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Abstract

This work concerns the parallel that can be made between two models in-

volving propagating instabilities: (1) a reguralized Ericksen bar model and

(2) a rod model with flexible cross-section dedicated to the folding of tape

springs. This comparison confirms and complements the estimates obtained

by Seffen and Pellegrino (1999) and gives some new insights on the forma-

tion and growth of folds, including their number and their location. We

begin by studying a reguralized Ericksen bar model in statics. The complete

bifurcation diagram is analyzed, together with the post-buckling deformed

shapes. The influence of the reguralization parameter and of the boundary

conditions is also studied. Then we propose a simplified model derived from

Guinot et al. (2012) and Picault et al. (2014) to account for the folding of

shallow tape springs in opposite sense bending. The equations that govern
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the problem, involving only two kinematic variables, can be easily written

in this case. An analytical expression is found for the fundamental solution

that is characteristic of an Ericksen bar model and it is shown that higher

order terms that appear in the strain energy account for the transition zones.

The obvious parallel with a reguralized Ericksen bar model is made by pro-

ceeding to a complete study of the post-bifurcation diagram. Estimates of

the length of the transition zones are proposed and compared to those ob-

tained with a FE shell model. A FE shell model is also used to validate the

fundamental solution obtained with the proposed simplified rod model with

flexible cross-section. These comparisons lead to good agreements, except

for the peak moment of the moment-curvature response for the bending test.

An enriched model is then proposed that brings significant improvements.

Keywords: Non-linear rod model, Tape spring, Folding, Reguralized

Ericksen bar, Flexible cross-section.

1. Introduction

One usually knows tape springs as measuring tools but these very slen-

der and thin curved structures show some interesting behaviours commonly

used in other engineering fields. For example, tape springs are of special

interest to deploy systems in spatial engineering because of their lightness

and compactness in folded or coiled configuration: some telescopes, reflec-

tors or masts (Black et al., 2006; Pellegrino, 2002; Murphey et al., 2010) are

composed of tape springs. Due to some unique behaviours, tape springs al-

ready constitute solutions for autonomous and reliable deployable structures

when employed as hinges to link two other rigid parts, as the MAEVA hinge

2



(Donzier and Sicre, 1997).

One of the most important issue is to correctly model the behaviour of

these elastic structures which are subject to buckling and propagating insta-

bilities in the framework of large displacements (Wuest, 1954; Seffen and Pellegrino,

1999). Regarding the geometry of tape springs, one can choose to use a

shell model and solve it with the finite element method (Seffen et al., 2000;

Hoffait et al., 2010; Walker and Aglietti, 2007; Soykasap, 2012). This ap-

proach seems to be the most accurate but these shell finite element mod-

els have to be carried out by experts due to the complexity of the be-

haviour of such structures. In this context, simpler models based on rigid

bars and rotational spring, have been established in some specific cases

(Seffen and Pellegrino, 1999). However, these models are not able to ac-

count for the creation, splitting or merging of folds (folds are introduced

ab initio) and are restricted to planar motion in the plane of symmetry of

the tape (no transverse bending nor twisting). More recently, Guinot et al.

(2012) have proposed a planar rod model with flexible cross-section, which

is able to account for the complete flattening of the cross-section in the fold

regions. This model was improved by Picault et al. (2014) and an extension

to 3D motions including torsion is proposed in Picault et al. (2016). These

works have led to a family of models which are able to account for complex

scenarios of 3D foldings, involving bending and twisting as well as the cre-

ation of folds, their migration along the tape and their duplication. This

family of models will be referred to henceforth as RFleXS models (for Rods

with Flexible X-Section).

The understanding of the phenomena that lead to the formation and
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growth of localized folds was addressed by Seffen and Pellegrino (1999). These

authors are referring to the work of Wuest (1954) who has studied the

behaviour of a tape-spring under uniform longitudinal bending. In this

work, an analytical solution is found for the bending moment with respect

to the prescribed (uniform) curvature, which follows an up-down-up law.

Seffen and Pellegrino (1999) explain that this property is the key feature

that leads to the formation and growth of localized folds. A parallel is made

with a class of problems called propagating instabilities (Kyriakides, 1993)

and a qualitative comparison with the propagation of bulges during the in-

flation of rubber balloons is shown. This parallel suggests useful methods

that can be used to estimate some overall mechanical properties of folded

tape-springs (longitudinal curvature in the fold area, propagating fold mo-

ment...). But it does not explain the particularities of the overall response

M(θ) which exhibits an hysteretic behaviour when the rotations of the cross-

sections ±θ at ends (M is the bending moment) are prescribed. The model

does not predict the location of folds and the crucial role of the transition

zones between the fold and the almost undeformed parts.

The problem is revisited here by referring to a reguralized Ericksen bar

model. Ericksen (1975, 1998) has studied the tensile test of a bar with a non-

convex strain energy density, which leads to an up-down-up constitutive law.

He has shown that for a range of prescribed displacements, solutions that

realize an absolute minimum of the potential energy correspond to a piece-

wise two-phase bar. He has also shown that for this range of prescribed

displacements, the stress remains the same and the overall response exhibits

a plateau. But the model does not predict the location of the two phases
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(only the volume fractions are determined) and strain jumps are introduced

at the interfaces of the phases. In litterature, the problem is typically re-

guralized by adding a term to the strain energy that depends on the strain

gradient. As many authors (Carr et al., 1984; Truskinovsky and Zanzotto,

1996; Rogers and Truskinovski, 1997; Puglisi and Truskinovsky, 2002), we

consider an additional term that is quadratic with respect to the strain gra-

dient. The problem is then reguralized in the sense that the formation of re-

gions with rapid changes in strain is penalized (Truskinovsky and Zanzotto,

1996). With this additional term in the strain energy, solutions now exhibit

transition zones between the two different phases (instead of strain jumps)

and it eliminates uncertainties about the location of the phases.

In this paper, a RFleXS model dedicated to the pure opposite-sense bend-

ing test of shallow tape-springs is proposed, based on the previous works of

Guinot et al. (2012) and Picault et al. (2014). The analysis of this approx-

imate 1D-model allows to make a parallel with a reguralized Ericksen bar

model. It leads to a deep understanding of the principles that govern the

formation and growth of folds. We obtain the same hysteretic behaviour for

the two models. This comparison also confirms and complements the esti-

mates obtained by Seffen and Pellegrino (1999) for the overall mechanical

key features.

Similarities can be found here with the problem of necking of elastic

bars in tension. For instance, Coleman and Newman (1988) show that an

ansatz-based kinematics leads to a reguralized 1D Ericksen bar model that

can explain strain localization phenomena in slender bars. More recently,

Audoly and Hutchinson (2016) have derived rigorous models based on asymp-
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totic analysis. An exhaustive review on this topic can be found in this refer-

ence. The proposed approximate 1D model is here derived from a non-linear

shell theory by introducing additional kinematics assumptions and addresses

the folding of tape-spring ribbons, due to curvature localization phenomena.

The paper is organized as follows. Section 2 is devoted to preliminary re-

sults obtained for the behaviour in statics of a classical reguralized Ericksen

bar model. Bifurcation diagrams are examined in depth and it is shown that

boundary conditions prescribed on higher order terms are of great influence.

When von-Neumann conditions are considered, the bifurcation diagram ex-

hibits a finite number of loops connected in two points to the fundamental

branch.

Section 3 recalls the main ideas underlying the planar rod model with

flexible cross-section (Guinot et al., 2012; Picault et al., 2014) and a model

dedicated to the pure opposite-sense bending test of shallow tape-springs is

proposed. In this case, the RFleXS model only involves two kinematic vari-

ables and strong form expressions of the governing equations can be obtained.

Non-dimensionalization of the equations shows that the behaviour is mainly

governed by the Batdorf parameter and the ratio between the width of the

tape-spring and its length.

Section 4 adresses the link between the reguralized Ericksen bar model

and the simplified rod model with flexible cross-section. These two models

exhibit the same properties for the bifurcation diagrams, that depend on the

prescribed boundary conditions on higher order terms. In the RFleXS model,

these higher order terms govern the length of the transition zones. Estimates

of this length are proposed and compared to results obtained with FE shell
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models.

Section 5 is devoted to the comparison between the RFleXS model and

shell models. The RFleXS model is first compared with the analytical model

of Wuest (1954), and then with FE shell models. These comparisons lead

to good agreements, except for the peak moment of the moment-rotation

response for the bending test. An enriched model is then proposed that

brings significant improvements.

2. The reguralized Ericksen bar model

2.1. The Ericksen bar model

Figure 1: Uniaxial problem of the bar

Let us consider the uniaxial tension of an elastic bar as shown in Figure 1.

The axial displacement, strain and stress are denoted by u(x), ε(x) and σ(x)

respectively, with ε = u′ = du
dx
. A non-convex potential ue(ε) is considered

(Ericksen, 1975, 1998), such that the constitutive behaviour given by σ = due

dε

follows an up-down-up response as shown in Figure 2 (right).

More precisely, we assume the following properties :

� the strain energy ue(ε) is of class C
(3),

� for ε < ε1 and ε > ε2,
dσ
dε

= d2ue(ε)
dε2

> 0,
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Figure 2: Left: strain energy density ue(ε) of the Ericksen bar model. Right: corre-

sponding up-down-up response σ(ε) and illustration of the Maxwell equal area rule for the

determination of the Maxwell stress σ∗.

� for ε1 < ε < ε2,
dσ
dε

= d2ue(ε)
dε2

< 0 and d2σ
dε2

= d3ue(ε)
dε3

< 0,

�

dσ
dε
(ε1) =

dσ
dε
(ε2) = 0.

The bar is clamped at left end x = 0. At right end x = L, two cases may

be considered: prescribed displacement ud or prescribed stress σd. We first

consider a prescribed stress. The problem is then governed by the following

equations:

σ′ = 0, σ =
due

dε
, ε = u′,

u(0) = 0 and σ(L) = σd.
(1)

Equilibrium conditions lead to a uniform stress along the bar σ(x) = σd,

but depending on the value of σd, there is up to three solutions for the

strain. Considering that jumps of strains are allowed, Figure 3 depicts the

set of equilibrium solutions in the plot of the applied stress σ = σd with

respect to the normalized displacement at right end (the average strain):

u(L)
L

= 1
L

∫ L

0
ε dx = 〈ε〉. For a couple (〈ε〉, σ) in the grey area or on the up-

down-up curve, there is at least one distribution of strains ε(x) that satisfies
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the equations (1) of the problem. But unstable, metastable (local minima

of the elastic potential energy) and stable (absolute minima) solutions may

be distinguished. Stable solutions are plotted in red lines in Figure 3 and

correspond to homogeneous distribution of strains (Ericksen, 1998). For a

given stress σ = σd, strains that realize the absolute minima of the elastic

potential energy are the ones for which the tangent remains under the strain

energy for all strains in Figure 2. For one value of σ, there is only one value of

strain ε that realizes that minimum except for the value of the stress σ = σ∗

(the Maxwell stress) for which there are two solutions ε∗1 and ε∗2. A graphical

analysis of the left plot in Figure 2 leads to:

σ∗(ε∗2 − ε∗1) = ue(ε
∗

2)− ue(ε
∗

1) =

∫ ε∗
2

ε∗
1

due

dε
dε =

∫ ε∗
2

ε∗
1

σ(ε) dε.

It shows that the stress σ∗ and the strains ε∗1 and ε∗2 obey the Maxwell

equal area rule: the hatched areas A1 and A2 are equal in the plot of the

corresponding constitutive law in Figure 2 (right).

Figure 4 shows the response when a displacement ud is applied at right

end instead of a stress σd. The average strain 〈ε〉 = ud/L is then prescribed

in this case. The up-down-up curve and the grey area depict again the set of

equilibrium solutions. The thick red line refers to the plot of the stress σ that

realizes the absolute minimum of the potential strain energy for a prescribed

average strain 〈ε〉 (Ericksen, 1975, 1998). For 〈ε〉 ≤ ε∗1 and 〈ε〉 ≥ ε∗2, the

strain is uniform along the bar. For ε∗1 < 〈ε〉 < ε∗2, the uniform solution is

not the solution that minimizes the potential strain energy. In this regime,

the stress equals the Maxwell stress and the distribution of strains consists

in a two-phase bar with a fraction α1 at strain ε∗1 and a fraction α2 = 1−α1

at strain ε∗2, such that α1 ε
∗

1 + α2 ε
∗

2 = 〈ε〉, the applied average strain. For a
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Figure 3: Stress - average strain curve of the Ericksen bar for a prescribed stress σ = σd.

Set of equilibrium solutions (up-down-up curve and grey area). Stable solutions in red

(absolute minima of the potential energy). Metastable (resp. unstable) homogeneous so-

lutions in black line (resp. black dashed line). Illustration of a loading-unloading scenario

(in blue): when a bar shifts from a homogeneous metastable solution, it commonly jumps

to a configuration corresponding to the lowest potential energy. In boxes: strain distribu-

tion in the bar. The black icons are schematic illustrations of the deformed shapes of the

bar.

prescribed average strain between ε∗1 and ε∗2, the model does not predict the

number of phase transitions and their locations but only the volume fraction

of the two phases. There is an infinity of solutions for the location of the two

phases along the bar. Jumps of strains are allowed and can occur anywhere

since no energy is associated with the strain gradient, which often disagrees

with observations.
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Figure 4: Stress - average strain curve of the Ericksen bar for a prescribed normalized

displacement 〈ε〉 = ud/L. Set of equilibrium solutions (up-down-up curve and grey area)

. Stable solutions in red (absolute minima of the potential energy). Metastable (resp.

unstable) homogeneous solutions in black line (resp. black dashed line). Illustration of a

loading-unloading scenario (in blue): when a bar shifts from a homogeneous metastable

solution, it commonly jumps to a configuration corresponding to the lowest potential

energy. In boxes: strain distribution in the bar, assuming only one phase transition (jump

of strain). The black icons are schematic illustrations of the deformed shapes of the bar

(thick and thin parts corresponding to small and large longitudinal strain, respectively).

2.2. The reguralized Ericksen bar model

The problem can be reguralized by introducing a penalization for the

formation of interfaces. The simplest way is to consider a dependence of

the strain energy on the higher derivatives of the displacement, which can

be justified in some cases by an asymptotic analysis (Audoly and Hutchinson,

2016). As many authors (Carr et al., 1984; Truskinovsky and Zanzotto, 1996;

Rogers and Truskinovski, 1997; Puglisi and Truskinovsky, 2002), we consider
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an additional term to the strain energy which is quadratic with respect to

the second derivative of the displacement: ur(u) =
1
2
αu′′2 with α > 0. The

problem is then reguralized in the sense that the formation of regions with

rapid changes in strain is penalized (Truskinovsky and Zanzotto, 1996). It

leads to the appearence of transition zones with a given length between the

two phases and to a bounded number of transition zones along the bar.

Truskinovsky and Zanzotto (1996) propose an approach to study such a reg-

ularized Ericksen bar under elastic foundation: the transition zones are con-

sidered as interfaces and the number of interfaces and their positions are

considered as variables. For a fixed number of interfaces, they search for the

local minimizers of the energy with respect to the positions of the interfaces.

In the following, we address the problem by the way of a bifurcation analysis.

2.3. Linear buckling analysis of the reguralized Ericksen bar model

Let us consider the reguralized problem with prescribed displacements at

ends u(0) = 0 and u(L) = ud. Considering the strain energy density ue + ur,

the strong form of the problem can be written:

σ′ = 0, σ = due

dε
− αε′′, ε = u′,

u(0) = 0, u(L) = ud,

+ conditions on u′(0) (or αu′′(0)) and u′(L) (or αu′′(L)).

(2)

One can notice that new boundary conditions are required, due to the

presence of higher order terms in the strain energy density. We consider that

strains ε = u′ are free at ends, which means that the associated forces vanish

:
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αu′′(0) = αu′′(L) = 0. (3)

The fundamental solution of the problem (2) with (3) is obtained for a

uniform strain and stress state, obeying the up-down-up curve plotted in

Figure 2:

uu(x) =
ud

L
x, εu =

ud

L
and σu = due

dε
(εu). (4)

A linear buckling analysis is then performed. We search for u = uu+∆u,

ε = εu+∆ε and σ = σu+∆σ verifying the problem (2) with (3). Considering

∆u, ∆ε and ∆σ as small perturbations, the following first order system is

found:

d2ue

dε2
(εu)∆u′′ − α∆u′′′′ = 0,

∆u(0) = ∆u′′(0) = ∆u(L) = ∆u′′(L) = 0.
(5)

If d2ue

dε2
(εu) ≥ 0, equations (5) only admit the trivial solution ∆u(x) = 0.

If d2ue

dε2
(εu) < 0, the non trivial solutions ∆uk(x) = Dk sin

(

kπx
L

)

are obtained

for εu = εbk such that:

d2ue

dε2
(εbk) = −αk2 π

2

L2
, with k ∈ N

∗. (6)

The right-hand side of equation (6) is strictly negative and d2ue

dε2
(ε) = dσu

dε
(ε)

is the slope at abscissa ε of the up-down-up curve shown Figure 2 (right).

Solutions are then searched in the decreasing part of this curve, i.e. for ε ∈
]ε1, ε2[. Figure 5 illustrates a graphical way of finding the bifurcation points.

Assuming that −dσu

dε
(ε) is of class C(2) and strictly convex for ε ∈]ε1, ε2[,

−dσu

dε
(ε) is bell-shaped in this interval. The solution εbk are the abscissas of
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the intersection points of the curve −dσu

dε
(ε) and the horizontal lines located

at ordinates αk2 π2

L2 for k ∈ N
∗. Since −dσu

dε
(ε) is bell-shaped and upper

bounded, it leads to a finite number of bifurcation points that can be grouped

in pairs for which the linear buckling mode is the same. The abscissas of the

intersection points are then redenoted by εAk and εBk .

Figure 5: Schematic graphical determination of the bifurcation points for the reguralized

Ericksen bar model: the critical average strains are the abscissas of the intersection points

of the curve −dσu

dε
(ε) and the horizontal lines located at ordinates αk2 π2

L2 .

2.4. Post-buckling analysis of the reguralized Ericksen bar model

The goal of this section is to illustrate the links between the linear buck-

ling mode shapes and the post-buckling shapes which tend to a two-phase

bar with transition zones at different locations. The post-buckling analysis

cannot be done with a general form of the strain energy and the following

academic example is considered:
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ue(ε) =
9

4
ε2 − ε3 +

1

8
ε4.

This example has the advantage to lead to simple expressions of the key

features listed in Table 1.

σ∗ ε∗1 ε∗2 ε1 ε2 σ(ε1) σ(ε2)

1 2−
√
3 2 +

√
3 1 3 2 0

Table 1: Key features for the Ericksen bar model.

The resulting up-down-up response σu(ε) of the associated Ericksen bar is

shown Figure 6. The linear buckling analysis with a reguralization parameter

α/L2=5e-3 is also presented in this figure. Ten bifurcation points are found in

the decreasing part of the curve σu(ε) and the five associated linear buckling

mode shapes are given by ∆uk(x) = Dk sin
(

kπx
L

)

with k = 1, ..., 5.
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Figure 6: Up-down-up curve σu(〈ε〉) of the Ericksen bar model with bifurcation points

(left) and graphical determination of these bifurcation points (rights): the critical strains

are the abscissas of the intersection points of the curve −dσu

dε
(〈ε〉) and the horizontal lines

at ordinates αk2 π2

L2 (α/L2 = 5e− 3).
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A post-bifurcation analysis has been performed with the software ManLab-4.0

(2018), which is based on the path-following Asymptotic Numerical Method

with an automatic detection of bifurcation points. The displacement u(x) is

discretized by the finite element method with a third-order Hermite interpo-

lation. The bifurcation diagram in the plane (〈ε〉, σ) is presented in Figure 7

(top left), for α/L2=5e-3. Locations of bifurcation points are in agreement

with those obtained with the linear buckling analysis. This diagram shows

that bifurcation points with the same linear buckling mode shape are con-

nected by a post-bifurcation branch. The bifurcation diagram in the plane

(〈ε〉, ε(L)) at the top-right of Figure 7 shows that each branch k is in reality a

loop. In this plane, the fundamental branch coincides with the first bisector

since the strain distribution is uniform. Points Ak and Bk split each loop

k in two half-loops k(a) and k(b). The two half-loops k(a) and k(b) can be

associated with two different post-buckling deformed shapes with the same

number k of transition zones separating extrema of strains, but they differ

in the locations of these extrema (see the boxes at the bottom of Figure 7).

The two half-loops of each branch k in the plane (〈ε〉, σ) appears to be su-

perposed (see top left plot in Figure 7) and present a plateau at the value

of the Maxwell stress σ∗ when the number of transition zones is small (for

k=1 and 2 in Figure 7). In this case, the aggregated length of transition

zones compared to the total length of the bar is sufficiently small to allow

the formation of areas with uniform distributions of strains ε∗1 and ε∗2 (see

Figure 7: boxes at the bottom and bifurcation diagram at top right).

Figure 8 illustrates the evolution of the post-bifurcation shape along the
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Figure 7: Tensile test for the reguralised Ericksen bar with α/L = 5e − 3. Top left:

bifurcation diagram in the plane (〈ε〉, σ). Top right: bifurcation diagram in the plane

(〈ε〉, ε(L)). Each post-bifurcation branch is in reality a loop. Points Ak and Bk split each

loop k in two half-loops k(a) and k(b). The two half-loops k(a) and k(b) can be associated

with two different post-buckling deformed shapes with the same number k of transition

zones separating extrema of strains, but they differ in the locations of these extrema. In

boxes: distribution of strains along the bar for each half-loop, at the beginning of the

plateau for loops 1,2 and 3 and near 〈ε〉 = 2 for loops 4 and 5.

first loop. At point A1, the strain distribution is uniform along the bar

and equal to εA1 . The linear buckling analysis leads to a strain perturbation

∆ε1(x) = D1
π
L
cos

(

πx
L

)

. The two half-loops 1(a) and 1(b) starting from A1
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correspond to the two possibilities for the sign of the constant D1, which

inverts the locations of the minimum and the maximum of strains. Moving

from A1 to B1 along the half-loops, three parts can be distinguished. The

first part between A1 and the plateau corresponds to the formation of a peak

of strain at the initial location of the maximum: at the left end for the half-

loop 1(a) and at the right end for the half-loop 1(b). At the beginning of

the plateau, the strain distribution presents a peak equal to ǫ∗2 at one end,

a transition zone and a large zone at uniform strain ǫ∗1. On the plateau, the

transition zone moves along the bar and the zone at strain ǫ∗2 propagates

whereas the zone at strain ǫ∗1 shortens. At the end of the plateau, the strain

distribution presents a large part at uniform strain ǫ∗2, a transition zone and

an inverted peak equal to ǫ∗1 located at the opposite end of the bar. The

part between the end of the plateau and the point B1 corresponds to the

disappearance of the inverted peak at end which leads to a uniform strain

distribution equal to εB1 at point B1. Similar scenarios are obtained for

the other branches k that exhibit a plateau: starting from Ak, the uniform

distribution of strains degenerates to form parts at uniform strain ǫ∗1 and

peaks at the value ǫ∗2, the locations of which are governed by the linear

buckling mode. On the plateau, the transition zones move along the bar

and parts at ǫ∗2 propagate whereas parts at strain ǫ∗1 shorten. At the end of

the plateau, the strain distribution exhibits parts at uniform strain ǫ∗2 and

inverted peaks at strain ǫ∗1. Between the end of the plateau and the point Bk,

we observe the disapearence of the inverted peaks which lead to a uniform

distribution of strains.
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Figure 8: Evolution of the strain distribution in the bar on the first bifurcation branch.

The black icons are schematic illustrations of the deformed shapes of the bar (thin and

thick parts corresponding to small and large longitudinal strain, respectively). From A1

to B1, we observe a strain localization at one end that propagates along the bar.

2.5. Influence of the boundary conditions and the reguralization parameter

The analysis has been conducted for a prescribed displacement at the

right end of the bar: u(L) = ud. The same analysis can be done with a

prescribed stress σ(L) = σd and leads to the same results for the bifurcation

diagrams. As above mentioned, additional boundary conditions have been
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required due to the presence of the reguralization term in u′′ in the strain

energy. The choice of strain free condition at ends have been adopted for

the above analyses: u′′(0) = u′′(L) = 0. If Dirichlet conditions are consid-

ered (u′(0) = u′(L) = 0), the problem is completely different: the uniform

distribution of strains is no more a solution of the problem. Figure 9 com-

pares the bifurcation diagrams obtained for the two cases of boundary con-

ditions for two values of the reguralization parameter α/L2. The bifurcation

diagram in black lines corresponds to the von-Neumann boundary condi-

tions u′′(0) = u′′(L) = 0 and the curve in red is obtained with the Dirichlet

boundary conditions u′(0) = u′(L) = 0. The Dirichlet conditions act as a per-

turbation to the problem with von-Neumann conditions. There are no more

bifurcation points and the response tends to follow some particular branches.

The response is very close to the fundamental branch at the beginning and

turns quite smoothly to follow a branch of the second loop. This branch

corresponds to the half-loop 2(a) in Figure 7, which is the first bifurcated

branch for which the strain distribution in the bar is the ”more compatible”

with the Dirichlet boundary conditions ε(0) = ε(L) = 0 (see boxes at the

bottom of Figure 7). The response follows the plateau and then goes up

and tends to join the fundamental response obtained with the von-Neumann

conditions (uniform distribution of strains). This scenario is more obvious

when the reguralization parameter α/L2 is smaller. In this case, the length

of the transition zones is smaller. More bifurcation branches are found and

the perturbation due to Dirichlet conditions instead of von-Neumann ones is

smaller.

The deformed shape of the bar on the plateau is shown on Figure 9. A
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Figure 9: Comparison of the bifurcation diagrams obtained with von-Neumann (in black)

and Dirichlet boundary conditions (red) on the higher order terms for two values of the

reguralization parameter. Black icons : Schematic deformed shape of the bar (thin and

thick parts corresponding to large and small longitudinal strain, respectively)

strain localization appears in the middle. It leads to a two-phase bar with a

middle part at strain ε∗2 connected to two parts at strain ε∗1 with transition

zones. We also observe small edge effects at the boundaries because of the

imposed zero strain. On the plateau, when the average strain 〈ε〉 increases,
the transition zones move along the bar. The middle part at strain ε∗2 grows

whereas the parts at strain ε∗1 shortens.

A parallel can be made with the bending of tape-springs in opposite

sense. If the cross-sections are maintained rigid at ends, a fold occurs in the

middle of the tape and grows at constant moment until the fold occupies

the entire length of the tape. The curve of the bending moment versus the

prescribed rotation follows the same shape as the red curves shown in Figure

9. The parallel between the behaviour of a reguralized Ericksen bar and the

bending behaviour of a tape-spring can be clearly established by using the

rod model with flexible cross-section. In the following, a rod model dedicated
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to opposite-sense bending of shallow tape springs is derived from the works

of Guinot et al. (2012) and Picault et al. (2014).

3. The bending rod model with flexible cross-section for shallow

tape-springs

3.1. Kinematic description

The tape spring is seen in its initial configuration as a shell that resembles

a thin-walled beam with an arc-of-circle cross-section. The middle surface

of the shell results from the orthogonal extrusion of an arc-of-circle along a

unit vector e1e1e1 (see Figure 10). Let O be the centroid of the extruded arc-of-

circle. The unit vector e3e3e3 is chosen such that the plane (O,e1e1e1, e3e3e3) is the tape

spring plane of symmetry (with e3e3e3 oriented towards the centroids, as shown

in Figure 10). The last unit vector e2e2e2 is created to form the fixed direct

orthonormal system (e1e1e1, e2e2e2, e3e3e3). One can remark that axis (O,e1e1e1) contains

the centerline of the tape-spring when considered as a thin-walled beam in

the undeformed configuration.

In the following, the cross-section curve refers to the intersection of the mid-

dle surface of the shell and the cross-section plane. The cross-section curve

is initially an arc-of-circle of radius R0 and of half-length a. The longitudi-

nal length of the tape spring is denoted by L. The shell middle surface is

parametrized by the curvilinear abscissas (s1, s2) ∈ [0, L]× [−a, a] (s1 in the

longitudinal direction and s2 in the transverse one).

Only the static case in the framework of a planar motion is studied. In

order to reduce the shell model into a rod model with flexible cross-section,
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Figure 10: Kinematics of the tape spring (according to Guinot et al. (2012))

four assumptions are made :

(i) the cross-section curve remains in a plane;

(ii) the centerline remains in the plane (O,e1e1e1, e3e3e3) and the shell middle sur-

face remains symmetrical with respect to this plane (planar motion);

(iii) the cross-section plane remains orthogonal to the centerline;

(iv) the cross-section curve is inextensible.

Let M be a point of the shell middle surface. Its position vector is given

by

OMOMOM(s1, s2) = OGOGOG(s1) +GMGMGM(s1, s2) (7)

in which G is the centroid of the cross-section that contains the point M . Let

us introduce the rotated orthonormal system (er1e
r
1e
r
1, e

r
2e
r
2e
r
2, e

r
3e
r
3e
r
3) attached to the cross-

section plane. Due to the planar motion assumption, the frame (er1e
r
1e
r
1, e

r
2e
r
2e
r
2, e

r
3e
r
3e
r
3)

results from a rotation around the axis e2e2e2 characterized by an angle θ(s1)
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and the position vectors can be expressed as :






OGOGOG = (s1 + u1(s1))e1e1e1 + u3(s1)e3e3e3,

GMGMGM = y(s1, s2)e
r
2e
r
2e
r
2 + z(s1, s2)e

r
3e
r
3e
r
3(θ(s1)),

(8)

in which u1(s1) and u3(s1) are the displacements components of the cen-

terline and (y,z) are the coordinates of point M in the rotated local frame

(G,er2e
r
2e
r
2, e

r
3e
r
3e
r
3). The inextensibility condition of the cross-section curve leads to

the constraint: (y,2)
2 + (z,2)

2 = 1. The coordinates y and z can then be

expressed with the angle β(s1, s2) between the axis (G,er2e
r
2e
r
2) and the tangent

of cross-section curve (see Figure 10) : y,2 = cos(β) and z,2 = sin(β). In the

initial configuration, β = s2/R0. For shallow tape springs, this angle is small:

a/R0 << 1). We assume in the following that it remains small, leading to :

y(s1, s2) ≈ s2 and z(s1, s2) ≈
∫ s2

0

β(s1, τ) dτ − 1

2a

∫ a

−a

∫ s2

0

β(s1, τ) dτ ds2.

(9)

Only four kinematic variables are needed to describe this rod model with

flexible cross-section: u1(s1), u3(s1), θ(s1) and β(s1, s2). It must be noticed

that these variables are linked by the orthogonality condition between the

cross-section plane and the centerline introduced in assumption (iii) :

er3e
r
3e
r
3.OG,1OG,1OG,1 = 0. (10)

In the following, this kinematic model will be called RFleXS-2DS for

RFleXS model in 2D for Shallow tape springs.

3.2. Strain energy of the rod model with flexible cross-section

The material is assumed to be elastic and the kinematic assumptions are

introduced in the strain energy of the shell model. We then proceed to an
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integration over the cross-section to obtain the strain energy of the RFleXS-

2DSmodel. Only the main ideas are recalled here: details can be found in the

previous works (Guinot et al. (2012); Picault et al. (2014, 2016)). The shell

strain energy is expressed with the Euler-Lagrange membrane strains eαβ

and bending strains kαβ , which are energetically conjugated to the membrane

stresses Nαβ and bending moment Mαβ . Large displacements are taken into

account but strains are assumed to remain small. It is also assumed that the

transverse tensile stress N22 remains small and that the shear energy N12 e12

can be neglected. The shell strain energy can then be written as

Ue =
1

2

∫ L

0

∫ a

−a

Ae211 +D
(

k2
11 + k2

22 + 2νk11k22 + 2(1− ν)k2
12

)

ds2ds1, (11)

in which shell membrane and bending strains are given by































e11 = er + zkr + es

k11 = −kr + ks
11

k22 = ks
22 ,

k12 = ks
12 ,

with























































er = u1,1 +
1
2
(u2

1,1 + u2
3,1) ,

kr = θ,1 ,

es = 1
2
z2,1 ,

ks
11 = z,11 ,

ks
22 = z,22 − z0,22 ,

ks
12 = z,12 ,

(12)

and A and D are the tensile and bending stiffnesses of the shell: A = Eh

and D = Eh3

12(1−ν2)
with h the thickness of the shell, E the Young’s modulus

and ν the Poisson’s ratio. We recognize in er and kr the tensile strain and

curvature of a rod in the framework of large displacements, large rotations

and small strains. The other terms es and ks
αβ refer to the deformation of the

cross-sections. The tensile strain es takes into account non-linear effects due

to the length variation of longitudinal fibbers when the cross-section deforms
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non-uniformly along the tape. Bending strains ks
αβ characterize the local

bending of the shell when the cross-section shape varies. Their expressions

are similar to the ones used in the framework of small displacements but

expressed in the frame attached to the cross-section: ks
αβ = z,αβ − z0,αβ .

Finally, an integration over the cross-section leads to the strain energy of the

rod model:

Ue =

∫ L

0

(ur
e + us

e + urs
e ) ds1, (13)

in which ur
e, u

s
e and urs

e are the three terms that define the strain energy

density ue(s1) of the rod:



















ur
e =

1
2

(

2aA (er)2 +
(

Az2 + 2aD
)

(kr)2
)

,

us
e =

1
2

(

A(es)2 +D
(

(ks
11)

2 + (ks
22)

2 + 2νks
11k

s
22 + 2(1− ν)(ks

12)
2
))

,

urs
e = Aeres + Akrzes −D kr

(

ks
11 + νks

22

)

,

(14)

where the overline denotes an integration over s2: X (s1) =
∫ a

−a
X (s1, s2) ds2.

At this stage, the model involves four kinematic variables: u1(s1), u3(s1),

θ(s1) and β(s1, s2), from which the local coordinate z(s1, s2) can be found

with (9). In the following, the local coordinate z(s1, s2) is used as the kine-

matic variable that describes the shape of the cross-section (instead of the

angle β(s1, s2)).
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3.3. Non-dimensionalization of the energy

The following quantities are introduced to scale the problem and quantify

the key parameters that govern the strain energy:

ŝ1 =
s1
a
, ŝ2 =

s2
a
, ûi(ŝ1) =

ui(s1)

a
, θ̂(ŝ1) =

R0

a
θ(s1), k̂

r(ŝ1) = R0 k
r(s1),

ẑ(ŝ1, ŝ2) =
R0

a2
z(s1, s2) and ûe(ŝ1) =

R2
0

2aD
ue(s1).

(15)

The nondimensional expressions of the three terms (14) of the strain

energy ue(s1) can then be written as






























ûr
e =

1

2

(

12Z2Z4
β (ê

r)2 +
(

6Z2ẑ2 + 1
)(

k̂r
)2
)

,

ûs
e =

1

2

(

6Z2(ês)2 +
1

2

(

(

k̂s
11

)2

+
(

k̂s
22

)2

+ 2νk̂s
11k̂

s
22 + 2(1− ν)

(

k̂s
12

)2
))

,

ûrs
e = 6Z2Z2

β ê
rês + k̂r

(

6Z2ẑês − 1

2

(

k̂s
11 + νk̂s

22

)

)

,

(16)

in which êr, k̂r ês and k̂s
αβ are given by the non-dimensional expression of

(12) involving ûα, θ̂ and ẑ and the spatial derivative with respect to ŝα. The

overline now denotes the integration over ŝ2: X (ŝ1) =
∫ 1

−1
X (ŝ1, ŝ2) dŝ2.

Two non-dimensional parameters Z and Zβ appear in (16):

Z =

√
1− ν2a2

hR0
and Zβ =

R0

a
. (17)

It should be noticed that the non-dimensional parameter Z is the Batdorf

parameter, which is widely used to study the buckling of cylindrical shell

panels (Batdorf, 1947).

3.4. Loading condition: the pure bending test

The static bending test in opposite sense is considered in the following:

opposite moments ±M are prescribed at the end cross-sections leading to a
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longitudinal curvature in opposite sense with respect to the initial transverse

curvature of the cross-section curve. The end cross-sections are free to trans-

late (null forces) and free to deform. For the sake of simplicity and due to

the symmetry of the problem, the origin of the fixed frame (O,e1e1e1, e2e2e2, e3e3e3) is

taken at the centroid of the cross-section located in the middle of the tape.

It leads to the following boundary conditions, in which M̂ = R0M/(2aD) is

the non-dimensional loading parameter:































M̂(l) = −M̂(−l) = M̂,

ẑ(l, ŝ2) and ẑ(−l, ŝ2) free,

ẑ,1(l, ŝ2) and ẑ,1(−l, ŝ2) free,

û1(−l) = û3(−l) = û3(l) = 0,

(18)

with l = L/(2a). The boundary conditions on displacements û1 and û3 fix

the rigid body motion. The potential elastic energy can be written as follows:

P̂ (û1, û3, θ̂, ẑ, λ̂T ) =

∫ l

−l

(ûr
e + ûs

e + ûrs
e ) dŝ1 − (θ̂(l)− θ̂(−l))M̂

+

∫ l

−l

λ̂T ((1 + û1,1) sin(θ̂) + û3,1 cos(θ̂)) dŝ1,

(19)

in which the orthogonality condition (10) is taken into account with the

Lagrange multiplier λ̂T (ŝ1). Since the end cross-sections are free to translate,

the kinematic variables û1 and û3 and the Lagrange multiplier λ̂T can be

eliminated. The differentiation of the potential energy (19) with respect to

û1, û3, and λ̂T leads to λ̂T (ŝ1) = 0 and êr = − 1
2Z2

β

ês. The potential energy

can then be rewritten:

P̂ (θ̂, ẑ) =

∫ l

−l

(ûr
e + ûs

e + ûrs
e ) dŝ1 − (θ̂(l)− θ̂(−l))M̂ , (20)
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with






























ûr
e =

1

2

(

3Z2
(

ês
)2

+
(

6Z2ẑ2 + 1
)(

k̂r
)2
)

,

ûs
e =

1

2

(

6Z2(ês)2 +
1

2

(

(

k̂s
11

)2

+
(

k̂s
22

)2

+ 2νk̂s
11k̂

s
22 + 2(1− ν)

(

k̂s
12

)2
))

,

ûrs
e = −3Z2

(

ês
)2

+ k̂r

(

6Z2ẑês − 1

2

(

k̂s
11 + νk̂s

22

)

)

.

(21)

In the case of opposite sense bending test, the problem is governed by only

three non-dimensional parameter: the Batdorf number Z, the Poisson’s ra-

tion ν and the slenderness of the tape-spring l.

3.5. arc-of-circle flexible cross-section assumption

The parametrization proposed in (Guinot et al. (2012); Picault et al. (2014,

2016)) is here used: the cross-section shape is assumed to remain an arc-

of-circle as illustrated in Figure 10. In this case, the dimensionless angle

β̂ = aβ/R0 is linear with respect to ŝ2 and takes the form β̂(ŝ1, ŝ2) = β̂e(ŝ1)ŝ2

with β̂e(ŝ1) = β̂(ŝ1, 1). The cross-section shape is then described by ẑ with

equations (9) and (15):

ẑ = β̂e(ŝ1)

(

ŝ22
2

− 1

6

)

. (22)

This last expression is introduced in the potential energy defined by (20) and

(21). The stationarity conditions with respect to θ̂ and β̂e lead to the strong

form of the equilibrium equations for ŝ1 ∈ [−l, l]:

(

4
15
Z2β̂e2 + 1

)

θ̂,1 +
4

315
Z2β̂eβ̂e2

,1 − ν
(

β̂e − 1
)

= M̂,

4
15
Z2β̂eθ̂2,1 −

(

4
315

Z2
(

β̂e2

,1 + 2β̂eβ̂e
,11

)

+ ν
)

θ̂,1 − 8
315

Z2β̂eβ̂e
,1θ̂,11

+ 1
45
β̂e
,1111 − 2

3
(1− ν) β̂e

,11 + β̂e − 1− 16
1575

Z2β̂e2

,1 β̂
e
,11 = 0,

(23)
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with following boundary conditions at end cross-sections ŝ1 = ±l (cross-

sections free to deform):






− 1
45
β̂e
,111 +

2
3
(1− ν) β̂e

,1 +
16

4725
β̂e2

,1 + 8
315

Z2β̂eβ̂e
,1θ̂,1 = 0,

β̂e
,11 = 0.

(24)

4. Links with a reguralized Ericksen bar model

4.1. The fundamental solution

Starting from the initial free state θ̂(ŝ1) = 0 and β̂e(ŝ1) = 1 and M̂

being the loading parameter of the problem, a uniform solution is found,

such that the longitudinal curvature k̂r = θ̂,1 and the cross-section shape

does not depend on ŝ1. By introducing the conditions θ̂,11 = β̂e
,1 = β̂e

,11 =

β̂e
,111 = β̂e

,1111 = 0 in equations (23), closed-form expressions are obtained

for the moment M̂ and the opening angle β̂e with respect to the uniform

longitudinal curvature k̂r. They are denoted by M̂u and β̂e
u in the following:

M̂u = k̂r − ν(β̂e
u − 1) +

4

15
Z2(β̂e

u)
2 k̂r with β̂e

u =
1 + νk̂r

1 + 4
15
Z2k̂r2

. (25)

Plots of M̂u(k̂
r) and β̂e

u(k̂
r) are shown in Figure 11 for geometrical and ma-

terial properties leading to Z=114.47 (ν=0.3). The response follows an up-

down-up law and a parallel can be drawn with an Ericksen bar model. This

response can be associated with a strain energy (per unit length) of a rod

model defined by (21), but without the higher order terms ês, k̂s
11 and k̂s

12

(and with β̂e = β̂e
u).

Let us consider the response of a rod model for which the bending consti-

tutive equation is given by (25) and shown in Figure 11 (see also Figure 20 for

details). An estimate of the Maxwell moment M̂∗ (also called the propagating
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fold moment in literature) is obtained with the equal area rule. Assuming

that Z2 >> 1, considerations explained in Appendix A lead to the same

estimate as the one obtained by Seffen and Pellegrino (1999): M̂∗ = 1 + ν.

Estimates are also obtained in Appendix A for the curvatures k̂r∗

1 and k̂r∗

2

which are the first and last abscissa at which the curve M̂(k̂r) intersects the

horizontal line at ordinate M̂∗: k̂r∗

1 ≈ 15
4

1+ν
Z2 and k̂r∗

2 ≈ 1.

Figure 11: Bending moment M̂(k̂r) and opening angle β̂e(k̂r) for Z = 114.47 (R0=50 mm,

a=30 mm, h=0.15 mm, E=210 000 MPa and ν=0.3) and estimate of the propagating fold

moment M̂∗ ≈ 1 + ν (Maxwell load).

Based on the results recalled in Section 2.1, Figure 12 illustrates the

schematic response of the rod when rotations are applied at end cross-sections

instead of a moment. The curvature 〈k̂r〉 denotes the applied average curva-

ture: 〈k̂r〉 = ∆θ̂/(2l) with ∆θ̂ = θ̂(l)− θ̂(−l). The thick line refers to the plot

of the moment M̂ that realizes the absolute minimum of the potential strain

energy for a given mean curvature 〈k̂r〉. For 〈k̂r〉 ≤ k̂r∗

1 and 〈k̂r∗〉 ≥ k̂r∗

2 , the

response follows the uniform solution. For k̂r∗

1 < 〈k̂r∗〉 < k̂r∗

2 , the uniform

solution is not the solution that minimizes the potential strain energy. In this

regime, the moment equals the propagating fold moment and the deformed
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shape consists in a two-phase rod with a fraction α1 with curvature k̂r∗

1 and a

fraction α2 = 1−α1 with curvature k̂r∗

2 , such that α1 k̂
r∗

1 +α2 k̂
r∗

2 = 〈k̂r〉, the
applied average curvature. For the tape spring under consideration, the anal-

ysis of the equal area rule in Figure 11 shows that the parts with curvature

k̂r∗

1 correspond to almost undeformed zones (k̂r∗

1 ≈ 0 and β̂e(k̂r∗

1 ) ≈ 1) and

parts with curvature k̂r∗

2 correspond to localized folds with flattened cross-

section (k̂r∗

2 ≈ 1 and β̂e(k̂r∗

2 ) ≈ 0). The last result shows that the fold area is

cylindrical with a longitudinal curvature close to the initial transverse cur-

vature. This property has been already mentioned by Seffen and Pellegrino

(1999). Figure 12 gives an example of the deformed shape that can be ob-

tained with two undeformed parts separated by a fold. In this figure, only

one fold is introduced and this fold is arbitrary located in the middle but

the model does not predict the number of phase transitions and their loca-

tions, but only the volume fraction of each phase. Jumps of curvature and of

cross-section shape are allowed since no energy is associated with the vari-

ation of the cross-section shape along the tape (the higher order terms are

not taken into account). The dependence of the strain energy (21) to β̂e
,1 and

β̂e
,11 through the strains ês, k̂s

11 and k̂s
12 in (21) introduces in reality transition

zones between the two states (see Figure 13).

4.2. Linear buckling analysis

Reintroducing the higher order terms into the strain energy and follow-

ing the methodology explained in Section 2.3, a linear buckling analysis is

conducted. We search for β̂e and θ̂ under the forms β̂e = β̂e
u + ∆β̂e and

θ̂ = θ̂u +∆θ̂. These forms are reported in (23) and the following first-order

equations are found:
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Figure 12: Plot of M̂(〈k̂r〉) when rotations are applied at end cross-sections (〈k̂r〉 =

(θ̂(l) − θ̂(−l))/(2l)). Stable solutions are reported in red line with an illustration of a

two-phase rod when k̂r
∗

1 < 〈k̂r〉 < k̂r
∗

2 : two almost undeformed parts located on both side

of a fold with longitudinal curvature k̂r
∗

2
and a flattened cross-section.

Figure 13: Illustration of the three distinct zones of deformation for a folded tape spring.

Left: profile view of the deformed shape (centerline in red, exterior edge in blue). Right:

evolution of the non-dimensional opening angle β̂e and the non-dimensional longitudinal

curvature k̂r along the centerline in one half of the tape.

∆β̂e
,1111 − b(k̂r

u)∆β̂e
,11 + c(k̂r

u)∆β̂e = 0, for ŝ1 ∈ [−l, l] ,

∆β̂e
,111 − b(k̂r

u)∆β̂e
,1 = 0, for ŝ1 = ±l,

∆β̂e
,11 = 0, for ŝ1 = ±l.

(26)
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with

b(k̂r
u) = 45

(

8
315

Z2β̂e
uk̂

r
u +

2
3
(1− ν)

)

,

c(k̂r
u) = 45

(

1 + 4
15
Z2k̂r2

u − ( 8

15
Z2β̂e

uk̂
r
u−ν)

2

1+ 4

15
Z2β̂e2

u

)

.
(27)

Bifurcations points are detected in the decreasing part of the plot M̂u(k̂
r
u),

i.e. for k̂r
u such that dM̂u

dk̂ru
< 0. We are then looking for roots of the charac-

teristic polynomial x2 − bx + c associated with the ODE (26) for k̂r
u in this

part. It can be easily shown that c(k̂r
u)

dM̂u

dk̂ru
≥ 0, for all k̂r

u. In the decreasing

part of M̂u(k̂
r
u), c is then negative and the discriminant b2 − 4c is positive.

In addition, b is positive for k̂r
u ≥ 0 and −1 ≤ ν ≤ 0.5. The characteristic

polynomial x2 − bx + c has then two real roots of opposite signs and the

general solution of the ODE in (26) for k̂r
u such that dM̂u

dk̂ru
< 0 is:

∆β̂e(s1) = D1 cosh(r1 s1) +D2 sinh(r1 s1) +D3 cos(r2 s1) +D4 sin(r2 s1)

with

r1(k̂
r
u) =

√

1

2

(

b+
√
b2 − 4c

)

and r2(k̂
r
u) =

√

−1

2

(

b−
√
b2 − 4c

)

,

and Di some constants that must be determined with boundary conditions.

Let us define the following auxiliary functions:

f1(k̂
r
u) = −r2

r1

r21 − b

r22 + b
tanh (r1l) and f2(k̂

r
u) =

r1
r2

r22 + b

r21 − b
tanh (r1l). (28)

The four boundary conditions in (26) lead to two sets of solutions :

(a) odd buckling mode shapes for k̂r
u such that tan

(

r2(k̂
r
u) l

)

= f1(k̂
r
u) and

∆β̂e(s1) = D2 (sinh(r1 s1) + d4 sin(r2 s1)) with d4 =
r21
r22

sinh(r1l)

sin(r2l)
.

(29)
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(b) even buckling mode shapes for k̂r
u such that tan

(

r2(k̂
r
u) l

)

= f2(k̂
r
u) and

∆β̂e(s1) = D1 (cosh(r1 s1) + d3 cos(r2 s1)) with d3 =
r21
r22

cosh(r1l)

cos(r2l)
.

(30)

Values of k̂r
u at which there is a bifurcation are then the abscissa at

which the plot of r2(k̂
r
u)l intersects the plots of arctan(f1(k̂

r
u)) + nπ and

arctan(f2(k̂
r
u)) + nπ, with n ∈ N. An illustration is presented in Figure 14

for a short tape-spring rod (l=2.5) with a relatively small Batdorf parameter

(Z=22.9). The plot of r2(k̂
r
u)l is bell-shaped and the plots of arctan(f1(k̂

r
u))+

nπ and arctan(f2(k̂
r
u)) +nπ form a set of almost flat plateaux at values iπ/2

with i ∈ N
+. The situation is extremely similar to the one obtained in

Section 2.3 for the classical reguralized Ericksen bar model. A finite number

of bifurcation points is found. Each plateau intersects the plot of r2(k̂
r
u)l in

two points Ak and Bk. For a fixed k, Ak and Bk correspond to bifurcation

points with the same linear buckling mode shape.

Remarks: Quantities r1, r2 and b only depend on Z, ν and k̂r
u and are in-

dependent from l: they are independent from the slenderness of the tape.

In practice, tanh(r1l) is very close to one and f1 and f2 can be considered

independent from l (see equation (28)) and we obtain f2 ≈ −1/f1. The

two conditions tan (r2 l) = f1 and tan (r2 l) = f2 then result in a single one:

r2 l = arctan (f1) + iπ/2. Figure 14 illustrates this result: whatever the con-

dition, the shape of the almost flat plateaux is the same and these plateaux

are separated by a distance of π/2 in the vertical direction. Change in slen-

derness (i.e. in l) only results in a linear transformation of the plot r2 l in the

vertical direction. Increase in l leads to an increasing number of bifurcation
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Figure 14: Graphical determination of the bifurcation points for the pure bending test in

opposite sense for a tape spring with Z=22.9 and l=2.5 (L = 75mm, R0=18.75 mm, a=15

mm, h=0.5 mm and ν=0.3). Black line: plot of r2(k̂
r
u)l. Red almost flat plateaux with

odd index k: plots of arctan(f2(k̂
r
u)) + (k − 1)π/2 . Blue almost flat plateaux with even

index k: plots of arctan(f1(k̂
r
u)) + kπ/2. Intersection points Ak and Bk give the values of

k̂ru at which there is a bifurcation. Boxes: linear buckling modes at bifurcation points Ak

and Bk.

points. One can notice that the results are independent from the Young’s

Modulus.

4.3. Post-bifurcation analysis

A finite element implementation of the problem (23) has been performed

in the software Manlab ManLab-4.0 (2018). The 1D-model is discretized with

classical FE with linear Lagrange interpolation for θ̂ and third-order Hermite

interpolation for β̂e. The bifurcation diagram obtained for the tape-spring

rod with the characteristics used for Figure 14 is presented in Figure 15. The

abscissas of the bifurcation points coincide with those obtained in Figure 14.
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The scenario is the same as the one explained in the previous Section on the

reguralized Ericksen bar model. The bifurcation points corresponding to the

same linear buckling modes are connected in pairs by loops. Each loop k can

be associated with post buckling shapes with k transition zones separating

almost undeformed parts and flattened cross-section parts: red (resp. blue)

loops for odd (resp. even) numbers of transition zones. Points Ak and Bk split

each loop k in two half-loops. The two half-loops correspond to two post-

buckling mode shapes with two different locations of the transition zones

(see the boxes in Figure 15). In the case of odd number of transition zones

(odd k), projections of the half-loops in the plane (〈k̂r〉, M̂) are superposed:

the two post-buckling modes are symmetrical to one another with respect to

middle cross-section and it leads to the same overall response M̂(k̂r). The

loops corresponding to a small number of transition zones present more or

less a plateau at the value of the propagating fold moment M̂∗.

Figure 16 shows an extract of the bifurcation diagram for a tape with

Z=114.7, l=19.5 and ν=0.3. In this case, the linear buckling analysis (not

presented here) shows that there are 68 pairs of bifurcation points. Only

the first four loops are shown in Figure 16 with the associated post-buckling

shapes. Loops present more clearly a plateau at the value M̂∗ than in figure

15 (larger Z and l). Some secondary bifurcation points are detected on the

loops but they are not studied here.

4.4. Influence of the boundary conditions

All the above results have been obtained for a tape with cross-sections

free to deform at ends (β̂e and β̂e
,1 free at ŝ1 = ±l). Figure 17 compares this
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Figure 15: Bifurcation diagram for the pure bending test in opposite sense for a tape spring

rod with Z=22.9 and l=2.5 (L = 75mm, R0=18.75 mm, a=15 mm, h=0.5 mm, E=210 000

MPa and ν=0.3). Post-bifurcation branches follow a structure of loops connected to the

fundamental one at two points. Each loop i corresponds to post-bifurcation modes with

i transition zones separating almost undeformed parts and flattened cross-section parts.

In boxes: deformed shapes observed for each half-loop defined by Ai −Bi. Superimposed

colormap of β̂ = β̂e(ŝ1)ŝ2 between 0 (blue) to 1 (red).

case (bifurcation diagram in black lines) with the case of rigid cross-sections

at ends (red curve): β̂e = β̂e
0 and β̂e

,1 = 0 for ŝ1 = ±l. Fixing the cross-

section shape at ends acts as a perturbation to the initial problem and there

is no bifurcation point any more near the peak moment. The response is

fundamentally the same as the one of a reguralized Ericksen bar model with

Dirichlet boundary conditions at ends (see Figure 9). The response is very

close to the fundamental branch at the beginning and turns quite smoothly
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Figure 16: Bifurcation diagram for the pure bending test in opposite sense for a tape

spring rod with Z=114.7 and l=19.5 (L = 1170mm, R0=50 mm, a=30 mm, h=0.15 mm

and ν=0.3). Fundamental branch and four first post-bifurcation loops. In boxes: mode

shapes observed for these loops. Superimposed colormap of β̂ = β̂e(ŝ1)ŝ2 between 0 (blue)

to 1 (red).

to follow a branch of the second loop. If we look at Figures 15 and 16, this

branch corresponds to the first post-bifurcation shape 2(b) that is compatible

with the new boundary conditions (undeformed cross-sections at ends) and

leads to the formation and growth of a localized fold at the middle of the

tape. The back return between the peak moment and the plateau explains the

hysteretic behaviour that occurs for a loading-unloading prescribed average

curvature (jumps of moments at limit points). The model is able to take

39



into account the large length effects linked to the boundary conditions and

to predict the number of transition zones and their locations.

Figure 17: Bifurcation diagram for the pure bending test in opposite sense for a tape

spring rod with Z=114.7 and l=19.5. Black lines: fundamental branch and first four post-

bifurcation loops for end cross-sections free to deform (von-Neumann boundary conditions

on higher order terms). Red curve: response with rigid end cross-sections (Dirichlet

boundary conditions). In box: deformed shape observed on the plateau for rigid end

cross-sections. Superimposed colormap of β̂ = β̂e(ŝ1)ŝ2 between 0 (blue) to 1 (red).
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4.5. Lengths of the transition zones

The length of the transition zones between flattened cross-section parts

and almost undeformed parts plays an important role in the maximum num-

ber of folds that can appear. In the following, a simplified approach is pro-

posed to estimate this length. Figure 13 shows that the longitudinal curva-

ture k̂r is close to 0 in a large part of the transition zone: k̂r passes from

k̂r∗

2 ≈ 1 to k̂r∗

1 ≈ 0 on a much shorter distance than the one for β̂e to pass

from β̂e ≈ 0 to β̂e ≈ 1. Introducing θ̂,1 = θ̂,11 = 0 in the second equation of

(23) leads to:

1

45
β̂e
,1111 −

2

3
(1− ν) β̂e

,11 + β̂e − 1− 16

1575
Z2β̂e2

,1 β̂
e
,11 = 0. (31)

Figure 18 shows that the length of the transition zone increases with Z

Figure 18: Evolution of β̂e and β̂e
,1 (cross-section shape) in the transition zone for several

values of the Batdorf parameter: Z = 50, 100, 250, 500 (and l > 20). Red lines: FE results

obtained with the proposed rod model. Black dashed lines: estimates.

and that β̂e
,1 is almost affine in a large central part (FE results obtained

with the RFleXS-2DS model in red). Neglecting the localized effects at

the beginning of the transition zone (rapid changes in β̂e
,1), the estimate

β̂e = c1 (ŝ1 − ŝ∗1) − 1
2
c2 (ŝ1 − ŝ∗1)

2 is introduced in equation (31), with ŝ∗1 the
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starting abscissa of the transition zone. A power series in (ŝ1 − ŝ∗1) is obtained

and constants c1 and c2 are identified by vanishing the first two terms:

c1 =

√

√

√

√

525

8

1

Z2

[

2

5

√

2

7
Z − (1− ν)

]

and c2 =
15

4

√

7

2

1

Z
. (32)

Figure 18 shows good agreements between the estimates (black dashed curves)

and the FE results obtained with the RFleXS-2DS model (red curves). For

a fixed Z, the constant c1 is the intercept of the black dashed straight line

in the plot of β̂e
,1 and c2 is the opposite of its slope. Length estimate of the

transition zone is defined as c1/c2, i.e. the abscissa at which the black dashed

straight lines intersect the x-axis in the plot of β̂e
,1. In practice, the term 1−ν

can be neglected in the expression of c1 and the non dimensional length of

the transition zone l̂t = lt/a is found to be proportional to
√
Z:

l̂t =

√

8

15

√

2

7

√
Z. (33)

The model predicts that the non-dimensional length l̂t = lt/a mainly

depends on the Batdorf parameter Z. In the following, this estimate is com-

pared to FE shell results obtained with Abaqus. In the transition zones, the

cross-section passes from flattened to undeformed. The results are compared

through the evolution along the tape of the apparent (non-dimensional) total

thickness, defined as ∆ẑ = ẑ(ŝ1, ŝ2 = 1) − ẑ(ŝ1, ŝ2 = 0). Its initial value is

∆ẑ0. For the shell model, the value of ∆z can be easily obtained:

∆z =

√

(∆us
1)

2 + (∆z0 +∆us
3)

2,

with ∆us
i = us

i (s1, s2 = a) − us
i (s1, s2 = 0) and us

i (s1, s2) the displacements
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of the shell middle surface. When ∆z/∆z0 = ∆ẑ/∆ẑ0 equals one, the cross-

section is undeformed and a value of zero corresponds to a flattened cross-

section. Numerical simulations have been performed with FE shell models

in opposite sense bending with rigid cross-sections at ends, for several values

of the geometric parameters and of the Poisson ratio, leading to a range of

the Batdorf parameter Z from 50 to 500 (see Table 2). This loading leads

to the creation of a localized fold in the middle of the tape. Figure 19 shows

the evolution of ∆ẑ/∆ẑ0 with respect to ŝ1 = s1/a for varying values of the

parameters a, R0, h and ν. The origin of the abscissa ŝ1 has been adapted for

each plot so that the transition zone begins at the same abscissa. The plots

corresponding to the same value of the Batdorf parameter Z are very close

together. This parameter seems to be the key parameter that governs the

length of the transition zones. The comparison between the FE shell and the

FE RFleXS-2DS results exhibits some discrepancies, especially for large Z.

Nevertheless, the two models lead to quite the same estimates of the lengths

of the transition zones for all Z. The expression (33) can then constitute a

satisfactory estimate for the lengths of the transition zone.

5. Comparison with shell models

5.1. Introduction

The behaviour of tape springs is often studied with shell models. This

section addresses the validation of the overall response M̂(k̂r) obtained with

the RFleXS-2DS model and the ones obtained with reference shell models.
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case a (mm) R0 (mm) h (mm) ν Z

(a) 13.1036 21.8393 0.15 0.3 50

(b) 26.2071 87.3571 0.15 0.3 50

(c) 26.2071 43.6785 0.3 0.3 50

(d) 26.2071 43.6785 0.3145 0 50

(e) 26.2071 43.6785 0.2749 0.49 50

(f) 26.2071 43.6785 0.15 0.3 100

(g) 65.5178 109.1963 0.15 0.3 250

(h) 131.0356 218.3927 0.15 0.3 500

(j) 262.0712 873.5707 0.15 0.3 500

(j) 524.1424 1747.1414 0.3 0.3 500

Table 2: Geometric and material parameters used for the parametric study of the lengths

of the transition zones

5.2. The model of Wuest

Closed form estimate of the overall response M̂(k̂r) has been obtained by

Wuest (1954) for the fondamental solution (uniform longitudinal curvature

and loading-dependent uniform cross-section profile along the tape). This

estimate is based on the assumption that the tape spring can be assimilated

as a slightly distorded axisymmetric shell submitted to pure bending. In the

RFleXS-2DS model, the cross-section is assumed to remain an arc-of-circle

cross-section. When searching for a uniform solution, this assumption can

be removed and it is shown in this case that the Wuest estimate is found .

The end cross-sections are assumed to be free to deform. Starting from

the potential elastic energy defined by (20), (21) and the non-dimensional
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Figure 19: Evolution of the apparent total thickness of the tape in the transition zone

between the fold and the almost undeformed area. Comparison between the RFleXS-

2DS and the shell models for several values of the geometric and material properties

corresponding to the cases (a)-(j) reported in Table 2.

expressions of (12), a uniform solution is searched such that the longitudinal

curvature k̂r = θ̂,1 is constant and the kinematic variable ẑ only depends on

ŝ2. Taking into account these properties, the potential energy can be written

as

P̂ (k̂r, ẑ) = 2l

∫ 1

−1

[

(

6Z2ẑ2 + 1
)

k̂r2 +
1

4
(ẑ,22 − 1)2 − ν

2
(ẑ,22 − 1) k̂r

]

dŝ2−2lM̂ k̂r.

(34)

The stationarity condition of the potential energy leads to the differential

equation that governs the cross-section shape:

ẑ,2222 + 12Z2kr2 ẑ = 0, for ŝ2 ∈ [−1, 1], (35)

with






(ẑ,22 − 1)− νk̂r = 0, for ŝ2 = ±1,

ẑ,222 = 0, for s2 = ±1,
(36)
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These last equations (36) correspond to free edge conditions (shell bending

moment m̂22 and shear force t̂2 are vanishing for ŝ2 = ±1). The solution of

equations (35) and (36) provides the cross-section profile with respect to the

longitudinal curvature k̂r:

ẑ = α1 cosh(nŝ2k̂
r) cos(nŝ2k̂

r) + α2 sinh(nŝ2k̂
r) sin(nŝ2k̂

r), (37)

with n =
4

√

3Z2/k̂r2 and



















α1 = −1 + νk̂r

2n2k̂r2

cosh(nk̂r) sin(nk̂r)− sinh(nk̂r) cos(nk̂r)

cosh(nk̂r) sinh(nk̂r) + cos(nk̂r) sin(nk̂r)
,

α2 =
1 + νk̂r

2n2k̂r2

cosh(nk̂r) sin(nk̂r) + sinh(nk̂r) cos(nk̂r)

cosh(nk̂r) sinh(nk̂r) + cos(nk̂r) sin(nk̂r)
.

(38)

The relationship between the bending moment M̂ and the longitudinal

curvature k̂r is obtained by differentiation of the potential energy with respect

to the longitudinal curvature k̂r:

M̂ = 6Z2

∫ 1

−1

ẑ2ds2 k̂
r +

∫ 1

−1

1

2

[

k̂r − ν (ẑ,22 − 1)
]

ds2. (39)

The first term involves the second moment of area
∫ 1

−1
ẑ2ds2 and is the

contribution of the membrane stress n̂11. The second one is the contribution

of the shell bending moment m̂11. Finally, introducing expressions (37)-(38)

of ẑ in (39) leads to the moment called M̂W in the following:
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M̂W = k̂r + ν

(

1 + 2
(

1 + νk̂r
)

cos(2nk̂r)−cosh(2nk̂r)

2nk̂r(sin(2nk̂r)+sinh(2nk̂r))

)

+1
8

(1+νk̂r)
2

2nk̂r2
2 cosh(2nk̂r) sin(2nk̂r)−2(cos(2nk̂r)+4nk̂r sin(2nk̂r)) sinh(2nk̂r)

(sin(2nk̂r)+sinh(2nk̂r))
2

+1
8

(1+νk̂r)
2

2nk̂r2
sinh(4nk̂r)−sin(4nk̂r)

(sin(2nk̂r)+sinh(2nk̂r))
2 .

(40)

Figure 20: Bending moment M̂u(k̂
r) for Z = 114.47 (R0=50 mm, a=30 mm, h=0.15 mm,

E=210 000 MPa and ν=0.3) and propagating fold moment M̂∗ (Maxwell load).

Equations (35)-(40) are strictly equivalent to the ones obtained by Wuest

(1954) with a different approach. The Wuest estimate M̂W (k̂r) is compared

to the one obtained with the RFleXS-2DS model with an arc-of-circle cross-

section in Figure 20 for Z=114.47 and ν=0.3. The two curves present a

similar up-down-up response. They have the same slope in the linear part

for small k̂r and tend to the same asymptote ν + k̂r when k̂r becomes large.

Table 3 compares some key features: the propagating fold moment M̂∗,

the longitudinal curvature in the fold area and the peak moment. Values of
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M̂∗ k̂r∗

2 Peak Moment

RFleXS-2DS 1.30000 0.999628 19.3954

Wuest 1.23809 0.934083 16.2317

Table 3: Non-dimensional propagating fold moment M̂∗, longitudinal curvature k̂r
∗

2
and

peak moment, for the RFleXS-2DS model and the solution of Wuest (ν = 0.3 and Z =

114.47).

the propagating fold moment and the longitudinal curvature k̂r∗

2 , which are

obtained by solving Equation (A.6), are in agreement but the assumption

of an arc-of-circle cross-section profile leads to an overestimate of the peak

moment (19.3954 and 16.2317 for the RFleXS-2DS model and the Wuest

estimate respectively). An enriched model is proposed in Section 5.4 to cope

with this problem.

5.3. Comparison with FE shell models

Figure 21 shows typical results on the overall response in opposite sense

bending with rigid end cross-sections. The FE shell results, which are taken

as reference, have been obtained with the software Abaqus, using a Riks

procedure and S8R5 elements (120 elements in the length direction and 12

in the transverse one). In the linear part for small 〈k̂r〉, all models are in

agreement. The estimate M̂∗ = 1 + ν of Seffen and Pellegrino (1999) for

the propagating fold moment coincides with the results of the FE shell and

RFleXS-2DS models. We observe that the RFleXS-2DS model overestimates

the peak moment. One can also notice that the Wuest formula for the uniform

solution gives a good estimate of the peak moment. The Wuest estimate is

better in accordance with the FE shell results in the beginning than the
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RFleXS-2DS results. The difference between the Wuest estimate and the

uniform solution found with the RFleXS-2DS is the cross-section kinematics:

the assumption of an arc-of-circle cross-section leads to a stiff approximation.

In Section 5.4, it is shown that an enrichment of the cross-section kinematics

of the RFleXS-2DS model greatly improves the result on the peak moment.

Figure 21: Dimensionless bending moment M̂ with respect to the mean dimensionless lon-

gitudinal curvature 〈k̂r〉 obtained with several models for the pure bending test in opposite

sense with rigid cross-section at ends (Z = 114.47, L=1170 mm, R0=50 mm, a=30 mm,

h=0.15 mm, E=210 000 MPa and ν=0.3). Shell model (FE): Finite Element Analysis;

Wuest (US): closed-form estimate of Wuest (1954) for the uniform solution; RFleXS-2DS

(FE): Finite Element Analysis with the RFleXS-2DS Model; RFleXS-2DS (US): closed-

form expression obtained with the RFleXS-2DS model for the uniform solution, Estimate

of the dimensionless propagating fold moment M̂∗.

49



5.4. Enrichment of the cross-section kinematics

It follows from the discussion above that it is necessary to enrich the cross-

section kinematics in order to obtain a good estimate of the peak moment.

Let us consider the uniform solution for the opposite sense bending test

without introducing the circularity assumption of the cross-section. In the

expression (34) of the elastic potential energy, the term ẑ,22 is the transverse

curvature κ̂(ŝ1, ŝ2) which has been taken uniform in the RFleXS-2DS model

since the cross-section is assumed to remain an arc-of-circle. In order to

enrich this kinematics, we introduce an expansion of this transverse curvature

based on the first Legendre polynomials P̂ i(ŝ2) of order i, defined in [−1, 1]:

κ̂(ŝ1, ŝ2) =

n
∑

i=0

κ̂(ŝ1)P̂
i(ŝ2). (41)

The components of the initial curvature in the truncated basis are denoted κ̂i
0.

For a tape spring with an initially arc-of-circle cross-section, we obtain κ̂0
0 = 1

and κ̂i
0 = 0 for i > 0. Due to the symmetry assumption of the cross-section

shape, only the even polynomials are considered (i = 2k, k ∈ N
+). The

orthogonality of the Legendre polynomials leads to the following properties

(valid for any initial cross-section shape):

(κ̂2) = κ̂i2 (P̂ i)2 and κ̂ = 2aκ̂0.

We denote by Q̂i(ŝ2) the integral of P̂ i(ŝ2) verifying Q̂i(0) = 0. According

to the inextensibility assumption of the cross-section, the angle β̂(ŝ1, ŝ2) is

expressed by:

β̂(ŝ1, ŝ2) = κ̂(ŝ1)Q̂
i(ŝ2). (42)

This last expression is still valid for non moderate angles β(s1, s2) but the

determination of z(s1, s2) requires the integration of z,2 = sin(β) in this case.
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In case of small angles, z,2 ≈ β and the polynomials R̂i(ŝ2), which are the

integrals of Q̂i(ŝ2) verifying R̂i = 0 can be used to obtain an expansion of

ẑ(ŝ1, ŝ2):

ẑ(ŝ1, ŝ2) = κ̂i(ŝ1)R̂
i(ŝ2). (43)

The condition R̂i = 0 ensures that ẑ = 0 (centroid property). Introducing

expression (43) in the elastic potential energy (34) leads to:

P̂ =
l

2

[

(

6Z2R̂i R̂j κ̂i κ̂j + 1
)(

k̂r
)2

+
1

2
(P̂ i)2 (κ̂i − δi0)

2

−2νk̂r(κ̂0 − 1)
]

− M̂k̂rl,

(44)

and from the stationarity conditions follows the system:

(

6Z2R̂i R̂j κ̂i κ̂j + 1
)

k̂r − ν(κ̂0 − 1) = M̂, (45)

6Z2R̂0 R̂j

(

k̂r
)2

κ̂j +
1

2
(P̂ 0)2

(

κ̂0 − 1
)

= νk̂r, (46)

6Z2R̂i R̂j

(

k̂r
)2

κ̂j +
1

2
(P̂ i)2 κ̂i = 0, for i = 1, ..., n. (47)

Equations (46) and (47) form a linear system of order n + 1 that gives the

expressions of κ̂i(k̂r). The bending response M̂(k̂r) is then obtained by in-

troducing these expressions in Equation (45). Results are plotted in Figures

22 and 23 for several order of enrichment n=0, 2, 4, 6 et 8 and Z = 114.47

(R0 = 0.05 m, a =0.03 m, h=0.00015 m, E=210000 MPa and ν = 0.3). They

are compared to the Wuest estimate. It is recalled that a model of order n

only involves n
2
+ 1 degrees of freedom to describe the cross-section shape

(Legendre polynomials of odd order are not introduced).
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Figure 22: Bending moment M̂ with respect to the longitudinal curvature k̂r (uniform

solution) for several order of enrichment and comparison with the exact solution of Wuest.

Figure 23: Relative difference (%) on M̂(k̂r) between the enriched model and the exact

solution of Wuest for several order of enrichment.

Whatever the order of enrichment, the model has a correct asymptotic

behaviour for relatively high values of the longitudinal curvature k̂r (shell-

dominated behaviour). Model of order 0 is strictly the same as the original

model involving the only parameter βe to describe the cross-section shape

(uniform transverse curvature along the cross-section). As shown before,

this model overestimates the peak moment (around 20 %). The introduction

of a second degree of freedom (n=2) greatly improves its estimate but this

model shows discrepancies with the analytical solution of Wuest in the tran-
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n=0 n=2 n=4 n=6 n=8 Wuest

Peak Moment 19.3954 16.3388 16.2317 16.2317 16.2317 16.2317

M̂∗ 1.30000 1.29518 1.26979 1.24191 1.23896 1.23809

k̂r∗

2 0.999628 0.987448 0.963640 0.924214 0.935430 0.934083

Table 4: non-dimensional peak moment, propagating fold moment M̂∗ and longitudinal

curvature k̂r
∗

2
for several order of enrichment and the analytical solution of Wuest (ν = 0.3

and Z = 114.47)

sition zone between the rod-dominated behaviour and the shell-dominated

behaviour (see Figure 23). Models with 3, 4 and 5 dofs (n =4,6 and 7) lead to

relative differences of less than 7%, 2% and 1% respectively for 0 < k̂r < 1.1.

Some key features are reported in Table 4. These values are obtained

numerically for Z=114.473 and ν=0.3. Values of M̂∗ and k̂r∗

2 are obtained by

solving Equation (A.6). Estimates of Seffen and Pellegrino (1999) are found

for n = 0: M̂∗ ≈ 1 + ν and k̂r∗

2 ≈ 1. For n =2, the peak moment is much

better in accordance with the exact solution of Wuest but the propagating

fold moment is not greatly improved. Very good results are obtained for

n =6 and n = 8. The case n = 4 offers a good compromise between the

precision and the number of dofs for the cross-section shape.

Figure 24 compares the results obtained for the opposite sense bending

test with rigid end cross-sections between the RFleXS-2DS model for two

order of enrichment and the shell model. The proposed enrichment greatly

improves the initial model when compared to a shell model. The peak mo-

ment, which is overestimated with the initial model n = 0, is in agreement

53



Figure 24: Opposite sense bending test with rigid cross-sections at ends. Overall response

of the RFleXS-2DS models for two orders of enrichment compared to FE shell model.

with the shell model for the enriched model corresponding to n = 4. Never-

theless, the cusp observed during the back return for the shell model is not

observed with the RFleXS-2DS models. Some investigations (not presented

here) with the FE shell model have shown that the prescribed rotation (or

moment) at which the cusp occurs strongly depends on the mesh refinement.

The more the mesh is refined, the more the second local maximum after the

cusp is close to the first one located before the cusp and it is difficult to

determine the limit. Some further works are necessary to understand the

origin of this back return and to determine the equilibrium branches of the

continuous problem in this area.
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6. Conclusion

In this work, bifurcation diagrams of a reguralized Ericksen bar model is

deeply studied. A first result resides in the fact that these diagrams strongly

depend on the boundary conditions prescribed on higher order terms. With

von-Neumann boundary conditions, the bifurcation diagram exhibits a struc-

ture of loops that cross the fundamental branch (homogeneous solution) at

two points. The number of loops is bounded and each loop corresponds to a

post bifurcation shape with a given number of transition zones between ex-

trema of strains. Considering the overall response (stress vs average strain),

when the reguralized parameter is small, the loops exhibit a plateau at the

Maxwell stress and the post-bifurcation shape corresponds to regions of ho-

mogeneous strains separated by small transition zones that move along the

bar. Dirichlet boundary conditions acts as a perturbation to the problem

with von-Neumann conditions. There are no more bifurcation points and the

post-bifurcation shape is a two-phase bar with two transition zones, leading

to a localization of strain in the middle of the bar.

An obvious parallel is then made with the behaviour of tape-springs. To

this end, a reduced 1D rod model with an arc-of-circle flexible cross-section

dedicated to the pure opposite-sense bending test of shallow tape-springs is

proposed. This model involves only two kinematic variables linked to the

bending rotation and the transverse curvature of the cross-sections. The an-

alytical expression of the strain energy is found to be similar to the one of

a reguralized Ericksen bar model, with the higher order terms linked to the

variation of the cross-section shape along the tape. The model exhibits the

same properties as the reguralized Ericsen bar: sensitivity to boundary con-
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ditions on higher order terms, structure of loops for the bifurcation diagrams,

localization of curvature (folds). Strong form expressions of the governing

equations are obtained. It allows to propose estimates for the length of

transition zones that are satisfactory compared with FE results. Analytical

results are also found for the geometrical properties of the fold areas and the

Maxwel moment (or propagating fold moment) which are in agreement with

the estimates of Seffen and Pellegrino (1999).

Eventually, the overall response (bending moment vs average curvature)

obtained with the rod model with flexible cross-section is compared with

the ones obtained with some shell models. Considering the model of Wuest

(1954) who proposed an analytical expression for the fundamental solution,

discrepancies are found on the peak moment of the up-down-up constitutive

law. It is shown that this analytical expression can be found with the pro-

posed rod model when the circularity assumption of the cross-section shape

is removed. An enrichment of the cross-section kinematics is then proposed

and the results show good agreements with shell FE results.

In this work, it was shown that the tape-spring can be considered as a

reguralized Ericksen bar. This parallel explains the mechanical behaviour of

tape-spring in a deep way. It allows to confirm and complement the estimates

of the mechanical key features found by Seffen and Pellegrino (1999). The

reduced 1D rod model with an arc-of-circle flexible cross-section provides

good estimates of the propagating fold moment and the geometric properties

of locally-homogeneous parts: longitudinal and transverse curvatures in the

folds and in the almost undeformed parts. These estimates do not require the

reguralization terms (higher order terms) and are based on the analysis of
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the purely homogeneous solution and the equal-area rule of Maxwell. Rein-

troducing the higher order terms, the model allows to obtain satisfactory

estimates of the length of the transitions zones between the folds and the

almost undeformed parts, even if the kinematics assumptions ( arc-of-circle

cross-section) do not capture the precise shape of the cross-section in these

areas. It is also shown that the enrichment of the cross-section kinematics

leads to a much better estimate of the peak bending moment during a folding

test (compared to results obtained with FE shell models). Furthermore, it

predicts correctly the creation of a single fold in the middle of the tape with

rigid end cross-sections, when suitable boundary conditions are considered

on higher order terms. More examples of quantitative comparisons with ex-

perimental results and other numerical results can be found in Picault et al.

(2014): dynamics deployment of a tape spring involving a travelling fold for

instance.

This approach could be a good starting point to study the number of

stable folded configurations for a given loading at ends.
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Appendix A. Governing equations of the RFleXS-2DS model with

arc-of-circle cross-section and estimate of the prop-

agating fold moment M̂
∗

Assuming that the cross-section remains an arc-of-circle after deformation, the

model only involves one variable to describe the cross-section shape :

ẑ = β̂e(ŝ1)

(

ŝ22
2

− 1

6

)

. (A.1)
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The expression (A.1) is introduced in the elastic potential energy (20) and

(21), taking into account Eq. (12). The differentiation and integration by parts

leads to the strong form of the equilibrium equations (with cross-sections at ends

free to deform):

The uniform solution for which β̂e and k̂r = θ̂,1 do not depend on ŝ1 and must

verify:

(

4
15Z

2β̂e2 + 1
)

k̂r − ν
(

β̂e − 1
)

= M̂,

4
15Z

2β̂ek̂r
2 − νk̂r + β̂e − 1 = 0.

(A.2)

Solutions of this system (A.2) are

M̂ = k̂r − ν(β̂e − 1) +
4

15
Z2(β̂e)2 k̂r with β̂e =

1 + νk̂r

1 + 4
15Z

2k̂r2
. (A.3)

Plots of M̂(k̂r) and β̂e(k̂r) are shown in Figure 11 for the geometrical and

material properties corresponding to Z=114.47. The estimate of the propagating

fold moment M̂∗ = 1 + ν proposed by Seffen and Pellegrino (1999) is reported

in this Figure . It is shown in the following that the proposed model yields the

same estimate. First, it must be noticed that for small curvature k̂r, the bending

moment M̂(k̂r) is mainly governed by the rod overall bending because the second

moment of area of the cross-section is high. On the contrary, for high curvature,

the cross-section is almost completely flattened (see the plot β̂e(k̂r) in Figure 11)

and the bending moment is mainly governed by the local shell bending. It leads

to simplify equations (25) for these two cases :

� for rod-dominated behaviour (relatively small curvature k̂r),

β̂e ≈ 1

1 + 4
15Z

2k̂r2
and M̂ ≈ 4

15
Z2 k̂r

(

1 + 4
15Z

2k̂r2
)2 , (A.4)

� for shell-dominated behaviour (relatively high curvature k̂r),

β̂e ≈ 0 and M̂ ≈ ν + k̂r. (A.5)
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Figure A.25: Bending moment M̂(k̂r) and estimates for small and high longitudinal cur-

vatures k̂r for Z = 114.47.

The consistency of these approximations are illustrated in Figure A.25. The prop-

agating fold moment M̂∗ must verify (equality of areas A1 and A2 in Figure 11):

∫ k̂r
∗

2

k̂r
∗

1

M̂ dk̂r = M̂∗(k̂r
∗

2 − k̂r
∗

1 ) ⇒
∫ k̂r

∗

2

0
M̂ dk̂r −

∫ k̂r
∗

1

0
M̂ dk̂r = M̂∗(k̂r

∗

2 − k̂r
∗

1 ),

(A.6)

with k̂r
∗

1 and k̂r
∗

2 the smallest and highest positive values of k̂r verifying M̂(k̂r) =

M̂∗. Using estimates (A.4) and (A.5) of M̂(k̂r) for small and high curvatures leads

to:

M̂(k̂r
∗

1 ) = M̂∗ ≈ 4

15
Z2 k̂r

∗

1
(

1 + 4
15Z

2k̂r
2

1

)2 and M̂ (k̂r
∗

2 ) = M̂∗ ≈ ν + k̂r
∗

2 .

Furthermore, Figure 11 suggests to assume that

k̂r
∗

2 >> k̂r
∗

1 and

∫ k̂r
∗

2

0
M̂ dk̂r >>

∫ k̂r
∗

1

0
M̂ dk̂r. (A.7)

Finally, Equation (A.6) leads to
∫ k̂r

∗

2

0 M̂ dk̂r ≈ M̂∗k̂r
∗

2 ≈ (k̂r
∗

2 + ν)k̂r
∗

2 . Combining

equations in (A.3) leads an expression of M̂(k̂r) that can be integrated. It leads

to:
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∫ k̂r
∗

2

0
M̂ dk̂r =

(k̂r
∗

2 )2
(

15(1 − ν2) + 4Z2
(

1 + k̂r
∗

2 (k̂r
∗

2 + 2ν)
))

30 + 8Z2(k̂r
∗

2 )2
≈ (k̂r

∗

2 + ν)k̂r
∗

2 .

Assuming that Z2 >> 1 and k̂r
∗

2 of the order of unity (valid in practice), the

solution of this last equation is k̂r
∗

2 ≈ 1 and then M̂∗ ≈ 1 + ν and k̂r
∗

1 ≈ 15
4

1+ν
Z2 .

These values make assumptions (A.7) valid and are in agreement with the estimates

proposed by Seffen and Pellegrino (1999). In the fold area, the cross-section is

almost completely flattened (βe ≈ 0) and the longitudinal curvature is close to the

initial transverse curvature (k̂r
∗

2 ≈ 1). The curvature k̂r
∗

1 ≈ 15
4

1+ν
Z2 can be obtained

with the linear classical beam theory for which the deformation of the cross-section

is neglected. It is shown here that the assumption of arc-of-circle cross-section leads

to the same estimate of the propagating fold moment M̂∗ ≈ 1 + ν obtained by

Seffen and Pellegrino (1999).
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