity, ϵc ∈ [0, 0.95]. In all cases, the thickness of the porous–fluid interface is set to δi = 0.02.

Table 2
Comparison of growth rate σ of the least stable eigenvalue for different values of
porosity ϵc and α = 2 for all cases.
Reb ϵc = 0 ϵc = 0.3 ϵc = 0.6 ϵc = 0.9 ϵc = 0.95

3000 −0.04798347 −0.04781321 −0.04598435 0.04679111 0.27738312
8000 0.00155281 0.00187691 0.00570383 0.18732385 0.46792848

4.2.1. Neutral curves

The neutral curve for different values of porosity in the range

0 ≤ ϵc ≤ 0.95 are reported in Fig. 4 in the Re − α plane. These

results are obtained with a constant thickness of the interface
region (δi = 0.02).

For ϵc = 0 the critical Reynolds number based on the bulk
velocity and the channel width is Rec = 7696.27, correspond-
ing to the classic value of 5772.2 using the centerline velocity
and half-channel height. The critical Reynolds number does not
change significantly as the porosity value is increased to ϵc =

0.3. Further increasing the porosity, however, results in a drastic
reduction of the critical Reynolds number, in agreement with the
results by Tilton and Cortelezzi [31] in a similar configuration and
for increasing permeability. The critical stream-wise wavenum-
ber αc increases from 2.04 for ϵc = 0 to 2.78 for ϵc = 0.95.
It should be noted that, while the critical Reynolds number Rec



Fig. 5. (a) Eigenspectrum andwall-normal velocity component of (b) the wall eigenmode ( ), (c) the center eigenmode (•), and (d) the damped eigenmode ( ) for (Reb, α, ϵc )
= (8000, 2, 0.3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Eigenspectrum andwall-normal velocity component of (b) the least stablewall eigenmode ( ), (c) the 1st porous eigenmode (▼), and (d) the 2nd porous eigenmode
(•) for (Reb, α, ϵc ) = (8000, 2, 0.95). The inset in (a) shows the zoomed view of the 1st and 2nd porous modes. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)



changes significantly with the porosity of the medium, the critical
stream-wise wavenumber αc is less sensitive to the variation of
porosity. As shown in the figure, however, the unstable region
becomes larger as the porosity increases, spanning over a larger
set of wavenumbers at fixed Reynolds number. This characteristic
feature has been also reported by Tilton and Cortelezzi [31] for
increasing permeability.

Finally, we consider the growth rate pertaining to the least
stable mode for different values of porosity at Reb = 3000 and
8000, see Table 2. The growth rate of the least stable eigenvalue
is essentially unchanged at ϵc = 0.3, corresponding to the case of
a fully packed bed of spheres, as also shown for lower values of
permeability by Tilton and Cortelezzi [31]. As the value of porosity
becomes higher, the growth rate increases drastically. The data in
the table also suggest that the increase in the growth rate corre-
sponding to an increase in Reynolds number is more significant for
larger values of porosity.

4.2.2. Eigenspectrum and eigenmodes
Fig. 5(a) depicts the eigenspectrum for ϵc = 0.3 at Reb = 8000

and α = 2. For this low porosity case, the spectrum resembles that
of single-phase Poiseuille flow, with the eigenvalues distributed
over 3 different branches.We followhere the classic nomenclature.
The eigenvalues on the uppermost left branch have their eigen-
functions varying near the wall and the interface region and they
are therefore labeled aswall eigenmodes, as shown by the shape of
the wall-normal velocity component of the eigenmode in Fig. 5(b).
Like the case of plane Poiseuille flow with solid (impermeable)
walls, the wall eigenmode is responsible for the instability for low
values of porosity. The uppermost right branch of eigenvalues have
their eigenfunctions varying near the center of the homogeneous
fluid region as shown in Fig. 5(c) and they are therefore labeled as
center eigenmodes. The highly damped eigenvalues in the lower-
most branch are labeled asdamped eigenmodes. The corresponding
wall-normal velocity component is shown in Fig. 5(d): the per-
turbations are confined within the homogeneous fluid region and
disappear at the interface.

For high porosity value of ϵc = 0.95, the wall eigenmode has a
significantly larger growth rate, see Fig. 6(a). It is strongly affected
by the porous region and the perturbation velocity is non-zero at
the interface. This is due to weakening of the wall-blocking and
wall-induced viscous effects near the permeable wall [57], which
accounts for the transpiration velocity into the porous region. As
depicted in Fig. 6(b), the perturbation velocity now has a strong
reversal at the interface. A similar feature has been reported by
Chang et al. [29] and Hill and Straughan [34] for lower values of
the ratio between the depth of the fluid and porous region. The
transpiration velocity into the porous region becomes significant
at high porosity values, while it decays inside the porous region.
It is also interesting to observe the appearance of a new branch
of eigenvalues in the eigenspectrum (indicated by ▼ and • in
Fig. 6a). This branch originates from the porous region and its
modes are therefore labeled as porous eigenmodes, see Tilton and
Cortelezzi [31]. The wall-normal component of the eigenmode
pertaining to the two least stable eigenvalues of the porous branch
are depicted in Fig. 6(c)–(d), to confirm that these highly stable
modes only exist within the porous layer.

4.2.3. Energy analysis
The perturbation kinetic energy budget of unstable normal

modes has not been presented for the channel flow with a porous
substrate earlier. The spatial distribution of the different terms in
the perturbation kinetic energy budget in Eq. (13) is presented in
Fig. 7 for low ϵc = 0.3 and high ϵc = 0.95 values of porosity. To
provide a good comparison over different ranges of porosity, all
the terms in the perturbation kinetic energy budget are normalized
with the total dissipation (D = DIS + POR + FOR + DAR).

Fig. 7. Kinetic energy budget of the most unstable mode for (a), (b): ϵc = 0.3 and
(c), (d): ϵc = 0.95. The parameters considered are (Reb, α): (8000, 2) for both cases.
The inset in (b) and (d) shows the zoomed view of the energy budget near the
interface. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)



Table 3
Comparison of the total perturbation kinetic energy budget for different unstable
modes with different values of (ϵc , Reb , α) with the growth rate of the least stable
eigenvalue σ .
(ϵc , Reb , α) (0.3, 8000, 2) (0.9, 8000, 2) (0.95, 8000, 2)∫

Ω
WS /

∫
Ω
E 0.0467 0.6491 1.2179∫

Ω
POR /

∫
Ω
E −0.0007 −0.0009 −0.0008∫

Ω
FOR /

∫
Ω
E −0.0003 −0.0090 −0.0301∫

Ω
DAR /

∫
Ω
E −0.0022 −0.2205 −0.2106∫

Ω
DIS /

∫
Ω
E −0.0398 −0.0441 −0.0406

Total(Er ) 0.0037 0.3746 0.9358
2σ 0.0037 0.3746 0.9358

Fig. 8. Normalized wall-normal integral of different contributions to the kinetic
energy budget for different values of porosity, ϵc ∈ [0.3, 0.95]. The parameters
considered are (Reb, α): (8000, 2) for all cases. PD indicates dissipation in the porous
substrate and is equal to (POR + FOR + DAR). The data are normalized with respect
to contributions at ϵc = 0.3.

For ϵc = 0.3, the shear production term (WS) is dominant
near the top wall and at the interface, which closely reminds of
the energy distribution for the canonical Poiseuille channel flow.
The viscous dissipation term (DIS) is strong near the top wall and
interface, and is in balancewith viscous diffusion term (VD), as also
seen in the case of regular turbulent channel flow [see Mansour et
al. [58]]. The WS term is locally balanced by the velocity–pressure
gradient term (VPG) and to some extent by the VD term. The
contributions due to porous drag (POR), Darcy drag (DAR) and
Forchheimer drag (FOR) are seen in the porous region only. Here,
the DAR term has the largest value, followed by the POR and FOR
terms near the interface.

For high value of porosity, ϵc = 0.95 (lower panel in Fig. 7), the
WS term increases significantly near the interface and is balanced
by VPG and to a lower extent by DIS. This has also been reported
by Breugem et al. [16] for the case of a turbulent flow in a channel
with a porous substrate. Due to the apparent slip velocity at the
interface, the viscous effects become less significant in this area.
An interesting difference can be seen in the porous region near
the interface, where the FOR term becomes larger than the DAR
term. The VPG term increases significantly in the porous region in
order to provide a local balance with the enhanced FOR and DAR
terms.

The integrated contributions of each term of the perturbation
kinetic energy budget, normalized with the contributions at ϵc =

0.3, are shown in Fig. 8. Note that the total dissipation, sum of
viscous dissipation and the dissipation in the porous substrate (PD
= POR+FOR+DAR) is constant for different porosity values due
to the normalization. The contribution due to the FOR term in-
creases while the POR term contribution decreases as the porosity
is increased from ϵc = 0.3 to ϵc = 0.95. The contribution due
to the DAR term also increases as the porosity is increased from
ϵc = 0.3 to ϵc = 0.9 but drops as porosity is further increased
to ϵc = 0.95. However, the relative increase of the FOR term is

larger than that of the relative decrease in DAR termwhen porosity
is increased from ϵc = 0.9 to ϵc = 0.95. At high porosity, the
critical Reynolds number decreases drastically and the instability
in the flow can be explained by the substantial increase in the
production term due to the Reynolds stress against the base flow
shear. At high values of porosity, the integrated contribution of
the FOR term is smaller than the DAR term. It has been shown
in Breugem et al. [15] that a characteristic Reynolds number in
the porous region defined as Rep =

√
Kc
ϵc Us/ν is the critical factor

in determining the contribution of the FOR term, where Us is the
apparent slip velocity at the fluid–porous interface. In the limit
Rep ≪ 1, the FOR term is very small as compared to the DAR term
for laminar flows, see Breugem [59] for details. Finally, it has to
be noted that the normalized rate of change of the perturbation
kinetic energy Er , obtained by summing the different contribu-
tions, is equal (to numerical errors) to 2σ as shown in Table 3,
thus ensuring the correctness of the perturbation kinetic energy
analysis.

4.3. Instability mechanism

A scaling analysis is presented in order to elucidate the physical
origin of the instabilities. We have observed that the production
related to mean shear increases with ϵ. However, the physical
mechanism is different when varying the porosity. In order to
support our assumption, a scaling is presented as in Singh et al. [37]
for the monami in a submerged seagrass bed. For this scaling
analysis, the critical parameter considered is the thickness of the
vorticity layer δ at the fluid–porous interface, with the span-wise
component of the base flow vorticity,

Ωz =
∂V
∂x

−
∂U
∂y

= −
∂U
∂y

(17)

According to the modified form of the Beavers and Joseph
interface condition for a permeable wall [22],

dU
dy

⏐⏐⏐⏐
y=0

= γ

(
Us − Ucp√

Kc
ϵc

)
(18)

where γ is a coefficient ofO(1) and Kc the permeability for ϵ = ϵc .
Us is the apparent slip velocity at the fluid–porous interface and
Ucp is the constant creep velocity in the porous region, which is
significant at high porosity values due to non-zero inertial velocity
in the porous region.

Using (Us − Ucp) as the characteristic velocity difference, the
vorticity thickness δ can be written as,

δ = γ

(
Us − Ucp

dU
dy

⏐⏐⏐⏐
y=0

)
, (19)

Our analysis is performedwith the fixed value of dp/H = 0.01. Com-
paring Eqs. (18) and (19), the vorticity thickness can be expressed
as,

δ ∼

√
Kc

ϵc
⇒

δ

H
∼

√
Da
ϵc

∼
ϵc

1 − ϵc
(20)

With increasing values of ϵc , the vorticity thickness at the fluid–
porous interface increases significantly. Our analysis is performed
separately for the low range of ϵc , (0.3 ≤ ϵc ≤ 0.5) and the high
range of ϵc , (0.9 ≤ ϵc ≤ 0.95) to clearly distinguish between
the two different physical mechanisms. We examine the scaling
laws for the critical Reynolds number Rec and the wavenumber αc
for the least stable mode in the low and high porosity ranges. The
scaling power of the critical parameters as function of the vorticity
thickness are shown in Fig. 9.



4.3.1. Low porosity range
For low values of ϵc , the critical Reynolds number Rec and

stream-wise wavenumber αc of the least stablemode are indepen-
dent of the vorticity thickness, Rec ∼ (H/δ)0 and αc ∼ (H/δ)0.
Both critical parameters are of order O(1). At low values of ϵc ,
the porous region almost behaves as a solid wall and hence the
flow problem reduces to the classic regular Poiseuille channel
flow. The underlying instabilitymechanism stems from the viscous
mechanism of Poiseuille flow in the fluid region of the channel.
The unstable mode characteristics are similar to that of a viscous
instability mode and hence it is labeled as a Tollmien–Schlichting
(TS) wave instability.

4.3.2. High porosity range
For high values of ϵc= 0.9–0.95, the critical Reynolds number

Rec and stream-wise wavenumber αc of the least stable mode can
be fitted by power laws, Rec ∼ (H/δ)1.4 and αc ∼ (H/δ)−0.2. The
wavenumber αc does not change significantly over the range ex-
plored while Rec changes drastically when increasing the porosity.
It has been shown in Breugem et al. [16] that the permeability
Reynolds number defined as ReK =

√
Kc
ϵc uτ/ν is the discerning

parameter for the effect of the porous wall on the turbulent flow.
To see if the same holds for laminar flow, we include the red line,
corresponding to a value of the ratio

√
Kc
ϵc uτ/ν = 1 on top of the

contour of viscous dissipation to total dissipation (sum of viscous
dissipation and dissipation in the porous substrate) for different
porosity values in Fig. 10.

The red line corresponds to the constant permeability Reynolds
number ReK = 1 and is obtained by calculating

√
Kc/ϵc and uτ

from the bulk velocity Ub for different values of porosity. The line
ReK = 1 demarcates the transition from viscous dissipation to
dissipation by drag within the porous substrate. The red line scales
as (H/δ)2 as compared to the scaling of the neutral line, Rec ∼

(H/δ)1.4. The scaling law Rec ∼ (H/δ)2 represents the case where
the shear energy production from the fluid region is transported
and dissipated completely in the porous region. The scaling Rec ∼

(H/δ)1.4 suggests that the shear production from the fluid region
is not entirely dissipated in the porous region and the contribution
from the viscous dissipation in the fluid region is not negligible.

The unstable mode at high porosity values originates as a con-
sequence of the interaction between the fluid and porous regions.
The influence of the porous region on the fluid region near the
interface becomes more pronounced as the porosity increases. A
similar mode has been identified as a mode different from the
Kelvin–Helmholtz (KH) mode by Singh et al. [37] for the flow
through a submerged seagrass bed.

To conclude, we perform a Rayleigh analysis, i.e. we neglect
the viscous terms in the stability problem for a set of stream-wise
wavenumbersα chosen in the unstable regime, using the base flow
computed forReb = 20000, ϵc = 0.95, see Fig. 11.Wealso solve the
viscous linearized VANS equations for different Reb in the unstable
regime, with the base flow obtained by solving equation (5) at the
corresponding value of Reb. As shown in the figure, the unstable
eigenvalues converge to the Rayleigh solution with increasing Reb.
This confirms that the unstable mode at high ϵc = 0.95 follows
an inviscid instability mechanism in the presence of an inflection
point.

4.4. Non-modal analysis

In this section, we investigate the effect of the porosity of the
substrate on the non-modal growth of the disturbance energy. We
start by displaying the maximum transient growth for the low-
porosity casewith ϵc = 0.3 atReb = 4000 and ahigh-porosity case,
ϵc = 0.95 at Reb = 300, in the α − β plane in Fig. 12. The Reynolds

Fig. 9. Scaling of the critical parameters (Rec , αc ) for the normal instability mode
as function of normalized vorticity thickness δ/H at (a), (b): low [0.3–0.5] and (c),
(d): high [0.9–0.95] porosity ranges.

numbers are chosen in the sub-critical range and well below the
critical Reynolds number, Rec , for the onset of linear instability.



Fig. 10. Contour plot of ratio of viscous dissipation to total dissipation (viscous dis-
sipation + dissipation in the porous substrate) for two dimensional perturbations
(β = 0) at different values of porosity and Re. The black line (Re = Rec ) denotes
the neutral curve and the red line represents

√
Kc
ϵc uτ/ν = 1. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 11. Growth rates σ of the least stable mode in the range α ∈ [2.4, 3.2] for
ϵc = 0.95. The solution of the inviscid Rayleigh equation is compared with the
solutions of the viscous linearized VANS equations for different Reb with the base
flow obtained by solving the actual steady state VANS equations.

Table 4
Maximum transient growth Gmax at different stream-wise wavenumbers α in range
ϵc ∈ [0, 0.8]. The parameters considered are Reb = 4000 and β = βopt for all cases.
The normalized maximum transient growth G̃max is plotted in Fig. 14.

ϵc = 0 ϵc = 0.3 ϵc = 0.5 ϵc = 0.7 ϵc = 0.8

α = 0, β = 4 1761.98 1764.78 1764.97 1765.61 1766.67
α = 1, β = 5 656.70 653.39 653.24 654.60 659.37
α = 2, β = 5 336.52 333.92 333.83 334.90 338.72
α = 3, β = 6 202.08 199.93 199.81 200.18 201.93
α = 4, β = 8 134.04 132.59 132.48 132.57 133.45

The transient growth map reveals that the kinetic energy of
the perturbation may grow by a factor of roughly 1500 before the
perturbation eventually decays when ϵc = 0.3 and Reb = 4000,
and by a factor 10 for ϵc = 0.95 and Reb = 300. The maximum
transient growth in the α and β wavenumber space is shown as a
black dot in the map.

At both low and high values of porosity, the maximum energy
amplification takes place for stream-wise invariant perturbations
(α = 0). This characteristic feature has also been observed in the
stability analysis by Scarselli [42] and Quadrio et al. [43], for the
flowbetween twoporouswalls.Wehave considered themaximum
energy growth for perturbations with α = 0 and different values
of the porosity between 0 and 0.95 at sub-critical Reb and observed
that the maximum transient growth takes place for β ≈ 4 in all
cases. As the thickness of the homogeneous region is H and not 2H
as usually assumed for channel flow with rigid walls, the optimal
perturbations have therefore the same spatial scales in the two
cases.

Table 5
Maximum transient growth Gmax at different stream-wise wavenumbers α in range
ϵc ∈ [0.8, 0.95]. The parameters considered are Reb = 300 and β = βopt for all
cases. The normalized maximum transient growth G̃max is plotted in Fig. 15.

ϵc = 0 ϵc = 0.8 ϵc = 0.85 ϵc = 0.9 ϵc = 0.95

α = 0, β = 4 10.22 10.25 10.26 10.29 10.42
α = 1, β = 4 9.20 9.25 9.27 9.32 9.62
α = 2, β = 5 7.73 7.70 7.71 7.75 8.02
α = 3, β = 5 6.16 6.11 6.12 6.15 6.52
α = 4, β = 5 4.71 4.67 4.67 4.70 4.90

The optimal initial condition and the response are shown in
Fig. 13 for low (ϵc = 0.3) and high porosity (ϵc = 0.95). The
figure reveals that the lift-up mechanism is responsible for the
disturbance energy amplification also for the case of plane channel
flow with a porous substrate and it is therefore a very robust
mechanism in shear flows, as shown also in the presence of a
dispersed phase [51]. The optimal initial condition consists of a
span-wise periodic array of stream-wise counter-rotating vortices,
while the optimal response consists of alternating high- and low-
speed stream-wise velocity perturbations, usually referred to as
the stream-wise streaks. For high porosity, there is a transpiration
velocity into the porousmedium due to theweakening of thewall-
blocking effect resulting in a flux exchange at the interface.

Limiting ourselves to subcritical conditions, the transient dis-
turbance growth is weak for high values of porosity due to the
lower Reb. We therefore consider separately lower and higher
values of porosity. We first consider porosity values in the range
ϵc ∈ [0, 0.8] and report themaximum transient growth for varying
stream-wise wavenumber α at the optimal span-wise wavenum-
ber βopt in each case. The normalized maximum energy amplifi-
cation G̃max is obtained by normalizing Gmax(ϵc, α) with respect to
Gmax(ϵc = 0, α) and is displayed in Fig. 14. The absolutemagnitude
of the largest transient growth is reported in Table 4. The data
reveal that there is a small increment in the transient growthwhen
increasing from α = 0 to α = 0.1, with subsequent small re-
duction further increasing the stream-wise wavenumber for each
ϵc . For ϵc ≤ 0.5, the difference in transient growth is within 1%.
Scarselli [42] also reportedminimal transient energy amplification
with the variation of porosity for a similar flow configuration.

Considering also the data of themodal analysis discussed above
leads to the conclusion that the transition to turbulence is most
likely to follow the same path observed in classic Poiseuille flow
in this range of porosity (ϵc < 0.6). In the porosity range (0.6 ≤

ϵc ≤ 0.8), the relative optimal energy amplification increases
with increasing porosity for finite α, see Table 4. In this case, the
maximum increase of the transient growth is around 1% (α =

0.1, β = 4). This is seen as an effect of the destabilization observed
at larger ϵc .

Nextwe consider themaximum transient growth at high poros-
ity values (ϵc ∈ [0.8, 0.95]), in the parameter space where the
flow is characterized by a strong modal stability driven by the
inflection point of the mean profile at the interface. As above, we
vary the stream-wise wavenumber α at the optimal span-wise
wavenumber βopt . The normalizedmaximum energy amplification
G̃max is again obtained by normalizing Gmax(ϵc, α) with respect to
Gmax(ϵc = 0, α), see Table 5 and Fig. 15. The plot shows that the rel-
ative optimal energy amplification increases when increasing the
stream-wise wavenumber for each porosity under investigation.
Here the maximum increase of the perturbation energy is of the
order of 10% (α = 3, β = 5).

We summarize the stability of the flow under investigation
in Fig. 16. The black region depicts the region of modal stabil-
ity, with the mechanism explained in the previous section. The
white line represents the neutral curve and the region below
the white line represents the sub-critical regime. The color map



Fig. 12. Maximum transient energy growth (logarithmic scale) in the α − β plane for different values of porosity. The parameters considered are (a) (Reb, ϵc ) = (4000, 0.3)
and (b) (Reb, ϵc ) = (300, 0.95). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Left: Velocity vectors in the cross-stream plane of the optimal initial condition and Right: Stream-wise velocity contours of the optimal response for different values
of porosity. The parameters considered are (a) (Reb, ϵc ) = (4000, 0.3) and (b) (Reb, ϵc ) = (300, 0.95) with α = 0, β = 4 for both cases.

displays the largest possible transient growth, optimized over
the α and β wavenumber space. This is almost independent of
the porosity ϵc and it is attained by stream-wise independent
modes due to the lift-up effect, see Fig. 13 and discussion above.
Finally, the red dashed-line represents the numerical abscissa i.e.

the Reynolds number Re below which any perturbation mono-
tonically decreases. We see that at high porosity values, the un-
stable plane protrudes into the sub-critical regime substantially
limiting the possibility for the transient energy amplification to
occur. Hence, the transition to turbulence at high porosity values is



Fig. 14. Normalized maximum transient growth G̃max in range ϵc ∈ [0, 0.8] for different values of stream-wise wavenumber α. The parameters considered are Reb = 4000
and β = βopt for all cases. The data are normalized with respect to Gmax(ϵc = 0.3, α).

Fig. 15. Normalizedmaximum transient growth G̃max in range ϵc ∈ [0.8, 0.95] for different values of stream-wise wavenumber α. The parameters considered are Reb = 300
and β = βopt for all cases. Right panel shows the zoomed view of G̃max . The data are normalized with respect to Gmax(ϵc = 0.3, α).

Fig. 16. Contour plot of maximum transient energy growth (in log scale) optimized
over α-β wavenumber space for different porosity values at sub-critical regime
(Re ≤ Rec ). The black unstable region is separated by the solid white neutral
line (Re = Rec ) and the red dashed-line denotes the numerical abscissa. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

expected to be dominated by the exponential growth of unstable
modes.

5. Conclusions

The present work reports a detailed analysis of the modal and
non-modal linear instabilities experienced by the flow through
a plane channel with a porous substrate, in the limit of coupled
porosity–permeability. Models exist for different porosity and per-
meability, e.g. Rosti et al. [60] where it is shown that permeability,
even at very low values has a greater effect than porosity. In Sec-
tion 5.1,we give a brief summary of the key results presentedwhile
concluding remarks and perspectives are given in Section 5.2.

5.1. Summary

5.1.1. Modal stability analysis
The destabilizing effect of the porous substrate on the adjoining

channel flow as seen from earlier studies [26,29,31,32,34–36] has
been observed also here using the VANS equations to model the
flow inside the porous substrate. The critical Reynolds number
reduces drasticallywhile the critical wavenumber of the instability
mode is relatively constant when increasing the porosity. At low
porosity, the unstable eigenmode shows similar features as that of
the classical Poiseuille channel flow, as reported earlier by Tilton
and Cortelezzi [31]. At higher porosity, the velocity of the unstable
eigenmode confirms flow reversal at the fluid–porous interface as
observed in Chang et al. [29], Hill and Straughan [34] and Tilton
and Cortelezzi [31].

The perturbation kinetic energy budget shows similar contri-
butions as that of a regular Poiseuille channel flow at low porosity
values. Increased production of kinetic energy at the interface is
observed with the increase in porosity due to the slip at the fluid–
porous interface. This causes weakening of the wall-blocking and
wall-induced viscous effects with a transpiration velocity into the
porous layer as reported earlier by Breugem et al. [16] in turbulent
flows. This phenomenon allowsmomentumexchange between the
fluid and porous regions contributing to large Reynolds stresses
making the flow more unstable. The energy analysis also reveals
that at high porosity values, the dissipation in the porous substrate
plays a major role yet the viscous dissipation in the fluid region is
not negligible.

The scaling analysis reveals the instability originates from a
Tollmien–Schlichting viscous mechanism at low porosity values.
Rayleigh analysis shows the existence of an inviscid instability
mechanism at high porosity values.



5.1.2. Non-modal stability analysis
The transient growth analysis performed here reveals the pos-

sibility of significant optimal energy growth in the sub-critical
regime for plane channel flow with a porous substrate. The max-
imum energy amplification is seen for stream-wise independent
(α = 0) perturbations for all porosity values. At low porosity, the
maximum change in transient energy growth due to the change
in porosity is of the order of 1%. It is therefore concluded that the
mechanism for transition to turbulence would follow the same
path as in the classical Poiseuille flow. At high porosity, the max-
imum change in the transient energy growth is of the order of
10%. The mechanism for transition to turbulence at high porosity
values is therefore completely dictated by the modal analysis as
the linearly unstable region extends to lower and lower Reynolds
number thereby leaving less chance for the energy amplification to
occur.

5.2. Concluding remarks and perspectives

The influence of a porosity layer on the transition of a canonical
Poiseuille flow has gained a lot of attention over the past decade,
with more recent studies also considering anisotropic permeable
coatings. Deepu et al. [61] and Gomez-de Segura et al. [62] have
shown that anisotropic porous layers may provide an effective
mean for the passive control of transition to turbulence as they
modulate the value of the critical Reynolds number for instability
in wall-bounded parallel flows, while Abderrahaman-Elena and
García-Mayoral [63] conducted a detailed a priori analysis to assess
the potential of these surfaces, and predicted amonotonic decrease
in skin friction as the streamwise permeability increases. More
recently, Rosti et al. [64] performed DNS of the turbulent channel
flow over an anisotropic porous wall, and found that the total
drag can be either reduced or increased by properly tuning the
permeability directional properties. It has to be notedhowever that
the flow is rarely laminar in most industrial applications. Although
turbulence fundamentally results from non-linear processes, it
has been shown by Pujals et al. [65] and Hwang and Cossu [66]
that linearizing the Navier–Stokes equations in the vicinity of the
turbulent mean flow nonetheless provides a good estimate of the
dominant lengthscales and timescales of the turbulent fluctua-
tions. The analysis presented here might easily be extended to
the case of turbulent porous channel flow. Its results may thus
provide a better understanding of the origin and interplay of the
stream-wise streaks and so-called span-wise rollers reported in
numerous direct numerical simulations of flows over complex
walls [16,60,67–69].
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Appendix. Matrices of the linear stability problem

The divergence operator D and the gradient one G read,
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respectively, while the dynamics matrix A is given by,
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