We assume (for simplicity) that the functional setting is such that (I.1) is globally well-posed for any initial data y 0 and any control v in a suitable functional space.

Definition I.1.1 Let y 0 P E. We say that: ' (I.1) is exactly controllable from y 0 if : for any y T P E, there exists a control v : p0, T q Ñ U such that the corresponding solution y v,y 0 of (I.1) satisfies y v,y 0 pT q " y T .

If this property holds for any y 0 , we simply say that the system is exactly controllable.

Chapter I Introduction Disclaimer : Those lecture notes were written to support a Master course given by the author at Toulouse between 2016 and 2018. Since then, they were regularly updated but are still far from being complete and many references of the literature are lacking (I promise they will be added in the next releases !).

It still contains almost surely many mistakes, inaccuracies or typos. Any reader is encouraged to send me 1 any comments or suggestions.

I.1 What is it all about ?

We shall consider a very unprecise setting for the moment : consider a (differential) dynamical system # y 1 " F pt, y, vptqq, yp0q " y 0 , (I.1) in which the user can act on the system through the input v. Here, y (resp. v) live in a state space E (resp. a control space U ) which are finite dimensional spaces (the ODE case) or in infinite dimensional spaces (the PDE case).

' (I.1) is approximately controllable from y 0 if : for any y T P E, and any ε ą 0, there exists a control v : p0, T q Ñ U such that the corresponding solution y v,y 0 of (I.1) satisfies }y v,y 0 pT q ´yT } E ď ε.

If this property holds for any y 0 , we simply say that the system is approximately controllable.

' (I.1) is controllable to the trajectories from y 0 if : for any ȳ0 P E, and any v : p0, T q Ñ U , there exists a control v : p0, T q Ñ U such that the corresponding solution y v,y 0 of (I.1) satisfies y v,y 0 pT q " y v,ȳ 0 pT q.

If this property holds for any y 0 , we simply say that the system is controllable to trajectories.

It is clear from the definitions that exact controllability ùñ approximate controllability, exact controllability ùñ controllability to trajectories.

Moreover, for linear problems we have controllability to trajectories ùñ null-controllability, and it can be often observed that controllability to trajectories ùñ approximate controllability.

We will possibly also discuss about related topics like :

' Optimal control : find v such that the couple py, vq satisfies some optimality criterion.

' Closed-loop stabilisation : Assume that 0 is an unstable fixed point of y Þ Ñ F py, 0q (we assume here that F is autonomous), does it exist an operator K such that, if we define the control v " Ky, then 0 becomes an asymptotically stable fixed point of y 1 " F py, Kyq.

I.2 Examples

Let us present a few examples.

Any function satisfying this integral condition will be a solution of our problem. It is clear that there exists plenty of such admissible functions.

' Let us try to consider a constant control vpsq " M for any s P r0, T s and for some M . The equation to be solved is M 1 ´e´λT λ " y T ´e´λT y 0 .

It follows that

M " λ y T ´e´λT y 0 1 ´e´λT . The L 2 norm on r0, T s of this control is given by }v} L 2 p0,T q " |M | ? T .

-If y T ‰ 0, we thus have }v} L 2 p0,T q " λÑ`8

λ ? T |y T |.
This proves that the cost of such a control blows up as λ Ñ 8. This is natural since the equation is more dissipative when λ is large and thus the system has more difficulties to achieve a non zero state.

-Conversely, if y T " 0, we have }v} L 2 p0,T q " λÑ`8 λ ? T |y 0 |e ´λT , and thus the cost of the control is asymptotically small when λ is large.

' Why do not take an exponential control ? For a given µ P R, we set vptq " M e ´µpT ´tq , the controllability condition reads M 1 ´e´pλ`µqT λ `µ " y T ´e´λT y 0 , so that M " pλ `µq y T ´e´λT y 0 1 ´e´pλ`µqT . Let us compute the L 2 norm of such a control ż T 0 |vptq| 2 dt " M 2 1 ´e´2µT 2µ " pλ `µq 2 2µ py T ´e´λT y 0 q 2 p1 ´e´pλ`µqT q 2 p1 ´e´2µT q.

We will see later that this quantity is minimal for µ " λ and we then obtain

ż T 0 |vptq| 2 dt " 2λ
py T ´e´λT y 0 q 2 p1 ´e´2λT q 2 p1 ´e´2λT q, so that }v} L 2 p0,T q " λÑ`8 ? 2λ|y T |.

Observe that this cost behaves like ? λ for large λ compared to the constant control case which behaves like λ for large λ. 

I.2.2 The rocket

We consider a rocket which is trying to land on the ground. The rocket is supposed to be a single material point (!!) and the motion is 1D (in the vertical direction). Let x be the altitude of the rocket and y its vertical velocity. The initial altitude is denoted by x 0 ą 0 and the initial velocity is denoted by y 0 (we assume y 0 ď 0 without loss of generality). The control v is the force generated by the engines of the rocket. The equations of motion of this very simple example are

$ ' ' ' & ' ' ' %
x 1 ptq " yptq, y 1 ptq " vptq ´g, xp0q " x 0 ą 0, yp0q " y 0 ď 0,

The goal is to land the rocket at time T : we want xpT q " ypT q " 0.

An explicit computation leads to

$ ' ' & ' ' %
yptq " y 0 ´gt `ż t 0 vpsq ds, xptq " h 0 `ż t 0 ypτ q dτ " h 0 `y0 t ´1 2 gt 2 `ż t 0 vpsqpt ´sq ds.

We conclude that, for a given T ą 0, the control law v does the job if and only if it satisfies

$ ' ' ' & ' ' ' % ż T 0 vpsq ds " gT `|y 0 |, ż T 0 vpsqs ds " 1 2 gT 2 `h0 . (I.2)
This is our first (and not last !) contact with a moment's problem.

There is clearly an infinite number of solutions to the system (I.2). Let us try to build two examples:

' For some T 0 P p0, T q and some M ą 0 to be fixed later, we look for a control of the following form vptq " # M for t ă T 0 , 0 for t ą T 0 .

System (I.2) leads to

M T 0 " gT `|y 0 |, M T 2 0 2 " 1 2 gT 2 `h0 .
This can be solved as follows ' For some α, β to be fixed later, we set vptq " α `βt, @t P p0, T q.

System (I. We observe that there is no condition on the time T for this function to be a mathematical solution of our problem. However, we have max r0,T s |vptq| "

T Ñ0 6h 0 T 2 , which proves that, for small control times T , the magnitude of the necessary power of the engines may be infinite. This is of course not reasonable.

Similarly, for a real rocket, we expect v to be a non negative function. Looking at the expression above, we see that the non-negativity of v holds if and only if the following condition holds

|6h 0 ´3|y 0 |T | ď gT 2 `|y 0 |T.
Here also, this condition is satisfied if T is large enough and certainly not satisfied for small values of T . It thus seems that this particular control is not physically admissible for small control times T .

The above solution defined in (I.3) is nevertheless interesting (from a modeling and mathematical point of view) since we can show that it is, for a given T , the unique solution among all possible solutions which has a minimal L 2 norm. Let us prove this in few lines : if w : r0, T s Ñ R is a control function that drives the solution at rest at time T , then it also solves the equations (I.2) and in particular we have ż T 0 pv ´wqpsq ds " 0, ż T 0 spv ´wqpsq ds " 0.

Since v is a linear function, that is a combination of s Þ Ñ 1 and s Þ Ñ s, the above relations give ż T 0 vpv ´wq ds " 0.

This means that v ´w is orthogonal to v in L 2 and the Pythagorean theorem leads to }w} 2 L 2 " }pw ´vq `v} 2 L 2 " }w ´v} 2 L 2 `}v} 2 L 2 ě }v} 2 L 2 , with equality if and only if v " w.

The solution v is thus the optimal cost control with this particular definition of the cost. In practice, the command of the pilot is not instantaneously transmitted to the rocket. To model this behavior, we introduce a delay time τ ą 0 and replace the previous model with the following one

$ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' %
x 1 ptq " yptq, y 1 ptq " wptq ´g,

w 1 ptq " 1 τ pvptq ´wptqq,
xp0q " x 0 ą 0, yp0q " y 0 ď 0, wp0q " 0.

By using the same approach as before, show that the previous system is controllable at any time T ą 0.

Compute explicitly such controls and try to find the one with minimal L 2 p0, T q norm.

I.2.3 Nonlinear examples

We consider a nonlinear autonomous (this is just for simplicity) ODE system of the form (I.1) and we assume that F p0, 0q " 0 in such a way that py, vq " 0 is a solution of the system. We would like to study the local controllability of the nonlinear system. To this end, we consider the linearized system y 1 " Ay `Bv, (I.4)

where A " D y F p0, 0q and B " D v F p0, 0q are the partial Jacobian matrices of F with respect to the state and the control variable respectively. We will not discuss this point in detail but the general philosophy is the following:

' Positive linear test:

If the linearized system (I.4) around p0, 0q is controllable, then the initial nonlinear system (I.1) is locally controllable at any time T ą 0. More precisely, it means that for any T ą 0, there exists ε ą 0 such that for any y 0 , y T P R n satisfying }y 0 } ď ε and }y T } ď ε, there exists a control v P L 8 p0, T, R m q such that the solution of (I.1) starting at y 0 satisfies ypT q " y T .

' Negative linear test:

Unfortunately (or fortunately !) it happens that the linear test is not sufficient to determine the local controllability of a nonlinear system around an equilibrium. In other words : nonlinearity helps !

There exists systems such that the linearized system is not controllable and that are nevertheless controllable.

' The nonlinear spring: y 2 " ´kyp1 `Cy 2 q `vptq.

The linearized system around the equilibrium py " 0, v " 0q is

y 2 " ´ky `v,
which is a controllable system (exercise ...). Therefore, we may prove that the nonlinear system is also controllable locally around the equilibrium y " y 1 " 0.

' The baby troller: This is an example taken from [START_REF] Coron | Control and nonlinearity[END_REF].

The unknowns of this system are the 2D coordinates py 1 , y 2 q of the center of mass of the troller, and the direction y 3 of the troller (that is the angle with respect to any fixed direction). There are two controls v 1 and v 2 since the pilot can push the troller in the direction given by y 3 (with a velocity v 1 ) or turn the troller (with an angular veloctiy v 2 ). The set of equations is then

$ ' & ' %
y 1 1 " v 1 cospy 3 q, y 1 2 " v 1 sinpy 3 q, y 1 3 " v 2 .

Observe that any point ȳ P R 3 , v " 0 P R 2 is an equilibrium of the system. The linearized system around this equilibirum reads

$ ' & ' %
y 1 1 " v 1 cospȳ 3 q, y 1 2 " v 1 sinpȳ 3 q, y 1 3 " v 2 . It is clear that this system is not controllable since the quantity sinpȳ 3 qy 1 ´cospȳ 3 qy 2 , does not depend on time.

It follows that the (even local) controllability of the nonlinear system is much more difficult to prove ... and actually cannot rely on usual linearization arguments. However, it is true that the nonlinear system is locally controllable, see [START_REF] Coron | Control and nonlinearity[END_REF].

I.2.4 PDE examples

' The transport equation : Boundary control Let y 0 : p0, Lq Ñ R and c ą 0, we consider the following controlled problem $ ' & ' % B t y `cB x y " 0, @pt, xq P p0, `8q ˆp0, Lq, yp0, xq " y 0 pxq, @x P p0, Lq, ypt, 0q " vptq.

(I.5)

When posed on the whole space R, the exact solution of the transport problem reads ypt, xq " y 0 pc ´xtq, @t ě 0, @x P R.

This can be proved by showing that the solution is constant along (backward) characteristics. In presence of an inflow boundary, the same property holds but it may happen that the characteristics touch the boundary at some positive time. In this case, the boundary condition has to be taken into account.

Therefore, for a given y 0 and v, the unique solution to Problem (I.5) is given by ypt, xq " # y 0 px ´ctq, for x P p0, Lq, t ă x{c, vpt ´x{cq, for x P p0, Lq, t ą x{c.

In the limit case t " x{c there is an over-determination of the solution that cannot be solved in general. It follows that, even if y 0 and v are smooth, the solution is a weak solution which is possibly discontinuous. If, additionally, the initial condition and the boundary data satisfy the compatibility condition y 0 px " 0q " vpt " 0q, c b na F. BOYER -JUNE 27, 2023

then the exact solution is continuous.

Theorem I.2.3 -If T ě L{c the transport problem is exactly controllable at time T , for initial data and target in L 2 p0, Lq and with a control in L 2 p0, T q.

If additionally we have T ą L{c and y 0 ,y T are smooth, then we can find a smooth control v that produces a smooth solution y.

-If T ă L{c the transport problem is not even approximately controllable at time T .

' The heat equation : distributed internal control acting everywhere.

Let y 0 : p0, Lq Ñ R, we consider the following controlled problem

$ ' & ' % B t y ´B2
x y " vpt, xq, @pt, xq P p0, `8q ˆp0, Lq, yp0, xq " y 0 pxq, @x P p0, Lq, ypt, 0q " ypt, Lq " 0, @t ą 0. For each n the equation (I.6) gives y 1 n ptq `n2 y n ptq " v n ptq, where y n p0q " y n,0 " a 2{π ş π 0 y 0 pxq sinpnxq dx is the n-th Fourier coefficient of the initial data y 0 . We try to achieve a state y T P L 2 pΩq whose Fourier coefficients are given y n,T .

For each n we thus have to build a control v n for a single ODE. We have seen that there are many solutions to do so. We need to take care of this choice since, at the end, we need to justify the convergence in some sense of the series that defines v.

-Reachable set from 0. We assume that y 0 " 0 and we would like to understand what kind of targets can be achieved and the related regularity of the control.

* If we choose v n to be constant in time, the computations of Section I.2.1 show that v n ptq " n 2 y n,T 1 ´e´n 2 T " `8 n 2 y n,T . Formally, we have thus found a time independent control v that reads vpxq " a 2{π ÿ ně1 n 2 y n,T 1 ´e´n 2 T sinpnxq.

* Can we do better ? We have seen in Section I.2.1, that a better control (in the sense of a smaller L 2 norm) consists in chosing an exponential control v n ptq " M n e ´n2 pT ´tq . In that case, we have the estimate }v n } L 2 p0,T q " `8 Cn|y n,T |. It can then be checked that the regularity of such a control is related to the regularity of y T as follows.

v P L 2 p0, T, L 2 p0, πqq ô y T P H 1 0 p0, πq, v P L 2 p0, T, H ´1p0, πqq ô y T P L 2 p0, πq.

As a conclusion, if one wants to control to a target which is in L 2 p0, πq, we can either take a timeindependent control in H ´2p0, πq or a time dependent control in L 2 p0, T, H ´1p0, πqq. In some sense we pay the higher regularity in space of v by a smaller regularity in time of v.

Another way to understand this analysis is that, if one wants to be able to control the equation with a control that only belongs to L 2 pp0, T q ˆΩq, we need to impose y T P H 1 0 p0, πq. A target y T belonging to L 2 p0, πqzH 1 0 p0, πq (such as a indicatrix function for instance) is not achievable by controls in L 2 . -Null-controllability : We ask now a different question : we assume that y T " 0 and that y 0 is any function. Is it possible to achieve 0 at time T starting from any y 0 ? * If we choose v n to be constant in time, the computations of Section I.2.1 show that v n ptq " ´n2 e ´n2 T y n,0 1 ´e´n 2 T " `8 ´n2 e ´n2 T y n,0 .

Formally, we have thus found a time independent control v that reads vpxq " a 2{π ÿ ně1 ´n2 e ´n2 T y n,0 1 ´e´n 2 T sinpnxq. and we observe that this series converges for any y 0 in a possibly very negative Sobolev space H ´k. This is a nice consequence of the regularizing effect of the heat equation (without source terms). It follows immediately that the null-controllability of the heat equation is much more easy to achieve than the exact controllability to any given trajectory.

* Just like before we could then try to find the optimal control in the L 2 sense. We will discuss this question in a more general setting later on.

In practice, we will be interested in control problems for the heat equation that are supported in a subset of the domain Ω or on the boundary. This makes the problem much more difficult as we will see in the sequel since it is no more possible to use a basic Fourier decomposition that lead to the resolution of a countable family of controlled scalar, linear, and independent ODEs.

I.3 General notations

We gather in this section a few notations that we use in this document.

' Integer intervals

For any real numbers a ă b we introduce the following sets of integers Moreover, if α, β P N n are two multi-indices, we say that α ď β if and only if α i ď β i , @i P 1, n .

' The complex plane

We will denote by C `the open half-plane of complex numbers with positive real part, and Dpz, Rq the open disk with centre z and radius R.

For any complex number λ P C, we define erλs to be the exponential function

erλs def " ´t Þ ÝÑ e ´λt ¯.
(I.7)

When evaluating this function at time t we shall write e t rλs " e ´λt . This bracket notation is motivated by the fact that we shall need, from time to time, to use the (generalized) divided differences formalism recalled in Section A.2. In particular for any j P N we shall set e t rλ pj`1q s " p´tq j j! e ´λt . (I.8)

' Functional spaces

For every open interval I Ă R we denote by L 2 pIq the space of square integrable complex valued functions, which is an Hilbert space when equipped with the inner product pf, gq L 2 pIq " ż I f ptqgptq dt.

For I " p0, T q, we shall also use the notation L 2 p0, T q.
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Chapter II

Controllability of linear ordinary differential equations

In this chapter, we focus our attention on the following controlled system # y 1 ptq `Ayptq " Bvptq, yp0q " y 0 , (II.1)

where A P M n pRq, B P M n,m pRq, yptq P R n and vptq P R m . Note that A and B do not depend on time (even though some part of the following analysis can be adapted for non autonomous systems).

We shall often denote by E " R n the state space and by U " R m the control space.

II.1 Preliminaries

II.1.1 Exact representation formula

Given an initial data y 0 P R n and a control v, we recall that (II.1) can be explicitely solved by means of the fundamental solution of the homogeneous equation t Þ Ñ e ´tA z, z P R n and of the Duhamel formula. We obtain yptq " e ´tA y 0 `ż t 0 e ´pt´sqA Bvpsq ds, @t P r0, T s.

In particular, the solution at time T (which is the object we are interested in) is given by ypT q " e ´T A y 0 `ż T 0 e ´pT ´sqA Bvpsq ds.

(II.2)

We recall that the exponential of any matrix M is defined by the series

e M " ÿ kě0 M k k! ,
which is locally uniformly convergent. The linear part (in v) of the solution will be denoted by

L T v def " ż T 0
e ´pT ´sqA Bvpsq ds, it corresponds to the solution of our system with the initial data y 0 " 0.

In the non-autonomous case, we need to use the resolvant matrix as recalled in Appendix A.1.

c bna F. BOYER -JUNE 27, 2023

II.1.2 Duality

As we will see later on, it will be very useful to adopt a dual point of view in our analysis. For the moment, we simply pick any q T P R n and we take the Euclidean inner product of (II.2) by q T . We get xypT q, q T y E " xe ´T A y 0 , q T y E `ż T 0 xe ´pT ´sqA Bvpsq, q T y E ds, that we can rewrite, using the adjoint operators (=transpose matrix in this context), as follows xypT q, q T y E " xy 0 , e ´T A ˚qT y E `ż T 0 xvpsq, B ˚e´pT ´sqA ˚qT y U ds.

(II.3)

We can still reformulate at little bit this formula by introducing the adjoint equation of (II.1) which is the backward in time homogeneous system (i.e. without any control term) ´q1 ptq `A˚q ptq " 0, (II.4) with the final data qpT q " q T and which can be explicitely computed

qptq " e ´pT ´tqA ˚qT .

We will see in Section II.5 the reason why the adjoint equation enters the game. With this notation, (II.3) becomes xypT q, qpT qy E " xy 0 , qp0qy E `ż T 0 xvpsq, B ˚qpsqy U ds, (II.5) and this equation holds true for any solution q of the adjoint system (II.4)

II.1.3 Reachable states. Control spaces

The solution of our system (II.2) is well-defined as soon as v P L 1 p0, T, R m q " L 1 p0, T, U q, see Appendix A.1 and the corresponding solution map L T : v Þ Ñ y is continuous from L 1 p0, T, U q into C 0 pr0, T s, Eq. For any subspace V Ă L 1 p0, T, U q we define the set of reachable states at time T as follows R T,V py 0 q def " " e ´T A y 0 `ż T 0 e ´pT ´sqA Bvpsq ds, for v P V * " e ´T A y 0 `LT pV q.

We immediately see that R T,V py 0 q is a (finite dimensional) affine subspace of E " R n . Moreover, since L T is continuous for the L 1 p0, T, U q topology, we obtain that R T,V py 0 q " R T,V py 0 q, and since this last space is finite dimensional, we finally have R T,V py 0 q " R T,V py 0 q.

As a consequence, for any dense subspace V of L 1 p0, T, U q, we have R T,V py 0 q " R T,L 1 p0,T,U q py 0 q.

Therefore, in the sequel we can choose, without consequence, any dense subspace of L 1 p0, T, U q to study the controllability properties of our system and the corresponding reachable set will simply be denoted by R T py 0 q.

As a consequence of the previous analysis, we have that if y T P R T py 0 q we can actually achieve this target with a control belonging to the space C 8 c ps0, T rq.
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II.2 Kalman criterion. Unique continuation

The first criterion we have in order to decide whether or not (II.1) is controllable is the following famous result.

Theorem II.2.1 (Kalman rank criterion)

Let T ą 0. The following propositions are equivalent.

1. Problem pSq is exactly controllable at time T (for any y 0 , y T ...)

2. Problem pSq is approximately controllable at time T (for any y 0 , y T ...)

3. The matrices A and B satisfy rankpKq " n, with K def " `B|AB| . . . |A n´1 B ˘P M n,mn pRq.

(II.6)

If any of the above properties hold we say that the pair pA, Bq is controllable.

The matrix K in this result is called the Kalman matrix.

Remark II.2.2 ' This result shows, in particular, that in this framework the notions of approximate and exact controllability are equivalent.

' It also shows that those two notions are independent of the time horizon T .

' It is very useful to observe that the rank condition (II.6) is equivalent to the following property Ker K ˚" t0u.

Proof :

In this proof, we assume that y 0 is any fixed initial data.

1.ô2. Since we work in a finite dimensional setting, it follows from (II.2) that exact controllability from y 0 ðñ R T py 0 q " E ðñ R T py 0 q is dense in E ðñ approximate controllability from y 0 .

1.ñ3. Assume that rankpKq ă n, or equivalently that Ker K ˚‰ t0u; it follows that there exists q T P R n zt0u such that K ˚qT " 0. But we have K ˚qT " 0 ðñ B ˚pA ˚qp q T " 0, @p ă n ðñ B ˚pA ˚qp q T " 0, @p ě 0, by the Cayley-Hamilton Theorem ðñ B ˚e´sA ˚qT " 0, @s P r0, T s, by the properties of the exponential.

By (II.3), we deduce that such a q T is necessarily orthogonal to the vector space R T py 0 q´e ´T A y 0 , and therefore this subspace cannot be equal to R n .

3.ñ1. Assume that our system is not exactly controllable at time T . It implies that, there exists a q T ‰ 0 which is orthogonal to R T py 0 q ´e´T A y 0 . By (II.3), we deduce that for any control v we have We apply this equality to the particular control vpsq " B ˚e´pT ´sqA ˚qT to deduce that we necessarily have B ˚e´sA ˚qT " 0, @s P r0, T s.

The equivalences above show that q T P Ker K ˚and thus this kernel cannot reduce to t0u.

Remark II.2.3

At the very beginning of the proof we have shown that

q T P Ker K ˚ðñ q T P Q T ,
where Q T is the set of the non-observable adjoint states defined by Q T def " tq T P R n , B ˚e´sA ˚qT " 0, @s P r0, T su.

Thus, another formulation of the Kalman criterion is pA, Bq is controllable ðñ ˆB˚e´sA ˚qT " 0, @s P r0, T s ñ q T " 0 ˙.

This last property is called the unique continuation property of the adjoint system through the observation operator B

˚.

The point we want to emphasize here is that, in the infinite dimension case, it can be difficult to define a Kalman matrix (or operator) if A is an unbounded linear operator (because we need to compute successive powers of A) but however, it seems to be affordable to define the set Q T as soon as we have a suitable semi-group theory that gives a sense to e ´sA ˚for s ě 0 since it is not possible in general to simply set e ´sA ˚" ř kě0 1 k! p´sA ˚qk when A ˚is a differential operator. More precisely, if we imagine for a moment that A is an unbounded linear operator in an Hilbert space (for instance the Laplace-Dirichlet operator in some Sobolev space), then it is very difficult to define a kind of Kalman operator since it would require to consider successive powers of A, each of them being defined on different domains (that are getting smaller and smaller at each application of A).

Example II.2.4

Without loss of generality we can assume that B is full rank rankpBq " m.

1. If the pair pA, Bq is controllable, then the eigenspaces of A ˚(and thus also those of A) has at most dimension m. For instance if m " 1, a necessary condition for the controllability of the pair pA, Bq is that each eigenvalue of A ˚is geometrically simple.

Another necessary condition is that the minimal polynomial of A ˚is of degree exactly n.
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2. Second order systems. With the same notations as before, the second order controlled system y 2 `Ay " Bv, is controllable if and only if the pair pA, Bq satisfies the Kalman criterion.

3. Conditions on the control: If the pair pA, Bq is controllable then we can find controls satisfying additional properties.

' For any v 0 P R m and v T P R m we can find a control v from y 0 to y T for our system such that yp0q " y 0 , ypT q " y T , vp0q " v 0 , and vpT q " v T .

' We can find a control v P C 8 c p0, T q such that yp0q " y 0 and ypT q " y T .

In view of the techniques we will present later on on the controllability of parabolic PDEs, we shall now present another proof of the previous theorem. Proof (of Theorem II.2.1 -direct proof):

We shall actually prove that, if the Kalman condition is satisfied then our system is indeed controllable. Moreover, we shall give a constructive proof of the control.

For simplicity (and since we are mainly interested in presenting the method and not in the general result that we have already proved before), we shall assume that m " 1. We also assume that y T " 0 (which is always possible for a linear system).

By assumption the square (since m " 1) matrix K is invertible and thus we shall use the change of variable y " Kz in order to transform our control system. A simple computation shows that 

B " K ¨1 0 . . .
0 ¨¨¨0 1 a n,n ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' loooooooooooooomoooooooooooooon " Ā .
It follows that the equation for z Kz 1 `AKz " Bv, becomes Kpz 1 `Āzq " K Bv,

and since K is invertible z 1 `Āz " Bv (II.7)
With the Kalman matrix, we thus have been able to put our system into a canonical form where Ā has a companion structure (it looks pretty much like a Jordan block) and B is the first vector of the canonical basis of R n . This structure if often called cascade systems in control theory. The important feature of Ā is that its under diagonal terms do not vanish. It reveals the particular way by which the control v acts on the system. Indeed, v directly appears in the first equation and then tries to drive z 1 to the target at time T (observe however that the dynamics is also coupled with the rest of the system by the term a 1,n z n ) z 1 1 ptq `a1,n z n ptq " vptq. The control v does not appear in the second equation
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but this equation contains a term z 1 that plays the role of an indirect control of z 2 , and so on ... Let us now give the construction of the control v:

' We start by defining pz i q 1ďiďn to be the free solution of the system (the one with v " 0).

' We choose a truncature function η : r0, T s Ñ R such that η " 1 on r0, T {3s and η " 0 on r2T {3, T s.

' We start by choosing

z n ptq def " ηptqz n ptq,
then, by using the last equation of the system (II.7), we need to define

z n´1 ptq def " z 1 n ptq ´an´1,n z n ptq.
Similarly, by using the equation number n ´1 of (II.7), we set

z n´2 ptq def " z 1 n´1 ptq ´an´2,n z n ptq.
by induction, we define z n´3 , . . . , z 2 in the same way.

Finally, the first equation of the system (II.7) gives us the control we need vptq " z 1 1 ptq `a1,n z n ptq.

By such a construction, the functions pz i q i satisfy the controlled system with the control v we just defined.

' Let us prove, by reverse induction that, for any k we have

# z k " zk , in r0, T {3s, z k " 0, in r2T {3, T s. (II.8)
This will in particular prove that zpT q " 0 and that zp0q " zp0q " zp0q " z 0 .

-For k " n, the properties (II.8) simply comes from the choice of the truncature function.

-For k " n ´1, we observe that, by construction and induction, for any t P r0, T {3s, z n´1 ptq " z 1 n ptq ´an´1,n z n ptq " zn 1 ptq ´an´1,n zn ptq " zn´1 ptq, the last equality coming from the fact that z solves the free equation.

-And so on up to k " 1, ...

Exercise II.2.5

Propose a similar proof to deal with the case m " 2 and rankpBq " m " 2.

Exercise II.2.6

Assume that A, B are such that the rank r of the Kalman matrix K satisfies r ă n. Then there exists a P P GL n pRq such that A " P ˆA11 A 12 0 A 22 ˙P ´1, and B " P ˆB1 0 ˙, and moreover the pair pA 11 , B 1 q is controllable. What are the consequences of this result for the controllability of the initial system ?
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Exercise II.2.7 (Partial controllability)

We assume given p ď n and a matrix P P M p,n pRq. We say that (II.1) is partially controllable relatively to P if and only if for any y 0 P R n and any ȳT P R p there exists a control v P L 2 p0, T ; U q such that the associated solution to (II.1) satisfies P ypT q " ȳT .

Show that (II.1) is partially conntrollable relatively to P if and only if rankpK P q " p, where K P def " `P B|P AB| . . . |P A n´1 B ˘P M p,mn pRq.

II.3 Fattorini-Hautus test

We are going to establish another criterion for the controllability of autonomous linear ODE systems. This one will only be concerned with the eigenspaces of the matrix A ˚, and we know that there are plenty of unbounded operators for which we can define a suitable spectral theory. It is then easy to imagine that we will be able, at least, to formulate a similar result in the infinite dimension case.

Theorem II.3.8 (Fattorini-Hautus test)

The pair pA, Bq is controllable if and only if we have Ker pB ˚q X Ker pA ˚´λI q " t0u, @λ P C.

(II.9)

In other words : pA, Bq is controllable if and only if

B ˚ϕ ‰ 0, for any eigenvector ϕ of A ˚.
Let us start with the following straightforward lemma (in which the space Q T is considered as a subspace of C n ).

Lemma II.3.9

For any polynomial P P CrXs we have

P pA ˚qQ T Ă Q T .

Proof :

Let q T P Q T . By definition, we have B ˚esA ˚qT " 0, @s P R, so that by differentiating k times with respect to s, we get B ˚esA ˚pA ˚qk q T " 0, @s P R.

It means that pA ˚qk q T P Q T . The proof is complete. Proof (of Theorem II.3.8):

The Kalman criterion says that pA, Bq is controllable if and only if we have Ker K ˚" t0u. Moreover, we saw at the end of Section II.2 that this condition is equivalent to saying that there is no non-observable adjoint states excepted 0, that is
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' Assume first that (II.9) is not true. There exists a λ P C and a ϕ ‰ 0 such that A ˚ϕ " λϕ, and B ˚ϕ " 0.

Note that, in particular, λ is an eigenvalue of A ˚. A straighforward computation shows that B ˚e´sA ˚ϕ " B ˚´e ´sλ ϕ ¯" e ´sλ B ˚ϕ " 0.

This proves that ϕ P Q T so that Q T ‰ t0u. Therefore the system does not fulfill the Kalman criterion. We have proved the non controllability of the system.

' Assume that (II.9) holds and let ϕ P Q T . We shall prove that ϕ " 0. To begin with we take λ P C an eigenvalue of A ˚and we introduce E λ the generalized eigenspace associated with λ, that is

E λ " Ker C n pA ˚´λI q n .
Linear algebra says that we can write the direct sum

C n " E λ 1 ' ¨¨¨' E λp , with distinct values of pλ i q i .
We recall that the projector on E λ associated with such a direct sum can be expressed as a polynomial in A ˚:

there exists polynomials P λ P CrXs such that ϕ "

p ÿ i"1 P λ i pA ˚qϕ, with P λ i pA ˚qϕ P E λ i , @i P 1, p .
(II.10) By Lemma II.3.9, we have ϕ λ def " P λ pA ˚qϕ P Q T . We want to show that ϕ λ " 0. If it is not the case, there exists k ě 1 such that pA ˚´λI q k ϕ λ " 0, and pA ˚´λI q k´1 ϕ λ ‰ 0.

This proves that pA ˚´λI q k´1 ϕ λ is an eigenvector of A ˚and, by Lemma II.3.9 it belongs to Q T . Since by definition we have Q T Ă Ker B ˚, we have proved that pA ˚´λI q k´1 ϕ λ P Ker pB ˚q X Ker pA ˚´λI q, which is a contradiction with (II.9).

Therefore, ϕ λ " 0 for any eigenvalue λ and, by (II.10), we eventually get ϕ " 0.

Remark II.3.10

The above proof of the Fattorini-Hautus test is not necessarily the simplest one in the finite dimension case but it has the advantage to be generalizable to the infinite dimensional setting, see Theorem III.3.7.

Exercise II.3.11 (Simultaneous control)

Let us assume that m " 1 and we are given two pairs pA 1 , B 1 q (dimension n 1 ) and pA 2 , B 2 q (of dimension n 2 ). We assume that both pairs are controllable and we ask the question of whether they are simultaneously controllable (that is we can drive the two systems from one point to another by using the same control for both systems). Show that the two systems are simultaneously controllable if and only if SppA 1 q X SppA 2 q " H. 

II.4 The moments method

We shall now describe, still in the simplest case of an autonomous linear controlled system of ODEs, one of the methods that can be used to construct a control and that will appear to be powerful in the analysis of the control of evolution PDEs in the next chapters. We will assume that the Fattorini-Hautus condition (II.9) holds and we fix the target to be y T " 0 to simplify a little the computations.

This method relies on more or less explicit formulas for the exponential matrices e ´sA ˚using eigenelements of A ˚.We present the method in the case m " 1 (B is thus a single column vector) even though it can be adapted to more general settings. Let us denote by Λ " SppA ˚q the complex spectrum of A ˚. Since m " 1, we known by the Hautus test (or by Example II.2.4) that all the eigenspaces are one dimensional.

For each λ P Λ, we can then choose one eigenvector Φ 0 λ P C n . Let α λ P N ˚be the algebraic multiplicity of the eigenvalue λ and Φ j λ , j P 1, α λ be an associated Jordan chain, that is a sequence of generalized eigenvectors that satisfy pA ˚´λqΦ l λ " Φ l´1 λ , l P 1, α λ . Those vectors are defined up to the addition of any multiple of the eigenvector Φ 0 λ . Since B ˚Φ0 λ ‰ 0 by (II.9) we can impose, in addition, the condition B ˚Φl λ " 0, @l P 1, α λ .

(II.11)

In the coming computations we will use the notation erλs and erλ pj`1q s introduced in (I.7) and (I.8), as well as the (generalized) divided differences formalism as recalled in Section A.2.

With those notations in mind, we can compute for any s P R, the action of the exponential on the Jordan chain as follows

e ´sA ˚Φl λ " l ÿ j"0 e s rλ pj`1q sΦ l´j λ ,
or with the Leibniz formula e ´sA ˚Φl λ " pe s Φqrλ pl`1q s. Using (II.3), we see that a function v is a control (with target y T " 0) if and only if we have (here U " R) ż T 0 vpsqB ˚e´pT ´sqA ˚qT ds " ´xy 0 , e ´T A ˚qT y E " ´xe ´T A y 0 , q T y E , @q T P R n .

Note that we can also test this equality with complex adjoint states q T P C n . By linearity, it is enough to test this equality on a basis of C n . In particular, we can use the basis pΦ l λ q λPΛ lP 0,α λ and we obtain that v is a control if and only if we have ż T 0 vpsqpe T ´sB ˚Φqrλ pl`1q s ds " ´xe ´T A y 0 , Φ l λ y, @λ P Λ, @l P 0, α λ .

Using (II.11), we get that this set of equations simplifies as follows pB ˚Φ0 λ q ż T 0 vpsqe T ´srλ pl`1q s ds " ´xe ´T A y 0 , Φ l λ y, @λ P Λ, @l P 0, α λ .

Defining

ω l λ def " ´xe ´T A y 0 , Φ l λ y B ˚Φ0 λ ,
we see that v is control for our problem if and only if the function uptq " vpT ´tq (introduced to simplify the formulas) satisfies ż T 0 upsqe s rλ pl`1q s ds " ω l λ , @λ P Λ, @l P 0, α λ .

(II.12)
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This kind of problem is called a moments problem : we need to find a function u whose integrals against a given family of functions is prescribed, or in other words, to find a function u whose L 2 p0, T q inner products against a family of functions in L 2 is prescribed. If this family was orthogonal in L 2 the solution will be straightforward but unfortunately it is clearly not the case here. However it can easily be seen that E " terλ pl`1q s, λ P Λ, l P 0, α λ u, is a linearly independent family in L 2 p0, T q. By Proposition A.3.27, we know that there exists a biorthogonal family in L 2 p0, T q to E that we denote by F " tf l λ , λ P Λ, l P 0, α λ u. This means that we have ż T 0 e s rλ pl`1q sf k µ psq ds " δ λ,µ δ l,k .

It is then clear that the function

uptq " ÿ λPΛ α λ ´1 ÿ l"0 ω l λ f l λ ptq,
is a solution to (II.12). Therefore vptq " upT ´tq is a control that drives the solution to our system to y T " 0 at time T .

Remark II.4.12

The argument above is actually an alternative proof that the Fattorini-Hautus criterion is a sufficient controllability condition for our system (indeed we managed to build a control by simply using the fact that B ˚ϕ ‰ 0 for any ϕ which is an eigenvector of A ˚).

Remark II.4.13 (Optimal L 2 p0, T q control)

The construction above strongly depends on the choice of the biorthogonal family F since there are infinitely many such families. However, choosing the unique such family that satisfy

F Ă SpanpEq, (II.13)
as mentioned in Proposition (A.3.27), then we can prove that the associated control, that we call v 0 , is the one of minimal L 2 p0, T q-norm. Indeed, assume that v P L 2 p0, T q is any other admissible control for our problem and let u 0 ptq " v 0 pT ´tq and uptq " vpT ´tq. Since u and u 0 both satisfy the same system of linear equations (II.12), we first deduce that ż T 0 pupsq ´u0 psqqe s rλ pl`1q s ds " 0, @λ P Λ, @l P 0, α λ .

Using now the fact that u 0 is a combination of the elements in F and by the assumption (II.13), we conclude that ż T 0 pupsq ´u0 psqqu 0 psq ds " 0.

This naturally implies that

}u} 2 L 2 " }u 0 } 2 L 2 `}u ´u0 } 2 L 2 , and of course that }v} 2 L 2 " }v 0 } 2 L 2 `}v ´v0 } 2 L 2 .
This actually proves that v 0 is the unique admissible control with minimal L 2 norm.
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II.5 Linear-Quadratic optimal control problems

In this section, we will discuss a class of problems which is slightly different from the controllability issues that we discussed previously. However, some of those results will be useful later on and are interesting by themselves (in particular in applications).

II.5.1 Framework

Since it does not change anything to the forthcoming analysis we do not assume in this section that the linear ODE we are studying is autonomous. More precisely, we suppose given continuous maps t Þ Ñ Aptq P M n pRq and t Þ Ñ Bptq P M n,m pRq and an initial data y 0 and we consider the following controlled ODE # y 1 ptq `Aptqyptq " Bptqvptq, yp0q " y 0 .

(II.14) Following appendix A.1, this problem is well-posed for v P L 1 p0, T, R m q, in which case the solution satisfies y P C 0 pr0, T s, R n q and the solution map v P L 1 Þ Ñ y P C 0 is continuous.

Let now t Þ Ñ M y ptq P S ǹ pRq, t Þ Ñ M v ptq P S mpRq be two continuous maps with values in the set of symmetric semi-definite positive matrices S ǹ pRq and M T P S ǹ be a symmetric semi-definite positive matrix. We assume that M v is uniformly definite positive : Dα ą 0, xM v ptqξ, ξy U ě α}ξ} 2 , @ξ P R m , @t P r0, T s.

(II.15)

For any given control function v P L 2 p0, T, R m q, we can now define the cost functional

F pvq def " 1 2 ż T 0 xM y ptqyptq, yptqy E dt `1 2 ż T 0 xM v ptqvptq, vptqy U dt `1 2 xM T ypT q, ypT qy E ,
where, in this formula, y is the unique solution to (II.14) associated with the given control v. Since y depends linearly on the couple py 0 , vq, we see that the functional F is quadratic and convex. Moreover, it is strictly convex thanks to the assumption (II.15).

II.5.2 Main result. Adjoint state

Theorem II.5.14

Under the assumptions above, there exists a unique minimiser v P L 2 p0, T, R m q, of the functional F on the set L 2 p0, T, R m q. Moreover, v is the unique function in L 2 p0, T, R m q such that there exists q P C 1 pr0, T s, R n q satisfying the set of equations

$ ' ' ' ' ' ' & ' ' ' ' ' ' % y 1 ptq `Aptqyptq " Bptqvptq,
yp0q " y 0 , ´q1 ptq `A˚p tqqptq `My ptqyptq " 0, qpT q " ´MT ypT q, vptq " M v ptq ´1B ˚ptqqptq.

(II.16)

Moreover, the optimal energy is given by inf

L 2 p0,T,R m q F " F pvq " ´1 2 xqp0q, y 0 y E .
Such a function q is called adjoint state associated with our optimization problem.
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Observe that there is no assumption on A and B for such an optimization problem to have a solution.

Remark II.5.15

One of the consequence of the previous theorem is that the optimal control v is at least continuous in time and, if all the matrix-valued functions in the problem are C k then the solution v is itself C k .

Before proving the theorem we can make the following computation.

Proposition II.5.16

Assume that py, q, vq is a solution to system (II.16), then we define ϕptq " xyptq, qptqy and we have

ϕ 1 ptq " xM y ptqyptq, yptqy E `xM v ptqvptq, vptqy U .
In particular, the solution of (II.16) (if it exists) is unique.

Proof :

We just compute the derivative of ϕ to get In particular, ϕ is non-decreasing. If y 0 " 0, then ϕp0q " 0 and thus ϕpT q ě 0 and by construction we have ϕpT q " ´xM T ypT q, ypT qy E ě 0.

ϕ 1 ptq " xq
By assumption on M T , we deduce that M T ypT q " 0 (notice that M T is not assumed to be definite positive) and using the equation relating qpT q to ypT q, we deduce that qpT q " 0 and that ϕpT q " 0. It follows, by integration over the time interval p0, T q, that ż T 0 xM y y, yy E `xM v v, vy U dt " ż T 0 ϕ 1 ptq dt " ϕpT q ´ϕp0q " 0.

By assumption on M v , we deduce that v " 0. The equation for y leads to y " 0 and finally the equation on q gives q " 0.

Let us now prove the main result. Proof (of Theorem II.5.14):

Uniqueness of the minimizer comes from the strict convexity of F . Moreover, F is non-negative and therefore has a finite infimum. In order to prove existence of the minimizer, we consider a minimizing sequence

pv n q n Ă L 2 p0, T, R m q : F pv n q ÝÝÝÑ nÑ8 inf F.
We want to prove that pv n q n is convergent. We may proceed by weak convergence arguments (that are more general) but in the present case we can simply use the fact that F is quadratic and that the dependence of y with respect to v is affine. In particular, we have

8F ˆv1 `v2 2 ˙" ż T 0 xM y py 1 `y2 qptq, py 1 `y2 qptqy E dt `ż T 0 xM v pv 1 `v2 qptq, pv 1 `v2 qptqy U dt `xM T py 1 `y2 qpT q, py 1 `y2 qpT qy E , c b na F. BOYER -JUNE 27, 2023
and by the parallelogram formula we have

8F ˆv1 `v2 2 ˙" 4F pv 1 q `4F pv 2 q ´8ˆż T 0 xM y py 1 ´y2 qptq, py 1 ´y2 qptqy E dt `ż T 0 xM v pv 1 ´v2 qptq, pv 1 ´v2 qptqy U dt `xM T py 1 ´y2 qpT q, py 1 ´y2 qpT qy E ˙.
By (II.15), we deduce that

2F ˆv1 `v2 2 ˙ď F pv 1 q `F pv 2 q ´α}v 1 ´v2 } 2 L 2 .
Applying this inequality to two elements of the minimizing sequence v n and v n`p , we get

2 inf F ď 2F ˆvn `vn`p 2 ˙ď F pv n q `F pv n`p q ´α}v n ´vn`p } 2 L 2 ,
from which we deduce that

lim nÑ8 ˆsup pě0 }v n ´vn`p } L 2 ˙" 0.
This proves that pv n q n is a Cauchy sequence in L 2 p0, T, R m q. Since this space is complete, we deduce that pv n q n converges towards some limit v in this space. Let y n be the solution of (II.14) associated with v n and ȳ the solution associated with v. The continuity of the solution operator v Þ Ñ y (see Appendix A.1) gives that y n converges towards

ȳ in C 0 pr0, T s, R n q.
It is thus a simple exercice to pass to the limit in the definition of F pv n q and to prove that it actually converges towards F pvq. The proof of the first part is complete.

Let us compute the differential of F at the equilibrium v in the direction h P L 2 p0, T, R m q. We have

dF pvq.h " ż T 0 xM y ptqyptq, δptqy E dt `ż T 0 xM v ptqvptq, hptqy U dt `xM T ypT q, δpT qy E ,
where δ is the solution of the problem # δ 1 ptq `Aptqδptq " Bptqhptq, δp0q " 0.

Let q be the unique solution to the adjoint problem # ´q1 ptq `A˚p tqqptq `My yptq " 0, qpT q " ´MT ypT q,

We deduce that The Euler-Lagrange equation for the minimization problem for F gives dF pvq " 0 so that we finally find that M v ptqvptq " B ˚ptqqptq, @t P r0, T s. This is the expected condition between the optimal control v and the adjoint state q. The first part of the proof is complete. We introduce the function ϕptq " xqptq, yptqy E , we have ϕpT q " ´xM T ypT q, ypT qy E , and by Proposition II.5.16 we conclude that inf

L 2 p0,T,R m q F " F pvq " ´1 2 ϕpT q `1 2 ż T 0 ϕ 1 ptq dt " ´1 2 ϕp0q " ´1 2 xy 0 , qp0qy E .

II.5.3 Justification of the gradient computation

It remains to explain how we obtain in general the equations for the adjoint state. The formal computation (that may be fully justified in many cases) makes use of the notion of Lagragian. Let us set Jpv, yq to be the same definition as F but with independent unknowns v and y. Minimizing F amounts at minimizing J with the additional constraints that yp0q " y 0 and y 1 ptq `Aptqyptq " Bptqvptq.

To take into account those constraints, we introduce two dual variables q : r0, T s Ñ R n and q 0 P R n . The Lagrangian functional is thus defined by Lpv, y, q, q 0 q " Jpv, yq `ż T 0 xqptq, y 1 ptq `Aptqyptq ´Bptqvptqy E dt `xq 0 , yp0q ´y0 y E .

A simple integration by parts leads to Lpv, y, q, q 0 q " Jpv, yq `ż And finally, the initial functional F satisfies F pvq " Lpv, yrvs, qrvs, q 0 rvsq, for any choice of qrvs and q 0 rvs since yrvs satisfies both constraints. It follows that the differential of F satisfies dF pvq.h " B v L.h `By L.pdyrvs.hq `Bq L.pdqrvs.hq `Bq 0 L.pdq 0 rvs.hq, " B v L.h `By L.pdyrvs.hq, since B q L and B q 0 L are precisely the two constraints satisfied by yrvs. The idea is now to choose qrvs and q 0 rvs so as to eliminate the term in B y L.

For any δ : r0, T s Ñ R n , we have

B y L.δ " ż T 0 xM y yptq ´q1 ptq `A˚p tqqptq, δptqy E dt `xM T ypT q, δpT qy E `xqpT q, δpT qy E ´xqp0q ´q0 , δp0qy E .
This quantity vanishes for any δ if and only if we have the relations

$ ' &

' % q 0 " qp0q, qpT q " ´MT ypT q, ´q1 ptq `A˚p tqqptq " ´My yptq.
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This defines the dual variables q and q 0 in a unique way for a given v (and thus a given y). Those are the Lagrange multipliers of the constrained optimization problem.

Once we have defined those values, the computation of the differential of F leads to dF pvq.h " B v Lpv, yrvs, qrvs, q 0 rvsq.h "

ż T 0 xM v ptqvptq, hptqy U dt ´ż T 0 xB ˚qptq, hptqy U dt,
which is of course the same expression as above.

II.5.4 Ricatti equation

The set of optimality equations (II.16) is in general a complicated system of coupled ODEs that is not a Cauchy problem. It is remarkable that its solution can be obtained through the resolution of a Cauchy problem for a nonlinear matrix-valued ordinary differential equation. It has in particular some important applications to the closed-loop stabilization of the initial problem.

Theorem II.5.17 (Adjoint state and Ricatti equation)

Under the previous assumptions, there exists a matrix-valued map t P r0, T s Þ Ñ Eptq that only depends on A, B, M y , M v , M T , and T , such that the adjoint state q in the previous theorem satisfies qptq " ´Eptqyptq, @t P r0, T s.

In other words, the optimal control v can be realized, whatever the initial data y 0 is, as a closed-loop control vptq " ´Mv ptq ´1B ˚ptqEptqyptq.

Moreover, the function E is the unique solution in r0, T s to the following (backward in time) Cauchy problem associated with a Ricatti differential equation # E 1 ptq " ´My ptq `A˚p tqEptq `EptqAptq `EptqBptqM v ptq ´1B ˚ptqEptq,

EpT q " M T .

(II.17)

Finally, Eptq is symmetric semi-definite positive for any t and even definite positive if M T is definite positive, and we have inf

L 2 p0,T,R m q F pvq " 1 2 xEp0qy 0 , y 0 y E .
Observe that the Ricatti equation is a matrix-valued nonlinear differential equation which is not necessarily easy to solve. Actually, it is not even clear that the solution exists on the whole time interval r0, T s; this will be a consequence of the proof.

Proof :

The Cauchy-Lipschitz theorem ensures that (II.17) has a unique solution locally around t " T . We start by assuming that this solution is defined on the whole time interval r0, T s. It is clear that E ˚satisfies the same Cauchy problem as E and thus, by uniqueness, E " E ˚.

Then we define y to be the unique solution of the Cauchy problem # y 1 ptq `Aptqyptq " ´BptqM v ptq ´1B ˚ptqEptqyptq, yp0q " y 0 . In order to show that such a v is the optimal control, we need to check all the equations in (II.16). The first two equations and the last two are satisfied by construction, it remains to check the third equation. This is a simple computation ´q1 ptq `A˚p tqqptq "E 1 ptqyptq `Eptqy 1 ptq ´A˚p tqEptqyptq " ´My ptqyptq `Eptqy 1 ptq `Eptq " Aptqyptq `BptqM v ptq ´1B ˚ptqEptqyptq ‰ " ´My ptqyptq.

Then we set qptq

This proves the fact that, provided that E exists, the triple py, v, qq is the unique solution of our optimality condition equations.

The fact that the optimal energy is given by 1 2 xEp0qy 0 , y 0 y E is a simple consequence of Proposition II.5.16 and of the fact that ϕpT q " ´xM T ypT q, ypT qy E , so that inf

L 2 p0,T,R m q F " F pvq " ´1 2 ϕpT q `1 2 ż T 0 ϕ 1 ptq dt " ´1 2 ϕp0q.
As a consequence, ϕp0q is non-positive for any y 0 , which proves that E is semi-definite positive. Moreover, we deduce that 1 2 xEp0qy 0 , y 0 y E is not larger than the value of the cost functional F when computed on the control v " 0. A simple computation of the solution of the ODE without control gives that the following bound holds

xEp0qy 0 , y 0 y E ď ˆ}M T } `ż T 0 }M y } ˙e2 ż T 0 }A} }y 0 } 2 , @y 0 P R n .
This gives a bound on }Ep0q}.

We can now prove the global existence of E on r0, T s. Indeed, if we assume that E is defined on rt ˚, T s for some 0 ď t ˚ă T , the previous computation (with the initial time t ˚instead of 0) shows that

}Ept ˚q} ď ˆ}M T } `ż T t ˚}M y } ˙e2 ş T t ˚}A} ď ˆ}M T } `ż T 0 }M y } ˙e2 ş T 0 }A} .
It follows that E is bounded independently of t ˚and therefore can not blow up in finite time. Therefore the existence and uniqueness of E over the whole time interval r0, T s is proved.

II.6 The HUM control

Let us come back now to the controllability question (and we assume again that A and B are time-independent). We would like to address the question of the characterisation of a best control among all the possible controls, if such controls exist. Of course, this notion will depend on some criterion that we would like to choose as a measure of the "quality" or the "cost" of the control.

The HUM formulation Assume that y 0 , y T are such that y T P R T py 0 q. We can easily prove that the set of admissible controls admpy 0 , y T q def " tv P L 2 p0, T ; U q, y v pT q " y T u, is a non-empty convex set which is closed in L 2 p0, T ; U q. Therefore, there exists a unique control of minimal L 2norm, that we denote by v 0 . It satisfies the optimization problem

F pv 0 q " inf vPadmpy 0 ,y T q F pvq, (II.18) c b na F. BOYER -JUNE 27, 2023
where we have introduced

F pvq def " 1 2 ż T 0 }vptq} 2 U dt, @v P L 2 p0, T ; U q.
We recall the definition of the solution operator (without initial data)

L T : v P L 2 p0, T ; U q Þ Ñ ż T 0 e ´pT ´sqA Bvpsq ds P E,
in such a way that the (affine) constraint set reads admpy 0 , y T q " tv P L 2 p0, T ; U q, L T pvq " y T ´e´T A y 0 u.

Since v 0 is a solution of the constrained optimisation problem, we can use the Lagrange multiplier theorem to affirm that there exists a vector q T P E such that dF pv 0 q.w " xq T , dL T pv 0 q.wy E , @w P L 2 p0, T ; U q.

Since L T is linear, we have dL T pv 0 q.w " L T pwq and the differential of the quadratic functional F is given by dF pv 0 q.w " ż T 0 xv 0 psq, wpsqy U ds, @w P L 2 p0, T ; U q.

It follows that v 0 satisfies, for some q T P E and for any w P L 2 p0, T ; U q the equation This proves that the HUM control v 0 has a special form as shown above. In particular if one wants to compute v 0 we only have to determine the Lagrange multiplier q T . To this end, we plug the form (II.19) into the equation that v 0 has to fulfill y T " e ´T A y 0 `ˆż T 0 e ´pT ´sqA BB ˚e´pT ´sqA ˚ds ˙qT , which is a linear system in q T that we write Λq T " y T ´e´T A y 0 , (II.20)

ż T 0 xv 0 psq,
where we have introduced the Gramian matrix

Λ def " ż T 0 e ´pT ´sqA BB ˚e´pT ´sqA ˚ds.
We observe that Λ is a symmetric positive semi-definite matrix and that is definite if and only if the Kalman criterion is satisfied. Finally, the HUM control v 0 can be computed by solving first the linear system (II.20), whose unique solution is denoted by q T,opt and then by using (II.19).

It is also of interest to observe that the optimal q T,opt P E is the unique solution of the optimization problem Jpq T,opt q " inf q T PE Jpq T q, (II.21)

where we have introduced the functional

Jpq T q def " 1 2 ż T 0 › › ›B ˚e´pT ´sqA ˚qT › › › 2 U ds `xy 0 , e ´T A ˚qT y E ´xy T , q T y E . c b na F. BOYER -JUNE 27, 2023
One can prove, by the Fenchel-Rockafellar duality theorem, that J is the adjoint problem associated with the initial optimisation problem (II.18). Observe that (II.21) is an unconstrained finite dimensional optimization problem whereas (II.18) is a constrained infinite dimensional optimization problem. This is one of the reason why it is often more suitable to solve (II.21) instead of (II.18).

Actually, the explicit computation of the matrix Λ and its inversion can be quite heavy (in large dimension) and, in practice, we may prefer to solve the linear system (II.20) by using an iterative method (like the conjugate gradient for instance) that only necessitates to compute matrix-vector products. For any given q T , the product Λq T , can be obtained with the following general procedure: ' Solve the adjoint (backward) equation ´q1 ptq `A˚q ptq " 0 with the final data qpT q " q T , in the present case, it gives

qptq " e ´pT ´tqA ˚qT .

' Define the control v by vptq " B ˚qptq.

' Solve the primal (forward) problem y 1 ptq `Ayptq " Bvptq, with initial data yp0q " 0. In the present case it gives yptq " ż t 0 e ´pt´sqA Bvpsq ds.

' The value of Λq T is then given by Λq T " ypT q, since we have Remark II.6.18

At the end of this analysis, we have actually proved that the optimal control in L 2 p0, T ; U q (the HUM control) has the particular form (II.19), which proves in particular that v 0 is smooth and thus the ODE system is satisfied in the usual sense for this control.

Remark II.6.19

Our analysis shows, as a side effect, that v 0 is the unique possible control for our system that we can write under the form (II.19).

Exercise II.6.20

Assume that the pair pA, Bq is controllable, and let T ą 0 given. Show that there exists ε ą 0 such that for any y 0 , y T P E, there exists a control for our problem that belongs to C 8 pr0, T sq and such that Supp v Ă rε, T ´εs.
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II.7 How much it costs ? Observability inequalities

We can now ask the question of computing the cost of the control. We suppose given A, B, the initial data y 0 and the target y T .

The best control v 0 (the so-called HUM control) is given as a solution of the optimization problem described above and we have the following result.

Proposition II.7.21

Assume that the Kalman rank condition is satisfied for the pair pA, Bq, then the optimal cost of control from y 0 to y T for our system is given by

ż T 0 }v 0 ptq} 2 U dt " sup q T PE |xy T , q T y E ´xy 0 , e ´T A ˚qT y E | 2 xΛq T , q T y E ,
where Λ is the Gramiam operator that we built in the previous section.

Proof :

Let C be the value of the supremum in the right-hand side (this supremum is finite since the quantity is homogeneous in q T and, by the Kalman condition, we know that xΛq T , q T y E ‰ 0 as soon as q T ‰ 0).

Let q T,opt be the unique solution to (II.20), in such a way that v 0 psq " B ˚e´sA ˚qT ,opt . We observe first that

xΛq T,opt , q T,opt y E " ż T 0 }B ˚e´sA ˚qT ,opt } 2 U ds " ż T 0 }v 0 psq} 2 U ds,
and second, by (II.20), we have xΛq T,opt , q T,opt y E " xy T , q T,opt y E ´xy 0 , e ´T A ˚qT ,opt y E .

It follows that

C ě |xy T , q T,opt y E ´xy 0 , e ´T A ˚qT ,opt y E | 2 xΛq T,opt , q T,opt y E " xΛq T,opt , q T,opt y E " ż T 0 }v 0 psq} 2 U ds.

Conversely, if v is any control that drives the solution from y 0 to y T we see from (II.5) and the Cauchy-Schwarz inequality that

|xy T , q T y E ´xy 0 , e ´T A ˚qT y E | ď ˆż T 0 }vpsq} 2 U ds ˙1 2 xΛq T , q T y 1 2 E .
Taking the square of this inequality and then the supremum over all the possible q T gives that

C ď ż T 0 }vpsq} 2 U ds,
and since this is true for all possible controls, this is in particular true for the optimal control v 0 and we get

C ď ż T 0 }v 0 psq} 2 U ds.
The previous result gives an estimate of the control cost, in the case where the pair pA, Bq is controllable. We can actually be a little bit more precise: we shall prove that the boundedness of the supremum in the previous condition is

c b na F. BOYER -JUNE 27, 2023
Chapter II. Controllability of linear ordinary differential equations a necessary and sufficient condition for the system to be controllable from y 0 to y T .

Theorem II.7.22

Let A, B be any pair of matrices (we do not assume that the Kalman condition holds). Then, System (II.1) is controllable from y 0 to y T if and only if, for some C ě 0, the following inequality holds

|xy T , q T y E ´xy 0 , e ´T A ˚qT y E | 2 ď C 2 ż T 0 }B ˚e´pT ´sqA ˚qT } 2 U ds, @q T P E. (II.22)
Moreover, the best constant C in this inequality is exactly equal the L 2 p0, T ; U q norm of the HUM control v 0 from y 0 to y T .

The above inequality is called an observability inequality on the adjoint equation. It amounts to control some information on any solution of the problem (in the left-hand side of the inequality) by the observation (which is the right-hand side term of the inequality). The operator B ˚is called the observation operator.

We also note that, by definition of the Gramiam Λ, the right-hand side of the required observability inequality can also be written as follows C 2 xΛq T , q T y E .

Proof :

Since e ´T A is invertible1 we can always write

y T " e ´T A ˆeT A y T ˙.
So that the control problem is the same if we replace y T by 0 and y 0 by y 0 ´eT A y T and we see that the left-hand side in the inequality is changed accordingly.

From now on, we will thus assume without loss of generality that y T " 0 and that y 0 is any element in E.

' We first assume that there exists a control v P L 2 p0, T q that drives y 0 to 0 at time T . Hence the set admpy 0 , 0q is not empty. We define v 0 to be the unique minimal L 2 -norm element in admpy 0 , 0q. The same argument as in the previous proposition shows that for any q T we have

|xy 0 , e ´T A ˚qT y E | 2 ď ˆż T 0 }v 0 psq} 2 U ds ˙ˆż T 0 }B ˚e´pT ´sqA ˚qT } 2 ds ˙.
This proves (II.22) with C " }v 0 } L 2 p0,T ;U q .

' Assume now that (II.22) holds for some C ą 0. We would like to prove that admpy 0 , 0q is not empty. The idea is to replace the constraint v P admpy 0 , 0q (that is ypT q " 0) in the optimization problem (II.18) by a penalty term.

For any ε ą 0, we set

F ε pvq " 1 2 ż T 0 }vpsq} 2 U ds `1 2ε }ypT q} 2 E ,
where in this expression, y is the unique solution of (II.1) starting from the initial data y 0 .

The last term penalizes the fact that we would like ypT q " 0. Formally, we expect that, as ε Ñ 0, this term will impose ypT q to get close from y T .

We consider now the following optimization problem: to find v ε P L 2 p0, T ; U q such that

F ε pv ε q " inf vPL 2 p0,T ;U q F ε pvq. (II.23)
This functional exactly falls into the framework of the LQ optimal control problems that we studied in Section II.5, in the particular case where M v ptq " Id, M y ptq " 0, @t P r0, T s, and M T " 1 ε Id.

The characterisation theorem II.5.14 implies that this functional F ε has a unique minimiser v ε which is characterised by the following set of equations

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' %
y 1 ε ptq `Ay ε ptq " Bv ε ptq, y ε p0q " y 0 , ´q1 ε ptq `A˚q ε ptq " 0,

q ε pT q " ´1 ε y ε pT q, v ε ptq " B ˚qε ptq.
Our goal is to study the behavior of pv ε , y ε , q ε q when ε Ñ 0. To this end, we try to obtain uniform bounds on those quantities.

To this end, we multiply (in the sense of the euclidean inner product of E) the state equation (the first one) by q ε ptq and we integrate the result over p0, T q. Using integration by parts and the other equations in the optimality system above, we obtain

ż T 0 }v ε } 2 dt " ż T 0 xv ε , B ˚qε y U dt " ż T 0 xBv ε , q ε y E dt " ż T 0 xy 1 ε `Ay ε , q ε y E dt " xy ε pT q, q ε pT qy E ´xy 0 , q ε p0qy E `ż T 0 xy ε , ´q1 ε `A˚q ε y E , dt " ´1 ε }y ε pT q} 2 ´xy 0 , q ε p0qy E .
It follows that }v ε } 2 L 2 p0,T,U q `1 ε }y ε pT q} 2 " ´xy 0 , q ε p0qy E .

And, if we set q T,ε " q ε pT q, we can write this formula by using only the adjoint variable

ż T 0 }B ˚e´pT ´tqA ˚qT ,ε } 2 dt `ε}q T,ε } 2 " ´xy 0 , e ´T A ˚qT ,ε y E . (II.24)
We use now the observability inequality (II.22) (where we recall that y T was taken to be 0 here). This inequality exactly gives us a bound on the right-hand side term

´xy 0 , e ´T A ˚qT ,ε y E ď C ˆż T 0 }B ˚e´pT ´tqA ˚qT ,ε } 2 dt ˙1 2 .
We deduce that

}v ε } 2 L 2 " ż T 0 }B ˚e´pT ´tqA ˚qT ,ε } 2 dt ď C 2 , ε}q T,ε } 2 ď C 2 . c b na F. BOYER -JUNE 27, 2023
From those estimates we obtain that pv ε q ε is bounded in L 2 p0, T ; U q and therefore we can extract a subsequence pv ε k q k that weakly converges towards some v P L 2 p0, T ; U q. Let y be the solution of (II.1) associated with this control v and the initial data y 0 . Since the solution operator L T is continuous from L 2 p0, T ; U q into E, we deduce that pL T pv ε k qq k weakly converges towards L T pvq as k Ñ 8 (note however that E is finite dimensional so that this convergence is also strong). It follows that y ε pT q Ñ ypT q as ε Ñ 0 Moreover, by definition of q T,ε , we have the relation

y ε pT q " ´εq T,ε ,
and from the bound below we deduce that

}y ε pT q} E ď ε}q T,ε } E ď C ? ε Ý ÝÝ Ñ εÑ0 0.
Gathering all the above properties, we have shown that the weak limit v is such that the solution y satisfies ypT q " 0, which exactly means that the control v drives the solution of our system from 0 to y T , or in other words v P admpy 0 , 0q. This set being non empty we can consider the miminal L 2 norm control v 0 and, from the first part of the proof we know that necessarily we have

C ď }v 0 } L 2 p0,T ;U q ď }v} L 2 p0,T ;U q .
Coming back to the bound on v ε obtained above we see that

lim sup kÑ8 }v ε k } L 2 p0,T ;U q ď C,
and since v is the weak limit of pv ε k q k we conclude by usual properties of weak convergence in an Hilbert space that the convergence is actually strong and that we have the equality }v} L 2 p0,T ;U q " C.

This implies in particular that }v} L 2 p0,T ;U q ď }v 0 } L 2 p0,T ;U q and since v 0 is the unique minimal L 2 -norm control, we deduce that v " v 0 . In particular C " }v 0 } L 2 p0,T,U q .

The standard uniqueness argument finally shows that the whole family pv ε q ε strongly converges towards the HUM control v 0 .

Observe that the family of the optimal adjoint states for the penalized problems pq T,ε q ε may not converge in this setting (except in the case where the Kalman rank condition is satisfied).

Remark II.7.23

If we have no other information on the matrices A, B or on the initial data y 0 , the only hope to bound the right-hand side of (II.24) is to write ´xy 0 , e ´T A ˚qT ,ε y E ď }y 0 }}e ´T A ˚}}q T,ε }, and to use the Young inequality to absorb the norm of q T,ε by the second term in the left-hand side to obtain

ż T 0 }B ˚e´pT ´tqA ˚qT ,ε } 2 dt `ε}q T,ε } 2 ď 1 ε }y 0 } 2 }e ´T A ˚}2 .
This estimate is clearly useless since it does not provide a uniform bound on the control v ε (and this is of course what is expected !).
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As a conclusion of this analysis, we have converted a controllability question (which is a problem of proving the existence of some mathematical object satisfying some requirements) into an observability question which is : can we prove an a priori inequality like (II.22) that concerns solutions to an uncontrolled equation (the adjoint problem).

Remark II.7.24

If, for any q T , we introduce t Þ Ñ qptq the solution of the adjoint equation ´q1 ptq `A˚q ptq " 0, qpT q " q T , the observability inequality can be written as follows

|xy T , q T y E ´xy 0 , qp0qy E | 2 ď C 2 ż T 0 }B ˚qpsq} 2 U ds, @q T P R n ,
which is slightly more general since it does not require any semi-group theory (and in particular can be generalieed to non-autonomous equations).

Let us consider two particular cases of interest:

' Exact controllability : we assume that y 0 " 0 and y T P R n is any target. The control cost is denoted by Cp0, y T q and is the best constant in the inequality

|xy T , q T y E | 2 ď Cp0, y T q 2 ż T 0 }B ˚e´pT ´sqA ˚qT } 2 U ds, @q T P E. (II.25)
' Null-controllability : we assume that y T " 0 and y 0 P E is any initial data. The control cost is denoted by Cpy 0 , 0q and is the best constant in the inequality

|xy 0 , e ´T A ˚qT y E | 2 ď Cpy 0 , 0q 2 ż T 0 }B ˚e´pT ´sqA ˚qT } 2 U ds, @q T P E. (II.26)
In the finite dimensional setting those two cases are very similar but it will make some difference when we will study parabolic PDEs. Let ϕ be a normalized eigenvector of A ˚associated with the eigenvalue λ and we assume that Re pλq ą 0 (we mimick here the expected behavior of a parabolic PDE). Let us evaluate the costs Cpϕ, 0q and Cp0, ϕq.

' We first take q T " ϕ in (II.25) (with y T " ϕ) to get Cp0, ϕq 2 ě 2Re pλq }B ˚ϕ} 2 U p1 ´e´2T Re pλq q , and we can obtain a rough bound from below

Cp0, ϕq 2 ě 2Re pλq }B ˚ϕ} 2 U .
This illustrates the fact that, if B ˚is a given bounded operator, the cost of the exact controllability for a given eigenmode increases at least with the dissipation rate Re pλq. In the limit Re pλq Ñ 8, this cost is therefore blowing up. This is not a good news if one imagines that we eventually want to control parabolic PDEs which are typically based on operators with sequences of eigenvalues that tends to infinity.

The physical interpretation of this phenomenon is clear : the natural behavior of such a system for large values of Re pλq is to strongly dissipate the solution with time which is exactly the converse of the fact that we require the solution to be driven to a constant normalized state ϕ at time T . This is the first appearance of the fact that, for dissipative systems (i.e. parabolic PDEs), the exact controllability property is not a good notion.
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' Let us do the same computation in (II.26) by taking y 0 " ϕ and q T " ϕ, we get

Cpϕ, 0q 2 ě 2Re pλqe ´2Re pλqT }B ˚ϕ} 2 U .
This is a much better behavior : if B ˚ϕ remains away from zero, the lower bound of the cost exponentially decreases when Re pλq increases. Of course, this is only a lower bound and thus it does not give any information on the boundedness of Cpϕ, 0q itself but it seems to be reasonable to expect null controllability for a dissipative system, and bounds that are in some sense, uniform in λ.

Observe that, in both cases, the observability cost for one single mode ϕ depends on the size of }B ˚ϕ} U . The smaller this quantity is, the larger is the observability cost.

Global notions If we want to come back to more global properties (namely that are independent of the initial data and of the target) we have the following characterisations.

Theorem II.7.25

1. System (II.1) is exactly controllable at time T if and only if for some C obs,exact ě 0 we have

}q T } 2 E ď C 2 obs,exact ż T 0 }B ˚e´sA ˚qT } 2 U ds, @q T P R n .
If this inequality holds, then for any y 0 , y T there exists a control v P admpy 0 , y T q such that }v} L 2 p0,T ;U q ď C obs,exact }y T ´e´T A y 0 } E .

2. System (II.1) is null-controllable at time T if and only if for some C obs,null ě 0 we have

}e ´T A ˚qT } 2 E ď C 2 obs,null ż T 0 }B ˚e´sA ˚qT } 2 U ds, @q T P R n .
If this inequality holds, then for any y 0 there exists a control v P admpy 0 , 0q such that }v} L 2 p0,T ;U q ď C obs,null }y 0 } E .

Of course, in the finite dimensional setting the two notions are equivalent but the values of the constants C obs,exact and C obs,null may not be the same.

Exercise II.7.26 (Asymptotics of the observability constants, see [START_REF] Thomas | How violent are fast controls?[END_REF])

The above observability constants actually depend on the control time T and it is clear that this cost should blow up when T gets smaller. More precisely, we can show (by mentioning explicitly the dependence in T of the consant) that We recall that a necessary and sufficient condition for the existence of this semigroup is (Hille-Yosida theorem) that DpAq is dense in E and Dω P R, M ě 1, s.t. pλI `Aq is invertible for any λ ą ω and }pλI `Aq ´m} ď M pλ ´ωq ´m, @m ě 0.

C obs,exact,T " T Ñ0 γ T K`1 2 ,
We will sometimes need to assume that the semi-group is analytic which means that there exists an analytic extension z Þ Ñ e ´zA in a sector S η of C as defined in (A.25). This property always holds in the case of parabolic equations.

The adjoint semi-group will be denoted by t Þ Ñ e ´tA ˚.

' B : U Ñ DpA ˚q1 the control operator. It is actually more easy to work with the adjoint B ˚of B, which is, by definition an operator from DpA ˚q into U (since we identify U with its dual space).

' We assume that B is admissible in the following sense ´s Þ Ñ B ˚e´sA ˚qT ¯P L 2 p0, T ; U q, @q T P E, and moreover, there exists a C ą 0 such that

ż T 0 }B ˚e´pT ´tqA ˚qT } 2 U dt ď C 2 }q T } 2 E , @q T P E.
In practice, it is enough to check the above inequality for q T P DpA ˚q since DpA ˚q is dense in E.

The (formal) control problem we are looking at is the following

# B t y `Ay " Bv in s0, T r, yp0q " y 0 . (III.1)
The suitable meaning we give to this problem is by duality.
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Theorem III.1.1 (Well-posedness in a dual sense)

For any y 0 P E and v P L 2 p0, T ; U q, there exists a unique y " y v,y 0 P C 0 pr0, T s, Eq such that xyptq, q t y E ´xy 0 , e ´tA ˚qt y E " ż t 0 xvpsq, B ˚e´pt´sqA ˚qt y U ds, @t P r0, T s, @q t P E.

Moreover, there exists C ą 0 such that

sup tPr0,T s }yptq} E ď Cp}y 0 } E `}v} L 2 p0,T ;U q q.
Proof : This is a consequence of the admissibility assumption for B and of the Riesz representation theorem.

' Let us fix a t P r0, T s. We consider the linear map

q t P E Þ ÝÑ xy 0 , e ´tA ˚qt y E `ż t 0 xvpsq, B ˚e´pt´sqA ˚qt y U ds.
Thanks to the admissibility condition for B, we see that this linear map is continuous on E. Thanks to the Riesz representation theorem, we deduce that there exists a unique element y t P E satisfying the equality xy t , q t y E " xy 0 , e ´tA ˚qt y E `ż t 0 xvpsq, B ˚e´pt´sqA ˚qt y U ds, @q t P E.

Additionally, we have the bound }y t } E ď Cp}y 0 } E `}v} L 2 p0,T ;U q q, for some constant C ą 0.

' We set yptq " y t for any t. It is clear, by definition, that yp0q " y 0 . It remains to check that the map y is strongly continuous in time.

Let pt n q n Ă r0, T s a sequence that converges towards some t P r0, T s, we need to prove that ypt n q Ñ yptq in E. To this end, we consider pq tn q n Ă E a sequence that weakly converges towards some q t P E and we want to show that xypt n q, q tn y E ÝÝÝÑ nÑ8 xyptq, q t y E .

We consider v P L 2 pRq the extension of v by zero outside the interval p0, T q. We can write xypt n q, q tn y E " xy 0 , e The first term is treated by the weak-strong convergence property and using the strong continuity of the semigroup. The second term is treated in the same way by using:

-The admissibility condition that leads to the weak convergence of s Þ Ñ B ˚e´sA ˚qtn in L 2 p0, T, U q and the strong convergence of the translations s Þ Ñ vpt n ´sq in L 2 p0, T, U q. c b na F. BOYER -JUNE 27, 2023

Actually, we shall also encounter cases where the admissibility condition for B does not hold exactly as written above. More precisely, assume that there exists an Hilbert space F continuously and densely embedded in E and such that ´t Þ Ñ B ˚e´sA ˚qT ¯P L 2 p0, T ; U q, @q T P F,

and ż T 0 }B ˚e´pT ´tqA ˚qT } 2 U dt ď C 2 }q T } 2 F , @q T P F.
In that case, we may consider the dual space F 1 (more precisely, its representation obtained by using E as a pivot space) and prove the following result Theorem III.1.2 (Well-posedness in a dual sense -weaker form) Under the assumptions above, for any y 0 P E and v P L 2 p0, T ; U q, there exists a unique y " y v,y 0 P C 0 pr0, T s, F 1 q such that xyptq, q t y F 1 ,F ´xy 0 , e ´tA ˚qt y E " ż t 0 xvpsq, B ˚e´pt´sqA ˚qt y U ds, @t P r0, T s, @q t P F.

Moreover, if F is stable by the semi-group generated by A ˚, the above definition can be extended to any initial data y 0 P F 1 .

Here also we have seen the important role played by the adjoint problem (which is a backward in time parabolic problem)

´Bt q `A˚q " 0, (III.2)

III.2 Examples

Let Ω be a bounded smooth connected domain of R d . Let ω be a non empty open subset of Ω and Γ 0 a non empty open subset of BΩ.

' Distributed control for the heat equation.

We consider the problem # B t y ´∆y " 1 ω v, in Ω y " 0, on BΩ.

The natural state space is E " L 2 pΩq, the control space is also U " L 2 pΩq (we could have defined U " L 2 pωq without any real difference), the domain of A is DpAq " H 2 pΩq X H 1 0 pΩq, and the control operator is B " 1 ω , so that we get also B ˚" 1 ω . ' (Dirichlet) Boundary control for the heat equation.

Let us consider the problem

# B t y ´∆y " 0, in Ω y " 1 Γ 0 v, on BΩ.
Here the control operator B is not so easy to define and it is in fact easier to define its adjoint B ˚(through a formal integration by parts). More precisely, we set

B ˚def " 1 Γ 0 B n . c b na F. BOYER -JUNE 27, 2023
In order for the admissibility condition for this operator to hold, we see that we have, for instance, to work in the space F " H 1 0 pΩq. Indeed, in that case, one can show by standard arguments that t Þ Ñ e ´tA ˚qT P L 2 p0, T, H 2 pΩqq, @q T P F, and by trace theorems t Þ Ñ B n pe ´tA ˚qT q P L 2 p0, T, H 1{2 pBΩqq Ă L 2 p0, T, L 2 pBΩqq.

Actually, one may use for any any of the spaces F " DpA s q with s ą 1{2.

' Distributed control for parabolic systems.

In the last part of the course, we will be interested in coupled parabolic systems, as for instance the following problem # B t y ´∆y `Cpt, xqy " 1 ω Bv, in Ω y " 0, on BΩ,

(III.3)
where y is now a n-component function. The state space is E " pL 2 pΩqq n , the control space is U " pL 2 pΩqq m , B P M n,m pRq is the control matrix and Cpt, xq P M n,n pRq is the coupling matrix.

In that case, the control operator is B " 1 ω B and its adjoint is

B ˚" 1 ω B ˚.
' (Dirichlet) Boundary control for parabolic systems.

Similarly, we can consider the boundary control problem

# B t y ´∆y `Cpt, xqy " 0, in Ω y " 1 Γ 0 Bv, on BΩ. (III.4)
The definition of the functional spaces and of the operator are clear.

' More general examples:

Of course we may consider a large number of other examples such as : time-and or space-dependent diffusion coefficients, different diffusion operators for each component, first or second order coupling terms, non linear terms, etc ...

III.3 Controllability -Observability

The general definitions for approximate/exact/null-controllability questions are formally the same as before.

We have already seen in the first chapter that exact controllability for parabolic equations is certainly not a suitable notion. We may in fact prove that, in general, the set of reachable functions for the heat equation with a distributed control supported on a strict subset of Ω is a very small set. For instance, usual regularity properties for such PDEs show that any reachable target must be smooth (at least C 8 ) in Ωzω.

We will thus restrict our attention now on the approximate and null-controllability properties. By adapting the arguments given in the finite dimensional case, we can prove the following properties.

Theorem III.3.3 (Approximate controllability and Unique continuation)

Our system (III.1) is approximately controllable at time T ą 0 if and only if the adjoint system (III.2) satisfies the unique continuation property with respect to the observation operator B ˚, namely : for any solution q of (III.2) with qpT q P F , we have ˆB˚q ptq " 0, @t P p0, T q ˙ùñ q " 0.
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With the semi-group notation, the Unique Continuation property writes ˆB˚e´pT ´tqA ˚qT " 0, @t P p0, T q ˙ùñ q T " 0.

Notice that, if the semi-group generated by ´A˚i s analytic, then the unique continuation property does not depend on T , and thus so is the approximate controllability.

Proof :

' Assume that the Unique Continuation property does not hold. There exists q T P F , q T ‰ 0 such that B ˚e´pT ´tqA ˚qT " 0. By definition, for any control v, we have

xypT q, q T y F 1 ,F ´xy 0 , e ´T A ˚qT y E " ż T 0 xvpsq, B ˚e´pT ´sqA ˚qT y U ds " 0, (III.5)
and if follows that xypT q ´e´T A y 0 , q T y F 1 ,F " 0, which proves that the reachable space at time T cannot be dense in F 1 . Indeed, if z P F 1 is any element such that xz, q T y F 1 ,F ‰ 0, then e ´T A y 0 `εz is not reachable for any ε ą 0.

' Assume that the approximate controllability does not hold in F 1 . By the Hahn-Banach theorem, it means that there exists a y T P F 1 and a q T P F zt0u such that

xy T , q T y F 1 ,F ě xypT q, q T y F 1 ,F ,
for any control v P L 2 p0, T, U q.

From (III.5) we deduce that, for any v P L 2 p0, T, U q

ż T 0 xvpsq, B ˚e´pT ´sqA ˚qT y U ds ď xy T ´e´T A y 0 , q T y F 1 ,F .
We apply this inequality to v " 1 δ B ˚e´pT ´sqA ˚qT , with δ ą 0, which gives

1 δ ż T 0 }B ˚e´pT ´sqA ˚qT } 2 U ds ď xy T ´e´T A y 0 , q T y F 1 ,F .
Letting δ going to 0 leads to

ż T 0 }B ˚e´pT ´sqA ˚qT } 2 U ds " 0
and since q T ‰ 0, we obtained that the unique continuation property does not hold for the adjoint problem.

Theorem III.3.4 (Null controllability and Observability)

Our system (III.1) is null-controllable in E at time T ą 0 if and only if the adjoint system (III.2) satisfies the following observability property with respect to the observation operator B ˚, namely : There exists a C ą 0 such that for any solution q of (III.2) with qpT q P F , we have

}qp0q} 2 E ď C 2 ż T 0 }B ˚qptq} 2 U dt. c bna F. BOYER -JUNE 27, 2023
With the semi-group notation, the observability inequality writes

}e ´T A ˚qT } 2 E ď C 2 ż T 0 }B ˚e´pT ´tqA ˚qT } 2 U dt, @q T P F.
Remark III.3.5

If we are interested in the null-controllability with initial data in F 1 , then the above inequalities should hold with }qp0q} 2 F in the left-hand side.

Proof :

This result is a straightforward consequence of the following general result in functional analysis (which is itself a consequence of the closed graph theorem).

Lemma III.3.6 (see Proposition 12.1.2 in [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF])

Let H 1 , H 2 , H 3 be three Hilbert spaces and F : H 1 Ñ H 3 , G : H 2 Ñ H 3 be two bounded linear operators. Then the following properties are equivalent 1. The range of F is included in the range of G.

2. There exists a C ą 0 such that the following inequalities hold

}F ˚x} H 1 ď C}G ˚x} H 2 , @x P H 3 .
If those properties are true, there exists a bounded linear operator L :

H 1 Ñ H 2 such that F " G ˝L, and }L} H 1 ÑH 2 ď C.
To prove the theorem, we apply the previous lemma with H 2 " L 2 p0, T ; U q, H 1 " H 3 " E, and

F : y 0 P E Þ Ñ e ´T A y 0 P E, G : v P L 2 p0, T, U q Þ Ñ ż T 0 e ´pT ´sqA Bvpsq ds P E,

(this integral being well-defined by duality as seen before).

There is no natural (and easy to manage) generalization of the Kalman rank criterion in the infinite dimension case. However, the Fattorini-Hautus test still holds under quite general assumptions but it will of course only gives an approximate controllability result .

Theorem III.3.7 (Fattorini-Hautus test)

Assume that: ' A has a compact resolvant and a complete system of root vectors.

' B ˚is a bounded operator from DpA ˚q (with the graph norm) into U .

We also assume that the semi-group generated by ´A˚i s analytic, even though the result can be adapted if it is not the case. Then, our system (III.1) is approximately controllable at time T ą 0 if and only if we have pKer B ˚q X Ker pA ˚´λIq " t0u, @λ P C.

In particular, the approximate controllability property does not depend on T .
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For a proof of this result in the framework above which is more general than the original one by Fattorini, we refer to [START_REF] Olive | Boundary approximate controllability of some linear parabolic systems[END_REF].
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Chapter III. Controllability of abstract parabolic PDEs
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Chapter IV

The heat equation

In this chapter we are interested in the controllability properties of a parabolic scalar equation of the heat type in a bounded domain. We will actually be a little bit more general by looking at the following equation.

Let Ω be a bounded connected smooth domain of R d . Let γ P C 0 pΩ, Rq be a diffusion coefficient such that

γ min def "
inf Ω γ ą 0 and α P C 0 pΩ, Rq a potential term. Let A be the differential operator defined by pAyqpxq " ´div pγpxq∇yq `αpxqy.

(IV.1)

We shall consider the partial differential evolution equation given by

B t y `Ay " 0, in p0, T q ˆΩ. (IV.2)
If we look at A as an unbounded operator in L 2 pΩq with domain DpAq " H 2 pΩq X H 1 0 pΩq, we know that A is self-adjoint and with compact resolvent. As a consequence, we have a complete spectral theory for this operator:

' The spectrum Λ of A " A ˚is only made of positive eigenvalues, moreover Λ is locally finite, unbounded but satisfies the bound from below

inf Λ ą inf Ω α. (IV.3)
' For each λ P Λ, the eigenspace Ker pA ´λq is finite dimensional and we have the orthogonality property in L 2 pΩq Ker pA ´λq K Ker pA ´µq, @λ ‰ µ P Λ.

We denote by π λ the orthogonal projection in L 2 pΩq onto the eigenspace Ker pA ´λq.

' We have an orthogonal spectral decomposition of the space L 2 pΩq. This means that for any ψ P L 2 pΩq we have

ψ " ÿ λPΛ π λ ψ, (IV.4)
this family being summable in L 2 pΩq, and we have the Bessel-Parseval equality

}ψ} 2 L 2 pΩq " ÿ λPΛ }π λ ψ} 2 L 2 pΩq .
' For any ψ P H 1 0 pΩq, the sum (IV.4) is also converging in H 1 0 pΩq and there exists C 1 , C 2 ą 0, depending only on the coefficients γ and α, such that

C 1 ÿ λPΛ p1 `|λ|q}π λ ψ} 2 L 2 ď }ψ} 2 H 1 ď C 2 ÿ λPΛ p1 `|λ|q}π λ ψ} 2 L 2 . c b na F. BOYER -JUNE 27, 2023
' ´A generates a semi-group that can be explicitely computed as follows e ´tA ψ " ÿ λPΛ e ´tλ π λ ψ, @ψ P L 2 pΩq.

Notice in particular the following energy estimate }e ´tA ψ} L 2 pΩq ď e ´t inf Λ }ψ} L 2 pΩq , @ψ P E, @t ě 0.

(IV.5)

In the case where inf Λ ą 0, we see that the system is dissipative in L 2 pΩq, see Remark IV.0.1.

' We shall need the following spaces

E µ def " à λPΛ λďµ
Ker pA ´λq.

(IV.6)

Let P µ be the orthogonal projection in L 2 onto E µ , which can be expressed as follows

P µ " ÿ λPΛ λďµ π λ .
We can prove the following additional dissipation property }e ´tA ψ} L 2 pΩq ď e ´tµ }ψ} L 2 pΩq , @ψ P E, s.t. P µ ψ " 0, @t ě 0.

(IV.7)

We will see in the sequel that other qualitative properties for the spectrum of the operator will be needed to analyze the controllability of the system.

We will analyze two types of controls:

' The distributed control problem: Let ω be a non empty open subset of Ω. We look for a control v P L 2 ps0, T rˆωq " L 2 p0, T ; U q with U " L 2 pωq such that the solution y P C 0 pr0, T s, Eq, with E " L 2 pΩq, of the problem

$ ' & ' % B t y `Ay " 1 ω v, in Ω, y " 0, on BΩ, yp0q " y 0 (IV.8)
satisfies either }ypT q ´yT } E ď ε (approximate controllability) or ypT q " 0 (null-controllability).

' The boundary control problem: Let Γ 0 be a non empty open subset of Γ. We look for a control v P L 2 ps0, T rˆΓ 0 q " L 2 p0, T ; U q with U " L 2 pΓ 0 q such that the solution y P C 0 pr0, T s, Eq, with E " H ´1pΩq, of the problem

$ ' & ' % B t y `Ay " 0, in Ω, y " 1 Γ 0 v, on BΩ,
yp0q " y 0 (IV.9) satisfies either }ypT q ´yT } E ď ε (approximate controllability) or ypT q " 0 (null-controllability).

Remark IV.0.1

From the point of view of controllability we can always assume, if necessary, that the potential α is non negative, which implies inf Λ ą 0 (see (IV.3)), and thus all the eigenvalues are positive. Indeed, is one sets ỹ " e ´at y we see that ỹ solves the problem

$ ' & ' % B t ỹ `pA `aqỹ " 1 ω e ´at v, in Ω,
y " 0, on BΩ, yp0q " y 0 , which amounts at adding the constant a to α.

As a consequence of the previous remark, we will systematically assume in the sequel that α ě 0.
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IV.1 Further spectral properties and applications

IV.1.1 The 1D case

We assume in this section that Ω is a 1D interval, say p0, 1q. From a spectral point of view this particularly implies that all the eigenvalues are real and simple, therefore we can choose one eigenfunction ϕ λ in each eigenspace Ker pA ´λq, that we shall take normalized in L 2 pΩq. The projection operator π λ is thus simply given for any λ P Λ by

π λ ψ " xψ, ϕ λ y L 2 ϕ λ , @ψ P L 2 pΩq.
The second property which is specific to the 1D case 1 is the following asymptotic property, called Weyl's law

N Λ prq " rÑ8 κ ? r,
for some constant κ ą 0, where N Λ is the counting function of the family Λ (see Section A.5). We will present a proof of a weaker (but sufficient) version of this result below.

IV.1.1.1 Spectral estimates

The properties stated in this section are very classical but we adopt here the formalism and proofs introduced in [ABM18] that have the advantage to being easy to extend to more general situations like the discrete setting for instance.

Proposition IV.1.2

Under the assumptions above, for both boundary and distributed control problems, we have

B ˚ϕλ ‰ 0, @λ P Λ.
In particular, the heat equation is approximately controllable at any time T ą 0 in both cases.

Proof :

In both cases, if we assume that B ˚ϕλ " 0, it implies that there exists a point a P r0, 1s such that ϕ λ paq " ϕ 1 λ paq " 0. Indeed, we either take a to be a boundary point of Ω, or a point inside the control domain ω.

Since ϕ λ satisfies a second order linear homogeneous differential equation, this would imply ϕ λ " 0 which is impossible.

The approximate controllability in both cases is now a consequence of the Fattorini-Hautus test (see Theorem III.3.7). Theorem IV.1.3

Let us introduce the notations

Under the assumptions above, there exists C 1 pα, γ, ωq ą 0 and C 2 pα, γq, C 3 pα, γq ą 0 such that:

' the eigenfunctions satisfy }ϕ λ } 2 L 2 pωq ě C 1 pα, γ, ωq, @λ P Λ, |B ' ϕ λ | ě C 2 pα, γq ?
λ, @λ P Λ, @' P tl, ru.

' the family of eigenvalues Λ, satisfies

|λ ´µ| ě C 2 pα, γq ? λ, @λ ‰ µ P Λ, N Λ prq ď C 3 pα, γq ? r, @r ą 0,
|N Λ prq ´NΛ psq| ď C 3 pα, γqp1 `a|r ´s|q, @r, s ą 0.

Remark IV.1.4 (Laplace operator)

For the standard Laplace operator γ " 1, α " 0, the eigenfunctions and eigenvalues are explicitely given by Λ " tk 2 π 2 , k P N ˚u, ϕ λ pxq " ? 2 sinp ? λxq, λ P Λ.

The properties proved in the above theorem are thus straightforward it this case.

We begin with the following lemma.

Lemma IV.1.5

Let ω be a non-empty open subset of Ω. There exists C 1 pα, γq ą 0 and C 2 pα, γ, ωq ą 0 such that we have, for any λ P Λ,

1 λ |B ' ϕ λ | 2 ě C 1 pα, γq R λ , @' P tl, ru,
and }ϕ λ } 2 L 2 pωq ě C 2 pα, γ, ωq R λ , where we have defined R λ def " inf x,yPΩ |ϕ λ pxq| 2 `γpxq λ |ϕ 1 λ pxq| 2 |ϕ λ pyq| 2 `γpyq λ |ϕ 1 λ pyq| 2 . (IV.10) Proof :
' By definition of R λ , and the fact that ϕ λ p0q " 0, we have

γp0q λ |ϕ 1 λ p0q| 2 ě R λ ˆ|ϕ λ pyq| 2 `γpyq λ |ϕ 1 λ pyq| 2 ˙ě R λ |ϕ λ pyq| 2 , @y P Ω.
By integration over y P Ω, we can use the normalisation condition and the equation satisfied by ϕ λ to find that

γp0q λ |ϕ 1 λ p0q| 2 ě R λ . c b na F. BOYER -JUNE 27, 2023
For λ large enough, we deduce that

γp0q λ |ϕ 1 λ p0q| 2 ě R λ ,
which gives the claim for B l ϕ λ . A similar proof holds for B r ϕ λ .

' Let pa, bq Ă ω be a connected component of ω. The Sturm comparison theorem (see Theorem A.4.32 and Corollary A.4.33) implies that there is a λ 0 pα, γ, ωq such that for λ ě λ 0 , we can find two zeros a λ ă b λ of ϕ λ such that pa λ , b λ q Ă pa, bq and b λ ´aλ ě pb ´aq{2.

(IV.11)

We multiply by ϕ λ the equation satisfied by ϕ λ on pa λ , b λ q and we integrate by parts, using that a λ and b λ are zeros of ϕ λ . We obtain

ż b λ a λ γ|ϕ 1 λ | 2 `α|ϕ λ | 2 " λ ż b λ a λ |ϕ λ | 2 ,
and since we have assumed that α ě 0, we find that

ż b λ a λ |ϕ λ | 2 ě ż b λ a λ γ λ |ϕ 1 λ | 2 . (IV.12)
By definition of R λ we have, for any x, y P Ω

|ϕ λ pxq| 2 `γpxq λ |ϕ 1 λ pxq| 2 ě R λ ˆ|ϕ λ pyq| 2 `γpyq λ |ϕ 1 λ pyq| 2 ˙.
We can integrate this inequality with respect to x P pa λ , b λ q on the one hand and with respect to y P Ω " p0, 1q on the other hand to get

ż b λ a λ |ϕ λ | 2 `ż b λ a λ γ λ |ϕ 1 λ | 2 ě R λ pb λ ´aλ q ż 1 0 ´|ϕ λ | 2 `γ λ |ϕ 1 λ | 2 ¯ě R λ pb λ ´aλ q.
By (IV.12), the normalisation condition of ϕ λ in L 2 pΩq and (IV.11), we arrive to

ż b λ a λ |ϕ λ | 2 ě R λ b ´a 4 , so that, for λ ě λ 0 , we have ż ω |ϕ λ | 2 ě ż b λ a λ |ϕ λ | 2 ě R λ b ´a 4 .
Since there is a finite number of eigenvalues that satisfy λ ă λ 0 , the claim is proved thanks to Proposition IV.1.2. Now we propose a reformulation of the differential equation that will permit us to prove uniform lower bounds

c b na F. BOYER -JUNE 27, 2023
for the quantity R λ .

Lemma IV.1.6

Let f : Ω Ñ R be a continuous function and λ ą 0. Suppose that u : Ω Ñ R satisfies the second-order differential equation (without any prescribed boundary conditions)

Aupxq " λupxq `f pxq, @x P Ω, (IV.13) then the following equation holds U 1 pxq " M pxqU pxq `QpxqU pxq `F pxq, @x P Ω, (IV.14)

where we have defined the vectors

U pxq def " ˜upxq b γpxq λ u 1 pxq ¸and F pxq def " ˜0 ´fpxq ? γpxqλ ¸.
and the matrices

M pxq def " ¨0 b λ γpxq ´b λ γpxq 0 ' and Qpxq def " ¨0 0 αpxq ? λγpxq a γpxq ´1 ? γ ¯1 pxq '.
The key-point of this formulation is that the large terms in ? λ only appear in the skew-symmetric matrix M pxq, while the matrix Qpxq only contain bounded terms with respect to λ.

As a consequence of this particular structure, we can obtain the following estimates.

Lemma IV.1.7

With the same notations as in Lemma IV.1.6, and assuming that λ ě 1, there exists C def " Cpα, γq, independent of λ, such that for any x, y P Ω, we have We use now the fact that the matrix M psq is skew symmetric for any s, and so is ş y x M psq ds. It follows that the resolvant Spy, sq is unitary }Spy, sq} " 1 for any y, s. We get which gives the result since Qpsq is bounded uniformly in s and λ, by using the assumptions on the coefficient γ and α

We can now prove the main Theorem of this section.

Proof (of Theorem IV.1.3):

A first remark is that it is enough to prove the claims for λ large enough and in particular we can assume without loss of generality that λ ě 1.

' We begin with the proof of the first two points of the theorem. By definition, ϕ λ is solution of the equation Aϕ λ " λϕ λ , which is exactly (IV.13) with u " ϕ λ and f " 0. From Lemma IV.1.7 we deduce that there exists C def " Cpγ, αq, independent of λ, such that for any x, y P Ω,

|ϕ λ pyq| 2 `γpyq λ |ϕ 1 λ pyq| 2 ě C ˆ|ϕ λ pxq| 2 `γpxq λ |ϕ 1 λ pxq| 2 ˙, (IV.17)
which exactly proves that the quantity R λ defined in (IV.10) is uniformly bounded from below. The claim thus immediately follows from Lemma IV.1.5.

' We shall now prove the third point in Theorem IV.1.3. For any two λ ą µ in Λ with µ ě 1, we define

upxq def " ϕ 1 µ p1qϕ λ pxq ´ϕ1 λ p1qϕ µ pxq,
in such a way that up1q " u 1 p1q " 0 and Au " λu `f, with f pxq def " ϕ 1 λ p1q pλ ´µq ϕ µ pxq, @x P Ω. Using the notations introduced in Lemma IV.1.6, we observe that by construction we have U p1q " 0 so that the estimate (IV.15) specialized in x " 1 leads to

}U pyq} ď C ż 1 y }F psq} ds ď C ż 1 0
}F psq} ds, @y P Ω.

Using the expression for F and f , we find that

}U pyq} ď C ? γ min ˆλ ´µ ? λ |ϕ 1 λ p1q| ˙ż 1 0 |ϕ µ psq| ds, @y P Ω.
Thanks to the normalisation condition }ϕ µ } L 2 pΩq " 1 and the expressions of U and u, we obtain for any y P Ω,

ˇˇϕ 1 µ p1qϕ λ pyq ´ϕ1 λ p1qϕ µ pyq ˇˇ2 ď C γ min ˆλ ´µ ? λ |ϕ 1 λ p1q| ˙2 .
We integrate this inequality with respect to y P p0, 1q and we use the L 2 pΩq orthonormality of ϕ λ and ϕ µ to finally get

|ϕ 1 λ p1q| 2 ď `ϕ1 λ p1q ˘2 ``ϕ 1 µ p1q ˘2 ď C γ min ˆλ ´µ ? λ |ϕ 1 λ p1q| ˙2 ,
and since ϕ 1 λ p1q ‰ 0, we conclude that λ ´µ ě C? λ, (IV.18)

for some C ą 0 independent of λ and µ.
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' Let us finally prove the estimates on the counting function N Λ . We first observe that the inequality (IV.18) we proved above implies that

|λ ´µ| ě C 1 2 | ? λ `?µ|, @λ ‰ µ P Λ, from which we deduce | ? λ ´?µ| ě C 1 2 , @λ ‰ µ P Λ. (IV.19)
Let us fix r ą 0 and let λ 1 ă ¨¨¨ă λ N Λ prq all the elements in Λ X r0, rs. We set λ 0 " 0.

We can write on the one hand

N Λ prq ÿ k"1 ´aλ k ´aλ k´1 ¯" b λ N Λ prq ď ? r,
and on the other hand, by using (IV.19),

N Λ prq ÿ k"1 ´aλ k ´aλ k´1 ¯ě C 1 2 pN Λ prq ´1q `aλ 1 ě CN Λ prq, with C " minp ? λ 1 , C 1 {2q.
Combining the two inequalities above we obtain

N Λ prq ď 1 C ? r.
Assume now that r ą s ą 0 and that N Λ prq ě N Λ psq `2, the same technique as before leads to

? r ´?s ě b λ N Λ prq ´bλ N Λ psq`1 " N Λ prq ÿ k"N Λ psq`2 ´aλ k ´aλ k´1 ě
CpN Λ prq ´NΛ psq ´2q, which gives

N Λ prq ´NΛ psq ď 2 `1 C ? r ´s.
Note that this estimate still holds in the case where N Λ prq ă N Λ psq `2. The claim is proved.

IV.1.1.2 Approximate controllability

The results obtained in Theorem IV.1.3 and the Fattorini-Hautus test (Theorem III.3.7) immediately shows that both problems (IV.8) and (IV.9) are approximately controllable in 1D at any time T ą 0.

IV.1.1.3 Null-controllability

We shall now prove the null-controllability of (IV.8) and (IV.9), still in 1D, by using the moments method. We already encountered this method in Section II.4 in order to deal with the controllability of finite dimensional linear differential systems.

The main difference here is that there is now a countable infinite number of frequencies in the system. That is the reason why we will need to be able to prove the existence of a countable biorthogonal family functions to the set of all real exponential functions present in the definition of our semigroup. Moreover, we shall need precise estimate on those families.
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The use of such a strategy in the framework of controllability issues goes back to [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF][START_REF]Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF] and has been developped since then in many works. We mention for instance the recent works [START_REF] Farid Ammar Khodja | Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences[END_REF], [START_REF] Benabdallah | Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the Ndimensional boundary null controllability in cylindrical domains[END_REF], [START_REF]New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence[END_REF], [START_REF] Cannarsa | Precise estimates for biorthogonal families under asymptotic gap conditions[END_REF], [START_REF] González | Sharp estimates for biorthogonal families to exponential functions associated to complex sequences without gap conditions[END_REF].

To begin with, let us introduce a few notations. First of all, even though all the eigenvalue of our operator are real we will state the next results in a slightly more general framework in which complex eigenvalues are allowed.

Definition IV.1.8 (Properties of eigenvalues) ' Let η ą 0 be given. We say that a family Λ Ă C satisfies the sector condition with parameter η if we have Λ Ă S η , (IV.20) see Definition A.6.40.

' Let κ ą 0 and θ P p0, 1q be given. We say that a family Λ Ă C satisfies the asymptotic assumptions with parameters κ, θ if we have N Λ prq ď κr θ , @r ą 0, (IV.21) and |N Λ prq ´NΛ psq| ď κp1 `|r ´s| θ q, @r, s ą 0.

(IV.22)

' Let ρ ą 0 be given. We say that a family Λ Ă C satisfies the gap condition with parameter ρ if we have |λ ´µ| ě ρ, @λ ‰ µ P Λ.

(IV.23)

With those definitions at hand, we introduce the following class of families of complex numbers Remark IV.1.9

L pη, κ, θ, ρq " " Λ Ă C,
The assumption (IV.22) is strictly stronger than (IV.21). Indeed, let us consider for instance the family of complex numbers defined by Λ "

! n β e iαk n , k P 0, n , n ě 1 ) ,
where α P p0, π{2q and β ą 2 are two parameters.

It is clear that Λ satisfies the sector condition (IV.20) and the gap condition (IV.23) for suitable values of the parameters as well as the following upper bound for the counting function

N Λ prq " ÿ ně1 n β ďr n " ÿ nP 1,r 1{β n ď r 2{β ,
that is (IV.21) with θ " 2{β. However, we clearly have |N Λ pn β q ´NΛ pn β ´1q| " n, @n ě 1, so that (IV.22) is not satisfied.

c bna F. BOYER -JUNE 27, 2023
We recall that the notation erλs stands for the exponential function as given in (I.7) and we observe that, as soon as Re λ ą 0, we have erλs P L 2 p0, `8, Cq.

The theorem we need at that point is the following one. Its proof is postponed to Section IV.1.2.

Theorem IV.1.10

Consider a family of complex numbers Λ P L pη, κ, θ, ρq for some values of the parameters. Then, for any T ą 0 given, there exists a family pq λ,T q λPΛ in L 2 p0, T q satisfying perµs, q λ,T q L 2 p0,T q " δ λ,µ , @λ, µ P Λ, as well as the estimate }q λ,T } L 2 p0,T q ď Ke KpRe λq θ `KT ´θ 1´θ , @λ P Λ, (IV.24)

where K ą 0 only depends on κ, θ, η and ρ.

In the case where we have the weaker assumption Λ P r L pη, κ, θ, ρq, the same result holds if one replaces θ by any value θ P pθ, 1q in the estimate (IV.24); in that case the value of K also depends on θ.

In the 1D case the eigenvalues of our operator (IV.1) satisfy the above assumptions (IV.21)-(IV.23) with θ " 1{2, as we have seen in Theorem IV.1.3. The sector condition (IV.20) is obviously satisfied since the eigenvalues of this operator are real.

We are thus in position to deduce the following two null-controllability results.

Theorem IV.1.11 (Boundary null-controllability in 1D)

Assume that d " 1, Ω " p0, 1q. Let Γ 0 " t1u for instance. For any y 0 P L 2 pΩq, and T ą 0, there exists a control v P L 2 p0, T q such that the solution of (IV.9) fulfills ypT q " 0 and satisfying the bound

}v} L 2 p0,T q ď Ce C T }y 0 } L 2 ,
where C does not depend on T and y 0 .

Proof :

Let T ą 0 be given. For any v P L 2 p0, T q, the solution y of (IV.9) satisfies

xypT q, ϕ λ y H ´1,H 1 0 ´xy 0 , e ´λT ϕ λ y H ´1,H 1 0 " ż T 0 vptqe ´pT ´tqλ B r ϕ λ dt, @λ P Λ.
Hence, v is a null-control for our system if and only if the function uptq def " vpT ´tq satisfies

´xy 0 , e ´λT ϕ λ y L 2 " ż T 0 uptqe ´λt B r ϕ λ dt, @λ P Λ,
where we used here that y 0 P L 2 pΩq. We are thus led to find a function u P L 2 p0, T q that satisfies the following moment problem ż T 0 uptqe ´λt dt " ´xy 0 , ϕ λ y L 2 e ´λT B r ϕ λ , @λ P Λ.

(IV.25)

From the properties of the eigenvalues Λ given in Theorem IV.1.3, we see that
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for some κ, ρ depending only on the coefficients α and γ of our elliptic operator. Note that Λ Ă R in that case, so that it belongs to all the sectors S η , η ą 0. By Theorem IV.1.10, we know that there exists a biorthogonal family pq λ,T q λPΛ to the exponentials made upon the family Λ. It follows that, as we did in the finite dimensional setting, we may formally solve the moment problem above by defining

uptq def " ÿ µPΛ u µ ptq, with u µ ptq def " ´xy 0 , ϕ µ y L 2 e ´µT B r ϕ µ q µ,T ptq, @µ P Λ.
Indeed, if this series makes sense (and if the following computation can be justified) we have for any λ P Λ,

ż T 0 uptqe ´λt dt " ÿ µPΛ ´xy 0 , ϕ µ y L 2 e ´µT B r ϕ µ ż T 0 q µ,T ptqe ´λt dt looooooooomooooooooon "δ λ,µ " ´xy 0 , ϕ λ y L 2 e ´λT B r ϕ λ ,
and the claim will be proved. It remains to show the convergence of the series in L 2 p0, T q. To this end, we will show that it is normally convergent. Indeed we have

}u µ } L 2 p0,T q ď }y 0 } L 2 e ´µT |B r ϕ µ | }q µ,T } L 2 p0,T q , (IV.26)
and by the estimate given in Theorem IV.1.10, and Young's inequality, we deduce that

}u µ } L 2 p0,T q ď K }y 0 } L 2 |B r ϕ µ | e ´µT e K T `K? µ ď K 1 |B r ϕ µ | e K`K 2 {2 T e ´µT {2 }y 0 } L 2 .
Finally, we use the bound from below for |B r ϕ µ | given in Theorem IV.1.3, to deduce that

}u µ } L 2 p0,T q ď Ce ´µT {2 e C T }y 0 } L 2 , @µ P Λ,
which proves, thanks to (A.22), that

ÿ µPΛ }u µ } L 2 p0,T q ď C T e C T }y 0 } L 2 ă `8,
and concludes the proof. We can use the same kind of proof in the case of the distributed control problem.

Theorem IV.1.12 (Distributed null-controllability in 1D)

Assume that d " 1, Ω " p0, 1q. Let ω be any non empty open subset of Ω. For any y 0 P L 2 pΩq, and T ą 0, there exists a control v P L 2 pp0, T q ˆωq such that the solution of (IV.8) fulfills ypT q " 0 and satisfying the bound

}v} L 2 pp0,T qˆωq ď Ce C T }y 0 } L 2 ,
where C does not depend on T and y 0 .

Proof :

We start with the same formulation as before, for any function v P L 2 pp0, T q ˆωq xypT q, ϕ λ y L 2 ´xy 0 , e ´λT ϕ λ y L 2 " ż T 0 ż ω vpt, xqe ´pT ´tqλ ϕ λ pxq dx dt, @λ P Λ.
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The solution vanishes at time T , if and only if the function upt, xq def " vpT ´t, xq satisfies the following space-time moment problem ż T 0 ż ω upt, xqe ´λt ϕ λ pxq dx dt " ´xy 0 , ϕ λ y L 2 e ´λT , @λ P Λ.

To solve this problem, we look for a biorthogonal family pq λ,T q λPΛ in L 2 pp0, T q ˆωq to the family of functions ␣ pt, xq P p0, T q ˆω Þ Ñ ϕ λ pxqe ´λt ( . We propose the following family

qλ,T pt, xq def " ϕ λ pxq }ϕ λ } 2 L 2 pωq
q λ,T ptq, @pt, xq P p0, T q ˆΩ, @λ P Λ, where pq λ,T q λPΛ is the same family as in the proof of the previous theorem.

We indeed check, by the Fubini theorem, that for any λ, µ P Λ, we have

ż T 0 ż ω qλ,T pt, xqϕ µ pxqe ´µt dt " 1 }ϕ λ } 2 L 2 pωq ˆżω ϕ λ ϕ µ dx ˙ˆż T 0 q λ,T ptqe ´µt dt looooooooooomooooooooooon "δ λ,µ " δ λ,µ .
Finally, we can define a formal null-control u by the series

u def " ÿ µPΛ u µ , with u µ pt, xq def " ´xy 0 , ϕ µ y L 2 e ´µT qµ,T pt, xq.
It remains to check the convergence of this series by computing

}u µ } L 2 pp0,T qˆωq ď }y 0 } L 2 e ´µT }q µ,T } L 2 pp0,T qˆΩq ď }y 0 } L 2 e ´µT }q µ,T } L 2 p0,T q }ϕ µ } L 2 pωq ,
so that, by the estimates given by Theorem IV.1.10,

}u µ } L 2 pp0,T qˆωq ď K 1 }ϕ µ } L 2 pωq e K T ´µT `K? µ , @µ P Λ.
By Young's inequality, we get

}u µ } L 2 pp0,T qˆωq ď K 1 }ϕ µ } L 2 pωq e K`K 2 {2 T ´µT {2 , @µ P Λ.
Using the bound from below for }ϕ µ } L 2 pωq in Theorem IV.1.3 and (A.22), we conclude again to the convergence in L 2 pp0, T q ˆωq of the series that defines u and the claimed estimate.

IV.1.2 Biorthogonal family of exponentials

The main goal of this section is to prove Theorem IV.1.10.

We will thus suppose given a family of complex numbers Λ P L pη, κ, θ, ρq. We recall that it means that is satisfies the sector condition (IV.20), the asympotic behavior conditions (IV.21) and (IV.22), as well as the gap condition (IV.23).

Note that (IV.21) implies the summability property

ÿ λPΛ 1 |λ| ă `8.
The proof is based on the use of the Paley-Wiener theorem and on the construction of a product of a suitable entire functions on the complex plane:
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' The first one is the function

Q L pzq " ź σPL ´1 ´z σ ¯,
where L is any subset of Λ. We will mainly use the fact that L is exactly the set of zeros of Q L . Note that Q L only depends on L. The main properties of Q L are stated and proved in Appendix A.7.1.

' The second one is a so-called multiplier function, denoted by M m,θ,τ , whose main goal will be to ensure that the product built upon Q L and M m,θ,τ is square integrable on the real line. Note that this function does not depend on L but only on the given parameter θ, as well as a time parameter τ and on an additional parameter m that will be chosen during the proof. The precise definition and analysis of this multiplier function is given in Appendix A.7.2.

Proof (of Theorem IV.1.10):

Thanks to the first point of Proposition A.7.46, we know that there exists a constant C 1 ą 0 depending only on θ, κ such that |Q Λztλu p´izq| ď e C 1 |z| θ , @z P C, @λ P Λ.

(IV.27)

We set now m :" C 1 `2 (IV.28) then we define

τ 0 " p2θmq 1{θ 1 ´θ .
For any τ ă τ 0 , and any λ P Λ, we introduce the entire function defined by ' By construction of Φ λ,τ and the properties of Q Λztλu , we observe that Φ λ,τ piµq " δ λ,µ , @µ P Λ.

Φ λ,τ pzq :" Q Λztλu p´izqM m,θ, τ 2 pzq Q Λztλu pλqM m,θ
' It remains to estimate Φ λ,τ on the real line.

-First, we combine (IV.27) and (A.55), and we use the choice of m given by (IV.28), to get

|Q Λztλu p´ixqM m,θ,τ {2 pxq| ď Ce C 1 |x| θ e ´m|x| θ `Cτ θ 1´θ ď Ce ´2|x| θ `Cτ θ 1´θ , @x P R.
-Second, by using the lower bound (A.51) (with γ " ρ{2) stated in Proposition A.7.46, we obtain

|Q Λztλu pλq| ě e ´C|λ| θ ,
since the product P Λztλu,γ,λ appearing in (A.51) is simply equal to 1 in that case.

-Finally, by using Proposition A.7.49, we get

|M m,θ,τ {2 piλq| ě e ´C|λ| θ . c b na F. BOYER -JUNE 27, 2023
All in all, we have obtained the bound |Φ λ,τ pxq| ď Ce ´|x| θ `C|λ| θ `Cτ ´θ 1´θ , @x P R.

Applying the Paley-Wiener theorem (Theorem A.6.42) to this function Φ λ,τ , we obtain that there exists a function ϕ λ,τ : R Ñ C supported in r´τ, τ s such that Φ λ,τ pzq " ż τ ´τ ϕ λ,τ ptqe itz dt, and with the estimate

}ϕ λ,τ } L 2 p´τ,τ q " 1 ? 2π }Φ λ,τ } L 2 pRq ď Ce C|λ| θ `Cτ ´θ 1´θ .
We set now ψ λ,τ ptq :" e λτ ϕ λ,τ pt ´τ q, for all t P R. This function satisfies the following properties:

' ψ λ,τ is supported in r0, 2τ s.
' For any µ P Λ, we have

ż 2τ 0 ψ λ,τ ptqe ´µt dt "e λτ ż 2τ 0 ϕ λ,τ pt ´τ qe ´µt dt "e pλ´µqτ ż τ ´τ ϕ λ,τ ptqe ´µt dt "e pλ´µqτ Φ λ,τ piµq "δ λ,µ .
' The norm of ψ λ,τ is estimated by }ψ λ,τ } L 2 p0,2τ q " e τ pRe λq }ϕ λ,τ } L 2 p´τ,τ q ď Ce τ pRe λq`C|λ| θ `Cτ ´θ 1´θ . By (A.26), we end up with the estimate }ψ λ,τ } L 2 p0,2τ q ď Ce τ pRe λq`CηpRe λq θ `Cτ ´θ 1´θ (IV.29) This is almost the expected estimate, excepted for the term τ pRe λq in the exponential. We will now show that this term can be somehow removed.

' We set τ λ " pRe λq θ´1 and we separate the construction into two cases:

q λ,τ " # ψ λ,τ , if τ ď τ λ ψ λ,τ λ , if τ ą τ λ .
It is clear that, in both cases, q λ,τ is supported in r0, 2τ s and satisfies the orthogonality property

ż 2τ 0 q λ,τ ptqe ´µt dt " δ λ,µ .
Moreover, we have the expected bound }q λ,τ } L 2 p0,2τ q ďCe CpRe λq θ `Cτ ´θ 1´θ .

Indeed, if τ ď τ λ , we have τ pRe λq ď τ λ pRe λq " pRe λq θ so that the estimate (IV.29) immediately gives the result. On the other hand, if τ ą τ λ then we have

}q λ,τ } L 2 p0,2τ q " }ψ λ,τ λ } L 2 p0,2τ λ q c b na F. BOYER -JUNE 27, 2023
and the estimate (IV.29) with τ replaced by τ λ leads to }q λ,τ } L 2 p0,2τ q ď Ce τ λ pRe λq`CpRe λq θ `Cτ ´θ 1´θ λ " Ce CpRe λq θ , by definition of τ λ . This gives the claim in that case.

It remains now to choose τ " minpT {2, τ 0 q to conclude the proof since we have

τ ´θ 1´θ ď τ ´θ 1´θ 0 `pT {2q ´θ 1´θ .

IV.1.2.1 Comparison with some related results in the literature

In Theorem IV.1.10, we have assumed that the family Λ belongs to the class L pη, κ, θ, ρq introduced in Definition IV.1.8. We would like to mention here that a similar result was obtained in [START_REF] Benabdallah | Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the Ndimensional boundary null controllability in cylindrical domains[END_REF] for instance, in the case θ " 1{2 at least2 . However the assumptions chosen in this reference were much stronger as we will show now.

' First of all, in [START_REF] Benabdallah | Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the Ndimensional boundary null controllability in cylindrical domains[END_REF], it was assumed, in addition to the upper bound, some bound from below for the counting function of the type N Λ prq ě a ? r ´b, @r ą 0.

(IV.30)

We do not need such an assumption here.

' They also assume some parabolic behavior of the elements in Λ, namely

|Im λ| ď c ? Re λ, @λ P Λ, (IV.31)
which is not necessary in the present work. We only need Λ to belong to some sector in the complex half-plane.

' Lastly, if we assume given a numbering Λ " pλ n q n of the eigenvalues such that |λ n`1 | ě |λ n |, it is assumed in [START_REF] Benabdallah | Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the Ndimensional boundary null controllability in cylindrical domains[END_REF] that, for some integer q and some ρ ą 0, we have the following stronger gap property

$ ' & ' % ρ|k 2 ´n2 | ď |λ k ´λn |, @k, n such that |k ´n| ě q, inf k‰n |k´n|ăq |λ k ´λn | ą 0. (IV.32)
It is clear that this assumption implies the gap condition (IV.23).

Notice that the assumptions (IV.30) and (IV.32) have the very undesirable property that, if Λ satisfies one of them, then it is not true that any subfamily L Ă Λ will satisfy the same property. This is not natural at all, since if one is able to prove the existence (and bounds) of a biorthogonal family to the exponentials perλsq λPΛ then it obviously provides, by restriction, a biorthogonal family to the subfamily of exponentials perλsq λPL , for any L Ă Λ.

We will show now that the above properties imply our result.

Proposition IV.1.13

Let Λ " pλ n q n Ă C `be a family of distinct numbers, ordered by increasing modulus, that fulfills (IV.30), (IV.31) and (IV.32). Then the counting function N Λ satisfies the asymptotic property (IV.22).

Proof :

' We start by showing that, we have ˇˇˇ| λ n | ´Re λ n ˇˇˇď c 2 , @n P N.

Indeed, we write

|λ n | " pRe λ n q d 1 `ˆIm λ n Re λ n ˙2, so that ˇˇˇ| λ n | ´Re λ n ˇˇˇ" pRe λ n q ¨d1 `ˆIm λ n Re λ n ˙2 ´1' " pIm λnq 2 Re λn c 1 `´Im λn Re λn ¯2 `1 ď c 2 ,
en utilisant (IV.31).

' Let us consider now two integers k ă n such that |k ´n| ě q. We can evaluate the modulus of their difference as follows

|λ k ´λn | 2 "pRe λ k ´Re λ n q 2 `pIm λ k ´Im λ n q 2 ďpRe λ k ´Re λ n q 2 `2" pIm λ k q 2 `pIm λ n q 2 ‰ ďpRe λ k ´Re λ n q 2 `2c 2 " Re λ k `Re λ n ‰ ď2p|λ k | ´|λ n |q 2 `2c 2 " |λ k | `|λ n | ‰ `12c 4 ď2p|λ k | ´|λ n |q 2 `4c 2 |λ n | `12c 4 .
We have used that the sequence p|λ n |q n is not decreasing by assumption.

By using (IV.32), we deduce

ρ 2 pk ´nq 2 pk `nq 2 ď 2p|λ k | ´|λ n |q 2 `4c 2 |λ n | `12c 4 ,
and thus

ρ 2 |k ´n| 2 ď 2p a |λ n | ´a|λ k |q 2 ˜a|λ n | `a|λ k | k `n ¸2 `2c 2 |λ n | pk `nq 2 `12c 4 pk `nq 2 ď 8p a |λ n | ´a|λ k |q 2 |λ n | n 2 `2c 2 |λ n | n 2 `12c 4 .
(IV.33) ' Let now s, t P p0, `8q, such that s ă t and N Λ ptq ´NΛ psq ě q `1. We set n " N Λ ptq and k " N Λ psq `1 in such a way that |λ n | ď t and |λ k | ą s. By using (IV.30), we get

a ? t ´b ď N Λ ptq, that is a 2 t ď 2N Λ ptq 2 `2b 2 ,
and finally

|λ n | ď 2 a 2 n 2 `2b 2 a 2 . c b na F. BOYER -JUNE 27, 2023
Using this inequality in (IV.33), it follows

ρ 2 |k ´n| 2 ď Cp a |λ n | ´a|λ k |q 2 `C.
Thanks to the definition of k and n above, we deduce

ρ 2 |N Λ ptq ´NΛ psq ´1| 2 ď C " 1 `p? t ´?sq 2 ȷ , so that ρ 2 |N Λ ptq ´NΛ psq ´1| 2 ď C " 1 `|t ´s| ȷ ,
and finally |N Λ ptq ´NΛ psq| ď Cp1 `?t ´sq, (IV.34)

with a new value of C.

' To conclude, we observe that if we increase C in such a way that C ą q `1, then (IV.34) is now true for any t, s.

The proof is complete.

IV.1.3 The multi-D case

This will be the opportunity to encounter our first Carleman estimate. Those are weighted a priori estimate on solutions of PDEs that imply many important qualitative properties for those PDEs such as unique continuation, spectral estimates, and so on. We refer for instance to the references [START_REF] Rousseau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF] and [START_REF] Coron | Control and nonlinearity[END_REF]. We first state the following two estimates without proof. We shall actually give the proof of a slightly more general estimate in Section IV.3.

Theorem IV.1.14 (Boundary Carleman estimate)

Let Γ be a non empty open subset of BΩ. There exists a function φ P C 2 pΩq, a C ą 0 and s 0 ą 0 such that, for any u P H 2 pΩq X H 1 0 pΩq and any s ě s 0 , we have

s 3 }e sφ u} 2 L 2 pΩq `s}e sφ ∇u} 2 L 2 pΩq ď C ´}e sφ ∆u} 2 L 2 pΩq `s}e sφ B n u} 2 L 2 pΓq ¯. (IV.35) Theorem IV.1.15 (Interior Carleman estimate)
Let ω be a non empty open subset of Ω. There exists a function φ P C 2 pΩq, a C ą 0 and a s 0 ą 0 such that, for any u P H 2 pΩq X H 1 0 pΩq and any s ě s 0 , we have

s 3 }e sφ u} 2 L 2 pΩq `s}e sφ ∇u} 2 L 2 pΩq ď C ´}e sφ ∆u} 2 L 2 pΩq `s3 }e sφ u} 2 L 2 pωq ¯. (IV.36) Proposition IV.1.16
Let ω Ă Ω and Γ Ă BΩ as before, then the eigenfunctions of A satisfy }ϕ} L 2 pωq ‰ 0, and }B n ϕ} L 2 pΓq ‰ 0, @ϕ P Ker pA ´λqzt0u, @λ P Λ.
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Proof :

We start from the equation satisfied by ϕ under the following form ´γp∆ϕq ´2∇ϕ ¨∇γ ´p∆γqϕ `αϕ " λϕ, which gives

∆ϕ " α ´λ γ ϕ ´2 ∇ϕ ¨∇γ γ ´∆γ γ ϕ.
We deduce the pointwise inequality

|∆ϕ| ď C α,γ p1 `|λ|q|ϕ| `Cγ |∇ϕ|.
' Assume first that ϕ " 0 on ω. We can apply (IV.36) in which the observation term cancels and we get

s 3 }e sφ ϕ} 2 L 2 pΩq `s}e sφ ∇ϕ} 2 L 2 pΩq ď Cp1 `λ2 q}e sφ ϕ} 2 L 2 pΩq `C}e sφ ∇ϕ} 2 L 2 pΩq .
Taking s large enough (depending on k) we can conclude that

s 3 }e sφ ϕ} 2 L 2 pΩq `s}e sφ ∇ϕ} 2 L 2 pΩq ď 0,
which implies ϕ " 0 and thus a contradiction.

' If we assume that B n ϕ " 0 on Γ, we apply the same reasoning with the other Carleman estimate.

Remark IV.1.17

The reasoning above shows that for s " C 1 λ 2{3 we have

s 3 }e sφ ϕ} 2 L 2 pΩq `s}e sφ ∇ϕ} 2 L 2 pΩq ď Cs 3 }e sφ ϕ} 2 L 2 pωq ,
and thus C 3 1 s 3 e 2s inf φ }ϕ} 2 L 2 pΩq ď Cs 3 e 2s sup φ }ϕ} 2 L 2 pωq . Since }ϕ} L 2 pΩq " 1, we deduce

}ϕ} 2 L 2 pωq ě Ce ´C3 s " Ce ´C4 λ 2{3 .
Similarly, we can show

}B n ϕ} 2 L 2 pΓq ě Ce ´Cλ 2{3 .
However, with the above elements, we have proved the approximate controllability properties for the heat equation. Indeed, using the Fattorini-Hautus theorem (Theorem III.3.7), we see that the claim of Proposition IV.1.16 exactly gives the following result.

Theorem IV.1.18

Under the above assumptions, both problems (IV.8) and (IV.9) are approximately controllable from any initial data y 0 P L 2 pΩq and at any time T ą 0.
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IV.2 The method of Lebeau and Robbiano

In order to deal with the null-controllability problem in dimension greater than 1, we will need a much stronger spectral property for the eigenfunctions of A.

More precisely, we will prove the following spectral inequality (taken from [START_REF] Rousseau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF], see also [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]) that will be crucial in our analysis.

Theorem IV.2.19 (Lebeau-Robbiano spectral inequality)

Let Ω as before and ω a non empty open subset of Ω. There exists a C ą 0 depending only on α, γ, ω such that: for any µ ą 0 we have

}ϕ} L 2 pΩq ď Ce C ? µ }ϕ} L 2 pωq , @ϕ P E µ ,
where E µ is defined in (IV.6).

Remark IV.2.20

The above spectral inequality (as well as the proof below of the controllability result) does not hold for the boundary control problem. This is very easy to see, even in 1D for instance, that for any two eigenvalues λ ‰ µ, we can find a non trivial linear combination ϕ " a λ ϕ λ `aµ ϕ µ such that B x ϕ |x"0 " 0.

The above spectral inequality can be proved by means of another kind of global elliptic Carleman estimate that will be proved in Section IV.3. We only give here the simplified version of this Carleman estimate that we need at that point and proceed to the proof of the spectral inequality.

Proposition IV.2.21

Let Ω and ω as before. Let T ˚ą 0 be given and we set Q " p0, T ˚q ˆΩ. There exists a positive function φ P C 2 pQq such that ∇ x φpT ˚, .q " 0 and C, s 0 ą 0 such that: For any s ě s 0 , and any function u P C 2 pQq satisfying up0, .q " 0 and u " 0 on r0, T s ˆBΩ, we have the estimate

s 3 e 2sφpT ˚q ż Ω |upT ˚, .q| 2 ďCse 2sφpT ˚q ż Ω |∇ x upT ˚, .q| 2 `Cs ż ω |e sφp0,.q B τ up0, .q| 2 `2}e sφ pB 2 τ u ´Auq} 2 L 2 pQq .

Proof (of Theorem IV.2.19):

Let us consider any element v P E µ , that we write

v " ÿ λPΛ λďµ v λ P E µ ,
with v λ P Ker pA ´λq for each λ. We define the function u :

Q Ñ R as follows upτ, xq " ÿ λPΛ λďµ sinhp ? λτ q ? λ v λ pxq.
This function is the unique solution of the following Cauchy problem for the elliptic augmented operator B 2 τ ´A, indeed we have up0, .q " 0, B τ up0, .q " v, pB 2 τ ´Aqpuq " 0.
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We can apply the above Carleman estimate to this particular function u and find

s 3 e 2sφpT q ż Ω |upT ˚, .q| 2 ď Cs ż ω |e sφp0,.q v| 2 `Cse 2sφpT q ż Ω |∇ x upT ˚, .q| 2 . (IV.37)
Let us compute the norms at time T ˚:

' Since the v λ are pairwise orthogonal in L 2 pΩq, we simply have

ż Ω |upT ˚, .q| 2 " ÿ λPΛ λďµ }v λ } 2 L 2 λ | sinhp ? λT ˚q| 2 ě 1 µ ÿ λPΛ λďµ }v λ } 2 L 2 | sinhp ? λT ˚q| 2 . (IV.38)
' For the gradient term, we first observe that

ż Ω |∇ x upT ˚, .q| 2 ď C ż Ω γ|∇ x upT ˚, .q| 2 " CxAupT, ˚q, upT ˚, .qy L 2 pΩq ´C ż Ω α|upT ˚, .q| 2 ď CxAupT, ˚q, upT ˚, .qy L 2 pΩq `C ż Ω |upT ˚, .q| 2 .
Then we use that, for any λ, λ 1 , we have

xAv λ , v λ 1 y L 2 " λ}v λ } 2 L 2 δ λ,λ 1 , to write xAupT ˚, .q, upT ˚, .qy " ÿ λPΛ λďµ }v λ } 2 L 2 | sinhp ? λT ˚q| 2 .
Using (IV.38), we have finally proved that

ż Ω |∇ x upT ˚, .q| 2 ď Cp1 `µq ż Ω |upT ˚, .q| 2 . (IV.39)
Using (IV.39) in (IV.37), we have finally obtained

s 3 e 2sφpT q ż Ω |upT ˚, .q| 2 ď Cs ż ω |e sφp0,.q v| 2 `Cse 2sφpT q p1 `µq ż Ω |upT ˚, .q| 2 .
Since this inequality holds for any value of s, large enough, we see that we can choose s " C? µ for some C in order to absorb the last term by the left-hand side term of the inequality. It remains, for this particular value of s

µ 3{2 e C ? µφpT q ż Ω |upT ˚, .q| 2 ď C ? µ ż ω |e C ? µφp0,.q v| 2 ,
and then, changing the values of the constants if necessary, we get

ż Ω |upT ˚, .q| 2 ď C µ e C ? µ }v} 2 L 2 pωq .
To conclude, we use the inequality | sinhptq{t| ě 1 for any t P R, to write

ż Ω |upT ˚, .q| 2 " ÿ λPΛ λďµ }v λ } 2 L 2 ˇˇˇˇs inhp ? λT ˚q ? λ ˇˇˇˇ2 ě C T ˚ÿ λPΛ λďµ }v λ } 2 L 2 " C T ˚}v} 2 L 2 . c bna F. BOYER -JUNE 27, 2023
With this inequality at hand we can prove a partial observability inequality and a related partial distributed controllability result. We recall that we assume that all the eigenvalues of A are positive.

Proposition IV.2.22

There exists a C ą 0 such that for any time τ ą 0 and any µ ą 0, we have the following inequality

}e ´τ A q T } 2 E ď Ce C ? µ τ ż τ 0 }e ´pτ ´sqA q T } 2 L 2 pωq ds, @q T P E µ .
Note that the operator A is self-adjoint and thus the adjoint operator that we should have put in this inequality is nothing but A ˚" A. Moreover, we also have B " B ˚" 1 ω which explains the form of the right hand side.

Proof :

Since the space E µ is stable by the operator A (it is built upon its eigenfunctions), we know that e ´pτ ´sqA q T belongs to E µ as soon as q T P E µ . Therefore, we can apply the Lebeau-Robbiano spectral inequality to this particular element of E µ }e ´pτ ´sqA q T } 2 L 2 pΩq ď Ce C ? µ }e ´pτ ´sqA q T } 2 L 2 pωq . By the dissipation estimate (IV.5), we find that

}e ´τ A q T } 2 L 2 pΩq ď Ce C ? µ }e ´pτ ´sqA q T } 2 L 2 pωq ,
(with λ 1 possibly negative). We can now integrate this inequality with respect to s on p0, τ q to find

τ }e ´τ A q T } 2 L 2 pΩq ď Ce C ? µ ż τ 0 }e ´pτ ´sqA q T } 2 L 2 pωq ,
which gives the result. For any µ ą 0, and τ ą 0, we consider the following finite dimensional control problem # B t y `Ay " P µ p1 ω vpt, xqq yp0q " y 0,µ P E µ , (IV.40) with v P L 2 p0, τ ; E µ q. Since E µ is stable by A, this problem can be recast in the ODE form

y 1 ptq `Aµ y " B µ v,
by setting A µ " A |Eµ and B µ " P µ p1 ω .q. The state space is E " E µ and the control space is also U " E µ with their natural inner product. We observe that A μ " A µ , and B μ " B µ .

Corollary IV.2.23

For any µ ą 0, τ ą 0 and y 0,µ P E µ , the partial control System (IV.40) is null-controllable at time τ and more precisely, there exists control v µ P L 2 p0, τ, E µ q such that the solution satisfies ypτ q " 0 and such that }v µ } L 2 p0,τ ;Eµq ď C e C ? µ ? τ }y 0,µ } Eµ .

Proof :
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We simply use the results we proved in the finite dimensional framework and in particular the second point of Theorem II.7.25.

Proposition IV.2.24

For any µ ą 0, τ ą 0 and y 0 P E, there exists a control v µ P L 2 p0, τ, L 2 pΩqq for our original system (IV.8) such that P µ ypτ q " 0, and

}v µ } L 2 p0,τ ;Eq ď C e C ? µ ? τ }y 0 } E , }ypτ q} E ď C 2 e C 2 ?
µ }y 0 } E .

Proof :

We take v µ to be the control for the partial control system obtained in Corollary IV.2.23 with the initial data y 0,µ " P µ y 0 . Let y be the solution of the full system associated with this control

B t y `Ay " 1 ω v µ , yp0q " y 0 .
We apply the projector P µ (which commutes with A) to get B t pP µ yq `ApP µ yq " P µ p1 ω v µ q, pP µ yqp0q " P µ y 0 . This proves that P µ y is the (unique) solution of (IV.40), and by construction we have P µ ypτ q " 0. Moreover, since P µ is an orthogonal projection in E, we have

}v µ } L 2 p0,τ ;Eq ď Ce C ? µ }P µ y 0 } E ď Ce C ? µ }y 0 } E .
Finally, we write the Duhamel formula ypτ q " y 0 `ż τ 0 e ´pτ ´sqA Bv µ psq ds, and take the norm in E }ypτ q} E ď }y 0 } E `ż τ 0 }e ´pτ ´sqA Bv µ psq} E ds.

We use now the dissipation estimate for A (IV.5) (with λ 1 ą 0 here) and the fact that B " 1 ω is bounded with norm 1. It follows

}ypτ q} E ď }y 0 } E `C ż τ 0 }v µ psq} E ds ď }y 0 } E `C? τ }v µ } L 2 p0,τ ;Eq ,
and the conclusion follows by the estimate we got on the norm of v µ .

Corollary IV.2.25

For any µ ą 0, 0 ă τ ă T and y 0 P E, there exists a control v µ P L 2 p0, τ, L 2 pΩqq such that

}v µ } L 2 p0,τ ;Eq ď C e C ? µ ? τ }y 0 } E , }ypτ q} E ď C 2 e C 2 ? µ´τ µ 2 }y 0 } E . c bna F. BOYER -JUNE 27, 2023 t y(t) L 2 (Ω) 0 y 0 L 2 (Ω) • T • Do noth- ing τ 2 2
and so on ...

Control low freq. ≤ µ 2 τ 2 2 Do nothing τ 1 2 Control low frequencies ≤ µ 1 τ 1 2 Figure IV.1: The Lebeau-Robbiano method Proof :
The idea is to use the previous proposition on the time interval p0, τ {2q. This gives us a control w µ P L 2 p0, τ {2; Eq such that P µ ypτ {2q " 0 and

}w µ } L 2 p0,τ {2;Eq ď C e C ? µ ? τ }y 0 } E , }ypτ {2q} E ď C 2 e C 2 ? µ }y 0 } E .
Now, on the second half of the time interval we do nothing in order to take advantage of the natural dissipation of the system and to the fact that all frequencies less than µ have been killed at time τ {2. It means that the control we finally consider is

v µ ptq " # w µ ptq, for t P p0, τ {2q, 0, for t P pτ {2, τ q.
It is clear that v µ and w µ have the same L 2 -norm. Moreover, since v µ " 0 on pτ {2, τ q, we have ypτ q " e ´τ 2 A ypτ {2q, and thus, since P µ ypτ {2q " 0, it follows by (IV.7)

}ypτ q} E ď e ´τ 2 µ }ypτ {2q} E ď C 2 e C 2 ? µ´τ µ 2 }y 0 } E .
Theorem IV.2.26 (Lebeau-Robbiano null-controllability theorem [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF])

For any T ą 0, the heat-like equation (IV.2), is null-controllable at time T .

Proof :

The idea is to split the time interval p0, T q into small subintervals of size τ j , j ě 1 with

ÿ jě1 τ j " T,
and to apply successively a partial control as in the previous corollary with a cut frequency µ j that tends to infinity when j Ñ 8. More precisely, we set τ j " T 2 j , and µ j " βp2 j q 2 , with β ą 0 to be determined later.

Let T j "

ř j k"1 τ k , for j ě 1. c b na F. BOYER -JUNE 27, 2023
' During the time interval p0, τ 1 q " p0, T 1 q, we apply a control v 1 as given by Corollary IV.2.25 with µ " µ 1 , in such a way that

}v 1 } L 2 p0,T 1 ,Eq ď C e C ? µ 1 ? τ 1 }y 0 } E , }ypT 1 q} E ď C 2 e C 2 ? µ 1 ´τ1 µ 1 2 }y 0 } E .
' During the time interval pτ 1 , τ 1 `τ2 q we apply a control v 2 as given by Corollary IV.2.25 with µ " µ 2 , in such a way that

}v 2 } L 2 pT 1 ,T 2 ;Eq ď C e C ? µ 2 ? τ 2 }ypT 1 q} E , }ypT 2 q} E ď C 2 2 e C 2 p ? µ 1 `?µ 2 q´τ 1 µ 1 2 ´τ2 µ 2 2 }y 0 } E .
' And so on, by induction we build a control v j on the time interval pT j´1 , T J q such that }v j } L 2 pT j´1 ,T j ;Eq ď C e C ? µ j ? τ j }ypT j´1 q} E ,

}ypT j q} E ď C j 2 e C 2 ř j k"1 ? µ k ´1 2 ř j k"1 τ k µ k }y 0 } E .
' By construction, we have

C 2 j ÿ k"1 ? µ k ´1 2 j ÿ k"1 τ k µ k " C 2 a β j ÿ k"1 2 k ´β 2 T j ÿ k"1 2 k " pC 2 a β ´β 2 T qp2 j`1 ´1q
We are thus led to choose β large enough so that

β def " β 2 T ´C2 a β ą 0,
and we have obtained that for any j,

}ypT j q} E ď C 3 C j 2 e ´β2 j`1 }y 0 } E .
' Going back to the estimate of the norm of v j , we have

}v j } L 2 pT j´1 ,T j ;Eq ď C e C ? µ j ? τ j }ypT j´1 q} E ď CC 3 ? T 2 j{2 C j´1 2 e C ? β2 j ´β2 j }y 0 } E .
Wee that we can choose β even larger to ensure that

β def " β ´Ca β ą 0.
We finally got the estimate

}v j } L 2 pT j´1 ,T j ;Eq ď CC 3 ? T 2 j{2 C j´1 2 e ´β2 j }y 0 } E . c b na F. BOYER -JUNE 27, 2023
' All the previous estimates show that ÿ jě1 }v j } 2 L 2 pT j´1 ,T j ;Eq ă `8, and in particular the function v that is obtained by gluing all together the pv j q j is an element of L 2 p0, T ; Eq. The associated solution y of the PDE is continuous in time on r0, T s with values in E and satisfies

}ypT j q} ď C 3 C j 2 e ´β2 j`1 }y 0 } E Ý ÝÝ Ñ jÑ8 0.
This implies ypT q " 0, since T j Ñ T as j Ñ 8.

The claim is proved.

Remark IV.2.27

A careful inspection of the proof shows that one can take β of the form

β " α T 2 ,
with α ą 0 large enough independent of T . It follows that β and β will be proportional to 1{T and therefore we can obtain the following estimate on the control cost

}v} L 2 p0,T ;Eq ď Ce C T }y 0 } E .
This exponential behavior of the cost in the limit T Ñ 0 is actually optimal.

IV.3 Global elliptic Carleman estimates and applications

As we have seen below, the Carleman inequalities aim at giving global weighted estimates of a solution of a PDE (here we shall specifically consider elliptic PDEs) as a function of source terms and of some partial information on the solution itself either on a part of the boundary, or on a part of the domain. For a more complete discussion about those kind of estimates (including some insights on the profound reasons why they are true) we refer for instance to [START_REF] Rousseau | On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations[END_REF][START_REF] Ervedoza | Carleman estimates for elliptic PDEs and applications[END_REF].

IV.3.1 The basic computation

Let Ω be a Lipschitz domain of R d and φ P C 2 pΩ, Rq be a smooth function to be determined later.

Proposition IV.3.28

For any u P C 2 pΩ, Rq, and any s ě 0, we set v " e sφ u. The following inequality holds

s 3 ż Ω `2pD 2 φqp∇φ, ∇φq ´∆φ|∇φ| 2 ˘|v| 2 `s ż Ω " 2pD 2 φqp∇v, ∇vq `∆φ|∇v| 2 ‰ ´s3 ż BΩ |∇φ| 2 B n φ|v| 2 ´s ż BΩ B n φ|B n v| 2 ď ´2s ż Ω v∇v ¨∇∆φ `s2 ż Ω |∆φ| 2 |v| 2 ´s ż BΩ B n φ|∇ ∥ v| 2 ´2s ż BΩ B n vp∇ ∥ v ¨∇∥ φq `2s ż BΩ ∆φvB n v `}e sφ p∆uq} 2 L 2 pΩq . c bna F. BOYER -JUNE 27, 2023 
Proof :

We first write the following derivation formulas ∇e sφ " ps∇φqe sφ , ∆e sφ " s 2 |∇φ| 2 e sφ `sp∆φqe sφ .

Then we set f " ∆u and we compute

∇v " e sφ p∇uq `p∇e sφ qu " e sφ p∇uq `s∇φpe sφ uq " e sφ p∇uq `sp∇φqv, ∆v " ∆pe sφ uq " p∆e sφ qu `2p∇e sφ q ¨p∇uq `esφ p∆uq, which gives ∆v " s 2 |∇φ| 2 v `sp∆φqv `2sp∇φq ¨p∇v ´svp∇φqq `esφ f, and finally

∆v " ´s2 |∇φ| 2 v `sp∆φqv `2s∇φ ¨∇v `esφ f. (IV.41)

We write this formula in the following form

ˆ∆v `s2 |∇φ| 2 v loooooooooomoooooooooon "M 1 v `ˆ´2s∇φ ¨∇v ´2s∆φv loooooooooooooooomoooooooooooooooon "M 2 v
" e sφ f ´sp∆φqv.

We write

2pM 1 v, M 2 vq L 2 ď }M 1 v} 2 L 2 `2pM 1 v, M 2 vq L 2 `}M 2 v} 2 L 2 " }M 1 v `M2 v} 2 L 2 pΩq " }e sφ f ´sp∆φqv} 2 L 2 ď 2}e sφ f } 2 L 2 `2s 2 }p∆φqv} 2 L 2 .
The two right-hand side terms are the ones we expect in the inequality. Let us now compute the inner product pM 1 v, M 2 vq L 2 . We denote by I ij the inner product of the term number i of M 1 v with the term number j of M 2 v.

' Term I 11 : We perform two integration by parts

I 11 " ´2s ż Ω p∇φ ¨∇vq∆v " ´2s ÿ i ż Ω B i φB i v∆v " 2s ÿ i ż Ω B i ∇φ ¨∇vB i v `2s ÿ i ż Ω B i φ∇B i v ¨∇v ´2s ż BΩ p∇φ ¨∇vqB n v " 2s ż Ω D 2 φp∇v, ∇vq `s ÿ i ż Ω B i φB i `|∇v| 2 ˘´2s ż BΩ p∇φ ¨∇vqB n v " 2s ż Ω D 2 φp∇v, ∇vq ´s ż Ω ∆φ|∇v| 2 `s ż BΩ B n φ|∇v| 2 ´2s ż BΩ p∇φ ¨∇vqB n v.
' Term I 12 : We perform one integration by parts

I 12 " ´2s ż Ω ∆φ∆vv " 2s ż Ω p∆φq|∇v| 2 `2s ż Ω p∇∆φ ¨∇vqv ´2s ż BΩ ∆φvB n v. c b na F. BOYER -JUNE 27, 2023
' Term I 21 : We perform one integration by parts

I 21 " ´2s 3 ż Ω |∇φ| 2 p∇φ ¨∇vqv " ´s3 ż Ω |∇φ| 2 p∇φ ¨∇q|v| 2 " ´s3 ż Ω |∇φ| 2 `divp|v| 2 ∇φq ´∆φ|v| 2 " s 3 ż Ω ∇ `|∇φ| 2 ˘¨∇φ|v| 2 ´s3 ż BΩ B n φ|∇φ| 2 |v| 2 `s3 ż Ω p∆φq|∇φ| 2 |v| 2 " s 3 ż Ω `2D 2 φ.p∇φ, ∇φq `∆φ|∇φ| 2 ˘|v| 2 ´s3 ż BΩ B n φ|∇φ| 2 |v| 2
' The term I 22 is left unchanged

I 22 " ´2s 3 ż Ω p∆φq|∇φ| 2 |v| 2 .
Adding all the above terms and gathering all of them lead to the expected inequality. For the boundary terms, we make use of the following formulas

|∇f | 2 " |B n f | 2 `|∇ ∥ f | 2 , p∇f ¨∇gq " B n f B n g `∇∥ f ¨∇∥ g.
If one wants to get some interesting information from the above huge inequality, we see that first two (volumic) terms in the left-hand side needs to have the good sign, at least on some large enough part of the domain and/or the boundary. More precisely, we would like that, for some β ą 0 and some subsets K Ă Ω and Σ Ă BΩ, we have Let us point out that we cannot expect those assumptions to be valid all together with K " Ω and Σ " BΩ:

' Imagine that assumption (IV.44) holds with K " Ω, then we know that φ has to achieve its maximum on the boundary BΩ which proves that (IV.45) cannot hold for Σ " BΩ.

' Imagine that (IV.42) holds for K " Ω, then by taking the trace we deduce that pd `2q∆φ ě dβ, in Ω, and thus, by the Stokes formula,

ż BΩ B n φ " ż Ω ∆φ ě d d `2 β|Ω| ą 0,
which prevents (IV.45) to be true with Σ " BΩ.

Therefore, we will need to relax our requirements on K and Σ and that will lead to the observation terms in the final Carleman estimate. Moreover, we can choose φ that satisfies ∇ ∥ φ " 0, on BΩ.

IV.3.2 Proof of the boundary Carleman estimate

We may now prove Theorem IV.1.14. For the moment we shall not use the fact that v satisfies any boundary condition in order to identify the precise point where this property will be used. We take a function φ associated with Γ, as in the first point of Lemma IV.3.29. We apply the inequality of Proposition IV.3.28 with this particular function φ using its properties to get

s 3 β 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `s3 β 3 ż BΩzΓ |v| 2 `sβ ż BΩzΓ |B n v| 2 ď }∇φ} 3 8 s 3 ż Γ |v| 2 `s}∇φ} 8 ż Γ |B n v| 2 `s}∇φ} 8 ż BΩ |∇ ∥ v| 2 `2s}∆φ} L 8 ż BΩ |v||B n v| `2}e sφ p∆uq} 2 L 2 pΩq ´2s ż Ω v∇v ¨∇∆φ `2s 2 ż Ω |∆φ| 2 |v| 2 .
Adding the terms s 3 β 3 ş Γ |v| 2 and sβ ş Γ |B n v| 2 on both sides of the inequality gives

s 3 β 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `s3 β 3 ż BΩ |v| 2 `sβ ż BΩ |B n v| 2 ď 2}∇φ} 3 8 s 3 ż Γ |v| 2 `2s}∇φ} 8 ż Γ |B n v| 2 `s}∇φ} 8 ż BΩ |∇ ∥ v| 2 `2s}∆φ} L 8 ż BΩ |v||B n v| `2}e sφ p∆uq} 2 L 2 pΩq ´2s ż Ω v∇v ¨∇∆φ `2s 2 ż Ω |∆φ| 2 |v| 2 .
We see that the left-hand side terms give global information on v and ∇v in Ω and on v and B n v on BΩ.

The last two terms can be bounded as follows

´2s ż Ω v∇v ¨∇∆φ `2s 2 ż Ω |∆φ| 2 |v| 2 ď C φ s}v} L 2 }∇v} L 2 `Cφ s 2 }v} L 2 ď C φ s 2 }v} 2 L 2 `Cφ }∇v} 2 L 2 .
We observe that the powers of s in those terms are less than the powers of s on similar terms in the left-hand side of the inequality. Therefore, there exists a s 0 ą 0 depending only on φ, such that those terms can be absorbed in the inequality. We get

s 3 β 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `s3 β 3 ż BΩ |v| 2 `sβ ż BΩ |B n v| 2 ď C φ s 3 ż Γ |v| 2 `Cφ s ż Γ |B n v| 2 `Cφ s ż BΩ |∇ ∥ v| 2 `Cφ s ż BΩ |v||B n v| `2}e sφ p∆uq} 2 L 2 pΩq . c b na F. BOYER -JUNE 27, 2023
The fourth term in the right-hand side can be estimated by using the Cauchy-Schwarz and Young inequalities as follows

C φ s ż BΩ |v||B n v| ď Cφ s 2 ż BΩ |v| 2 `C φ ż BΩ |B n v| 2 .
It follows (thanks to the low powers in s of those terms) that, for s large enough, we can absorb those contributions by the left-hand side terms in our inequality. It remains the following inequality

s 3 β 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `s3 β 3 ż BΩ |v| 2 `sβ ż BΩ |B n v| 2 ď C φ s 3 ż Γ |v| 2 `Cφ s ż Γ |B n v| 2 `Cφ s ż BΩ |∇ ∥ v| 2 `2}e sφ p∆uq} 2 L 2 pΩq ,
which is valid for any function u without any assumption on the boundary conditions. The only term which is not an observation term is the third one in the right-hand side. At that point, we need to consider the boundary condition for u. Indeed, if we assume that u " 0 (or equivalently v " 0) on BΩzΓ, we deduce that ∇ ∥ v " 0 on BΩzΓ and thus we have

s 3 β 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `sβ ż BΩ |B n v| 2 ď C φ s 3 ż Γ |v| 2 `Cφ s ż Γ |B n v| 2 `Cφ s ż Γ |∇ ∥ v| 2 `2}e sφ p∆uq} 2 L 2 pΩq ,
which is a first suitable Carleman estimate with observation on Γ.

The announced estimate is a particular case of the above inequality in the case where v " 0 on the whole boundary BΩ (and thus ∇ ∥ v " 0)

s 3 β 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `sβ ż BΩ |B n v| 2 ď C φ s ż Γ |B n v| 2 `2}e sφ p∆uq} 2 L 2 pΩq .
We just finally need to go back to the function u. We first note that

|v| " e sφ |u|, and ∇v " e sφ p∇uq `p∇e sφ qu " e sφ p∇uq `sp∇φq e sφ u lo omo on

"v
, so that we have s|e sφ ∇u| 2 ď s|∇v| 2 `s3 |∇φ| 2 |v| 2 .

Moreover, B n v " e sφ pB n uq `upB n e sφ q " e sφ pB n uq, since u " 0 on the boundary. The claim is proved.

IV.3.3 Proof of the distributed Carleman estimate

We may now prove Theorem IV.1.15. We take a function φ associated with ω, as in the second point of Lemma IV.3.29. We apply the inequality of Proposition IV.3.28 with this particular function φ using its properties to get, for any function v that vanishes on the boundary 

β 3 s 3 ż Ωzω |v| 2 `sβ ż Ωzω |∇v| 2 `sβ ż BΩ |B n v| 2 ďC φ s 3
β 3 s 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `sβ ż BΩ |B n v| 2 ďC φ s 3 ż ω |v| 2 `Cφ s ż ω |∇v| 2 `2}e sφ p∆uq} 2 L 2 pΩq `2s 2 ż Ω |∆φ| 2 |v| 2 ´2s ż Ω v∇v ¨∇∆φ,
and we can now absorb the last two terms as we did previously, by assuming that s ě s 0 for some s 0 depending only on the weight function φ. We finally get

β 3 s 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `sβ ż BΩ |B n v| 2 ď C φ s 3 ż ω |v| 2 `Cφ s ż ω |∇v| 2 `2}e sφ p∆uq} 2 L 2 pΩq
This is actually a Carleman estimate with observation terms in ω but we would like a little bit more, namely to obtain a similar estimate without observation terms containing derivatives of v. Let us show how to obtain such an estimate.

To begin with we consider a small non-empty observation domain ω 0 such that ω 0 Ă ω and we apply the above Carleman estimate to this new observation domain (this imply to use a weight function φ adapted to this new observation domain). It follows that

β 3 s 3 ż Ω |v| 2 `sβ ż Ω |∇v| 2 `sβ ż BΩ |B n v| 2 ď Cs 3 ż ω 0 |v| 2 `Cs ż ω 0 |∇v| 2 `2}e sφ p∆uq} 2 L 2 pΩq ,
and we will now show how to get rid of the term ş ω 0 |∇v| 2 . Let η be a non-negative smooth function compactly supported in ω and such that η " 1 in ω 0 . We write by an integration by parts

s ż ω 0 |∇v| 2 ď s ż ω η|∇v| 2 " ´s ż ω v∇v ¨∇η ´s ż ω ηvp∆vq.
Then we use the equation satisfied by v (see (IV.41)) that we recall here

∆v " e sφ p∆uq `sp∆φqv ´s2 |∇φ| 2 v `2s∇φ ¨∇v, to obtain

s ż ω 0 |∇v| 2 ď C φ ˆs ż ω |v||∇v| `s ż ω |v|e sφ |∆u| `s2 ż ω |v| 2 `s3 ż ω |v| 2 `s2 ż ω |v||∇v| ˙.
Since s ě s 0 , we deduce

s ż ω 0 |∇v| 2 ď C φ ˆs2 ż ω |v||∇v| `s ż ω |v|e sφ |∆u| `s3 ż ω |v| 2 ˙.
The last term is the observation term we would like to keep at the end. The second term can be bounded by the Cauchy-Schwarz and Young inequalities

s ż ω |v|e sφ |∆u| ď 2s 2 ż ω |v| 2 `2 ż ω |e sφ p∆uq| 2 ď 2s 2 ż ω |v| 2 `2}e sφ p∆uq} 2 L 2 pΩq .
Finally, we also use the Cauchy-Schwarz inequality and the refined Young inequality to bound the first term as follows

s 2 ż ω |v||∇v| " ż ω s 3{2 |v|s 1{2 |∇v| ď ε 2 s ż ω |∇v| 2 `1 2ε s 3 ż ω |v| 2 ď ε 2 s ż Ω |∇v| 2 `1 2ε s 3 ż ω |v| 2 ,
so that we can take ε small enough (depending only on φ) such that the term in ∇v is absorbed by the corresponding term in the left-hand side of the inequality. The proof is complete.
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IV.3.4 Construction of the weight functions

Our goal is to prove Lemma IV.3.29. We begin by constructing a first function with particular properties.

Lemma IV.3.30

Let U be a bounded domain of R d of class C 2 and V Ă U a non empty open subset of U . There exists a function ψ P C 2 pU q such that:

' ψ " dp., BU q in a neighborhood of BU . In particular ψ " 0 and B n ψ " ´1 on BU .

' ψ ą 0 in U .

' ∇ψ ‰ 0 in the compact K def " U zV . In particular, there exists α ą 0 such that |∇ψ| ě α, in K.

Proof :

Using the Morse lemma, we can find a function ψ that satisfies the first two properties and which has a finite number of critical points in U , let say x 1 , . . . , x n , see for instance [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]. Then we choose n distinct points y 1 , . . . , y n in V . There exists a diffeomorphism G from U into itself such that Gpy i q " x i and such that Gpyq " y in a neighborhood of BU . This can be done by considering the flow of a suitable compactly supported vector field. We easily check that ψ " ψ ˝G satisfies all the required properties.

We may now prove the second point of Lemma IV.3.29. We apply the previous lemma with U " Ω and V " ω. We set φ " e λψ for λ ě 0. and perform the following computations ∇φ " λp∇ψqφ,

D 2 φ " λpD 2 ψqφ `λ2 p∇ψq b p∇ψqφ, ∆φ " λp∆ψqφ `λ2 |∇ψ| 2 φ.
' We first compute 2D 2 φ `∆φ " λ `2pD 2 ψq `p∆ψq ˘φ `λ2 `2p∇ψq b p∇ψq `|∇ψ| 2 qφ, and we see that for any

ξ P R d 1 φ p2D 2 φ `∆φq.pξ, ξq ě λ 2 p2|∇ψ ¨ξ| 2 `|∇ψ| 2 |ξ| 2 q ´λC ψ |ξ| 2 ě pλ 2 |∇ψ| 2 ´λC ψ q|ξ| 2 .
Therefore, since ∇ψ does not vanish in K, we can choose λ large enough so that

1 φ p2D 2 φ `∆φq.pξ, ξq ě Cλ 2 |∇ψ| 2 |ξ| 2 , in K,
and since φ ě 1, we get

2D 2 φ `∆φ ě Cλ 2 |∇ψ| 2 , in K. ' We compute now 2D 2 φ.p∇φ, ∇φq ´∆φ|∇φ| 2 " λ 2 φ 2 `2D 2 φ.p∇ψ, ∇ψq ´∆φ|∇ψ| 2 " λ 2 φ 2 `λ2 |∇ψ| 4 φ `2λD 2 ψ.p∇ψ, ∇ψqφ ´λp∆ψq|∇ψ| 2 φ ě ϕ 3 pλ 4 α 4 ´Cψ λ 3 q, in K.
Here also, for λ large enough we deduce that

2D 2 φ.p∇φ, ∇φq ´∆φ|∇φ| 2 ě λ 4 α 4 , in K. c b na F. BOYER -JUNE 27, 2023
Let us now prove the first point of Lemma IV.3.29. To this end, we consider a bounded open set U that contains Ω and such that BΩ X U Ă Γ. Then we choose some non empty open subset V such that V X Ω " H.

We build a function φ related with this choice of U and V , and we easily see that its restriction to Ω satisfies all the required properties since BΩzΓ Ă BU.

IV.3.5 A Carleman estimate for augmented elliptic operators with special boundary conditions

For T ˚ą 0, we set Q " p0, T ˚q ˆΩ be a time-space domain (even though the time variable here has nothing to do with the physical time of the initial problem). We consider the augmented elliptic operator

∆ τ,x def " B 2 τ `∆,
where the operator ∆ (as well as ∇) only concerns the space variables. The complete gradient operator will be denoted by ∇ τ,x def " pB τ , ∇q.

Note that all the analysis below still apply with ∆ replaced by the general elliptic operator ´A, with suitable regularity assumptions on γ.

Lemma IV.3.31

Let ω Ă Ω be a non-empty open subset of Ω. There exists a weight function φ P C 2 pQq that satisfies the assumptions (IV.42), (IV.43) and (IV.44) on the time-space domain Q and moreover

B n φ ă 0, on p0, T ˚q ˆBΩ, p´B τ φq ď ´β, on t0u ˆpΩzωq, B τ φ ď ´β, on tT ˚u ˆΩ, ∇ x φpT ˚, .q " 0, in Ω.

We use this function φ in Proposition IV.3.28 on the domain Q for any function u that satisfies # up0, .q " 0, in Ω, upτ, .q " 0, on BΩ for any τ P p0, T ˚q.

Observe that u does not vanish for τ " T ˚so that u does not satisfy homogeneous boundary condition on BQ. This is why the Carleman estimate we will prove is different from the one developed above. We obtain

s 3 β 3 ż Q |v| 2 `sβ ż Q |∇ τ,x v| 2 `s3 β 3 ż Ω |vpT ˚, .q| 2 `βs ż Ω |B τ vpT ˚, .q| 2 `βs ż Ωzω |B τ vp0, .q| 2 ď ´s ż Ω B τ φpT ˚, .q|∇ x vpT ˚, .q| 2 `2}e sφ p∆ τ,x uq} 2 L 2 pQq ´2s ż Q v∇ τ,x v ¨∇τ,x ∆ τ,x φ `2s 2 ż Q |∆ τ,x φ| 2 |v| 2 .
The last two terms can be asborbed for s ě s 0 as before, and we can add the observation term at time τ " 0 on ω on both sides of the inequality to obtain

s 3 β 3 ż Q |v| 2 `sβ ż Q |∇ τ,x v| 2 `s3 β 3 ż Ω |vpT ˚, .q| 2 `βs ż Ω |B τ vpT ˚, .q| 2 `βs ż Ω |B τ vp0, .q| 2 ď Cs ż ω |B τ vp0, .q| 2 `Cs ż Ω |∇ x vpT ˚, .q| 2 `C}e sφ p∆ τ,x uq} 2 L 2 pQq .
Coming back to the function u, and using that φ does not depend on x at τ " T ˚, we have finally obtained the following Carleman estimate.

Proposition IV.3.32

For any s ě s 1 , any u P C 2 pQq such that up0, .q " 0 and upt, .q " 0 on BΩ for any t P p0, T ˚q, we have

s 3 ż Q |e sφ u| 2 `s ż Q |e sφ ∇ τ,x u| 2 `s ż Ω |e sφp0,.q B τ up0, .q| 2 `s3 e 2sφpT ˚q ż Ω |upT ˚, .q| 2 `se 2sφpT ˚q ż Ω |B τ upT ˚, .q| 2 ď Cs ż ω |e sφp0,.q B τ up0, .q| 2 `Cse 2sφpT ˚q ż Ω |∇ x upT ˚, .q| 2 `C}e sφ p∆ τ,x uq} 2 L 2 pQq .
Remark IV.3.33

All the above elliptic Carleman estimates can be adapted to more general differential operators, like ´div pγ∇¨q for a smooth enough diffusion coefficient γ (and even for in some non-smooth cases).

IV.4 The Fursikov-Imanuvilov approach

Contrary to the Lebeau-Robbiano strategy that amounts to build, step by step, a null-control for our problem, the method proposed by Fursikov and Imanuvilov in [START_REF] Fursikov | Controllability of evolution equations[END_REF] consists in directly proving the observability inequality on the adjoint problem.

IV.4.1 Global parabolic Carleman estimates

We shall derive and use now a new kind of Carleman estimates. Those inequalities will directly concern the solutions of the parabolic operator under study.

The control time T ą 0 is fixed and we set θptq " 1 tpT ´tq . We give the following result without proof (see [START_REF] Fursikov | Controllability of evolution equations[END_REF], [START_REF] Coron | Control and nonlinearity[END_REF] or [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]) since it follows very similar lines as the ones of the proof of the elliptic Carleman estimate (but with more technicalities).

Theorem IV.4.34

Let ω be a non empty open subset of Ω. There exists a function φ P C 2 pΩq such that sup Ω φ ă 0, and inf Ωzω |∇φ| ą 0, and for which we have the following property: for any d P R, there exists s 0 ą 0 and C ą 0 such that the following estimate holds for any s ě s 0 and any u P C 2 pr0, T s ˆΩq such that u " 0 on p0, T q ˆBΩ

ż T 0 ż Ω psθq d ˇˇe sθφ u ˇˇ2 `ż T 0 ż Ω psθq d´2 ˇˇe sθφ ∇u ˇˇ2 ď C ˆż T 0 ż ω psθq d ˇˇe sθφ u ˇˇ2 `ż T 0 ż Ω psθq d´3 ˇˇe sθφ pB t u ˘∆uq ˇˇ2 ˙.
The sign ˘in the parabolic operator just means that the estimate holds true for both operators B t ´∆ and B t `∆.

c bna F. BOYER -JUNE 27, 2023
As usual we can extend, by density, this estimate to less regular functions u as soon as all the terms in the inequality make sense.

Remark IV.4.35

A careful inspection of the proof shows that the same estimate holds with the following additional terms in the left-hand side

ż T 0 ż Ω psθq d´4 ˇˇe sθφ B t u ˇˇ2 `ż T 0 ż Ω psθq d´4 ˇˇe sθφ ∆u ˇˇ2 .
Notice that, since φ is negative and θptq Ñ 8 when t Ñ 0 or t Ñ T , all the weights in this estimate are exponentially small near t " 0 and t " T . This explains why the estimate holds without any assumption on the values of u at time t " 0 or t " T .

IV.4.2 Another proof of the null-controllability of the heat equation

With the above estimate at hand, we can directly prove the observability inequality we need.

Theorem IV.4.36

With the same assumption as before, there exists C ą 0 such that, for any solution q of the adjoint problem ´Bt q ´∆q " 0, with qpT q P L 2 pΩq, then we have

}qp0q} 2 L 2 pΩq ď C 2 ż T 0 ż ω |qpt, xq| 2 dt dx.
As a consequence, we have proved the null-controllability of the heat equation for any time T ą 0.

Proof :

We choose d " 0 and take some s ě s 0 ; then we apply the Carleman estimate above to the function q. Only keeping the first term in the left-hand side, we get

ż T 0 ż Ω ˇˇe sθφ q ˇˇ2 ď C ż T 0 ż ω ˇˇe sθφ q ˇˇ2 .
Since φ ă 0 and θ ą 0, we easily see that e sθφ ď 1. Moreover, we restrict the left-hand side integral to the time interval pT {4, 3T {4q to get

ż 3T 4 T 4 ż Ω ˇˇe sθφ q ˇˇ2 ď C ż T 0 ż ω |q| 2 .
On the interval pT {4, 3T {4q we have θptq ď 16{3T 2 . We deduce that e 2sφ ě e 32{3T 2 inf φ , on pT {4, 3T {4q ˆΩ.

We have thus obtained for another value of C

ż 3T 4 T 4 ż Ω |q| 2 ď C ż T 0 ż ω |q| 2 .
We use now the dissipation property of the (backward) heat equation which gives

}qp0q} 2 L 2 ď }qpsq} 2 L 2 pΩq , @s P p0, T q. c b na F. BOYER -JUNE 27, 2023
By integration on pT {4, 3T {4q we get

}qp0q} 2 L 2 ď 2 T ż 3T 4 T 4 }qpsq} 2 L 2 pΩq ,
and the claim is proved by combining the last two inequalities.
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Chapter V

Coupled parabolic equations

In this chapter, we would like to investigate controllability properties for coupled systems like (III.3) and (III.4). A particular attention will be paid to the case where rankB ă n, that is when there are less controls than components in the system. We refer to the survey paper [START_REF] Ammar-Khodja | Recent results on the controllability of linear coupled parabolic problems: A survey[END_REF] even though many results were published on this topic after this survey.

V.1 Systems with as many controls as components

Let us first discuss the case where rankB " n (which implies that m ě n). We can remove some (useless) columns to B and assume that m " n and that B is invertible.

Theorem V.1.1
Let ω be a non empty open subset of Ω and T ą 0 and assume that B is a square invertible n ˆn matrix. Then, System (III.3) is null-controllable at time T .

Notice that we do not make any structure assumption on the coupling matrix Cpt, xq, we only assume that C P L 8 pp0, T q ˆΩq. Proof :

We propose a proof based on the global parabolic Carleman estimate. The adjoint system associated with (III.3) reads ´Bt q ´∆q `C˚p t, xqq " 0, which can be also written, component-by-component for any i P t1, . . . , nu, as follows ´Bt q i ´∆q i " ´ÿ j c ji pt, xqq j .

We apply to each q i the Carleman estimate given in Theorem IV.4.34, with d " 0, the same value of s ě s 0 and, of course, the same weight function φ. It follows that

ż T 0 ż Ω ˇˇe sθφ q i ˇˇ2 ď C ż T 0 ż ω ˇˇe sθφ q i ˇˇ2 `C ÿ j ż T 0 ż Ω psθq ´3|e sθφ q j | 2 .
We sum over i all those inequalities and we observe that on p0, T q, the function θ ´3 is bounded to deduce that, for all s ě s 0

ÿ i ż T 0 ż Ω ˇˇe sθφ q i ˇˇ2 ď C ÿ i ż T 0 ż ω ˇˇe sθφ q i ˇˇ2 `C s 3 ÿ j ż T 0 ż Ω |e sθφ q j | 2 .
We see that, for s large enough (depending only on the data !), the last term is absorbed by the left-hand side term. We deduce that

ÿ i ż T 0 ż Ω ˇˇe sθφ q i ˇˇ2 ď C ÿ i ż T 0 ż ω ˇˇe sθφ q i ˇˇ2 . c b na F. BOYER -JUNE 27, 2023
Using the same arguments as in Theorem IV.4.36, we arrive at

ÿ i ż 3T 4 T 4 ż Ω |q i | 2 ď C ÿ i ż T 0 ż ω |q i | 2 .
Still denoting by |.| the Euclidean norm in R n , this reads

ż 3T 4 T 4 ż Ω |q| 2 ď C ż T 0 ż ω |q| 2 .
We use now the fact that B is an invertible matrix to deduce that for some other constant C, we have

ż 3T 4 T 4 ż Ω |q| 2 ď C ż T 0 ż ω |B ˚q| 2 . (V.1)
We would like now to use the dissipation argument. Because of the coupling terms we cannot simply use the estimate (IV.5) for the heat equation. Instead we will prove an energy estimate for the backward equation which implies that }qp0q} L 2 pΩq can be bounded, up to a multiplicative constant, by }qpsq} L 2 pΩq for any s ě 0.

To Using the Gronwall inequality we deduce that }qptq} L 2 pΩq ď e ps´tq}C} L 8 }qpsq} L 2 pΩq , @0 ď t ă s ď T, and in particular }qp0q} L 2 pΩq ď e T }C} L 8 }qpsq} L 2 pΩq , @0 ď s ď T.

Combining this inequality with (V.1) we obtain

}qp0q} 2 L 2 pΩq ď C ż T 0 ż ω |B ˚q| 2 ,
and the observability inequality is proved as well as the null-controllability by duality.

V.2 Boundary versus distributed controllability

We first notice that, for the scalar problems we have studied before, the boundary and distributed controllability problems are in fact equivalent in some sense.

' Distributed controllability ñ Boundary controllability:

Imagine that you are able to prove the null-controllability for our system for any choice of Ω and ω, then we can prove the boundary controllability by considering an extended domain r Ω that contains Ω and which is built in such a way that Ω X r Ω Ă Γ 0 (see Figure V.1). Then we choose a region ω Ă r ΩzΩ.
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We then extend our initial data y 0 to the whole domain r Ω and apply the controllability result with control supported in ω on the new extended problem, let ỹ P C 0 pr0, T s, L 2 p r Ωqq be the corresponding controlled solution. Since ω X Ω " H, we see that the restriction ofỹ on Ω, y " ỹ|Ω satisfies the heat equation (without source term) in Ω. Moreover, since ỹ vanishes on B r Ω we see in particular that y vanishes on BΩzΓ 0 by construction of the extended domain r Ω.

It remains to set v " ỹ|Γ 0 in the trace sense, which is an element of L 2 p0, T ; H 1 2 pΓ 0 qq which is an admissible boundary control for the original problem. The same arguments show that boundary and distributed controllability are equivalent problems in the case where m " rankB " n.

However, in the sequel of this chapter we shall consider coupled parabolic systems with less controls than components in the system m ă n. One can easily see that, in this case, the above reasoning does not hold anymore and in fact we will see that the boundary and distributed controllability systems may really present different behaviors.

V.3 Distributed control problems V.3.1 Constant coefficient systems with less controls than equations

In this section we assume that Cpt, xq is a constant matrix C, that m " rankB ă n.

Proposition V.3.2

A necessary condition for the null-or approximate-controllability for (III.3) is that the pair pC, Bq is controllable.

Proof :

Let y be any solution of (III.3) and ϕ λ an eigenfunction of the Laplace operator associated with the eigenvalue λ. We deduce that the quantity where v λ ptq " xvpt, .q, 1 ω ϕ λ y L 2 P R m . Then, the controllability of (III.3) implies the one of (V.2), which itself implies that the pair pC `λId, Bq is controllable and so is the pair pC, Bq.

Theorem V.3.3

Under the above assumptions and if we assume that the pair pC, Bq is controllable, then the system (III.3) is approximately controllable for any time T ą 0.

Proof :

The adjoint system reads ´Bt q ´∆q `C˚q " 0.

Each eigenvalue of ´∆ `C˚i s of the form λ " σ `µ where σ P Spp´∆q and µ P SppC ˚q and any element in Ker pp´∆ `C˚q ´λq can be written

Φ λ " ÿ σPSpp´∆q µPSppC ˚q λ"σ`µ nσ ÿ i"1 v σ,i pxqΦ µ,i ,
where pv σ,i q 1ďiďnσ is an orthonormal family of Ker p´∆ ´σq and pΦ µ,i q 1ďiďnσ Ă Ker pC ˚´µq.

When we apply the observation operator B ˚" 1 ω B ˚, we obtain

B ˚Φλ " ÿ σPSpp´∆q µPSppC ˚q λ"σ`µ nσ ÿ i"1 p1 ω v σ,i qpxqB ˚Φµ,i .
Assume now that B ˚Φλ " 0. This implies, by the Lebeau-Robbiano spectral inequality (Theorem IV.2.19), that we actually have

0 " ÿ σPSpp´∆q µPSppC ˚q λ"σ`µ nσ ÿ i"1
v σ,i pxqB ˚Φµ,i , @x P Ω.

Since all the functions pv σ,i q σ,i are orthonormal, we can take the L 2 pΩq norm and obtain

0 " ÿ σPSpp´∆q µPSppC ˚q λ"σ`µ nσ ÿ i"1 }B ˚Φµ,i } 2 .
This implies that B ˚Φµ,i " 0 for any µ and any i. Since the pair pB, Cq is controllable and Φ µ,i P Ker pC ˚´µq, the finite-dimensional Fattorini-Hautus test leads to Φ µ,i " 0 for any µ and any i and finally, we find that Φ λ " 0. It follows that our adjoint system satisfies the (infinite dimensional) Fattorini-Hautus test from which we deduce the approximate controllability of the system.

Actually, a stronger result can be obtained by using Carleman estimates.

Theorem V.3.4

Under the above assumptions the system (III.3) is null-controllable for any time T ą 0.

Proof :

To simplify a little bit the proof we assume that n " 2 and m " 1; however the same proof easily extends to the general case. Let us introduce the Kalman matrix K " pB, CBq and we perform the change of variable y " Kz to obtain

KB t z ´K∆z `CKz " 1 ω Bv,
Since K is invertible and KC " CZ and B " K B, with

C " ˆ0 c 12 1 c 22 ˙, B " ˆ1 0 ˙,
the system is transformed into a cascade system

B t z ´∆z `Cz " 1 ω Bv, that we write # B t z 1 ´∆z 1 `c12 z 2 " 1 ω v, B t z 2 ´∆z 2 `z1 `c22 z 2 " 0.
The corresponding adjoint system is # ´Bt q 1 ´∆q 1 `q2 " 0, ´Bt q 2 ´∆q 2 `c12 q 1 `c22 q 2 " 0, and the observation operator if B ˚" 1 ω B ˚" 1 ω `1 0 ˘, which is nothing but the operator that takes the restriction on ω to the first component of the adjoint state. We notice that the approximate observability is clear from the elliptic Carleman estimate.

In other words, the observability inequality we need to prove for this adjoint system is

}q 1 p0q} 2 L 2 pΩq `}q 2 p0q} 2 L 2 pΩq " }qp0q} 2 L 2 ď C ż T 0 ż ω |q 1 | 2 .
As we have seen before, we already know how to prove the same inequality but with an other observation term on ω involving the term q 2 but here we do not want this term in the inequality. The only way to get rid of this term is to express q 2 as a function of q 1 by using the first equation q 2 " B t q 1 `∆q 1 . However, this will make appear high derivatives of q 1 that are not allowed.

We thus need to come back at the Carleman estimate level. To simplify the computations, we define the quantities

Jpd, f, U q def " ż T 0 ż U psθq d ˇˇe sθφ f ˇˇ2 .
With those notation, we write the parabolic Carleman estimate for q 1 with d " d 1 and for q 2 with another value d " d 2 . Moreover, we will take into account some of the terms allowed by Remark IV.4.35. For q 1 we get

Jpd 1 , q 1 , Ωq `Jpd 1 ´2, ∇q 1 , Ωq ď CJpd 1 , q 1 , ωq `CJpd 1 ´3, B t q 1 `∆q 1 , Ωq,
and for q 2 Jpd 2 , q 2 , Ωq `Jpd 2 ´2, ∇q 2 , Ωq `Jpd 2 ´4, B t q 2 , Ωq `Jpd 2 ´4, ∆q 2 , Ωq ď CJpd 2 , q 2 , ωq `CJpd 2 ´3, B t q 2 `∆q 2 , Ωq,

We use now the equations satisfied by q 1 and q 2 , to get

Jpd 1 , q 1 , Ωq `Jpd 1 ´2, ∇q 1 , Ωq ď CJpd 1 , q 1 , ωq `CJpd 1 ´3, q 2 , Ωq, (V.3)
Jpd 2 , q 2 , Ωq `Jpd 2 ´2, ∇q 2 , Ωq `Jpd 2 ´4, B t q 2 , Ωq `Jpd 2 ´4, ∆q 2 , Ωq ď CJpd 2 , q 2 , ωq `CJpd 2 ´3, q 1 , Ωq `CJpd 2 ´3, q 2 , Ωq, (V.4)
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In order to perform the following computations we choose now d 1 " 7 and d 2 " 4 and we add (V.3) that we multiply by some ε ą 0 and (V.4). We obtain εJp7, q 1 , Ωq `εJp5, ∇q 1 , Ωq `Jp4, q 2 , Ωq `Jp2, ∇q 2 , Ωq `Jp0, B t q 2 , Ωq `Jp0, ∆q 2 , Ωq ď CεJp7, q 1 , ωq `CεJp4, q 2 , Ωq `CJp4, q 2 , ωq `CJp1, q 1 , Ωq `CJp1, q 2 , Ωq.

By chosing ε ą 0 small enough (depending only on the data) we can absorb the second term in the right-hand side by the third one of the left-hand side. This value of ε being now fixed, we will not make it appear in the sequel. Moreover, we use that psθq 1 " psθq 4 psθq ´3 ď C s 3 psθq 4 , psθq 1 " psθq 7 psθq ´6 ď C s 6 psθq 7 , to say that, for a well chosen s 1 (depending only on the data), and any s ě s 1 , we can absorb the last two terms in the right-hand side by the first and third of the left-hand side.

To sum up, we have now the following estimate Jp7, q 1 , Ωq `Jp5, ∇q 1 , Ωq `Jp4, q 2 , Ωq `Jp2, ∇q 2 , Ωq `Jp0, B t q 2 , Ωq `Jp0, ∆q 2 , Ωq ď CJp7, q 1 , ωq `CJp4, q 2 , ωq.

We still have two observation terms and we would like to get rid of the one in q 2 . It seems that we do not have make great progresses compared to the estimate obtained in Section V.1. However, the additional term in the left-hand side, as well as the different powers of psθq in both terms is a real progress.

First of all we replace the observation set ω in the above estimate by a smaller one ω 0 (such that ω 0 Ă ω). This requires of course to consider a slightly different weight function but we do not change the notation. We consider now a function η compactly supported in ω and such that 0 ď η ď 1 and η " 1 in ω 0 . It follows, by using the first equation of the system that Jp4, q 2 , ω 0 q "

ż T 0 ż ω 0 psθq 4 ˇˇe sθφ q 2 ˇˇ2 ď ż T 0 ż ω ηpsθq 4 ˇˇe sθφ q 2 ˇˇ2 " ż T 0 ż ω
ηpsθq 4 e 2sθφ q 2 pB t q 1 `∆q 1 q.

We evaluate now the term (referred to as I 1 ) in B t q 1 and the one (referred to as I 2 ) in ∆q 1 independently.

' In the term I 1 , we perform an integration by parts in time (observing that there is no boundary term since the weight e 2sθφ is exponentially flat in 0 and T .

I 1 " ´ż T 0 ż ω ηpsθq 4 e 2sθφ pB t q 2 qq 1 ´ż T 0 ż ω ηs 4 θ 3 p4θ 1 `2sθθ 1 φqe 2sθφ q 2 q 1 .
Using that θ 1 ď Cθ 2 , and the Cauchy-Schwarz inequality (with a suitable repartition of the weights psθq ' in both terms), we get (for s ě 1)

I 1 ď ż T 0 ż ω ηpsθq 4 e 2sθφ |q 1 B t q 2 | `C ż T 0 ż ω ηpsθq 6 e 2sθφ |q 2 q 1 | ďCJp0, B t q 2 , Ωq 1 2 Jp8, q 1 , ωq 1 2 `CJp4, q 2 , Ωq 1 2 Jp8, q 1 , ωq 1 2 .
Observe that we have mentioned Ω instead of ω in the terms concerning q 2 since we actually don't care that there are supported in ω (we will absorb them by left-hand side terms of the estimate). However, it is crucial that the terms in q 1 are localised in ω; those will contribute to the observation term at the end.

c b na F. BOYER -JUNE 27, 2023 ' In the term I 2 we perform three successive integrations by parts in space (without boundary terms since η is compactly supported), in order to make all the derivatives apply on q 2 instead of q 1 . It follows Jp8, q 1 , ωq

1 2 `CJp2, ∇q 2 , Ωq 1 2 Jp8, q 1 , ωq 1 2 `CJp4, q 2 , Ωq 1 2 Jp8, q 1 , ωq 1 2 .
We gather the bound on I 1 and the one on I 2 and we use Young's inequality to obtain Jp7, q 1 , Ωq `Jp5, ∇q 1 , Ωq `Jp4, q 2 , Ωq `Jp2, ∇q 2 , Ωq `Jp0, B t q 2 , Ωq `Jp0, ∆q 2 , Ωq ď CJp7, q 1 , ωq `CJp8, q 1 , ωq.

We finally obtained an estimate with a unique local observation term in q 1 Jp7, q 1 , Ωq `Jp5, ∇q 1 , Ωq `Jp4, q 2 , Ωq `Jp2, ∇q 2 , Ωq `Jp0, B t q 2 , Ωq `Jp0, ∆q 2 , Ωq ď CJp8, q 1 , ωq.

We retain from this inequality only the terms in q 1 and q 2 Jp7, q 1 , Ωq `Jp4, q 2 , Ωq ď CJp8, q 1 , ωq, from which the observability inequality can proved the same way as before, by using dissipation estimates on q.

V.3.2 Variable coefficient cascade systems -The good case

In the case where the coupling coefficients in the system depend on x, we will see that the controllability properties of the system may be quite different.

If we assume that the significant coupling coefficients (i.e. the ones that are responsible for the indirect action of one controlled component of the system on the non-controlled components) do not identically vanish inside the control domain ω, the analysis is simpler. More precisely, as an example, we consider the following 2 ˆ2 system

# B t z 1 ´∆z 1 `c11 pxqz 1 `c12 pxqz 2 " 1 ω v, B t z 2 ´∆z 2 `c21 pxqz 1 `c22 pxqz 2 " 0, (V.5)
and we assume that c 21 does not identically vanish in ω, and more precisely : there exists a non-empty

ω 0 Ă ω such that Dω 0 Ă ω, s.t. inf ω 0 |c 21 | ą 0. (V.6)
Using similar techniques as in the scalar case, based on elliptic Carleman estimates, we can prove the following result.

Proposition V.3.5

Under the assumption (V.6), the system (V.5) is approximately controllable for any time T ą 0.
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Proof :

We will use the Fattorini-Hautus criterion. Let q be a (complex) eigenfunction of the adjoint elliptic operator associated with the (complex) eigenvalue λ. We assume that B ˚q " 1 ω q 1 " 0 and we would like to prove that q " 0. The equation satisfied by q are # ´∆q 1 `c11 pxqq 1 `c21 pxqq 2 " λq 1 , ´∆q 2 `c12 pxqq 1 `c22 pxqq 2 " λq 2 .

By assumption, we have q 1 " 0 in ω 0 and inf ω 0 |c 21 | ą 0 so that the first equation leads to q 2 " 0 in ω 0 . We apply now the global elliptic Carleman estimate given in Theorem IV.1.15 (for the observation domain ω 0 ) to q 1 and q 2 and we sum the two inequalities to obtain for any s ě s 0 ,

s 3 }e sφ q 1 } 2 L 2 pΩq `s3 }e sφ q 2 } 2 L 2 pΩq ď C ˆ}e sφ ∆q 1 } 2 L 2 pΩq `}e sφ ∆q 2 } 2 L 2 pΩq `s3 }e sφ q 1 } 2 L 2 pω 0 q `s3 }e sφ q 2 } 2 L 2 pω 0 q ˙.
Since q 1 " q 2 " 0 in ω 0 and using the equations to express ∆q 1 and ∆q 2 , we get

s 3 }e sφ q 1 } 2 L 2 pΩq `s3 }e sφ q 2 } 2 L 2 pΩq ď C `max i,j }c ij } 2 L 8 `|λ| 2 ˘`}e sφ q 1 } 2 L 2 pΩq `}e sφ q 2 } 2 L 2 pΩq ˘.
Taking s large enough gives

s 3 }e sφ q 1 } 2 L 2 pΩq
`s3 }e sφ q 2 } 2 L 2 pΩq ď 0, and the claim is proved.

In fact the following, much stronger, result holds.

Proposition V.3.6

Under the same assumption (V.6), the system (V.5) is null-controllable at any time T ą 0 (even if we allow the coefficients c ij to depend on time).

Proof :

The strategy we used in Section V.1 can be applied exactly in the same way for such variable coefficients cascade systems. The only point is to be able to express q 2 as a function of q 1 in ω 0 by writing q 2 " 1 c 21 ˆBt q 1 `∆q 1 ´c11 q 1 ˙.

Details are left to the reader.

V.3.3 Variable coefficient cascade systems -The not so good case

In this section we will consider particular cascade systems in which the support of the coupling terms do not intersect the control region.

# B t y `Ay `Cpxqy " 1 ω Bv, in Ω y " 0, on BΩ, (V.7) with B " ¨1 0 . . . 0 ‹ ‹ ‹ '
, and Cpxq " 0, in ω.

It is clear that the strategies relying on Carleman estimates are not usable in such a case since we will not be able to remove the unwanted observation term at the end as we did in Section V.1.
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The general analysis of such systems (in particular in higher dimensions) remains an open problem at that time. We will concentrate here on the case of the 2 ˆ2 systems in the cascade form, that is we assume that the coupling matrix reads

Cpxq " ˆ0 0 c 21 pxq 0 ˙. (V.8)
Most of the analysis will rely on a precise knowledge of the eigenelements of the operator

L ˚" A `Cpxq ˚.
V.3.3.1 Description of the spectrum of L Å very simple analysis, using the Fredholm alternative, gives us the structure of the spectrum of L ˚.

Proposition V.3.7 (Spectrum of L ˚)

We have SppL ˚q " SppAq. For any λ P SppAq, let n λ " dim Ker pA ´λq and pϕ λ,i q iP 1,n λ be an orthonormal family of eigenfunctions of A associated with λ. For each i P 1, n λ we define

I λ,i pc 21 q def " ż Ω c 21 |ϕ λ,i | 2 dx.
1. For each i P 1, n λ , the vector-valued function

Φ λ,i " ˆϕλ,i 0 ˙, is an eigenfunction of L ˚.
2. For each i P 1, n λ such that I λ,i pc 21 q " 0, there exists an eigenfunction of L ˚of the form

Φλ,i " ˆφ λ,i ϕ λ,i ˙,
where φλ,i is a solution of pA ´λq φλ,i " ´c21 ϕ λ,i .

3. For each i P 1, n λ such that I λ,i pc 21 q ‰ 0, there exists a generalieed eigenfunction of L ˚satisfying pL ˚´λqpΨ λ,i q " Φ λ,i of the form

Φλ,i " 1 I λ,i pc 21 q ˆφ λ,i ϕ λ,i ˙,
where φλ,i is any solution of pA ´λq φλ,i " ´ˆc 21 ´Iλ,i pc 21 q ˙ϕλ,i .

Finally, the family tΦ λ,i , Φλ,i , λ P Λ, i P 1, n λ u is linearly independent and complete in pL 2 pΩqq 2 .

V.3.3.2 Approximate controllability in any dimension

By using the Fattorini-Hautus test, we known that the study of the approximate controllability of our system amounts at determining whether or not the eigenfunctions of L ˚belong to the kernel of

B ˚" 1 ω B ˚. c b na F. BOYER -JUNE 27, 2023 Remark V.3.11
If c 21 does not identically vanish in ω, we already know by Theorem V.3.8 that the system is approximately controllable, in any dimension.

Proof :

' Let us show that the condition is sufficient. To this end, we assume that the system is not approximately controllable. By the Fattorini-Hautus test (see Theorem III.3.7) we know that it necessarily exists an eigenfunction Φ of L ˚associated with the eigenvalue λ such that B ˚Φ " 0.

-If I λ pc 21 q ‰ 0, then we know that Φ is necessarily a multiple of Φ λ " ˆϕλ 0 ˙and therefore B ˚Φ is a multiple of 1 ω ϕ λ which cannot be identically zero.

-We thus conclude that I λ pc 21 q " 0, and thus up to a multiplicative factor Φ is necessarily of the form

Φ " ˆφ λ ϕ λ ˙,
where φλ satisfies, along with the Dirichlet boundary conditions, the equation pA ´λq φλ " ´c21 ϕ λ .

By assumption we have B ˚Φ " 0 which implies that φλ " 0 on ω.

-Let ra, bs be a connected component of Ωzω, and let us compute by integration by parts Let us show that all the terms in this last formula vanish.

* If a P Ω, we have a P Bω, and since we have assumed that φλ " 0 in ω, we obtain φλ paq " φ1 λ paq " 0 and thus pγϕ 1 λ φλ qpaq " pγ φ1 λ ϕ λ qpaq " 0. * If a P BΩ then ϕ λ paq " φλ paq " 0 thanks to the boundary conditions and thus we also have ' Let us now show that the proposed condition is necessary. Let us assume that for a given eigenvalue λ, we have M λ pc 21 ϕ λ , ra, bsq " 0 for any connected component ra, bs of Ωzω.

This implies, in particular that for any such ra, bs we have

ż b a c 21 |ϕ λ | 2 dx " 0,
and since c 21 " 0 in ω, we eventually find by summation that

ż Ω c 21 |ϕ λ | 2 dx " 0.
This exactly means that I λ pc 21 q " 0.

By Proposition V.3.7 we conclude that there any function of the form Φ " Φλ `βΦ λ , with β P R, is an eigenfunction of L ˚. In particular we have

B ˚Φ " 1 ω p φλ `βϕ λ q.
We set ζ " φλ `βϕ λ and we will determine β is such a way that ζ identically vanish in ω.

-We will first find a value of β and a point x 0 P ω such that ζpx 0 q " ζ 1 px 0 q " 0.

* If ω X BΩ ‰ H, then we take any x 0 P ω X BΩ. We immediately have ζpx 0 q " 0 and ζ 1 px 0 q " φ1 λ px 0 q `βϕ 1 λ px 0 q. Since ϕ 1 λ px 0 q ‰ 0 we see that one can choose β such that ζ 1 px 0 q " 0. * If ω X BΩ " H, we consider r0, bs the connected component of Ωzω that contains 0. By assumption, we have

ż b 0 c 21 |ϕ λ | 2 " 0.
We can find a δ ą 0 small enough such that sb, b `δrĂ ω and ϕ λ pb `δq ‰ 0. We can then choose β such that 0 " φλ pb `δq `βϕ λ pb `δq " ζpb `δq.

Since c 21 " 0 in ω, we deduce that 0 "

ż b`δ 0 c 21 |ϕ λ | 2 dx " ´ż b`δ 0 pAζ ´λζqϕ λ dx " ´pγζ 1 ϕ λ qpb `δq,
where we have used that ζp0q " ϕ λ p0q " ζpb `δq " 0. Since γpb `δqϕ λ pb `δq ‰ 0, we necessarily have ζ 1 pb `δq " 0 and therefore the point x 0 " b `δ fulfills our requirements. -Let us show now that ζpx 1 q " 0 for any point x 1 P ω. Assume for instance that x 1 ą x 0 . Since rx 0 , x 1 s X Ωzω is an union of connected components of Ωzω we have, by assumption

ż x 1 x 0 c 21 |ϕ λ | 2 dx " ż x 1 x 0 c 21 ϕ λ ψ λ dx " 0.
Using again an integration by parts, the equations satisfied by ζ, ϕ λ and ψ λ , and the fact that ζpx 0 q " ζ 1 px 0 q " 0, we obtain the two equations # 0 " ´ζ1 px 1 qϕ λ px 1 q `ζpx 1 qϕ 1 λ px 1 q, 0 " ´ζ1 px 1 qψ λ px 1 q `ζpx 1 qψ 1 λ px 1 q.

Since ϕ λ and ψ λ are two linearly independent solutions of the same second order linear ODE, we know that the Wronskian determinant satisfies

ˇˇˇϕ λ px 1 q ψ λ px 1 q ϕ 1 λ px 1 q ψ 1 λ px 1 q ˇˇˇ‰ 0,
and thus we conclude that ζpx 1 q " ζ 1 px 1 q " 0.

The claim is proved.

We have thus found an eigenfunction Φ " ˆζ ϕ λ ˙of L ˚such that B ˚Φ " 1 ω ζ " 0 and thus (V.7) is not approximately controllable, thanks to the Fattorini-Hautus test.

Some examples. Let us analyze some particular examples of such systems. We will see that many different situations can occur.

' We consider the set O " p1{4, 3{4q and we take for some a P R c 21 pxq " px ´aq1 O pxq.

-Subcase 1 : Assume that ω Ă p3{4, 1q. The only connected component of Ωzω that touches the coupling support O contains p0, 3{4q. In that case we know that the system is approximately controllable if and only if

ż O c 21 |ϕ λ | 2 dx ‰ 0.
A simple computation thus shows that the system is approximately controllable ðñ a R ta λ u λPΛ , where

a λ " ż O x|ϕ λ | 2 ż O |ϕ λ | 2 , @λ P Λ.
-Subcase 2 : Assume now that ω X p3{4, 1q ‰ H and ω X p0, 1{4q ‰ H. If a R ta λ u λPΛ , then it is clear that the system is approximately controllable from the previous analysis. However, since the concerned connected component of Ωzω does not touch the boundary of Ω, we have to check whether or not we have

ż O c 21 ϕ λ ψ λ " 0. c b na F. BOYER -JUNE 27, 2023
This condition is not explicit in general but we can discuss a particular case where A " ´B2

x . In this case we have Λ " tk 2 π 2 , k ě 1u and ϕ λ pxq " sinp ? λxq and ψ λ pxq " cosp ? λxq and we can check that a λ " 1{2 for any λ P Λ. It remains to compute, for a " a λ " 1{2,

ż O c 21 ϕ λ ψ λ " ż 3{4 1{4 px ´1{2q sinp ? λxq cosp ? λxq " # ´1 8 ? λ p´1q k{2 , if λ " k 2 π 2 with k even, ´1 4λ p´1q pk´1q{2 , if λ " k 2 π 2 with k odd.
Since those quantities never vanish, we deduce that our system, for this choice of ω, is always approximately controllable.

V.3.3.4 Null controllability in 1D

The main result in this direction proved in [START_REF]New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence[END_REF] is, in a simplified version, the following

Theorem V.3.12
Assume that ω in an interval that touches the boundary of Ω and that c 21 " 0 in the control domain ω.

Then there exists a time T 0 pc 21 q P r0, `8s such that ' For T ą T 0 pc 21 q, the system (V.7) with (V.8) is null-controllable.

' For T ă T 0 pc 21 q, the system (V.7) with (V.8) is not null-controllable.

Moreover, for any T ˚P r0, 8s, there exists a coupling function c 21 such that T 0 pc 21 q " T ˚.

Note that in the above reference a more or less explicit formula for T 0 pc 21 q is given. The proof strategy is the following ' Compute the eigenelements of the operator L ˚. We find that the eigenfunctions are the ˆϕλ 0 ˙, with the associated generalized eigenfunctions given by

ˆψλ ϕ λ ˙,
for some explicit function ψ λ .

' Case T ą T 0 pc 12 q : the positive controllability result is proved by using the moments method.

' Case T ă T 0 pc 12 q : the negative controllability result is proved by showing that the observability inequality does not hold for some well-chosen final data q T built as a combination of the above two (generalized) eigenfunctions of L ˚.

V.4 Boundary controllability results for some 1D systems

We will only consider here the following constant coefficient system in the 1D interval Ω " p0, 1q # B t y `Ay `Cy " 0, in Ω " p0, 1q

y " 1 t0u Bv, on BΩ. (V.9)

We will point out the main differences with the distributed control problem for the same system. A necessary condition for the null-or approximate-controllability for (V.9) is that the pair pC, Bq is controllable.

Proof :

Let y be any solution of (V.9) and ϕ λ an eigenfunction of A associated with an eigenvalue λ. Then, we obtain that the quantity zptq " xyptq, ϕ λ y L 2 P R n , solves the following ordinary differential equation

d dt z `λz `Cz " ˘ϕ1 λ p0qBvptq. (V.10)
Then the null-controllability (resp. approximate controllability) of (V.9), implies the null-controllability (resp. approximate controllability) of the reduced system (V.10). It implies that the pair pC `λId, ϕ 1 λ p0qBq is controllable and since ϕ 1 λ p0q ‰ 0, this gives in turn that pC, Bq satisfies the Kalman criterion.

Theorem V.4.14

Assume that m " 1 " RankB (the general case can be studied similarly). System (V.9) is approximately controllable at time T ą 0 if and only if the pair pC, Bq is controllable and the following condition holds σ `µ " σ 1 `µ1 ùñ σ " σ 1 , (V.11)

for any σ, σ 1 P SppAq and µ, µ 1 P SppC ˚q.

Proof :

Each eigenvalue of L ˚" A `C˚i s of the form λ " σ `µ where σ P SppAq and µ P SppC ˚q and any element in Ker pL ˚´λq can be written

Φ λ " ÿ σPSppAq µPSppC ˚q λ"σ`µ ϕ σ pxqV µ ,
where each V µ belongs to Ker pC ˚´µq.

When applying the observation operator B ˚" B ˚B Bx |x"0 we obtain

B ˚Φλ " ´ÿ σPSppAq µPSppC ˚q λ"σ`µ ϕ 1 σ p0qB ˚Vµ .
' Assume that Condition (V.11) holds. It implies that there is only one term in the sum above. It follows that B ˚Φλ " ´ϕ1 σ p0qB ˚Vµ , for a given σ and a given µ. Since we have assumed that pC, Bq is controllable the finite dimensional Fattorini-Hautus test proves that B ˚Vµ ‰ 0, and since ϕ 1 σ p0q ‰ 0 we deduce that B ˚Φλ ‰ 0. This proves the Fattorini-Hautus condition.

' Assume that (V.11) does not hold. Then there exist σ, σ 1 P SppAq with σ ‰ σ 1 and µ, µ 1 P SppC ˚q such that σ `µ " σ 1 `µ1 . We pick V µ , V µ 1 two eigenvectors of C ˚associated with µ and µ 1 respectively. Then, the function

Φpxq " ϕ 1 σ 1 p0q B ˚Vµ ϕ σ pxqV µ ´ϕ1 σ p0q B ˚Vµ 1 ϕ σ 1 pxqV µ 1 , c b na F. BOYER -JUNE 27, 2023
which is well-defined since, by the Fattorini-Hautus test applied to the pair pC, Bq, we have B ˚Vµ ‰ 0 and B ˚Vµ 1 ‰ 0. By construction, Φ is an eigenfunction of our adjoint operator L ˚. Moreover we have

B ˚Φ " ´ϕ1 σ 1 p0q B ˚Vµ ϕ 1 σ p0qB ˚Vµ `ϕ1 σ p0q B ˚Vµ 1 ϕ 1 σ 1 p0qB ˚Vµ 1 " 0.
This shows that the Fattorini-Hautus test is not fulfilled by our system and thus it is not approximately controllable.

Remark V.4.15

Observe that Condition (V.11) automatically holds when C ˚has only one eigenvalue, which is the case for instance when C is a Jordan block, that is to say when our parabolic system has a cascade structure.

V.4.2 Null-controllability

Let us now study the null-controllability of (V.9). The usual Kalman matrix change of variable let us put the system in cascade form (observe that it is crucial here that the same diffusion operator appears in each equation.

To simplify the presentation we assume n " 2 and m " 1 and thus we consider the following cascade system

$ ' ' ' & ' ' ' % B t y 1 `Ay 1 " 0, in p0, 1q
B t y 2 `Ay 2 `y1 " 0, in p0, 1q ypt, x " 1q " ˆ0 0 ˙, and ypt, x " 0q " ˆ1 0 ˙vptq. (V.12)

The proof will rely on the moments method. Since our system contains eigenvalues with algebraic multiplicities, we need a generalized version of the results given in Section IV.1.2 and that we will present now.

V.4.2.1 More about biorthogonal families of exponential type functions

We will make use here of the notation introduced in (I.8) as well as the formalism of generalized divided differences that we recall in Appendix A.2. We notice that, as soon as Re λ ą 0, we have erλ pj`1q s P L 2 p0, `8q.

We can then formulate the suitable generalization of Theorem IV.1.10 in order to take into account the multiplicity of the eigenvalues in our control problems. We refer to Definition IV.1.8 for the definition of L pη, κ, θ, ρq. Theorem V.4.16 (Generalized biorthogonal families of exponentials) Consider a family of complex numbers Λ P L pη, κ, θ, ρq for some values of the parameters. Then, for any L ě 1 and T ą 0 given, there exists a family pq l λ,T q λPΛ lP 0,L in L 2 p0, T q satisfying perµ pj`1q s, q l λ,T q L 2 p0,T q " δ λ,µ δ l,j , @λ, µ P Λ, @l, j P 0, L , and the estimate }q l λ,T } L 2 p0,T q ď Ke KpRe λq θ `KT ´θ 1´θ , @λ P Λ, @l P 0, L , (V.13)

where K ą 0 only depends on κ, θ, η, ρ and L.

In the case where Λ only belongs to the larger class r L pη, κ, θ, ρq, the same result holds if one replaces θ by any value θ P pθ, 1q in the estimate (V.13); in that case the value of K also depends on θ.

The proof is postponed to Section V.4.2.3.
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V.4.2.2 Application to the null-controllability of (V.12) Theorem V.4.17

For any initial data y 0 P pL 2 pΩqq 2 , and any T ą 0, there exists a control v P L 2 p0, T q such that the solution of (V.12) satisfies ypT q " 0. Moreover, we have the estimate

}v} L 2 p0,T q ď Ce C T }y 0 } L 2 ,
where C ą 0 does not depend on T .

Proof (Existence of the control):

The spectrum of the adjoint operator L ˚" A `ˆ0 1 0 0 ˙is described in Proposition V.3.7 (with c 21 " 1 here).

Note that all the eigenvalues are real in that case. Since, in the current setting we have n λ " 1 and I λ pc 21 q " I λ p1q ‰ 0 for any λ, we deduce that for each λ P Λ, there is, up to a constant, a single eigenfunction

Φ λ " ˆϕλ 0 ˙,
and an associated generalized eigenvector

Φλ " ˆ0 ϕ λ ˙,
and we observe that

B ˚Φλ " ϕ 1 λ p0q, B ˚Φ λ " 0. (V.14)
We can immediately compute # e ´tL ˚Φλ " e ´tλ Φ λ , e ´tL ˚Φ λ " e ´tλ p Φλ ´tΦ λ q.

In that case it is cleat that the family tΦ λ , Φλ , λ P Λu is an Hilbert basis of pL 2 pΩqq 2 (we actually only need that it is complete) and therefore a function v P L 2 p0, T q is a null-control for our problem if and only if it satisfies the following moments equations This moment problem can now be solved by using the generalized biorthogonal family given by Theorem V.4.16 (in the present case we have only real eigenvalues and the maximal multiplicity is L " 2) as follows uptq " ÿ λPΛ `ω0 λ,T,y 0 q 0 λ,T ptq `ω1 λ,T,y 0 q 1 λ,T ptq ˘.

Indeed, by the estimates given in the Theorem and the definition of the terms ω ' we find the convergence of the series in L 2 p0, T q, exactly as we did in the proof of Theorem IV.1.11. Moreover, it clearly satisfies the required moment problem by construction of the biorthogonal family.

V.4.2.3 Proof of Theorem V.4.16

The proof of this theorem will be obtained as a consequence of a more general result concerning the block moment method. This approach consists in solving moment problems, with suitable estimates, in the case where the family of eigenvalues Λ does not satisfy anymore the gap condition (IV.23). The content of this section is a generalization of some results in [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF]. We also refer to [START_REF] González | Sharp estimates for biorthogonal families to exponential functions associated to complex sequences without gap conditions[END_REF] for similar results, yet with slightly different set of assumptions.

The weak gap condition In the next sections we will be facing the case where the family of eigenvalues we need to deal with is naturally structured as a union of a finite number of families pΛ i q iP 1,I , each of them belonging to a certain class L pη i , κ i , θ i , ρ i q.

It is clear that Λ " Ť iP 1,I Λ i may not satisfy a gap condition (IV.23). For instance, the families Λ 1 " tk, k ě 1u and Λ 2 " tk `1 k , k ě 1u both satisfy the gap property but their union does not since

inf k ˇˇˇˆk `1 k ˙´k ˇˇˇ" 0.
This phenomenon, which is called spectral condensation, is very important to take into account in control problems as we will see in the sequel.

To begin with, let us introduce the weak gap condition and the related classes.

Definition V.4.18

Let ρ ą 0, and n P N ˚be given. We say that a family Λ Ă C satisfies the weak gap condition with parameters ρ and n if any open disk of diameter ρ contains at most n elements of Λ, that is :

# ˆΛ X Dpµ, ρ{2q ˙ď n, @µ P C. (V.15)
We can now introduce a new class of families of complex numbers satisfying a sector condition, an asymptotic assumption and the weak gap condition as follows L w pη, κ, θ, ρ, nq " " Λ Ă C, that satisfies (IV.20), (IV.21), (IV.22), and (V.15)

* .

As we did in Definition IV.1.8, we will also introduce the larger class where the second asymptotic assumption is not considered r L w pη, κ, θ, ρ, nq " " Λ Ă C, that satisfies (IV.20), (IV.21), and (V.15) * .

Remark V.4.19

It is an easy exercice to check that, when n " 1, the weak gap condition (V.15) is nothing but the previous gap condition (IV.23) that we have considered.

As a consequence, we have L w pη, κ, θ, ρ, 1q " L pη, κ, θ, ρq , and r L w pη, κ, θ, ρ, 1q " r L pη, κ, θ, ρq .

Let us first prove that the classes defined above are somehow stable by union and some translations, yet with different parameters.

Lemma V.4.20

For i " 1, 2, we consider parameters η i ą 0, κ i ą 0, θ i P p0, 1q, ρ i ą 0, n i P N ˚.

For any Λ 1 P L w pη 1 , κ 1 , θ 1 , ρ 1 , n 1 q and Λ 2 P L w pη 2 , κ 2 , θ 2 , ρ 2 , n 2 q, we have

Λ 1 Y Λ 2 P L w pη, κ, θ, ρ, nq , with $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % η " maxpη 1 , η 2 q, θ " maxpθ 1 , θ 2 q, κ " max ˆκ θ θ 1 1 `κ θ θ 2 2 , 2pκ 1 `κ2 q ˙, ρ " minpρ 1 , ρ 2 q, n " n 1 `n2 .
The same result holds when replacing the classes L w by the larger classes r L w .

Proof :

' Since η ď η i for i " 1, 2, we have S η i Ă S η . Thus, Λ 1 Y Λ 2 Ă S η .
' Concerning the counting functions, we first observe that, for any 0 ă s ă r, we have

N Λ prq ´NΛ psq " #tλ P Λ 1 Y Λ 2 , s ă |λ| ď ru ď #tλ P Λ 1 , s ă |λ| ď ru `#tλ P Λ 2 , s ă |λ| ď ru " `NΛ 1 prq ´NΛ 1 psq ˘``N Λ 2 prq ´NΛ 2 psq ˘.
In particular, taking s " 0, we get N Λ prq ď N Λ 1 prq `NΛ 2 prq.

By assumption we have

N Λ i prq ď ˆκ 1 θ i i r ˙θi ,
and thus

N Λ i prq ď ˆκ 1 θ i i r ˙θ ,
since θ ě θ i , and N Λ i prq " 0 as soon as κ 1 θ i i r ă 1. By addition, we obtain

N Λ prq ď ˆκ θ θ 1 1 `κ θ θ 2 2 ˙rθ . c b na F. BOYER -JUNE 27, 2023
' If we assume that |r ´s| ď 1, we get N Λ prq ´NΛ psq ď 2pκ 1 `κ2 q ď 2pκ 1 `κ2 qp1 `|r ´s| θ q, whereas in the case |r ´s| ą 1 we have N Λ prq ´NΛ psq ď κ 1 p1 `|r ´s| θ 1 q `κ2 p1 `|r ´s| θ 2 q ď pκ 1 `κ2 qp1 `|r ´s| θ q.

' Finally, if we choose any µ P C, we have

# ˆpΛ 1 Y Λ 2 q X Dpµ, ρ{2q ˙ď # ˆΛ1 X Dpµ, ρ{2q ˙`# ˆΛ2 X Dpµ, ρ{2q ď # ˆΛ1 X Dpµ, ρ 1 {2q ˙`# ˆΛ2 X Dpµ, ρ 2 {2q ď n 1 `n2 " n, since ρ ď ρ 1 and ρ ď ρ 2 . Lemma V.4.21
Let Λ a family of complex numbers that satisfies (IV.20), (IV.21) and (IV.22), then for any h P p0, 1q, the family Λ `h also satisfies those assumptions with the same value of θ and η and κ replaced by 2κ.

Proof :

' For any z P S η and h ą 0 we have |Im pz `hq| " |Im pzq| ď psinh ηqpRe zq ď psinh ηqpRe pz `hqq, which proves that S η `h Ă S η . In particular, Λ `h Ă S η .

' For every λ P Λ, since Re λ ą 0 and h ą 0, we have |λ `h| ě |λ|.

It follows that N Λ`h prq " #tλ P Λ, |λ `h| ď ru ď #tλ P Λ, |λ| ď ru " N Λ prq.

It is thus clear that Λ `h satisfies (IV.21) with the same value of κ and θ.

' Finally, for every 0 ă s ă r, we have

|N Λ`h prq ´NΛ`h psq| " # tλ P Λ, s ă |λ `h| ď ru ď # tλ P Λ, s ´h ă |λ| ď ru
" N Λ prq ´NΛ ps ´hq ď κp1 `|r ´s `h| θ q ď κp1 `hθ `|r ´s| θ q ď κp2 `|r ´s| θ q ď 2κp1 `|r ´s| θ q,

where we have used that 0 ă h ă 1.

The proof is complete.
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A block moment resolution for simple eigenvalues Let us consider a family Λ Ă C that satisfies the assumptions (IV.20), (IV.21) and (IV.22). Note that we do not assume for the moment any weak gap condition on Λ at this stage. Inside this family we assume that we can identify a finite subset of elements that we call a group and that we denote by G and we suppose given three parameters γ ą 0, ρ ą 1 and n max P N ˚such that #G ď n max , (V.16)

diampGq ď ρ, (V.17) dpConvpGq, ΛzGq ě γ. (V.18)
We introduce the notation r G :" min λPG pRe λq ą 0.

Thanks to the sector condition and to (V.17), we see that

r G ď Re λ ď r G `ρ, @λ P G, (V.19) r G ď |λ| ď pcosh ηqr G `ρ, @λ P G, (V.20)
where we have used the inequality (A.26).

For each element in G we suppose given a complex value ζ λ P C. We collect all those data in the notation ζ " pζ λ q λPG P C G .

Our goal is to find, for any T ą 0, a function q G,ζ,T P L 2 p0, T q that solves the following moment equations # perλs, q G,ζ,T q L 2 p0,T q " ζ λ , @λ P G, perλs, q G,ζ,T q L 2 p0,T q " 0, @λ P ΛzG, (V.21) together with a sharp estimate of its norm.

In the case where the cardinal of G is 1 (say G " tλu) and if we take ζ λ " 1, then the equations (V.21) are nothing but the biorthogonality conditions perµs, q tλu,t1u,T q L 2 p0,T q " δ λ,µ , @µ P Λ.

In this sense, we are generalizing Theorem IV.1.10, see also Corollary V.4.23.

Theorem V.4.22

Let Λ satisfying (IV.20), (IV.21), and (IV.22) and G Ă Λ satisfying (V.16), (V.17) and (V.18). For any T ą 0 and ζ " pζ λ q λPG Ă C, there exists a function q G,ζ,T P L 2 p0, T q satisfying the moment equations (V.21) and the estimate

}q G,ζ,T } L 2 p0,T q ď Ce Cr θ G `CT ´θ 1´θ max LĂG |ζrLs| , (V.22)
where C ą 0 depends only on the parameters κ, θ, η appearing in the assumptions on Λ and on the parameters n max , ρ, γ appearing in the assumptions on G.

In the case when we do not assume (IV.22), the same result holds if one replaces θ by any value θ P pθ, 1q in the estimate (V.22).

Before proving this result, we will first show how it implies an estimate on biorthogonal families that generalizes c b na F. BOYER -JUNE 27, 2023 the one given in Theorem IV.1.10.

Corollary V.4.23

Let Λ and G as in Theorem V.4.22. For any T ą 0 and any λ 0 P G, there exists a function q λ 0 ,T P L 2 p0, T q satisfying perµs, q λ 0 ,T q L 2 p0,T q " δ λ 0 ,µ , @µ P Λ, as well as the estimate }q λ 0 ,T } L 2 p0,T q ď Ce CpRe λ 0 q θ `CT ´θ 1´θ ˇˇˇˆ1 P Gztλ 0 u ˙pλ 0 q ˇˇˇ, where C depends on the same parameters as in Theorem V.4.22, and the polynomial P Gztλ 0 u is defined as in (A.2), as follows P Gztλ 0 u pzq " ź λPG λ‰λ 0 pz ´λq.

Proof :

We just apply Theorem V.4.22 to the data ζ P C G defined by

ζ λ " δ λ 0 ,λ , @λ P G,
and we set q λ 0 ,T :" q G,ζ,τ . The orthogonality conditions for µ R G are ensured by the properties of q G,ζ,τ , whereas the biorthogonality conditions for µ P G are ensured by the definition of ζ. It remains to get the estimate by evaluating max LĂG |ζrLs|.

If λ 0 R L, it is clear that ζrLs " 0. However, if λ 0 P L, we can use Corollary A.2.13 to get

ζrLs " 1 P Lztλ 0 u pλ 0 q " 1 ś λPL λ‰λ 0 pλ ´λ0 q , which gives

|ζrLs| ď ρ n´#L |P Gztλ 0 u pλ 0 q| .
The claim follows immediately.

The proof of Theorem V.4.22 will follow again from the Paley-Wiener theorem, but we need a slightly more subtle c b na F. BOYER -JUNE 27, 2023 construction than in Section IV.1.2.

Proposition V.4.24

Let Λ and G be as in Theorem V.4.22. There exists τ 0 ą 0 depending only on θ and κ such that for any τ P p0, τ 0 q and any set of complex values ξ G " pξ λ q λPG Ă C, there exists a function Φ G,ξ,τ : C Ñ C that satisfies:

1. Φ G,ξ,τ is entire and of exponential type τ .

2. For any λ P Λ we have

Φ G,ξ,τ piλq " # ξ λ , if λ P G, 0, if λ R G.
3. For any x P R, we have

|Φ G,ξ,τ pxq| ď Ce ´|x| θ `C|G| θ `Cτ ´θ 1´θ max LĂG |ξrLs| .
Here, the value of C depends only on the parameters κ, θ, η appearing in the assumptions on Λ and on the parameters n max , ρ, γ appearing in the assumptions on G.

Proof :

The proof starts in the same way as the one of Theorem IV.1.10, except that we consider the subset L " ΛzG instead of L " Λztλu as the starting point of the construction.

By the first point of Proposition A.7.44, we know that there exists a constant C 1 ą 0 depending only on θ, κ such that |Q ΛzG p´izq| ď e C 1 |z| θ , @z P C. (V.23)

We define now m " C 1 `2, (V.24) then we set τ 0 " p2θmq 1{θ 1 ´θ , and for τ ă τ 0 we introduce the entire function

W pzq :" Q ΛzG pzqM m,θ,τ {2 pizq. We define Φ G,ξ,τ pzq def " W p´izqP p´izq,
where P is the unique Lagrange interpolation polynomial of degree less than n " #G, satisfying

P pλq " ξ λ W pλq , @λ P G. (V.25)
Note that this definition makes sense since, by construction, W pλq ‰ 0 for λ P G. Moreover, by our choice of τ 0 , the condition (A.53) is satisfied. ' The fact that Φ G,ξ,τ piλq " 0 for λ P ΛzG just comes from the fact that such a λ is a zero of Q ΛzG , by definition.

' By using

In the case where λ P G, we clearly have Φ G,ξ,τ piλq " ξ λ by construction of the polynomial P .

' It remains to estimate Φ G,ξ,τ on the real line. To this end we combine (IV.27) and (A.55), and we use the choice of m given by (IV.28), to get

|W p´ixq| ď Ce C 1 |x| θ e ´m|x| θ `Cτ θ 1´θ ď Ce ´2|x| θ `Cτ θ 1´θ . (V.26)
The Newton formula for the interpolation polynomial satisfying (V.25) given in Proposition A. All in all, we have obtained

|P pzq| ď C ˆmax LĂG |ξrLs| ˙p1 `|z| `|G|q nmax e C|G| θ .
We can control the polynomial factor in |z| by Ce p|z|`|G|q θ for some C depending only on n max , which leads, still with another value of C, to

|P pzq| ď C ˆmax LĂG |ξrLs| ˙e|z| θ `C|G| θ .
Combining this inequality with (V.26) gives the claimed estimate.

We can now proceed with the proof of the main theorem of this section. Proof (of Theorem V. to which we associate the function Φ G,ξ,τ given by Proposition V.4.24. Note that our choice of τ implies that the condition τ ă τ 0 holds. Since, Φ G,ξ,τ is of exponential type τ , we can use the Paley-Wiener theorem (Theorem A.6.42) to get that Φ G,ξ,τ is the inverse Fourier transform of a function φ G,ξ,τ , supported in r´τ, τ s, that is

Φ G,ξ,τ pzq " ż τ ´τ φ G,ξ,τ ptqe itz dt.
Moreover, we have the estimate

}φ G,ξ,τ } L 2 p´τ,τ q " 1 ? 2π }Φ G,ξ,τ } L 2 pRq ď Ce C|G| θ `Cτ ´θ 1´θ max LĂG |ξrLs| , and 
ż τ ´τ φ G,ξ,τ ptqe ´λt dt " Φ G,ξ,τ piλq " # ξ λ , if λ P G, 0, if λ R G.
We set now ψ G,ζ,τ ptq " φ G,ξ,τ pt ´τ q, which is a function supported in p0, 2τ q and which satisfies for any λ P Λ perλs, ψ G,ζ,τ ptqq "

ż 2τ 0 ψ G,ζ,τ ptqe ´λt dt " ż τ ´τ φ G,ξ,τ ptqe ´λpt`τ q dt " e ´λτ ξ λ " # ζ λ , if λ P G, 0, otherwise.
This is exactly the problem (V.21) we wanted to solve.

In addition, we have the estimate

}ψ G,ζ,τ } L 2 p0,2τ q " }φ G,ξ,τ } L 2 p´τ,τ q ď Ce C|G| θ `Cτ ´θ 1´θ max LĂG |ξrLs| .
We can express the right-hand side as a function of the ζ, by using Corollary A.2.10. To this end, we consider the function g " e ´τ : λ Þ Ñ e λτ and we write Corollary A.2.10 thus gives

}ψ G,ζ,τ } L 2 p0,2τ q ď Cp1 `τ nmax 0 qe τ 0 ρ e τ r G `C|G| θ `Cτ ´θ 1´θ max LĂG |ζrLs| .
Using finally (V.20), we see that we can replace |G| by r G in this estimate, up to a change of the constant C. We now proceed as in the proof of IV.1.10 by setting τ G " pr G q 1´θ and q

G,ζ,τ " # ψ G,ζ,τ , if τ ď τ G ψ G,ζ,τ G , if τ ą τ G ,
in such a way that

}q G,ζ,τ } L 2 p0,2τ q ď Ce Cr θ G `Cτ ´θ 1´θ max LĂG |ζrLs| .
Since we have chosen τ " minpT, τ 0 q{2, the claim is proved.
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A block moment resolution taking into account multiplicities We will now show how to take into account multiplicities in the solution of our block moment problem. More precisely, to each element λ in G we associate a multiplicity α λ P N ˚and a set of complex values pζ j λ q jP 0,α λ . The multiplicities are gathered in a multi-index α P pN ˚qG and we denote by ζ " pζ j λ q λPG jP 0,α λ the set of all the given data.

Our goal is now to find a function q G,ζ,T P L 2 p0, T q that satisfies the moment equations # perλ pj`1q s, q G,ζ,T q L 2 p0,T q " ζ j λ , @λ P G, @j P 0, α λ perλ pj`1q s, q G,ζ,T q L 2 p0,T q " 0, @λ P ΛzG, @j P 0, L , (V.27) along with a suitable estimate. In this set of equations, L is an upper bound of the multiplicities, that is an integer satisfying L ě |α| 8 and we refer to (I.8) for the definition of erλ pj`1q s.

We will solve this problem by using an approximation process consisting in replacing the equations (V.27) by a well chosen standard block moment problem (without multiplicities) that converges, in a certain sense, towards our target problem.

Let us start with the following elementary lemma.

Lemma V.4.25

For any λ P C `and any j P N, we have j! e ´pRe λqt , @t ą 0, @h ą 0.

Our claim thus follows from the Lebesgue dominated convergence theorem.

With this lemma at hand, we can proceed to the proof of the main result of this section.

Theorem V.4.26

Let Λ and G be as in Theorem V.4.22 and let L ě 1 be an integer. For any T ą 0, any multi-index α P pN ˚qG such that |α| 8 ď L and any set of complex values ζ " pζ j λ q λPG jP 0,α λ Ă C, there exists a function q G,ζ,T P L 2 p0, T q satisfying the equations (V.27) and the estimate

}q G,ζ,T } L 2 p0,T q ď Ce Cr θ G `CT ´θ 1´θ max µPN G µďα ˇˇζrG pµq s ˇˇ, (V.28)
where C ą 0 only depends on L and on the parameters κ, θ, η, n max , ρ, γ appearing in the assumptions on Λ and G.

In the case when we do not assume (IV.22), the same result holds if one replaces θ by any value θ P pθ, 1q in the estimate (V.28).
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Proof :

We define the following quantity, depending on the (local) gap between the elements in the group G,

h 0 def " 1 L min λ, λPG λ‰ λ |λ ´λ| ą 0, (V.29)
and we consider a small parameter h P p0, h 0 q which is meant to tend to 0. We introduce the set

G h " ď λPG tλ, . . . , λ `pα λ ´1qhu,
and thanks to (V.29) we see that all the values in the definition of G h are distinct. In other words, the cardinal of G h is exactly equal to the length of α, that is |α| " ř λPG α λ .

We can now introduce

Λ h " G h Y ˜L´1 ď l"0 ppΛzGq `lhq ¸. Since Λ h Ă L´1 Ť l"0
pΛ `lhq, we can apply Lemma V.4.20 and Lemma V.4.21, to get

Λ h Ă S η , N Λ h prq ď κr θ , |N Λ h prq ´NΛ h psq| ď κp1 `|r ´s| θ q,
for some κ that does not depend on h. Moreover, we have diampG h q ď 2ρ,

r G h " inf λPG h Re λ " r G , #G h ď n max L,
and dpConvpG h q, Λ h zG h q ě γ{2, as soon as

h ă 1 L γ 2 .
In other words, we proved that we can apply Theorem V.4.22 to Λ h and G h in a uniform way with respect to h. It remains to build a suitable data set to which we will apply this theorem.

To this end, we take F : C Ñ C to be be any holomorphic function, that satisfies

F pjq pλq j! " ζ j λ , @λ P G, @j P 0, α λ .
Note that the function F is chosen independently of the value of h (for instance it can be the interpolation polynomial given in Proposition A.2.18 but this is not mandatory).

As mentioned above, we apply Theorem V.4.22 to the family Λ h , the group G h and to the data

ζ h P C G h defined by ζ h λ`jh def " F pλ `jhq, @λ P G, @j P 0, α λ . (V.30)
Since all the properties of Λ h and G h are uniform with respect to the parameter h, this theorem gives us a function q h G h ,ζ h ,T P L 2 p0, T q satisfying perλ `lhs, q h G h ,ζ h ,T q L 2 p0,T q " F pλ `jhq, @λ P G, @j P 0, α λ , (V.31) perλ `lhs, q h G h ,ζ h ,T q L 2 p0,T q " 0, @λ P ΛzG, @l P 0, L , (V.32)
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as well as the bound

}q h G h ,ζ h ,T } L 2 p0,T q ď Ce Cr θ G `CT ´θ 1´θ ¨max µ h PN G h |µ h |8ď1 ˇˇζ h rG pµ h q h s ˇˇ‹ ', (V.33)
the crucial point being that the constant C is uniform with respect to the parameter h. By using (V.30) and the Jensen inequality given in Proposition A.2.7, we see that the right-hand side in this estimate is bounded by C}F p|α|´1q } L 8 pU q , uniformly in h, where U is a sufficiently large open convex neighborhood of G.

We deduce that the family pq h G h ,ζ h ,T q h possesses weak accumulation points in L 2 p0, T q when h Ñ 0. We choose q G,ζ,T to be one of those weak accumulation points. By Proposition A.2.17, we can pass to the limit in (V.33) to get the expected bound, that is

}q G,ζ,T } L 2 p0,T q ď Ce Cr θ G `CT ´θ 1´θ max µPN G µďα ˇˇζrG pµq s ˇˇ.
It remains to show that this function q G,ζ,T actually solves the required moment problem (V.27).

' Let λ P ΛzG, and j P 0, L . By linear combination of the equations (V.32), we clearly have that perλ, . . . , λ `jhs, q h G h ,ζ h ,T q L 2 p0,T q " 0. (V.34) By using Lemma V.4.25, we can use the weak-strong limit principle in (V.34) to get that perλ pj`1q s, q G,ζ,T q L 2 p0,T q " 0.

' Let now λ P G and j P 0, α λ . By linear combination of the equations (V.31), we obtain perλ, . . . , λ `jhs, q h G h ,ζ h ,T q L 2 p0,T q " F rλ, . . . , λ `jhs. (V.35) By Proposition A.2.17, the right-hand side in this equality converges towards F pjq pλq j! which is exactly equal to ζ j λ by our choice of the function F . Using again the weak-strong convergence in the left-hand side, we end up with perλ pj`1q s, q G,ζ,T q L 2 p0,T q " ζ j λ . The proof is complete.

We can deduce from the previous theorem the following result that generalizes Theorem V.4.16.

Corollary V.4.27

Let Λ and G as in Theorem V.4.26. For any T ą 0, any multi-index α P pN ˚qG such that |α| 8 ď L, any λ 0 P G and any l P 0, α λ 0 , there exists a function q l λ 0 ,G,α,T P L 2 p0, T q such that perµ pj`1q s, q l λ 0 ,G,α,T q L 2 p0,T q " 0, @µ P ΛzG, @j P 0, L , perµ pj`1q s, q l λ 0 ,G,α,T q L 2 p0,T q " δ λ 0 ,µ δ l,j , @µ P G, @j P 0, α µ , as well as the estimate }q l λ 0 ,G,α,T } L 2 p0,T q ď Ce CpRe λ 0 q θ `CT ´θ 1´θ max jP 0,α λ 0 ´l ˇˇˇˇˆ1

P G pαzλ 0 q ˙pjq pλ 0 q ˇˇˇˇ,
where C depends on the same parameters as in Theorem V.4.26, and the polynomial P G pαzλ 0 q is defined as in (A.7), with the notation αzα 0 introduced in Corollary A.2.21, that is to say

P G pαzλ 0 q pzq " ź λPG λ‰λ 0 pz ´λq α λ . c bna F. BOYER -JUNE 27, 2023
Back to generalized biorthogonal families of exponentials It is now straightforward to prove Theorem V.4.16. Indeed, let us fix a λ P Λ, and an integer l P 0, L . We consider the group G " tλu, containing a single element, as well as the multi-index α " pLq (which is here a mono-index ...) and the data set

ζ j λ "
# 1 for j " l, 0 for j P 0, L ztlu.

Note that, the assumptions (V.16) and (V.17) are straightforward, whereas the assumption (V.18) comes from the gap property (IV.23) we have assumed for Λ.

Finally we can apply Theorem V.4.26 in that setting and obtain a function, that we call q l λ,T P L 2 p0, T q which satisfies all the requirements of Theorem V.4.16. Indeed, we can see that by construction, the generalized divided differences that come in the estimate are given by ζrλ pj`1q s " ζ j λ " δ j,l , @j P 0, L and, in particular, we have max jP 0,L ˇˇζrλ pj`1q s ˇˇ" 1.

V.5 The block moments method

In the previous section we have made a step forward the block moment method that allows to precisely solve moment problems when some spectral condensation phenomena arise. It was introduced in [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF] as a tool to study the minimal time of null-controllability for some parabolic systems. . The results we provide here are a bit more general than the ones in [START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF], since the assumptions we need on the family of eigenvalues of the operator are weaker. Moreover, we obtain here the precise estimate of the cost of the controls with respect to the control time.

Let Λ Ă C `be a family of complex numbers and ψ " pψ λ q λPΛ P C Λ a family of data values. We are interested in the existence of a function q P L 2 p0, T q that solves the moment problem perλs, qq L 2 p0,T q " ψ λ , @λ P Λ.

(V.36)

We will start by analyzing necessary conditions on ψ for such a moment problem to have a solution. We will then prove that, under suitable assumptions on Λ, those necessary conditions may be also sufficient. This result will be achieved by solving partial moment problems corresponding to well-chosen groups of elements in Λ as we have seen before.

V.5.1 Necessary conditions for the solvability of a moment problem

Assume that a solution q to (V.36) exists. Then for any finite subset L Ă Λ, by linearity of the divided differences, we have ψrLs " perLs, qq L 2 p0,T q , and thus, by the Cauchy-Schwarz inequality, we have |ψrLs| ď }q} L 2 p0,T q }erLs} L 2 p0,T q .

We set n " #L so that by the Jensen inequality (Proposition A.2.7) we see that for any t ą 0, there exists a z P ConvpLq such that

|e t rLs| ď t n´1 pn ´1q! |e ´tz | " t n´1 pn ´1q! e ´tpRe zq ď t n´1 pn ´1q! e ´tr L , c b na F. BOYER -JUNE 27, 2023
with r L def " inftRe λ, λ P Lu, so that we have

}erLs} L 2 p0,T q ď }erLs} L 2 p0,8q ď 1 p2r L q n´1{2 1 pn ´1q! a p2n ´2q!, independently of L.
It follows that, for any finite L Ă Λ, we have

|ψrLs| ď }q} L 2 p0,T q C r n´1{2 L ,
for some universal constant C ą 0, and therefore we have, for any n P N ˚, lim sup

LĂΛ #Lă`8 r L Ñ`8 |ψrLs| " 0.
(V.37)

In the sequel, we shall prove that, with suitable assumptions on the family Λ, a condition very close to (V.37) (we shall assume some exponential decay) is also sufficient to ensure the solvability of the moment problem (V.36).

V.5.2 Weak gap and groupings

We first need to prove that any family of complex numbers satisfying the weak gap condition can be decomposed in a countable family of groups that all satisfy the properties stated in Section V.4.2.3.

Proposition V.5.28

Let Λ Ă C be a family satisfying the weak gap condition (V.15) for some ρ ą 0 and n P N ˚. Then, there exists a countable family G made of finite subsets of Λ such that

' Λ " Ť GPG G. ' For each G ‰ G P G, we have G X G " H. ' Each G P G satisfies diam G ď ρ, #G ď n,
and dpConv G, ΛzGq ě ρ 2.4 n´1 .

Proof :

We prove this result by induction on n. ' In the case n " 1, the result is straightforward by chosing groups of cardinal 1 as follows:

G " ␣ tλu, λ P Λ ( .
' Assume that the result holds for a value of n ě 1 and let us prove it for the value n `1.

-For any λ P Λ and any r ą 0 we introduce G λ,r " Λ X Dpλ, rq,

then we set Λ " ␣ λ P Λ, #G λ,ρ{4 " n `1( .
We make the following remarks c b na F. BOYER -JUNE 27, 2023 * For any λ P Λ, we have G λ,ρ{4 " G λ,ρ{2 . (V.38) Indeed, the inclusion Ă is straightforward and by the weak gap assumption (V.15) (at the rank n `1) we know that #G λ,ρ{2 ď n `1 " #G λ,ρ{4 . The situation is illustrated in Figure V.3 where the gray region does not contain any element of Λ. 

* For any λ, λ P Λ we have either G λ,ρ{4 X G λ,ρ{4 " H or G λ,ρ{4 " G λ,ρ{4 .
Indeed, assume that there exists a µ P G λ,ρ{4 X G λ,ρ{4 . By the triangle inequality we have |λ ´λ| ď |λ ´µ| `|µ ´λ| ă ρ{4 `ρ{4 " ρ{2, and therefore λ P G λ,ρ{2 . By (V.38), if follows that λ P G λ,ρ{4 and thus |λ ´λ| ă ρ{4.

Using again the triangle inequality, it follows that Dp λ, ρ{4q Ă Dpλ, ρ{2q, so that, again with (V.38), G λ,ρ{4 Ă G λ,ρ{2 " G λ,ρ{4 . Those two sets having the same cardinality, the claim follows.

-We can now set G " ␣ G λ,ρ{4 , λ P Λ( . By the discussion above, we know that this family is made of disjoint subsets of Λ of cardinal n `1, of diameter no greater than ρ{2. Moreover, still by (V.38), we see that

dpConv G, ΛzGq ě ρ 4 ě ρ 4 n , @G P G.
-Let now Λ n`1 " Ť GP G G and consider the new family Λ " ΛzΛ n`1 .

* By construction, Λ satisfies the weak gap condition (V.15) with parameters n and ρ{8. Indeed, if for some µ P C we have # `Λ X Dpµ, ρ{8q ˘ą n, then we can take any λ P Λ X Dpµ, ρ{8q and observe that Dpµ, ρ{8q Ă Dpλ, ρ{4q, so that it comes, in particular, #Λ X Dpλ, ρ{4q ą n, which is in contradiction with the fact that λ R Λ n`1 . where G n is a family of disjoint finite sets of cardinality less than n, and of diameter less than ρ{8 and such that dpConv G, ΛzGq ě ρ{8

4 n´1 " ρ 2.4 n , @G P G n . * We may now set G " G n Y G.
The only point that remains to be proved is that dpConv G, λq ě ρ 2.4 n , @G P G n , @λ P Λ n`1 . Let G P G n , and λ P Λ n`1 . By construction, we have G Ă Dpµ, ρ{8q for some µ P Λ and there 

exists λ P Λ such that λ P G λ,ρ{4 . Since µ R Λ n`1 , we have µ R G λ,ρ{4 " G λ,ρ{2

V.5.3 Solving moment problems by the block moment method

Now that we are able to build a grouping of the elements in Λ that satisfies the properties above, we can manage to solve a moment problem by the block moment approach. Roughly speaking this method allows to solve a moment problem even if the elements in Λ can be exponentially close, as soon as the data of the moment problem is suitably chosen. In other terms the data of the moment problem should compensate the condensation of the eigenvalues in Λ; this is the meaning of the necessary condition (V.37).

Our first result in that direction is the following. It gives conditions on the data, and on the time horizon to be able to solve a general moment problem.

Theorem V.5.29

Let Λ be a family belonging to a class L w pη, κ, θ, ρ, nq for some values of the parameters. Let pGq GPG be a grouping as given by Proposition V.5.28. Let ψ P C Λ be a family of complex numbers. We assume that, for some r T ą 0 and M ą 0, we have

max LĂG |ψrLs| ď M e ´rG r T , @G P G. (V.39)
Then, for any τ P p0, 2 r T s, there exists a function q P L 2 p0, τ q satisfying the moment problem perλs, qq L 2 p0,τ q " ψ λ , @λ P Λ, as well as the estimate }q} L 2 p0,τ q ď M Ce Cτ ´θ 1´θ , where C depends only on η, κ, θ, θ, ρ, n.

In the case where we have the weaker assumption Λ P r L w pη, κ, θ, ρ, nq, the same result holds by replacing θ by any θ P pθ, 1q in the estimate above; the constant then depends also on θ.
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Remark V.5.30

Note that the same result holds under the condition τ P p0, ϑ r T s for any ϑ ą 1, but in this case the constants in the estimates would depend on the value of ϑ.

The condition (V.39) has to be compared to the necessary condition (V.37) that we have obtained above. The main differences are that:

1. we ask for an exponential decay of the quantity of interest 2. we only evaluate the quantity ψrLs for L being a subset of one of the groups G. This makes this assumption more tractable than studying this quantity for any possible subset L of Λ.

Proof : Let τ P p0, 4 r T {3s be given. For each G P G, we can use Theorem V.4.22 to find a function q G P L 2 p0, τ q satisfying the partial moment problem perλs, q G q L 2 p0,τ q " # ψ λ , @λ P G, 0, @λ P ΛzG, and the estimate

}q G } L 2 p0,τ q ď Ce Cr θ G `Cτ ´θ 1´θ max LĂG |ψrLs|.
Using (V.39), the fact that r T ě τ {2, and Young's inequality, we get

}q G } L 2 p0,τ q ďM Ce ´rG r T `Cr θ G `Cτ ´θ 1´θ ďM Ce ´rG τ {2`Cr θ G `Cτ ´θ 1´θ
ďM Ce ´rG τ {4`Cτ ´θ 1´θ .

By (A.22) and the sector condition, we obtain that

ÿ GPG e ´rG τ {3 ď ÿ λPΛ e ´pRe λqτ {4 ď ÿ λPΛ e ´|λ| τ 4 cosh η ď C τ ,
where C depends only on η, θ and κ. This proves that the series

q def " ÿ GPG q G ,
absolutely converges in L 2 p0, τ q and that q solves the moment problem we are looking at and satisfies the claimed estimate.

As we have seen before, for instance in (IV.25) for the heat equation, applying this Theorem to a parabolic nullcontrol problem, amounts at considering particular data sets that are issued from the computation of the free solution of the problem to any initial data in the state space. This leads to the following corollary. In particular, those data
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values are usually exponentially small we respect to λ. That is why the following corollary is of interest.

Corollary V.5.31

Let Λ be a family belonging to a class L w pη, κ, θ, ρ, nq for some values of the parameters. Let pGq GPG be a grouping as given by Proposition V.5.28. Let ϕ P C Λ be a family of complex numbers. We assume that, for some M ą 0, we have

max LĂG |ϕrLs| ď M, @G P G. (V.40)
Then, for any T ą 0, there exists a function q P L 2 p0, T q satisfying the moment problem perλs, qq L 2 p0,T q " e ´λT ϕ λ , @λ P Λ, as well as the estimate }q} L 2 p0,T q ď M Ce CT ´θ 1´θ , where C depends only on η, κ, θ, θ, ρ, n.

In the case where we have the weaker assumption Λ P r L w pη, κ, θ, ρ, nq, the same result holds by replacing θ by any θ P pθ, 1q in the estimate above; the constant then depends also on θ.

Proof :

We simply set ψ λ " e ´λT ϕ λ . Let us pick a group G P G.

We introduce the function g " e T : λ Þ Ñ e ´λT , and we apply Corollary A. We can now use Theorem V.5.29, with r T " T {2 and τ " T to get a solution to our moment problem that satisfies the estimate }q} L 2 p0,T q ď epn max ´1q!CM e CT ´θ 1´θ , which proves the claim.

We can also obtain a useful result in the case where the uniform bound (V.40) is replaced by an exponentially increasing bound (with respect to the group G). In that case, we only obtain a solution to the moment problem in the c b na F. BOYER -JUNE 27, 2023 case where the time T is large enough.

Corollary V.5.32

We consider the same assumptions as in the previous corollary except for (V.40) that we replace by

max LĂG |ϕrLs| ď M e r G T ˚, @G P G, (V.41)
for some M ą 0 and T ˚ě 0.

Then, for any T ą T ˚there exists a function q P L 2 p0, T q satisfying the moment problem perλs, qq L 2 p0,T q " e ´λT ϕ λ , @λ P Λ, as well as the estimate }q} L 2 p0,T q ď M Cp1 `pT ˚qn qe CpT ´T ˚q´θ 1´θ , where C depends only on η, κ, θ, θ, ρ, n.

In the case where we have the weaker assumption Λ P r L w pη, κ, θ, ρ, nq, the same result holds by replacing θ by any θ P pθ, 1q in the estimate above; the constant then depends also on θ.

Proof :

For any λ P Λ, we set

ζ λ " e ´λT ˚ϕλ .
As we did in the previous proofs, we can use Corollary A.2.10 to deduce, for any G P G, the bound Since T ´T ˚ą 0, Corollary V.5.31 shows that there exists q P L 2 p0, T ´T ˚q satisfying perλs, qq L 2 p0,T ´T ˚q " e ´λpT ´T ˚qζ λ , @λ P Λ.

We denote by q P L 2 p0, T q the extension by 0 of q, so that by definition of ζ, we finally get perλs, qq L 2 p0,T q " e ´λT ϕ λ , @λ P Λ, as well as the expected estimate.

V.6 An alternative construction of biorthogonal families to exponentials

In this section, we shall propose an alternative way to construct and estimate biorthogonal families of exponentials. This other approach seems to be the first one that appears in the literature in [LK71, FR71, FR75], and gives in some cases a sharper estimate since it amounts, at least in infinite time horizon, to building the minimal biorthogonal family.

Moreover, it appears that we are able to adapt this approach to a time-discrete situation as in [START_REF] Boyer | Boundary controllability of time discrete parabolic systems: a moment's method approach[END_REF], whereas the Paley-Wiener approach does not seem to be usable in this context.

We shall also consider the case of generalized exponential functions (to deal with multiplicities of the eigenvalues), that was for instance considered in [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF]. However, our proof is slightly different here.
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V.6.1 The case of an infinite time horizon

Let us start by discussing necessary and sufficient conditions for the existence of biorthogonal families to exponentials in L 2 p0, `8q.

Theorem V.6.33

Let Λ Ă C `be a family of complex numbers. We assume further that 0 is not an accumulation point of Λ, which is equivalent here to the condition inf λPΛ |λ| ą 0. (V.42)

1. If there exists a family pq λ,8 q λPΛ which is biorthogonal to the family perλsq ΛPΛ in L 2 p0, `8q then we have

ÿ λPΛ Re ˆ1 λ ˙ă `8. (V.43)
In particular, if we have Λ Ă S η for some η ą 0, then we have

ÿ λPΛ 1 |λ| ă `8. (V.44)
2. Conversely, if we assume that Λ Ă S η for some η ą 0, and that the summability condition (V.44) holds, then there exists a biorthogonal family pq λ,8 q λPΛ to the family perλsq ΛPΛ in L 2 p0, `8q.

We refer in the sequel to the notations and results given in Appendix A.3 and we start by making some preliminary computations.

Let us first observe that erλs P L 2 p0, `8q for each λ P Λ, since Re λ ą 0. Then, by a straightforward computation we get that for any λ, µ P Λ we have

perλs, erµsq L 2 p0,`8q " 1 λ `μ . (V.45)
For any subset L of Λ, we introduce the family E L def " terµs, µ P Lu in L 2 p0, `8q. As defined in Section A.3, we introduce π E L the orthogonal projection in L 2 p0, `8q onto Span E L .

For any finite subset L of Λ, for which an arbitrary ordering is chosen, we see by (V.45) that the Gram matrix G L of the family E L in L 2 p0, `8q is just the Cauchy matrix

G L def " ˆ1 λ `μ ˙µPL λPL .
Its determinant is explicitly computable (see Proposition A.3.31) as follows

∆ L " ˜ź λPL 1 2Re λ ¸ź λ,µPL 뉵 ˇˇˇλ ´µ λ `μ ˇˇˇ.
By usual results on Gram determinants (see Proposition A.3.26) we have that for any σ P Λ and any finite

L Ă Λ with σ R L, δperσs, E L q 2 " ∆ LYtσu ∆ L ,
and we finally obtain the explicit formula

δperσs, E L q 2 " 1 2Re σ ź µPL ˇˇˇσ ´µ σ `μ ˇˇˇ2 . (V.46)
We can now proceed with the proof of Theorem V.6.33. Proof :
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1. We assume that perλsq λPΛ possesses a biorthogonal family in L 2 p0, `8q.

' Observe first that there exists σ P Λ such that |µ| ě |σ| 2 , @µ P Λ. (V.47) Indeed, if it were not the case, we would be able to find a sequence pσ n q n in Λ such that |σ n`1 | ď |σ n |{2. This would be a contradiction with (V.42).

' Let us now choose such a σ P Λ, satisfying (V.47). By using Proposition A.3.29 and the fact that we assumed the existence of the biorthogonal family to the exponentials, we know that δperσs, E Λztσu q ą 0.

We choose any finite L Ă Λ, and use the explicit formula (V.46) to obtain

0 ă c σ ď ź µPL ˇˇˇσ ´µ σ `μ ˇˇˇ2 ,
where c σ " 2pRe σqδperσs, E Λztσu q 2 only depends on σ. Taking the logarithm, we get

ÿ µPL ´log ˇˇˇσ ´µ σ `μ ˇˇˇ2 ď ´log c σ . (V.48)
We observe now that, from (V.47), we have 2. We assume here the sector condition as well as the summability condition (V.44). Note that this last condition implies in particular that Λ is locally finite.

ˇˇˇµ ´σ µ `σ ˇˇˇ2 " 1 ´4 pRe
By using the function introduced in Definition A.7.43, we can define for any subset L Ă Λ, the function

W L pzq def " Q L pzq Q ´L pzq " ź σPL ˆ1 ´z σ 1 `z σ ˙, (V.49)
which is well-defined and holomorphic on Czp´Lq and in particular on C `. It follows from (V.46), that

δperσs, E L q " 1 ? 2Re σ |W L pσq| . (V.50)
A priori, this formula is only valid for a finite subset L of Λ. However, by Lemma A.3.23 we know that

δpσ, E Λztσu q " lim nÑ8 δpσ, E Λnztσu q,
where, for instance, we have chosen Λ n def " Λ X Dp0, nq. By (V.50) and the uniform convergence property of the infinite product we get

δpσ, E Λztσu q " 1 ? 2Re σ lim nÑ8 |W Λnztσu pσq| " 1 ? 2Re σ |W Λztσu pσq| ą 0,
since W Λztσu only vanishes on Λztσu.

This property being for any σ P Λ, we deduce by Proposition A.3.29 that there exists a family pq σ,8 q σPΛ in L 2 p0, `8q which is biorthogonal to E Λ , which proves the claim. Note also, for further use, that it satisfies

}q σ,8 } L 2 p0,`8q " 1 δpσ, E Λztσu q " ? 2Re σ ˇˇˇ1 W Λztσu pσq ˇˇˇ. (V.51) Remark V.6.34
In the case where Λ does not lie in a sector, the condition (V.44) is too strong. For instance, let us consider Λ " t1 `in, n ě 0u and T " 2π. A simple computation shows that

ż 2π 0 e p´1`imqt 2π e p1´inqt dt " δ n,m ,
which proves that perλsq λPΛ possesses a biorthogonal family in L 2 p0, T q and thus in L 2 p0, `8q. It appears that (V.43) holds since

ÿ ně0 Re ˆ1 1 `in ˙" ÿ ně0 1 |1 `in| 2 ă `8, but (V.44) does not since ÿ ně0 1 |1 `in| " `8. c bna F. BOYER -JUNE 27, 2023
V.6.2 The case of finite time horizon

Let us introduce the linear space spanned by all the exponential functions corresponding to Λ

E Λ def " SpanpE Λ q,
and the closures of this space in L 2 p0, `8q and L 2 p0, T q, for every T ą 0, denoted respectively by

F Λ,8 def " E Λ L 2 p0,8q , F Λ,T
def " E Λ L 2 p0,T q , @T ą 0.

We define Γ Λ,T to be the restriction operator

Γ Λ,T : f P F Λ,8 Þ Ñ f |r0,T s P F Λ,T ,
which is of course linear, continuous.

In the sequel of this section we will use the following result that states the inversibility of this operator.

Theorem V.6.35

Assume that Λ Ă S η for some η ą 0 and that it satisfies (V.44).

For any T ą 0, there exists a C ą 0, depending on T and Λ such that

}f } L 2 p0,`8q ď C}Γ Λ,T f } L 2 p0,T q , @f P F Λ,8 . (V.52)
In particular, Γ Λ,T is invertible.

The proof of this result can be found in [START_REF] Farid Ammar Khodja | Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences[END_REF]. We will not give its proof here in full generality but we will prove some particular cases in Theorem V.6.40 and Theorem V.6.42.

We can now move to the study of the existence of biorthogonal families to the exponentials perλsq λPΛ in L 2 p0, T q.

Theorem V.6.36

Let Λ Ă C `be a family of complex numbers and T ą 0.

1. If there exists a family pq λ,T q λPΛ which is biorthogonal to the family perλsq ΛPΛ in L 2 p0, T q then we have the summability property (V.43).

In particular, if we have Λ Ă S η for some η ą 0, then we have the summability property (V.44).

2. Conversely, if we assume that Λ Ă S η for some η ą 0, and that the summability condition (V.44) holds, then there exists a biorthogonal family pq λ,T q λPΛ to the family perλsq ΛPΛ in L 2 p0, T q.

Proof :

1. By assumption we have δ λ,µ " ż T 0 q λ,T ptqe ´µt dt, @λ, µ P Λ, and thus δ λ,µ " ż T 0 q λ,T ptqe t e ´pµ`1qt dt, @λ, µ P Λ.

This proves that the family perλsq λP r Λ , where r Λ " Λ `1, possesses a biorthogonal family in L 2 p0, T q and thus, in particular, in L 2 p0, `8q.
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' Let us show, by contradiction, that r Λ is locally finite. Assume that there exists an infinite subset r L Ă r Λ such that

|λ ´µ| ď 1, @λ, µ P r L. (V.53)
We fix a value σ P r L and for any n we take a subset r L n of r Lztσu of cardinality n. By (V.46), we deduce that δperσs, Er Ln q " 1 ? 2Re σ ź µP r Ln |µ ´σ| |µ `σ| .

By construction of r Λ, all the elements in r L n have a real part greater than 1 and by using (V.53) we deduce that δperσs, Er Ln q ď 1 ? 2Re σ

1 2 n .
It follows that δperσs, Er Ln q ÝÝÝÑ nÑ8 0 and since δperσs, Er Λztσu q ď δperσs, Er Ln q for any n, we deduce that δperσs, Er Λztσu q " 0, which is a contradiction with the existence of a biorthogonal family to perσsq σP r Λ in L 2 p0, `8q, see Proposition A.3.29.

' Since r

Λ is locally finite, so is Λ and thus we deduce that inf λPΛ |λ| ą 0, using that 0 R Λ. Moreover, pq λ,T q λPΛ is a family biorthogonal to the exponentials in L 2 p0, `8q, and thus we can apply the first part of Theorem V.6.33 to deduce the claim.

2. We make use of the inverse of the restriction operator introduced above and, for any λ P Λ, we set

q λ,T def " pΓ ´1 Λ,T q ˚qλ,8 , (V.54) 
where pq λ,8 q λPΛ is the biorthogonal family to E Λ in L 2 p0, `8q given by Theorem V.6.33. Notice that, by construction, we have q λ,8 P F Λ,8 , so that formula (V.54) makes sense.

We can now check that this family pq λ,T q λPΛ satisfies the required properties. Indeed, for any λ, µ P Λ, we have pq λ,T , erµsq L 2 p0,T q " ppΓ ´1 Λ,T q ˚qλ,8 , Γ Λ,T erµsq L 2 p0,T q " pq λ,8 , pΓ Λ,T q ´1Γ Λ,T erµsq L 2 p0,`8q " δ λ,µ .

Note moreover that, for any λ P Λ, we can use Proposition V.6.42 to get

}q λ,T } L 2 p0,T q ď }pΓ ´1 Λ,T q ˚}}q λ,8 } L 2 p0,`8q " }Γ ´1 Λ,T }}q λ,8 } L 2 p0,`8q ,
and thus, the bounds on pq λ,8 q λPΛ are transferred to pq λ,T q λPΛ with an additional constant, that is

}q λ,T } L 2 p0,T q ď }Γ ´1 Λ,T } ? 2Re λ ˇˇˇ1 W Λztλu pλq ˇˇˇ.

V.6.3 Estimates on the biorthogonal families

Let us now move to an estimate as precise as possible of the size of the biorthogonal families we have built in the previous sections. For the applications we have in mind, as we have seen before, we need an estimate of q λ,8 (resp. q λ,T ) with respect to the eigenvalue λ, but we also want to investigate the dependency on the family of eigenvalues as a whole and on the time horizon T .
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V.6.3.1 The case of infinite time horizon

The first result in this direction is the following.

Theorem V.6.37

Assume that Λ Ă S η for some η ą 0, and that the summability condition (V.44) holds. We denote by R a remainder function associated to Λ.

We also assume that Λ satisfies the weak gap condition (V.15). Additionally, we assume either that plog rqRprq Ý ÝÝ Ñ rÑ8 0, (V.55) or δ :" sup rą0 pN pr `1q ´N prqq ă `8, (V.56) then, we have the estimate

}q λ,8 } L 2 p0,`8q ď 1 ś µPΛ 0ă|λ´µ|ăρ
|λ ´µ| e εp|λ|q |λ| , @λ P Λ.

where ε : p0, `8q Ñ p0, `8q is a function tending to zero at infinity, that only depends on R, ρ (and on δ in the case (V.56)).

Remark V.6.38

Notice that in the real-valued case, that is if Λ Ă p0, `8q, then the weak gap condition (V.15) immediately implies (V.56).

Proof :

As we have seen in (V.51), estimating the size of q λ,8 amounts at estimating the quantity

ˇˇˇ1 W Λztλu pλq ˇˇˇ,
where the Blaschke product W L is defined in (V.49).

The claimed estimate is thus a straightforward consequence of the bound from above of Q ´L pλq and of the bound from below for Q L pλq, with L " Λztλu and γ " ρ, obtained from Proposition A.7.44.

In the case where the gap condition holds, the estimate above simplifies a lot as follows.

Corollary V.6.39

In the particular case where Λ satisfies the usual gap condition (IV.23), then the estimate simplifies into }q λ,8 } L 2 p0,`8q ď e εp|λ|q |λ| .
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V.6.3.2 The case of finite time horizon

We can now prove a version of Theorem V.6.35 which is slightly less general and deduce an estimate of the biothogonal family in a finite time horizon.

Theorem V.6.40

Assume that Λ Ă S η for some η ą 0, and that the summability condition (V.44) holds. We denote by R a remainder function associated to Λ and we assume that either (V.55) or (V.56) hold. We also assume that Λ satisfies the usual gap condition (IV.23) Let T ą 0 be given. There exists a K ą 0 depending only on T ą 0, ρ, R (and δ in the case (V.56)) such that, }f } L 2 p0,`8q ď K}Γ Λ,T f } L 2 p0,T q , @f P F Λ,8 . (V.57)

As a consequence, the biorthogonal family pq λ,T q λPΛ satisfies the estimate }q λ,T } L 2 p0,T q ď Ke εp|λ|q |λ| , @λ P Λ, where ε : p0, `8q Ñ p0, `8q is a function tending to zero at infinity, that only depends on R, ρ (and on δ in the case (V.56)) but not on T .

Proof :

By density, is is enough to prove (V.57) for f P E Λ . We will use a contradiction argument.

Let us fix a T ą 0 and assume that this inequality is false: then there exists a sequence pΛ n q n of subsets of S η each of them satisfying the summability condition (V.44) with the same remainder function R, the gap condition (IV.23) with the same value of ρ, and the same value of δ, as well as a sequence of functions

f n P E Λ n such that }f n } L 2 p0,`8q " 1, and }Γ Λ n ,T f n } L 2 p0,T q ď 1{n. (V.58) Each f n can be written f n ptq " ÿ λPΛ n
a n λ e t rλs, (V.59) where a n λ ‰ 0 only for finitely many values of λ. From Theorem V.6.37, we know that, for each n there exists a biorthogonal family pq n λ,8 q λPΛ n to E Λ n in L 2 p0, 8q that satisfies }q n λ,8 } L 2 p0,`8q ď e εp|λ|q|λ| , @λ P Λ n , where ε is a locally bounded function tending to 0 at infinity which does not depend on n since all the Λ n share the same values of ρ and η and the same remainder function R.

Taking the inner product of (V.59) by q n λ,8 and using the biorthogonality property, we have, for any n and any λ P Λ n a n λ " pf n , q n λ,8 q L 2 p0,8q . From the Cauchy-Schwarz inequality and the bounds above, we deduce that |a n λ | ď e εp|λ|q|λ| , @λ P Λ n , @n ě 1.

By using (A.26), this leads to the estimate |a n λ | ď e cηεp|λ|qpRe λq , @λ P Λ n , @n ě 1, (V.60) where c η " cosh η.

We consider now any z P S η where η ą 0 is chosen such that
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Bu using the definition (A.25), we observe that |a n λ e z rλs| ďe cηεp|λ|qpRe λq e ´pRe λqpRe zq`pIm λqpIm zq ďe cηεp|λ|qpRe λq e ´pRe λqpRe zq`1 2 pRe λqpRe zq ďe ´1 2 pRe λq " Re z´2cηεp|λ|q

‰ .

Since ε tends to 0 at infinity, we observe that the formula

f n pzq def " ÿ λPΛ n a n λ e z rλs,
defines an holomorphic extension of f n in the sector S η, and that moreover, we have, for any γ ą 0

|f n pzq| ď ÿ λPΛ n e ´1 2 pRe λq " Re z´2cηεp|λ|q ‰ ď ÿ λPΛ n e ´1 2 pRe λq " γ´2cηεp|λ|q ‰ , @z P S η, Re z ą γ.
(V.61) Using (A.22), we get that the sequence pf n q n is bounded on every compact subset of S η. By Montel's theorem, we deduce that, up to the extraction of a subsequence, we can assume that pf n q n converges locally uniformly in S η towards an holomorphic function f . By (V.58), we also have }Γ Λ n ,T f n } L 2 p0,T q Ñ 0 when n Ñ 8 which implies that f " 0 on p0, T q. Since f is holomophic in S η, we deduce by the isolated zeros principle that f " 0 everywhere in S η.

As a consequence, for any S ą T , we have

ż S 0 |f n ptq| 2 dt ÝÝÝÑ nÑ8 ż S 0 |f ptq| 2 dt " 0.
We choose now S :" 4c η suptεprq, r P r1{Rp0q, `8qu. By (A.21), we have εp|λ|q ď S 4c η , @λ P Λ n , @n ě 1.

Therefore, with such a value of S, we deduce from (V.61) that, for any t ą S and any n ě 1, V.6.4 Sharper estimates on biorthogonal families in infinite time horizon

|f
In the case where the asymptotics of the counting function of Λ is known we can make the dependency on λ of the above estimate more precise.

Theorem V.6.41

Let Λ be a family as in Theorem V.6.37.

' If the counting function of Λ satisfies the asymptotic assumption (IV.21) then, in the conclusion of Theorems V.6.37 and V.6.40, we can take εprq " C r 1´θ , for any θ P pθ, 1q, C being a constant depending only on θ and κ, and ρ.

' If the counting function of Λ satisfies the asymptotic assumptions (IV.21) and (IV.22) then, in the conclusion of Theorem V.6.37 and V.6.40, we can take

εprq " C r 1´θ ,
where C depends only on θ, κ, and ρ.

The proof of Theorem V.6.41 simply consists, using the additional assumptions on the counting function N , to use the precised estimates on the Blaschke products given in Proposition A.7.46.

V.6.5 Even more sharper estimates of the biorthogonal family in the real case.

In the case where we assume that Λ Ă p0, `8q as well as the asymptotic behavior (IV.21), we can obtain an explicit estimate of the norm of the restriction operator Γ Λ,T as a function of T and then an explicit estimate of the norm of the biorthogonal family with respect to T and λ.

More precisely, we can obtain the following result which is a refinement of Theorem V.6.35, in the particular case of real eigenvalues. It is important to notice that this result do not require any gap assumption on the family Λ.

Theorem V.6.42

Assume that Λ is a family of positive real numbers that satisfies the asymptotic assumption (IV.21), then there exists C 1 ą 0, depending only on κ and θ, such that for any T ą 0, we have

}f } L 2 p0,`8q ď C 1 e C 1 T ´θ 1´θ }Γ Λ,T f } L 2 p0,T q , @f P F Λ,8 .
The main consequence of this result is the following more accurate estimate of the biorthogonal family to the exponentials.

Theorem V.6.43

Assume that Λ is a family of positive real numbers that satisfies the asymptotic assumption (IV.21) as well as the gap condition (IV.23). Then for any T ą 0, there exists a biorthogonal family pq λ,T q λPΛ to the family perλsq λPΛ in L 2 p0, T q which satisfies the estimate }q λ,T } L 2 p0,T q ď Ce Cλ θ `CT ´θ 1´θ , @λ P Λ, where C ą 0 depends only on ρ, κ and θ.
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V.6. An alternative construction of biorthogonal families to exponentials 123

The proof of this result just consists in using Theorem V.6.42 in combination with Theorems V.6.40 and V.6.41.

The remainder of this section is devoted to the proof of Theorem V.6.42. Note that, all the constants C i in the statements and proofs of this section will only depend on the parameters κ and θ.

The proof makes use of real and complex analysis tools. Our first goal will be to construct an entire function satisfying the following properties.

Proposition V.6.44

There exists τ 0 ą 0 depending only on θ, κ such that for any τ P p0, τ 0 q, there exists an entire function G Λ,τ satisfying:

1. G Λ,τ is of exponential type τ , 2. G Λ,τ p0q " 1, 3. G Λ,τ piλq " 0 for any λ P Λ, 4. G Λ,τ is square integrable on the real axis and satisfies

}G Λ,τ } L 2 pRq ď C 2 e C 2 τ ´θ 1´θ .

Proof :

We use here the notation and results obtained in Appendix A.7. The function G Λ,τ is built as follows

G Λ,τ pzq :" Q Λ p´izqM m,θ,τ {2 pzq,
where µ will be chosen later. By construction, we have G Λ,τ p0q " Q Λ p0qM m,θ,τ {2 p0q " 1 and G Λ,τ piλq " 0, @λ P Λ, since Q Λ pλq " 0 for every λ P Λ. Moreover, from Proposition A.7.46, we know that there exists a C 1 ą 0 depending only on θ and κ such that The value of the parameter τ 0 given in Proposition V.6.44 is now fixed.

|Q Λ p´izq| ď e C 1 |z|

Proposition V.6.45

There exists C 3 ą 0, such that for any τ P p0, τ 0 q and any function f in E ΛYt0u " Spanper0s, erλs, λ P Λq that we write f " a 0 `ÿ λPΛ a λ erλs,

we have the estimate lim tÑ`8

|f ptq| " |a 0 | ď C 3 e C 3 τ ´θ 1´θ }a} L 2 p0,2τ q .

Proof :

Applying the Paley-Wiener theorem (Theorem A.6.42) to the function G Λ,T built in Proposition V.6.44, we get the existence of a function g Λ,τ P L 2 pRq such that G Λ,τ pzq " ż τ ´τ g Λ,τ ptqe itz dt, and

}g Λ,τ } L 2 pRq " 1 2 }G Λ,τ } L 2 pRq ď C 2 e C 2 τ ´θ 1´θ .
We compute the following integral

ż τ ´τ f pt `τ qg Λ,τ ptq dt " f 0 ż τ ´τ g Λ,τ ptq dt `ÿ λPΛ f λ e ´λτ ż τ
´τ e ´λt g Λ,τ ptq dt " f 0 G Λ,τ p0q `ÿ λPΛ f λ e ´λτ G Λ,τ piλq " f 0 , by using the properties of G Λ,τ . The conclusion follows from the Cauchy-Schwarz inequality and the estimate of }g Λ,τ } L 2 pRq . We use the results given in Appendix A.8. In particuliar the set of Müntz polynomial functions M pΛ Y t0uq is the set of functions defined as ppxq " p 0 `ÿ λPΛ p λ x λ , x P r0, `8q, where only a finite number of coefficients p λ are non zero.

Proposition V.6.46

There exists C 4 ą 0 such that for any 0 ă τ ă minpτ 0 , 1q we have |pp0q| ď C 4 e C 4 τ ´θ 1´θ }p} L 8 p1´τ,1q , @p P M pΛ Y t0uq.

Proof :

We set f ptq def " ppe ´tq, @t ą 0.

By construction, we have f P E ΛYt0u so that we can apply Proposition V.6.45. Since pp0q " p 0 we get

|pp0q| ď C 3 e C 3 τ ´θ 1´θ }f } L 2 p0,2τ q . c b na F. BOYER -JUNE 27, 2023
Since τ ă 1, we can bound the L 2 norm by the L 8 norm |pp0q| ď C 3 e C 3 τ ´θ 1´θ }f } L 8 p0,2τ q ď C 3 e C 3 τ ´θ 1´θ }p} L 8 pe ´2τ ,1q .

Since e ´2τ ě 1 ´2τ , we finally get

|pp0q| ď C 3 e C 3 τ ´θ 1´θ }p} L 8 p1´2τ,1q ,
and the claim is proved by changing τ in τ {2 and adapting the constant accordingly.

Theorem V.6.47

Let s ą 0 and A be a closed subset of r0, 1s whose Lebesgue measure is at least s. Under the same assumptions as above, we have }p} L 8 p0,inf Aq ď C 4 e C 4 s ´θ 1´θ }p} L 8 pAq , @p P M pΛ Y t0uq.

Proof :

Let L 0 Ă Λ Y t0u be the finite subset corresponding to the non zero coefficients of p in the basis of M pΛq. We define the interval I s " r1 ´s, 1s.

Let T L 0 ,Is be the generalized Tchebychev polynomial corresponding to L 0 and to the set I s as defined in Appendix A.8.

We use Theorem A.8.61 with I " I s (since |A| ě s " |I s | and sup A ď 1 " sup I s ) and we deduce that }p} L 8 p0,inf Aq ď |T L 0 ,Is p0q| }p} L 8 pAq .

Applying Proposition V.6.46 to T L 0 ,Is (and τ replaced by s) we get

|T L 0 ,Is p0q| ď C 4 e C 4 s ´θ 1´θ ,
and the claim is proved.

We can now move to a similar L 2 estimate.

Theorem V.6.48

There exists C 5 ą 0 such that for any 0 ă s ă 1, we have }p} L 2 p0,1q ď C 5 e C 5 s ´θ 1´θ }p} L 2 p1´s,1q , @p P M pΛ Y t0uq.

Proof :

For any s ą 0 and p P M pΛ Y t0uq, we introduce the compact set 

A s " # x P
λ 0 ě 1 2 .
In particular, the counting function Ñ of this new family satisfies Ñ prq " 0, @r ă 1 2 , and, moreover Ñ prq " N pλ 0 {2 `λ0 rq ď N p2λ 0 rq ď N p2rq ď κ2 θ r θ , @r ě 1 2 , since λ 0 ď 1. Therefore, Ñ satisfies the same assumption as (IV.21) with κ changed into κ2 θ . c b na F. BOYER -JUNE 27, 2023

We then apply Theorem V.6.48 to qpxq def " ř λPΛ p λ x ´λ λ 0 ´1 2 ¯P M p Λq, that we reformulate by using formula (V.62) with t " `8 and t " ´logp1 ´sq{λ 0 . It follows and the proof is complete for T ď 1 λ 0 . For T ą 1 λ 0 , the result is a straightforward consequence of the previous case.

V.6.6 Biorthogonal families to generalized exponentials

As we did in Section IV.1.2, we will start by proving the result with T " `8, then we will present how to adapt the restriction argument to justify the construction in the case T ă `8.

V.6.6.1 Infinite time horizon.

Assume that Λ satisfies (IV.23) and (V.44). For any h ą 0 we introduce the new family

Λ h def " m ď j"0 pΛ `jhq.
Lemma V.6.49

Assume that h ă ρ 2m , then the family Λ h satisfies the weak gap condition (V.15) with the gap ρ{2 and n " m `1. Moreover, Λ h has a remainder function R which only depends on R, m and ρ.

Proof :

' Assume that (V.15) does not hold for Λ h with the given parameters. Then, for some µ P C we have # ˆΛh X Dpµ, ρ{4q ˙ą m `1.

In particular there are two elements in Dpµ, ρ{4q that are of the form λ `ih and λ 1 `jh with λ ‰ λ 1 and i, j P 0, m . In particular we have |pλ `ihq ´pλ Proposition V.6.50

The minimal biorthogonal family in L 2 p0, `8q to the family P λ,h , denoted by pq l λ,h q lP 0,m , satisfies }q l λ,h } L 2 p0,`8q ď Ce εp|λ|q|λ| , @h ă h 0 pλq, (V.63)

for some h 0 pλq depending only on λ, C ą 0 depending only on m and ε a function such that lim rÑ`8 εprq " 0 depending only on R, ρ and m.

Proof :

c bna F. BOYER -JUNE 27, 2023
Using Propositions A.3.30 and A.3.31 we obtain that for any σ, σ 1 R L h , we have

pp h rσs, p h rσ 1 sq L 2 p0,`8q " 1 σ `σ1 ź λPL h pλ ´σqpλ ´σ1 q pλ `σ1 qpσ `λq " 1 σ `σ1 ź λPL h `1 ´σ λ ˘´1 ´σ1 λ 1 `σ1 λ ¯´1 `σ λ " 1 σ `σ1 ź λPL h `1 ´σ λ 1 `σ λ ¯ź λPL h ´1 ´σ1 λ 1 `σ1 λ " W L h pσqW L h pσ 1 q σ `σ1 .
Those computations are justified as we did for (V.50) by considering first a finite subfamily of L h and then pass to the limit.

Let us introduce the quantities

f h rσs def " p h rσs W L h pσq , @σ R L h ,
so that the computations above read

pf h rσs, f h rσ 1 sq L 2 p0,`8q " 1 σ `σ1 .
In particular, it appears that pf h rσs, f h rσ 1 sq L 2 p0,`8q " perσs, erσ 1 sq L 2 p0,`8q . (V.64)

We consider the (linearly independent) family F λ,h def " " p2Re λq 1{2 f h rλs, p2Re λq 1`1{2 f h rλ, λ `hs, . . . , p2Re λq m`1{2 f h rλ, . . . , λ `mhs * , that spans the same space as P λ,h . By using (V.64) we get for any k, l P 0, m that ˆp2Re λq k`1{2 f h rλ, . . . , λ `khs,p2Re λq l`1{2 f h rλ, . . . , λ `lhs ˙L2 p0,`8q

" p2Re λq k`l`1 perλ, . . . , λ `khs, erλ, . . . , λ `lhsq L 2 p0,`8q

Ý ÝÝ Ñ hÑ0 p2Re λq k`l`1 ´erλ pk`1q s, erλ pl`1q s ¯L2 p0,`8q

" p2Re λq k`l`1 ż `8 0 p´tq k k! e ´λt p´tq l l! e ´λt dt " p2Re λq k`l`1 ż `8 0 p´tq k k! p´tq l l! e ´2pRe λqt dt " ż `8 0 p´tq k`l k!l! e ´t dt.
It follows that the Gram matrix of F λ,h converges, when h Ñ 0 towards a matrix which is independent of λ and which is, in fact, nothing but the Gram matrix of the family t Þ Ñ p´tq k {k! in the weighted space L 2 p0, `8, e ´t dtq. Therefore, by Propositions A.3.26 and A.3.27, there exists h 0 pλq ą 0, such that for any h ă h 0 , the minimal biorthogonal family of F λ,h , denoted by pg λ,h,i q iP 0,m satisfies the uniform bound

}g λ,h,i } L 2 p0,`8q ď C, (V.65) c b na F. BOYER -JUNE 27, 2023
where C ą 0 depends only on m.

We set now q l λ,h def " m ÿ j"l ˆ1 W L h ˙rλ `lh, . . . , λ `jhsp2Re λq j`1{2 g λ,h,j .

It is clear that q l λ,h P SpanpP λ,h q and we compute the following inner product pp h rλ, . . . , λ `khs,q l λ,h q L 2 p0,`8q

" k ÿ i"0
W L h rλ `ih, . . . , λ `khs `fh rλ, . . . , λ `ihs, q l λ,h ˘L2 p0,`8q

" k ÿ i"0 m ÿ j"l
W L h rλ `ih, . . . , λ `khs ˆ1 W L h ˙rλ `lh, . . . , λ `jhs ˆp2Re λq j´i `p2Re λq i`1{2 f h rλ, . . . , λ `ihs, g λ,h,j ˘L2 p0,`8q loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon "δ i,j .

In the case where k ă l, the sum above is zero since it is not possible that i " j. Assume now that k ě l, thanks to the Leibniz formula (Proposition A.2.8), the sum reduces to pp h rλ, . . . , λ `khs, q l λ,h q L 2 p0,`8q "

k ÿ i"l W L h rλ `ih, . . . , λ `khs ˆ1 W L h ˙rλ `lh, . . . , λ `ihs " ˆ1 W L h W L h ˙rλ `lh, . . . , λ `khs " 1rλ `lh, . . . , λ `khs " δ k,l .
This proves that pq l λ,h q lP 0,m is indeed the minimal biorthogonal family to P λ,h . Moreover, thanks to (V.65) , we have the explicit bound }q l λ,h } L 2 p0,`8q ď CpRe λq m`1 2 max jP l,m ˇˇˇˆ1 W L h ˙rλ `lh, . . . , λ `jhs ˇˇˇ.

Thanks to the Jensen inequality (Proposition A.2.7) and to the estimates given in Corollary A.7.45, we finally get the uniform bound (V.63). Note that the polynomial factor pRe λq m`1{2 can be written under the expected form e ϵp|λ|q|λ| with εprq " pm `1{2q log r r for r ą 0. Here we have used that L h satisfies the weak gap assumption as well as the summability condition uniformly with respect to h, thanks to Lemma V.6.49.

The proof of the proposition is complete.

We can now terminate the proof of our main result by passing to the limit when h Ñ 0. Let µ P Λ.

' If µ ‰ λ, then µ `ih P L h for any i P 0, m , and thus by construction we have perµ `ihs, q l λ,h q L 2 p0,`8q " 0, which gives, by linear combinations, perµ, . . . , µ `khs, q l λ,h q L 2 p0,`8q " 0, @k P 0, m .

' If µ " λ, still by construction, we have perλ, . . . , λ `khs, q l λ,h q L 2 p0,`8q " perλ, . . . , λ `khs ´πL h erλ, . . . , λ `khs, q l λ,h q L 2 p0,`8q " pprλ, . . . , λ `khs, q l λ,h q L 2 p0,`8q " δ k,l . c b na F. BOYER -JUNE 27, 2023

We have thus proved that perµ, . . . , µ `khs, q l λ,h q L 2 p0,`8q " δ λ,µ δ k,l , @µ P Λ, @k, l P 0, m . (V.66) By using Lemma V.4.25, we know that erµ, . . . , µ `khs Ý ÝÝ Ñ hÑ0 erµ pk`1q s, strongly in L 2 p0, `8q, and in the same time, by (V.63) we see that, up to a subsequence, we can find a q l λ P L 2 p0, `8q such that q l λ,h Ý ÝÝ á hÑ0 q l λ , weakly in L 2 p0, 8q, and that satisfies the same bound as in (V.63).

The claim is finally proved by performing a weak-strong limit in (V.66).

V.6.6.2 Restriction argument on p0, T q.

The estimate of the restriction operator obtained in Theorem V. ) accordingly. This gives us the proof of the theorem in a finite time horizon. We will just now indicate how to obtain the precise estimate when the eigenvalues are real and satisfy the suitable asymptotic properties.

Assuming that the counting function of Λ satisfies (IV.21) we can also extend Theorem V.6.42 to obtain a sharp estimate of the restriction operator as a function of time.

Theorem V.6.51

Assume that Λ is a family of positive real numbers that satisfies the asymptotic assumption (IV.21), then there exists C 6 ą 0, depending only on κ, θ and m, such that for any T ą 0, we have }f } L 2 p0,`8q ď C 6 e C 6 T ´θ 1´θ }f } L 2 p0,T q , @f P E m Λ .

Proof :

Let f P E m Λ that we write f " m ÿ j"0 ÿ λPΛ a j λ erλ pj`1q s,
where only a finite number of coefficients pa j λ q j,λ are non zero. For h ą 0 we define

f h " m ÿ j"0 ÿ λPΛ a j λ erλ, . . . , λ `jhs P E Λ h .
It is straightforward to see that the counting function N h of Λ h satisfies N h prq ď mN prq, @r ą 0, and thus N h prq ď mκr θ , @r ą 0. This estimate being uniform in h we can apply Theorem V.6.42 to f h so that for a C ą 0, independent of h, we have

}f h } L 2 p0,`8q ď Ce CT ´θ 1´θ }f h } L 2 p0,T q .
(V.67)

The conclusion follows by passing to the limit as h Ñ 0 in this estimate since, as we have already seen, we have A.1.2 Linear ODEs with integrable data Consider the following system of ODEs, with A P M n pRq independent of time and f P L 1 p0, T, R n q, # y 1 ptq `Ayptq " f ptq, yp0q " y 0 ,

f h Ý ÝÝ Ñ hÑ0 f, in L 2 p0, 8q.
The usual Cauchy theorem applies (with minor adaptation related to the fact that, because of the non regularity of f , the solution y may not be of class C 1 ) and gives a unique solution y.

Let us prove that the linear solution map Φ : py 0 , f q P R n ˆL1 p0, T, R n q Þ Ñ y P C 0 pr0, T s, R n q, is continuous. Which proves that }y} C 0 pr0,T s,R n q ď C T p}y 0 } `}f } L 1 p0,T,R n q q.

A.2 Divided differences

A.2.1 Definition and basic properties

Let K " R or C and V a K-vector space. For n P N ˚, we suppose given x 1 , . . . , x n P K that are pairwise distinct (see Section A.2.4 for a generalization). We set X " tx 1 , . . . , x n u.

We suppose given f 1 , . . . , f n P V .

Definition A.2.2

The divided differences associated with the data above are defined by

f rx i s def " f i , @i P 1, n ,
and then recursively for any k P 2, n , for any pairwise distinct i 1 , . . . , i k P 1, n , by

f rx i 1 , . . . , x i k s def " f rx i 1 , . . . , x i k´1 s ´f rx i 2 , . . . , x i k s x i 1 ´xi k .
A divided difference is a symmetric function with respect to all its arguments. As a consequence we shall use, from times to times, the more compact notation f rY s, where Y is any non empty subset of X, with the convention that f rHs " 0.

With this notation, the definition above can be rewritten as follows The divided differences are a natural tool in interpolation theory as recalled in the following classical result.

f
Proposition A.2.3 (Newton formula for the Lagrange interpolation polynomial)

With the notations above, the polynomial P : K Ñ V defined by P pzq " f rx 1 s `f rx 1 , x 2 spz ´x1 q `¨¨¨`f rx 1 , . . . , x n spz ´x1 q ¨¨¨pz ´xn´1 q, is the unique polynomial of degree less than or equal to n ´1 that satisfies P px i q " f i , @i P 1, n .

Proof :

The proof is done by induction. The result being straightforward for n " 1, we assume that it holds at the rank n ´1 for n ě 2. In particular, the polynomials Q ´pzq " f rx 1 s `f rx 1 , x 2 spz ´x1 q `¨¨¨`f rx 1 , . . . , x n´1 spz ´x1 q ¨¨¨pz ´xn´2 q, Q `pzq " f rx 2 s `f rx 2 , x 3 spz ´x2 q `¨¨¨`f rx 2 , . . . , x n spz ´x2 q ¨¨¨pz ´xn´1 q, of degree less than or equal to n´2, are respectively interpolation polynomials of our data on the points px 1 , . . . , x n´1 q and px 2 , . . . , x n q.

We set P ´pzq " Q ´pzq `a´p z ´x1 q ¨¨¨pz ´xn´1 q, and P `pzq " Q `pzq `a`p z ´x2 q ¨¨¨pz ´xn q, for some a ´, a `P K. Since P ´px i q " Q ´px i q " f i for i P 1, n ´1 , there exists a unique value a ´such that, in addition, we have P ´px n q " f n . Similarly, there exists a unique value a `such that P `px 1 q " f 1 and thus P `px i q " f i for i P 1, n .

It follows that P `and P ´are of degree less than or equal to n ´1 and coincide on the n distinct points x i , i P 1, n , whence we have P `" P ´.

Identifying the dominant terms in P `and P ´we get that a `" a ´, and we simply denote by a this value. By subtraction, we get Q `pzq ´Q´p zq " a " pz ´x1 q ¨¨¨pz ´xn´1 q ´pz ´x2 q ¨¨¨pz ´xn q ‰ " apx n ´x1 qpz ´x2 q ¨¨¨pz ´xn´1 q, and identifying the dominant coefficient in this equality we get f rx 2 , . . . , x n s ´f rx 1 , . . . , x n´1 s " apx n ´x1 q.

This proves that a " f rx 1 , . . . , x n s, c b na F. BOYER -JUNE 27, 2023 and eventually that P `" P ´" P is indeed the Lagrange interpolation polynomial we are looking for.

Remark A.2.4

In many cases it will be convenient to get rid of the numbering of the elements in X. To do so, we can introduce the notation

P X pzq def " ź xPX pz ´xq, (A.2)
then consider an increasing sequence `Xpiq ˘iP 0,n of subsets of X satisfying # X piq Ă X pi`1q , @i P 0, n #X piq " i, @i P 0, n .

Note that X p0q " H and X pnq " X.

With this formalism, Newton formula above reads

P pzq " n ÿ i"1 f rX piq sP X pi´1q pzq. (A.3)
It is the unique polynomial of degree less than n ´1 that satisfies P pxq " f rxs, @x P X. A.2.2 Lagrange theorem and Jensen inequality

If f : K Ñ V is a given function it will be implicitely assumed that the data are given by f i " f rx i s " f px i q.

In the real-valued case, we can have the following classical result.

Proposition A.2.6 (Lagrange theorem)

Assume that K " R, V " R, and that f P C n´1 pConvpXq, Rq.

For any k P 1, n , and any Y Ă X with #Y " k, there exists a x P ConvpY q such that f rY s " f pk´1q pxq pk ´1q! .

In the complex-valued case, a weaker result is available.

Proposition A.2.7 (Jensen inequality)

Assume that K " C, V " C, and that f is an holomorphic function in a convex neighborhood U of X.

For any k P 1, n , and any Y Ă X with #Y " k, there exists a z P ConvpY q such that |f rY s| ď ˇˇˇˇf pk´1q pzq pk ´1q! ˇˇˇˇ.

Moreover, for any z P ConvpY q we have ˇˇˇˇf rY s ´f pk´1q pzq pk ´1q! ˇˇˇˇď C U,f,k diampY q.

We recall a simple way to compute divided differences of a product which is known as the Leibniz rule.

Proposition A.2.8

Let g : K Ñ K and pf i q iP 1,n Ă V given. We simply define the product data set given by pgf qrx i s def " gpx i qf rx i s P V.

Then, the finite differences of gf can be computed as follows pgf qrx 1 , . . . , x n s "

n ÿ i"1
grx 1 , . . . , x i sf rx i , . . . , x n s.

Remark A.2.9

In the previous formula, by symmetry of the finite differences, the left hand-side term does not depend on the numbering of the elements in X. However, each term in the sum of the right-hand side actually depends on this numbering. Moreover, using the notation introduced in Remark A.2.4, the above formula reads pgf qrXs "

n ÿ i"1
grX piq sf rXzX pi´1q s.

Combining Leibniz formula and Lagrange/Jensen (in)equalities, we can prove the following fact that appears to If we assume that V is endowed with an inner product x¨, ¨y (that is a sesquilinear form) then we can adapt the above Leibniz formula as follows, by taking into account the antilinearity of the inner product with respect to its second variable.

Proposition A.2.11

Let pg i q iP 1,n and pf i q iP 1,n be two given families of elements in V . For each i P 1, n we simply set xg, f yrx i s def " xg i , f i y.

Then, the divided differences of xg, f y can be computed as follows xg, f yrx 1 , . . . , x n s "

n ÿ i"1 xgrx 1 , . . . , x i s, q f rx i , . . . , x n sy,
where, for each i P 1, n , we have set q f rx i s " f i .

As an example, when n " 2, this formula reduces to

xg 1 , f 1 y ´xg 2 , f 2 y x 1 ´x2 " B g 1 , f 1 ´f2 x 1 ´x2 F `B g 1 ´g2 x 1 ´x2 , f 2 F ,
and this can be checked by hand.

A.2.3 More explicit formulas

It will be sometimes useful to have in hand a more explicit formula for divided differences that we will give below.

We first start with a straightforward property of divided differences of polynomials of the form P X , as in (A.2).

Proposition A.2.12

With use the same notation as in section A.2.1. The following properties hold.

1. For any Y Ă X, we have P X rY s " 0.

2. For any x P KzX, we have P X rX Y txus " 1.

3. For any Y Ă K such that #Y ą #X `1 we have P X rY s " 0.

Proof :

1. This is straightforward since P X vanishes at each point of Y . We apply formula (A.3) to the function f " P X , which is a polynomial of degree n, to get for every z,

P X pzq " n`1 ÿ i"1 P X rY piq sP Y pi´1q pzq.
By the first point of the proposition, we know that P X rY piq s " 0 for all i ď n, and since Y pnq " X and Y pn`1q " Y we finally obtain P X pzq " P X rY sP X pzq, from which we conclude that P X rY s " 1.

3. This is a direct consequence of Lagrange formula A.2.6 since P X is a polynomial of degree n " #X.

Corollary A.2.13

We have the following formula

f rXs " ÿ xPX f rxs P Xztxu pxq " ÿ xPX f rxs ś yPX y‰x px ´yq
.

Proof :

By linearity of the definition of the divided differences, we know that there exists coefficients pa x q xPX that depends only on X such that, for any data f we have f rXs " ÿ yPX a y f rys.

We fix x P X and apply the above formula to the function f " P Xztxu to get, since P Xztxu pyq " 0 for every y P X, y ‰ x, P Xztxu rXs " a x P Xztxu pxq.

By the second point of the previous proposition, we have P Xztxu rXs " 1, so that we conclude that A.2.4 Generalized divided differences

We keep the same notation as before that is : X " tx 1 , . . . , x n u is a set of n elements in K, V is a K-vector space. We suppose given now a multi-index α P N n which encodes the multiplicity we will consider for each element in X.

Without loss of generality we assume that α i ą 0, @i P 1, n , since if we have α i 0 " 0 for some i 0 , we can simply remove x i 0 from the set X.

We consider now a set of elements in V that we gather in a f α P V |α| and that are indexed as follows

f l i , i P 1, n , l P 0, α i . Definition A.2.15
For any µ P N n with |µ| ą 0 such that µ ď α, we can define f rx pµ 1 q 1 , . . . , x pµnq n s P V , by using the following rules f rx

pµ 1 q 1 , . . . , x pµnq n s " f µ i ´1 i , if µ i 1 " 0 for all i 1 ‰ i, (A.4)
and for all i 1 ‰ i 2 and µ i 1 ą 0, µ i 2 ą 0

f rx pµ 1 q 1 , . . . , x pµnq n s " f r. . . , x pµ i 1 ´1q i 1 , . . . , x pµ i 2 q i 2 , . . . s ´f r. . . , x pµ i 1 q i 1 , . . . , x pµ i 2 ´1q i 2 , . . . s x i 1 ´xi 2 . (A.5)
Remark A.2.16 (Forgetting about the numbering)

The above definition does not depend on the order in which we apply the second rule (A.5).

Moreover the obtained value are independent on the initial numbering we choosed for the elements in X. Therefore, to simplify the writing of many formulas, we can see the multi-indices as elements in N X and use the following notations f l x , x P X, l P 0, α x , for the data, and f rX pµq s, @µ P N X , such that µ ď α, for the associated generalized finite differences.

It is important to observe that the definition above is consistent with the standard divided differences definition in the following sense:
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Proposition A.2.17

Assume that f : K Ñ V is a smooth function (holomorphic in the case K " C), and let α P N X be a given multi-index. If we consider the set of data given by f l x " f plq pxq l! , @x P X, @l P 0, α x , (A.6) then for any µ P N X , µ ď α, the associated generalized divided difference satisfies

f rX pµq s " lim hÑ0 f ry h 1 , . . . , y h |µ| s,
for any choice of elements py h i q iP 1,|µ| Ă K that satisfy ' For each h ą 0, the elements py h i q iP 1,|µ| are pairwise distinct, ' For each p P 1, |µ| , lim hÑ0 y h p exists and belongs to X, ' For each x P X, there is exactly µ x values of p such that lim hÑ0 y h p " x.

With the notation above and for any multi-index µ P N X , it will be convenient to generalize the notation introduced in Remark A.2.4 by setting

P X pµq pzq def " ź xPX pz ´xq µx . (A.7)
Proposition A.2.18 (Newton formula for the Hermite interpolation polynomial)

Let pµ p q pP 0,|α| be a sequence of multi-indices satisfying |µ p | " p, @p P 0, |α| , µ p´1 ď µ p , @p P 1, |α| , µ |α| " α.

Then the polynomial defined by

P pzq " |α| ÿ p"1 f rX pµ p q sP X pµ p´1 q pzq, (A.8)
is the unique polynomial of degree less than or equal to |α| ´1 that satisfies P plq pxq l! " f l x , @x P X, @l P 0, α x .

Note that there are many possible choices for the sequence pµ p q p but of course, the polynomial P does not depend on this choice.
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Proof : Let us define the operators T n def " π An ´πA . We have the standard estimate }T n } ď 2 from the properties of orthogonal projections. Moreover, thanks to (A.11) we know that for any x P SpanpAq there exists a n 0 such that x P SpanpA n q for any n ě n 0 so that T n x " 0, @n ě n 0 , and in particular lim nÑ8 T n x " 0, @x P SpanpAq, (A.12) T n x " 0, @x P SpanpAq.

Moreover, by construction, for any x P SpanpAq K we have π An x " π A x " 0, and thus T n x " 0 for any n. The claim is proved since H " SpanpAq ' SpanpAq K .

A.3.2 Gram matrices. Gram determinants

For any finite subset E " te 1 , . . . , e n u Ă H, the Gram matrix of E is defined2 by G E def " ˆpe j , e i q H ˙i,jP 1,n , and the associated (Gram) determinant is denoted by

∆ E def " det G E . Note that G E is hermitian. Lemma A.3.24
For any X P C n we have pX, G E Xq " }x} 2 , where x " ř n i"1 x i e i . In particular, ∆ E is a non negative real number.

Proof :

The first property is a simple computation pX, G E Xq "

n ÿ i"1 x i pG E Xq i " n ÿ i,j"1
x i pe j , e i q H x j " n ÿ i,j"1

x i xj pe i , e j q H " ˜n ÿ

i"1

x i e i , n ÿ i"1

x j e j ¸H " }x} 2 .

This proves that any eigenvalue of G E is a non-negative real number and so is ∆ E .

Note that the matrix G E depends on the numbering of the elements of E but not the value of ∆ E .

Lemma A.3.25 (Linear independence characterization)

We have the following two properties.

1. The family E is linearly independent if and only if δpe i , Ezte i uq ą 0, @i P 1, n .

2. The family E is linearly independent if and only if ∆ E ‰ 0.

Proof :

1. Since E is finite, SpanpEzte i uq is closed and it follows that δpe i , Ezte i uq ą 0 ðñ e i R SpanpEzte i uq, which proves the claim.

2. We know that ∆ E " 0 if and only if 0 is an eigenvalue of G E . By Lemma A.3.24, this happens if and only if there exists a non trivial X " px i q i P C n such that ř n i"1 x i e i " 0.

Proposition A.3.26

With the notation above, for any x P HzE, we have δpx, Eq 2 " ∆ EYtxu ∆ E .

Note that for x P E we have δpx, Eq " 0.

Proof :

We observe, by elementary operations on rows and columns, that ∆ EYtxu " ∆ EYtx´π E xu . Moreover, since x´π E x is orthogonal to all the vectors pe i q i , this last Gram matrix has the following block-by-block form

G EYtx´π E xu " ˆGE 0 0 }x ´πE x} 2 H ˙, c b na F. BOYER -JUNE 27, 2023
Taking the infimum with respect to y, we get 

A.3.3 Generalized Gram determinants

Let E " te 1 , . . . , e n u and F " tf 1 , . . . , f n u two finite families of elements of H. We introduce the generalized Gram matrix Let us recall the following explicit formula for this determinant.

G E,F def " ˆpf j , e i q H ˙i,
Proposition A.3.31

For any n and any families A, B such that 0 R A `B, we have

det C A,B " ˜n ź i"1 1 a i `bi ¸ˆź i,jP 1,n iăj
pa i ´aj qpb i ´bj q pa i `bj qpa j `bi q .

In the particular hermitian case where B " A, we get

det C A,A " ˜n ź i"1 1 2Re a i ¸ˆź i,jP 1,n i‰j |a i ´aj | |a i `aj | .

Proof :

Let us perform the proof by induction. For n " 1, the result is clear. Let us now assume n ě 2 and we write

A " à Y ta n u, with à " ta 1 , . . . , a n´1 u, B " B Y tb n u, with B " tb 1 , . . . , b n´1 u.

In the definition of det C A,B we perform row manipulations to cancel all the upper diagonal entries in the last column. We obtain that

det C A,B def " det ˆM 0 ‹ 1 an`bn ˙i,jP 1,n
, where M is a pn ´1q ˆpn ´1q matrix whose entries are

m ij " a n ´ai b n `ai b n ´bj a n `bj 1 a i `bj , @i, j P 1, n ´1 .
In other words we have

M " D A,B,1 C Ã, B D A,B,2 ,
where D A,B,1 (resp. D A,B,2 ) is a pn ´1q ˆpn ´1q diagonal matrix whose entries are an´a i bn`a i (resp.

bn´b j an`b j ). Computing the determinant, it follows that det M " pdet C Ã, B q n´1 ź i"1 pa n ´ai qpb n ´bi q pa n `bi qpb n `ai q , and finally

det C A,B " pdet C Ã, B q ˆ1 a n `bn n´1 ź i"1
pa n ´ai qpb n ´bi q pa n `bi qpb n `ai q .

The claim follows by using the induction hypothesis.
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In the case where b i " a i for any i, the formula becomes

det C A,A " ˜n ź i"1 1 2Re a i ¸ˆź i,jP 1,n iăj |a i ´aj | 2 |a i `aj | 2 ,
and, by symmetry, we can change in the product the condition i ă j by i ‰ j as soon as we remove the squares on each factor. The proof is complete.

A.4 Sturm comparison theorem

Theorem A.4.32

Let I be an interval of R, γ P C 1 pIq, with γ ą 0 and q 1 , q 2 P C 0 pIq. Let u 1 and u 2 be non trivial solutions to the differential equations ´Bx pγpxqB x u 1 q `q1 pxqu 1 " 0, on I, ´Bx pγpxqB x u 2 q `q2 pxqu 2 " 0, on I.

We assume that q 1 ě q 2 in I. Then for any distinct zeros α ă β of u 1 one the two following proposition holds ' Either, there exists one zero of u 2 in the open interval pα, βq.

' Or, u 1 and u 2 are proportional in rα, βs, which implies in particular that q 1 " q 2 on rα, βs.

Proof :

The main needed ingredient is the Wronskian of u 1 , u 2 defined as follows W pxq " pγB x u 1 qu 2 ´u1 pγB x u 2 q, whose derivative has the following expression, using the two equations satisfied by u 1 and u 2 W 1 pxq " pq 1 ´q2 qu 1 u 2 . (A.16)

Let α ă β be two zeros of u 1 in I and assume that there is no zero of u 2 in pα, βq. Without loss of generality we can assume that α and β are consecutive zeros of u 1 . This means that we can change the sign of u 1 and u 2 in such a way that u 1 ą 0 and u 2 ą 0, in pα, βq.

And since u 1 pαq " u 1 pβq " 0, we necessarily have B x u 1 pαq ą 0 and B x u 1 pβq ă 0.

We can now collect the following facts:

' We have W pαq " pγB x u 1 pαqqu 2 pαq ě 0 and W pαq " 0 if and only if u 2 pαq " 0.

' We have W pβq " pγB x u 1 pβqqu 2 pβq ď 0 and W pβq " 0 if and only if u 2 pβq " 0.

' Since q 1 ě q 2 , and u 1 , u 2 are positive in pα, βq, we deduce from (A.16) that W 1 ě 0 in pα, βq and in particular that W is non decreasing in rα, βs.

The above three properties are only possible if W is identically zero in pα, βq, and in particular u 2 pαq " u 2 pβq " 0.

It follows that we necessarily have W 1 " 0 in pα, βq which implies, from (A.16), that q 1 " q 2 on rα, βs. 

Proof :

Since N is an integer-valued, right-continuous and non-decreasing function on the interval rs, rs, there exists a finite sequence pα i q 0ďiďp such that s " α 0 ă α 1 ă . . . ă α p´1 ă α p " r, and N is constant on each interval rα i , α i`1 q. More precisely, we have N prq " N pα i q, for all r P rα i , α i`1 q with i P t0, . . . , p ´1u. The claim is proved.

In the case were we have a more precise upper bound on the counting function, the result above can be precised c b na F. BOYER -JUNE 27, 2023 as follows.

Proposition A.5.39

Assume that, for some 0 ă θ ă 1, and some κ ą 0 we have N prq ď κr θ , @r ą 0. Note now that the assumption on N implies that (A.19) holds necessarily. We apply the summation results of Proposition A.5.36 with f prq " 1 r to obtain, since N ptq " 0 for t P r0, κ ´1{θ q,

ÿ λPΛ |λ|ąr 1 |λ| " ´N prq r `ż 8 r 1 t 2 N ptq dt " ´N prq r `ż 8 maxpr,κ ´1{θ q 1 t 2 N ptq dt ď κ ż 8 maxpr,κ ´1{θ q t θ´2 dt ď κ 1 ´θ maxpr, κ ´1{θ q θ´1 .
Finally, in order to prove (A.24), we come back to the proof of (A.22) and we use the assumption on N to get This implies in particular that 0 R Λ and that Λ is locally finite.

Proposition and Definition A.7.43

Under assumption (A.27), for any L Ă Λ, the following product

Q L pzq def " ź σPL ´1 ´z σ ¯, @z P C,
is absolutely convergent. The function Q L is holomorphic on C and its zeros are exactly the points in L.

Proof :

In the case where L is finite, the claim is straightforward. Assume now that L is infinite and let us fix M ą 0. We write

Q L pzq " Q Ĺ pzq.Q L pzq, with Q Ĺ pzq " ź σPL |σ|ď2M ´1 ´z σ ¯and Q L pzq " ź σPL |σ|ą2M ´1 ´z σ ¯.
Since L X Dp0, 2M q is finite, the product Q Ĺ is a polynomial, thus its properties are clear. Let us study the other factor Q L on the open disk Dp0, M q.

For any |σ| ą 

|Q L pξq| ě |P L,γ{2,ξ |e ´εp|ξ|q|ξ| .
By assumption on z, it appears that P L,γ{2,ξ " 1 so that the above inequality simplifies into

|Q L pξq| ě e ´εp|ξ|q|ξ| .
The conclusion follows as we did in the first point, with a constant that depends now on γ.

We move now to the proof of the proposition.

Proof (of Proposition A.7.44):

Let us fix a z P C.

1. Bound from above for |Q L pzq|. We start by writing

|Q L pzq| ď ź σPL ˆ1 `|z| |σ| ˙.
Let us fix some value z 0 P R such that 0 ă z 0 ď |z| that will be determined later and we write the right-hand side of the above inequality as the product of two factors Q 1 and Q 2 defined as follows `R ˆr p1 `log `p2Rp0qrqq 2 ˙, @r ą 0.

Q 1 pzq def " ź σPL |σ|ďz 0 ˆ1 `|z| |σ| ˙,
2. Bound from below for |Q L pzq|.

We write |Q L pzq| as a product of five terms minpγ, 1q κp1 `p2γq θ q ě ´Cθ,κ,κ p1 `|z| θ q.

r Q 1 pzq def " ź σPL |σ|ď|z|{2 ˇˇ1 ´z σ ˇˇ, r Q 2 pzq def " ź σPL |z|{2ă|σ|ď|z|´γ ˇˇ1 ´z σ ˇˇ, r Q 3 pzq def " ź σPL |z|´γă|σ|ď|z|`γ ˇˇ1 ´z σ ˇˇ, r Q 4 pzq def " ź σPL |z|`γă|σ|ď2|z| ˇˇ1 ´z σ ˇˇ, r Q 5 pzq def " ź σPL 2|z|ă|σ| ˇˇ1 ´z σ ˇˇ. ' All the factors in r Q 1 are larger than 1 so that r Q 1 pzq ě 1. ' Let
-The term r Q 4 is estimated in the same way as we did for r Q 2 .

The result of the previous proposition immediately implies the following corollary (which is a precised version of Corollary A.7.45).

Corollary A.7.47

Assume that Λ satisfies (A.47) and (A.50).

' For any k P N, there exists C depending only on k, θ and κ, such that, for any L Ă Λ, we have |Q pkq L pzq| ď Ce C|z| θ , @z P C.

' For any k P N and γ ą 0, there exists C depending only on k, θ, κ and γ, such that, for any L Ă Λ, we have ˇˇˇˇˆ1 Q L ˙pkq pzq ˇˇˇˇď Ce C|z| θ , @z P C, s.t. dpz, Lq ą γ.

In the case when we only assume (A.47), the same estimates if one replaces θ by any θ P pθ, 1q.

A.7.2 Multiplier

In this section we define a multiplier function. It is designed to decrease sufficiently fast on the real line while being simultaneously of a given exponential type in the complex plane. -We note that, for any complex number z, we have 1 ´Apr ´r0 q θ r dr " logp|x|{ inf Lq ´A ż |x| inf L ˆ1 pr ´r0 q 1´θ ´r0 rpr ´r0 q 1´θ ˙dr ď logp|x|{ inf Lq ´A θ ˆp|x| ´r0 q θ ´pinf L ´r0 q θ ˙`A ż 8 r 0 r 0 rpr ´r0 q 1´θ dr ď logp|x|{ inf Lq ´A θ ˆp|x| ´r0 q θ ´pinf L ´r0 q θ ˙`Ar θ 0 ż 8 1 1 rpr ´1q 1´θ dr.

Using that pinf L ´r0 q θ " 1 A , the sublinearity of the function r Þ Ñ r θ and (A. Since r 0 ď inf L and using (A.57), we obtain that for some C ą 0 (depending only on θ, m and κ), we have by definition of A, and thanks to the upper bound on τ , log |M m,θ,τ pxq| ď log |x| ´2m|x| θ `C ´1 `τ ´θ 1´θ ¯.

The claim comes from the comparison between x Þ Ñ log |x| and x Þ Ñ 2m|x| θ at infinity.

For x satisfying |x| ď inf L, we simply use that |M m,θ,τ pxq| ď 1 to achieve the claim.

A.7.2.2 Bound from below

We shall prove in this section that the multiplier we constructed before is not too small on the imaginary axis, and even in a suitable neighborhood of the imaginary axis. We refer to Definition A.6.40 for the definition of the sector S η . The proof is complete.

The previous estimate can be extended to the derivatives of the multiplier as follows.

Corollary A.7.51

For any k P N, and any η ą 0, there exists C depending only on θ, m, η and k such that ˇˇˇˇˆ1 M m,θ,τ ˙pkq ˇˇˇˇp izq ď Ce C|z| θ , @z P S η .

(A.62)

Proof :

To simplify the notation we set f pzq " 1 M m,θ,τ pizq which is holomorphic on the simply connected domain pCzpiRqq Ť Dp0, Rq, where R ą 0 is given in Proposition A.7.49.

' We set

ρ " 1 cosh η R 4 .

For any ξ P S η we claim that Dpξ, ρq Ă Dp0, Rq Y S η, where η " asinhp1 `2 sinh ηq.

Note that this quantity only depends on η. The claim is proved.

A.8 Generalized Tchebychev polynomials

Most of the material in this section is taken and adapted from [START_REF] Borwein | Polynomials and polynomial inequalities[END_REF][START_REF] Borwein | Generalizations of Müntz's theorem via a Remez-type inequality for Müntz spaces[END_REF]. We will only give here the results we need in such a way that those lecture notes are as self-contained as possible. We let the interested reader have a look at those references for a much more complete study of those properties.

Our main objective is to establish a Remez-type inequality }p} L 8 p0,inf Aq ď C}p} L 8 pAq , for any generalized polynomial ppxq "

N ´1 ÿ k"0 p k x λ k ,
with λ 0 " 0 and λ k P p0, `8q for k P 1, N ´1 , and any compact set A in p0, `8q. More precisely, we will identify the best constant C in this inequality and how it depends on A and on the set L " t0, λ 1 , . . . , λ N ´1u. The precise result will be given in Theorem A.8.61.

A.8.1 Interpolation in Müntz spaces

Let L Ă r0, `8q be a finite subset of non negative numbers. In all this section we assume that 0 P L, and we set N For any set X " tx 1 ă ¨¨¨ă x N u Ă p0, `8q of N distinct points there exists a unique family pΦ L,X,k q kP 1,N Ă M pLq such that Φ L,X,k px j q " δ j,k , @j, k P 1, N .

Moreover, if we set x 0 " 0 and x N `1 " `8, the sign of Φ L,X,k is as follows ' Φ L,X,k ą 0 on px k´1 , x k`1 q. ' p´1q j`k`1 Φ L,X,k ą 0 on px j , x j`1 q for j P 0, k ´1 .

' p´1q j`k Φ L,X,k ą 0 on px j , x j`1 q for j P k, N . 

Proof :

The existence and uniqueness of such a family of functions is just a consequence of the third point of Proposition A.8.52. It cannot have another zero in r0, `8q since in that case we would have Φ L,X,k " 0 everywhere by the first point of the same proposition.

From the second point of Proposition A.8.52, we know that Φ L,X,k has a constant sign between two consecutive zeros and it changes of sign at each of those points. It is then straightforward to compute its sign by induction on each given interval starting from the fact that Φ L,X,k px k q " 1 ą 0.

We have seen above that Φ L,X,k p0q ‰ 0 and therefore it has the same sign as Φ L,X,k on p0, x 1 q, which is p´1q k`1 . with equality if and only if X " β X for some 0 ă β ď 1.

Proof :

' Let us first define β " x k xk , which is less than or equal to 1 by assumption. We define the set X " β X. By construction, we have xk " x k and |x j ´xk | ě |x j ´x k |, @j P 1, N .

(A.64)

Let us set gpxq def " Φ L, X,k pβxq, for all x P r0, `8q. By homogeneity we have that g P M pLq and satisfies gpx i q " Φ L, X,k pβ xi q " Φ L, X,k px i q " δ ik .

Therefore g " Φ L, X,k . In particular, we have Φ L, X,k p0q " Φ L, X,k p0q.

The problem is thus reduced to proving that |Φ L,X,k p0q| ď |Φ L, X,k p0q|, with equality if and only if X " X. This will take several steps.

' We define the following sets:

-For i " 0, k , we set X i def " tx 1 , . . . , x i , xi`1 , . . . , xN u. Note that X 0 " X and that for i P 1, k , we have x i ď x k and xi ď xk " x k so that (A.64) gives x i ď xi , which implies

x i ă xi`1 .

Therefore the points in X i are distinct and well ordered.

-For i " k, N , we set X i def " tx 1 , . . . , x k´1 , xk , . . . , xN`k´i , x N `k´i`1 , . . . , x N u. Note that X N " X and that for i P k, N we have x N `k´i ě x k and xN`k´i ě xk " x k so that (A.64) gives

x N `k´i ě xN`k´i , so that xN`k´i ă x N `k´i`1 , and here also the points in X i are distinct and well ordered. -We have thus built compact disjoint intervals D i " rx í , x ì s surrounding each x i such that }g} L 8 pAq ě sp´1q i gpxq ą ´}g} L 8 pAq , @x P A X D i .

By continuity of g, we can find δ, η 1 ą 0 small enough such that }g} L 8 pAq ě sp´1q i gpxq ą ´p1 ´η1 q}g} L 8 pAq , @x P A X D i,δ , where D i,δ "sx í ´δ, x ì `δr is the open δ-neighborhood of D i .

-Introducing D " k Ť i"1 D i,δ , we observe that, by construction, D contains all the points x P A, where |gpxq| " }g} L 8 pAq . Therefore, for some η 2 ą 0 small enough, we have |gpxq| ď p1 ´η2 q}g} L 8 pAq , @x P AzD, since g is continuous on the compact set AzD.

-We will now obtain a contradiction with the fact that p solves the best uniform approximation property (A.68).

For i P 1, k ´1 we set w i "

x ì `xí `1

2

. By Proposition A.8.53, since k ď N , there exists an element π P M pLq such that πpw i q " 0 for any i, and such that sp´1q i π ą 0 on each D i,δ and }π} L 8 pAq ď }g} L 8 pAq . We set q " p `ηπ with η ą 0 chosen such that η ă minpη 1 , η 2 q and we will show that }f ´q} L 8 pAq ă }g} L 8 pAq . Let x P A. * If x P A X D i,δ for some i, then we write sp´1q i pf ´qqpxq " sp´1q i pgpxq ´ηπpxqq " sp´1q i gpxq ´ηsp´1q i πpxq, and by the sign property of π on D i,δ we get ´p1 ´η1 q}g} L 8 pAq ´η}g} L 8 pAq ď sp´1q i pf ´qqpxq ă sp´1q i gpxq, so that we have the strict inequalities ´}g} L 8 pAq ă sp´1q i pf ´qqpxq ă }g} L 8 pAq , and consequently |pf ´qqpxq| ă }g} L 8 pAq .

* If x P AzD we just write |pf ´qqpxq| " |gpxq ´ηπpxq| ď |gpxq| `η|πpxq| ď p1 ´η2 q}g} L 8 pAq `η}g} L 8 pAq ă }g} L 8 pAq .

We have thus proved that }f ´q} L 8 pAq ă }f ´p} L 8 pAq which contradicts (A.68).

' We can now prove the uniqueness of the best uniform approximation in A.

Let us define d

def " inf qPM pLq }f ´q} L 8 pAq and we assume that p 1 , p 2 P M pLq are such that }f ´pi } L 8 pAq " d. Then, by the triangle inequality, p " p 1 `p2 2 also satisfies }f ´p} L 8 pAq " d. Thanks to the equi-oscillation property, there exists N `1 distinct points x 1 ă ¨¨¨ă x N `1 where d " |f px i q ´ppx i q| " 1 2 |pf px i q ´p1 px i qq `pf px i q ´p2 px i qq|, and since |f px i q ´p1 px i q|, |f px i q ´p2 px i q| are both less than d, we obtain that necessarily f px i q ´p1 px i q " f px i q ´p2 px i q. We deduce that p 1 px i q " p 2 px i q for any i P 1, N `1 . By the uniqueness property of the Tchebychev system, we conclude that p 1 " p 2 .

c b na F. BOYER -JUNE 27, 2023

' Finally we prove that any p P M pLq such that f ´p has the equi-oscillation property on A (we call x 1 ă ¨¨¨ă x N `1 the associated family of points) is indeed a best uniform approximation of f on A. To prove that claim, we assume that there exists q P M pLq such that }f ´q} L 8 ă }f ´p} L 8 .

This implies in particular that |pf px i q ´ppx i qq `pppx i q ´qpx i qq| ă }f ´p} L 8 pAq " |f px i q ´ppx i q|, and since f px i q ´ppx i q has the sign sp´1q i , we deduce that the sign of pp ´qqpx i q is sp´1q i`1 (and of course this quantity cannot be zero). Hence, p ´q changes its sign at least N `1 times, and by the intermediate value theorem p ´q has at least N distinct zeros in p0, `8q. By point 1 of Proposition A.8.52, this implies p " q.

Proposition and Definition A.8.58 (Generalized Tchebychev polynomials)

Let A be a compact subset of r0, `8q such that #A ě N `1. There exists a unique (up to a multiplicative factor) element in M pLq that equi-oscillates in A at exactly N points. We denote by T L,A the unique such function that, in addition, satisfies the normalisation properties }T L,A } L 8 pAq " 1, T L,A pmax Aq ą 0. The function T L,A is called the generalized Tchebychev polynomial on the set A with respect to the family L.

We illustrate this definition in Figure A.3.

Proof :

If L " t0u, the result is straightforward (and T L,A " 1). Assume that N ą 1 and let L " Lzµ L . We consider π P M p Lq the unique uniform best approximation of

x Þ Ñ x µ L on A in M pL 1 q given by Theorem A.8.56. We know that the function T pxq def " x µ L ´πpxq belongs to M pLq and equi-oscillates at least #L 1 `1 " N times. Moreover, T cannot equi-oscillate N `1 times because if it were the case T would be the unique best uniform approximation of 0 on A in M pLq, and it will immediately imply that T " 0 on A which is not possible.

Note that the equi-oscillation property implies that T has at least N ´1 zeros in the open interval I " pinf A, sup Aq. It is clear that T cannot vanish on rsup A, `8q since in that case, the function would have N distinct zeros and thus will be identically equal to 0. Therefore, the normalisation conditions we consider are uniquely solvable.

Observe that, if inf A ą 0 we also have that T cannot vanish on r0, inf As. Finally, if inf A " 0, we also have T p0q ‰ 0. Indeed, if we assume that T p0q " 0 and since we have 0 P L, we can easily see that T actually belongs to M pLzt0uq. However, the only function in M pLzt0uq that has at least N zeros in p0, `8q is the function 0, which is a contradiction. Finally, using Rolle's theorem, we know that T 1 L,A has at least N ´2 zeros in pmin A, max Aq. Moreover, pT L,A q 1 P M pLzt0uq thus it cannot have another zero. In particular pT L,A q 1 has a constant sign on r0, inf Aq and T L,A does not vanish in this interval. The claim is proved. 

Proof :

The map Ψ : p P M pLq Þ Ñ |ppyq| is clearly continuous, thus it attains it maximum on the compact set K " tp P M pLq, }p} L 8 pAq ď 1u.

It is clear that this maximum is achieved on a p P M pLq such that }p} L 8 pAq " 1. Assume that p equi-oscillates exactly k times with k ă N . As in the proof of A.8.56 we can build disjoint (ordered) open intervals D i,δ , i " 1, . . . , k such that 1 ě sp´1q i ppxq ą ´p1 ´η1 q, @x P A X D i,δ , for D " Y i D i,δ , |ppxq| ď 1 ´η2 , @x P AzD.

For each i P 1, k , we pick a set of point w i`1{2 between D i,δ and D i`1,δ and we consider a π P M pLq such that # πpw i`1{2 q " 0, @i P 1, k , πpyq " 0, and sp´1q i π ą 0, on D i,δ . This is possible since k ă N . We normalize π in such a way that }π} 8 L pAq " 1. ppx k qΦ L,X,k pxq, @x P r0, `8q.

We evaluate this formula at x " 0 and we apply the triangle inequality

|pp0q| ď ˜N ÿ k"1 |Φ L,X,k p0q| ¸}p} L 8 pAq ,
where we have used that all the px k q k belong to the set A, by construction.

Applying (A.71), we get The proof is complete.

It is clear that we can apply the above result to p " T L,A since, by definition, }T L,A } L 8 pAq " 1.

Combining the previous results we finally obtain the following result that was actually the main aim of this appendix. 

.

  Note that the condition T 0 ď T gives 2h 0 ď |y 0 |T, which mean that such a solution is possible only for a control time T large enough. c b na F. BOYER -JUNE 27, 2023

  c b na F. BOYER -JUNE 27, 2023 Exercise I.2.2 (The damped rocket model)

(I. 6 )

 6 Take L " π to simplify the computations. We look for y, v as a development in Fourier series ypt, xq " a 2{π ÿ ně1 y n ptq sinpnxq, vpt, xq " a 2{π ÿ ně1 v n ptq sinpnxq.

a

  , b " N X ra, bs, a, b " N X ra, bq, a, b " N X pa, bs, a, b " N X pa, bq. c b na F. BOYER -JUNE 27, 2023 ' Multi-indices Let n ě 1. A multi-index α is an element of N n . Its length is denoted by |α| "

ż T 0

 0 xvpsq, B ˚e´pT ´sqA ˚qT y U ds " 0. c b na F. BOYER -JUNE 27, 2023

  def " ´Eptqyptq, and vptq def " ´Mv ptq ´1B ˚ptqEptqyptq. c b na F. BOYER -JUNE 27, 2023

e

  ´pT ´sqA BB ˚e´pT ´sqA ˚qT ds

  B l ϕ def " ´ϕ1 p0q, and B r ϕ def " ϕ 1 p1q, 1 Weyl's law also holds in higher dimension but it becomes NΛprq " κr d 2 , where d is the space dimension c b na F. BOYER -JUNE 27, 2023 for the left and right normal derivatives of a function ϕ : p0, 1q Ñ R.

}U pyq} ď

  Cpα, γq ˆ}U pxq} `ˇˇˇż y x }F psq} ds ˇˇˇ˙. (IV.15) Proof : Let x, y P Ω. Without loss of generality we assume y ą x. It is fundamental to notice that the matrices pM psqq s pairwise commute, so that the resolvant operator associated with x Þ Ñ M pxq simply reads We can then use Duhamel's formula to deduce from the equation (IV.14) the following expression U pyq " Spy, xqU pxq `ż y x Spy, sq pQpsqU psq `F psqq ds. (IV.16)

  ds ˇˇˇ. Gronwall's lemma finally yields }U pyq} ď ˆ}U pxq} `ˇˇˇż y x }F psq} ds ˇˇˇ˙e xp ˆˇˇˇż y x }Qpsq} ds ˇˇˇ˙, c b na F. BOYER -JUNE 27, 2023

  that satisfies (IV.20), (IV.21), (IV.22), and (IV.23) * . Our results will still hold (yet with a slightly weaker statement) in the following larger class where the second asymptotic assumption is not considered r L pη, κ, θ, ρq " " Λ Ă C, that satisfies (IV.20), (IV.21), and (IV.23) * .

2D 2 φ

 2 `∆φ is uniformly β-coercive on K, (IV.42) 2D 2 φp∇φ, ∇φq ´∆φ|∇φ| 2 ě β|∇φ| 2 , on K, (IV.43) |∇φ| ě β, on K, (IV.44) B n φ ď ´β, on Σ. (IV.45)

  c b na F. BOYER -JUNE 27, 2023 More precisely, it is possible to build suitable weight functions as stated in the following result whose proof is postponed to Section IV.3.4. Lemma IV.3.29 1. Boundary observation : Let Γ Ă BΩ. There exists a β ą 0 and a function φ satisfying (IV.42), (IV.43) and (IV.44) with K " Ω and (IV.45) with Σ " BΩzΓ. Moreover, we can choose φ that satisfies ∇ ∥ φ " 0, on BΩ. 2. Interior observation : Let ω Ă Ω a non empty open subset of Ω. There exists a β ą 0 and a function φ satisfying (IV.42), (IV.43) and (IV.44) with K " Ωzω, and (IV.45) with Σ " BΩ.

Adding the terms s 3 β 3 ż ω |v| 2 and sβ ż ω |∇v| 2

 2 on both sides of the inequality gives (with another value of the constant C φ )

Figure V. 1 :

 1 Figure V.1: Distributed controllability implies boundary controllability

  zptq def " xyptq, ϕ λ y L 2 P R n , solves the following equation d dt z `λz `Cz " Bv λ ptq, (V.2) c b na F. BOYER -JUNE 27, 2023

  2sθφ p∆η `2sθ∆φ `2sθ∇φ ¨∇η `4s 2 θ 2 |∇φ| 2 qq 2 q 1 2sθφ |q 1 ||q 2 | ďCJp0, ∆q 2 , Ωq 1 2

ż b a c 21 |ϕ λ | 2 dx " ´ż b a ppA ´λq φλ qϕ λ dx " rγ φ1 λ ϕ λ s b a ´rγ φλ ϕ 1 λ s b a .

  

b a c 21 ϕ λ ψ λ dx " ´ż b a ppA ´λq φλ qψ λ dx " rγ φ1 λ ψ λ s b a ´rγ φλ ψ 1 λ s b a " 0 ,

 0 pγϕ 1 λ φλ qpaq " pγ φ1 λ ϕ λ qpaq " 0. * A similar reasoning holds for the point b. It follows that we necessarily have ż b a c 21 |ϕ λ | 2 dx " 0. -If, in addition, ra, bs does not touch the boundary of Ω we can compute similarly ż by the same argument as before. c bna F. BOYER -JUNE 27, 2023 Chapter V. Coupled parabolic equations -All in all, we have eventually shown that M λ pc 21 ϕ λ , ra, bsq " 0, and the claim is proved.

  4.22): Let τ " minpT, τ 0 q{2. From the values ζ we construct a new set of complex values given by ξ λ def " e λτ ζ λ , @λ P G, c b na F. BOYER -JUNE 27, 2023

  nmax q sup zPG e τ pRe zq ď p1 `τ nmax qe τ pr G `ρq .

Figure

  Figure V.3: Construction of the groups. Situation around an element λ P Λ with n `1 " 5.

  2.10 to get max LĂG |ψrLs| ď e ˜max kP 0,n sup ConvpXq |g pkq | ¸max LĂG |ϕrLs| ď ep1 `T nmax´1 qe ´rG T max LĂG |ϕrLs| ď ep1 `T nmax´1 qM e ´rG T ď epn max ´1q!C ˜1 `1 pn max ´1q! ˆT r G 2 ˙nmax´1 ¸M e ´rG T ď epn max ´1q!CM e ´rG T {2 .

  Cp1 `pT ˚qn qe ´rG T ˚max LĂG |ϕrLs| ď Cp1 `pT ˚qn qM.

ż ` 8 0´logp1´sq λ 0 0 8 0|f ptq| 2 dt ď C 5 e C 5 s ´θ 1´θ ż 2s λ 0 0

 8080 |f ptq| 2 dt ď C 5 e C 5 s ´θ 1´θ ż |f ptq| 2 dt.Since ´logp1 ´sq ď 2s for any s P p0, 1{2q, we deduce thatż `|f ptq| 2 dt, from which, for any T ă 1 λ 0 , we can set s " T λ 0 {2 and obtain

  rY s " f rY ztaus ´f rY ztbus b ´a , for any Y Ă X with #Y ě 2, and a, b P Y , with a ‰ b. c b na F. BOYER -JUNE 27, 2023

Corollary A.2. 5

 5 Using the notations above, we have the following estimate for the Newton polynomial P :|P pzq| ď n ˆmax Y ĂX|f rY s| ˙p1 `|z| `|X|q n´1 , @z P K, where we have introduced |X| " max xPX |x|.Proof :For any Y Ă X, Y ‰ X, and any z P K, we set k " #Y and obtain|P Y pzq| ď rX piq s| p1 `|z| `|X|q n´1 ď n ˆmax Y ĂX |f rY s| ˙p1 `|z| `|X|q n´1 .The claim is proved.c bna F. BOYER -JUNE 27, 2023

ÿ λPΛ e ´|λ|τ ď κe ´τ inf |Λ|{2 1 τ θ ż ` 8 0e

 8 ´tτ {2 ptτ q θ τ dt ď κ τ θ e ´τ inf |Λ|{2 ż `8 0 e ´t{2 t θ dt. c bna F. BOYER -JUNE 27, 2023 A.7.1 Blaschke products We consider a family of complex numbers Λ Ă C that satisfies the summability condition ÿ

A. 7 '''

 7 .2.1 Definition and basic estimates Proposition A.7.48 (Multiplier)For any m ą 0, θ P p0, 1q and τ ą 0 satisfying there exists an holomorphic function M m,θ,τ on C satisfying the following properties:|M m,θ,τ pzq| ď e τ |z| , @z P C, (A.54) |M m,θ,τ pxq| ď Ce ´m|x| θ `Cτ ´θ 1´θ , @x P R, (A.55)and M m,θ,τ p0q " 1.In the estimate above, the constant C ą 0 only depends on θ and m but not on τ . The inequality (A.56) implies that r 0 ą 0 and thatinf L " ˆp1 ´θqτ A ˙´1 1´θ . (A.57)It is very easy to prove that the counting function N L associated with L satisfies Apr ´r0 q θ ´1 ď N L prq ď Ar θ , @r ě 0, and of course N L prq " 0, r ă inf L. Moreover we have the property ÿ We can now introduce the following multiplier M m,θ,τ pzq def

1 l

 1 ă `8, we see that M m,θ,τ is entire and that |M m,θ,τ pzq| ď e p ř lPL q|z| ď e τ |z| , by (A.58). -We simply write for any x ‰ 0 |M m,θ,τ pxq| ď ź lPL ˇˇˇs inpx{lq x{l ˇˇˇ, and we use that the sinc function is less than 1 to obtain |M m,θ,τ pxq| ď ź Taking the logarithm, it follows that for any x such that |x| ą inf L, we have log |M m,θ,τ pxq| ď ÿ

  57), we deduce that log |M m,θ,τ pxq| ď log |x| ´A θ |x| θ

Indeed, assume that'

  z P C is such that |z ´ξ| ď ρ and |z| ą R. By (A.26) and the triangle inequality we get where we used that fact that ρ ď R{2 so that R ´ρ ě R{2. It comes Re z ě Re ξ ´ρ ě ρ, and thus, using that ξ P S η , |Im z| ď |Im ξ| `ρ ď psinh ηqpRe ξq `ρ ď psinh ηqpRe zq `ρp1 `sinh ηq ď p1 `2 sinh ηqpRe zq, which proves that z P S η. Observe that, combining the two points of Proposition A.7.49, we have that |f pzq| ď 2e C|z| θ , @z P Dp0, Rq Y S η, where C depends only on η, m and θ. c b na F. BOYER -JUNE 27, 2023We can then use the Cauchy formula to get, for any ξ P S η f pkq pξq " k e ρ θ e C|ξ| θ .

def"

  #L. If N ě 2 we define µ L def " inf pLzt0uq ,to be the first non zero element in L.Let us define the following subset of C 0 pr0, `8q, Rq called, Müntz space,M pLq def " Spantx Þ Ñ x λ , λ P Lu.We plot inFigure A.1 an example of such set c bna F. BOYER -JUNE 27, 2023 Proposition A.8.54 (Elementary Lagrange interpolants)

Finally, we have

  Figure A.2: Muntz space associated to the family L " t0, 1, 1.2, 1.5, 2, 2.5u and the points X " t0.2, 0.5, 0.8, 1, 1.4, 1.8u.

  c b na F. BOYER -JUNE 27, 2023 Proposition A.8.55 (Comparison principle)Let X " tx 1 ă ¨¨¨ă x N u, X " tx 1 ă ¨¨¨ă xN u be two subsets of p0, `8q made of N distinct points. Let k P 1, N and assume that# x k ď xk , |x j ´xk | ě |x j ´x k |, @j P 1, N , then |Φ L,X,k p0q| ď |Φ L, X,k p0q|,

'

  T L,A has exactly N ´1 zeros in r0, `8q. They are all located in the open interval pinf A, sup Aq.' The mapx Þ Ñ |T L,A pxq| is decreasing on r0, inf As.

  Figure A.3: The Tchebychev polynomial T L,A for L " t0, 1, 1.2, 1.5, 2, 2.5u and A " r0.2, 2s.

  Proposition A.8.59 (Maximality property of T L,A ) Assume that inf A ą 0 and let y P r0, inf Aq. Then for any p P M pLq, such that }p} L 8 pAq ď 1 we have|ppyq| ď |T L,A pyq|.Equivalently, we have |ppyq| ď |T L,A pyq| }p} L 8 pAq , @p P M pLq.

T

  X,k p0q| ¸}p} L 8 pAq , but the sign of Φ L, X,k p0q is p´1q k`1 and thus by (A.70), L,I px k qΦ L, X,k p0qˇˇˇˇ" |T L,I p0q|.

  this end we multiply the adjoint equation (in the sense of the Euclidean inner product of R n ) by qpt, xq and we integrate over Ω. It follows that ´żΩ pB t qq ¨q dx ´żΩ ∆q ¨q dx " ´żΩ pC ˚qq ¨q dx.

	Integrating by parts the second term it follows that			
	´1 2	d dt	ż Ω	|q| 2 dx	`żΩ	|∇q| 2 dx "	´żΩ	pC ˚qq ¨q dx ď }C} L 8	ż Ω	|q| 2 dx,
	in particular we have									
					´d dt	}qptq} 2 L 2 pΩq ď 2}C} L 8 }qptq} 2 L 2 pΩq .	

  Those equations can be simplified using the definitions of Φ λ , Φλ and (V.14) as follows , ϕ λ y L 2 ´T xy 0,1 , ϕ λ y L 2 ˙.

	where	ω 0 λ,T,y 0	def "	e ´T λ ϕ 1 λ p0q	xy 0,1 , ϕ λ y L 2 , and ω 1 λ,T,y 0	def "	e ´T λ ϕ 1 λ p0q	ˆxy 0,2
				$			
				'			
				'			
				'			
				&			
				'			
				'			
				'			
				%			
		$ ' ' ' & ' ' ' %	e ´T λ ϕ 1 λ p0q	e ´T λ ϕ 1 λ p0q ˆxy 0,1 , ϕ λ y L 2 ´T xy 0,2 , ϕ λ y L 2 xy 0,1 , ϕ λ y L 2 " ˙" ż T ż T 0 0	vpsqe ´λpT ´sq ds, vpsqr´pT ´sqse ´λpT ´sq ds
	Setting uptq	def " vpT ´tq, we are now looking for a function u that solves the following moment problem
							$ ' ' ' &	ż T 0	uptqe t rλs dt " ω 0 λ,T,y 0 ,
							' ' ' % ż T 0	uptqe t rλ p2q sdt " ω 1 λ,T,y 0 ,
	c b na						F. BOYER -JUNE 27, 2023

e ´T λ xy 0 , Φ λ y E " ż T 0 vpsqe ´λpT ´sq B ˚Φλ ds e ´T λ xy 0 , Φλ ´T Φ λ y E " ż T 0 vpsqe ´λpT ´sq B ˚p Φλ ´pT ´sqΦ λ qds.

  Proposition A.7.48 we can bound the factor |M m,θ,τ {2 pizq| by e τ |z|{2 , and since P is polynomial, we clearly get that sup

zPC e ´τ |z| |Φ G,ξ,τ pzq| ă `8, which means that Φ G,ξ,τ is of exponential type τ . c b na F. BOYER -JUNE 27, 2023

  . By the triangle inequality, it follows that for any

	z P Dpµ, ρ{8q, we have ρ 2 ď |µ ´λ| ď |µ ´z| `|z ´λ| `|λ ´λ| ă	ρ 8	`|z ´λ|	`ρ 4	,
	and thus	|z ´λ| ě	ρ 8	ě	ρ 2.4 n .

  In the case where Λ Ă S η , we can use (A.26) to deduce that

		ÿ µPΛ	1 |µ|	ă `8.
							σqpRe µq
		ď 1	|σ `µ| 2 ´4pRe σqpRe µq 9|µ| 2	,
	since |µ `σ| ď 3|µ|. It follows that					
	´log ˇˇˇµ µ `σ ´σ	ˇˇˇ2 ě	4pRe σqpRe µq 9|µ| 2	,
	where we have used the fact that					
	4pRe σqpRe µq 9|µ| 2	ď	4|σ| 9|µ|	ď	8 9	ă 1,
	and that ´logp1 ´xq ě x for every x P p0, 1q. It follows from this computation and (V.48), that			
	ÿ µPL	Re µ |µ| 2 ď	´9 log c σ 4Re σ	.
	Since this is valid for every finite L included in Λ, we conclude that
	ÿ				

µPΛ Re µ |µ| 2 ă `8, which is the claimed property since Re p1{µq " pRe µq{|µ| 2 for every µ ‰ 0. c b na F. BOYER -JUNE 27, 2023 '

  All in all, we have finally proved that }f n } L 2 p0,`8q Ñ 0 which is a contradiction with the initial assumption in (V.58) that }f n } L 2 p0,`8q " 1. The claim is proved.

	n ptq| ď	ÿ λPΛ n	e ´pRe λqt{4 ď	λPΛ n ÿ	e ´|λ| t 4cη ,
	and thus, using (A.22), we get				
	ż `8 S	|f n ptq| dt ď ď 4c η Rp0q ÿ λPΛ n 4c η |λ|	e ´|λ| S 4cη λPΛ n ÿ e ´|λ| S 4cη
					ď	4c 2 η pRp0qq 2 S	.
	It follows that	ż `8 S	|f n ptq| dt ÝÝÝÑ SÑ8	0,
	uniformly in n. Since pf n q n is uniformly bounded on rS, `8r this implies ż `8 S |f n ptq| 2 dt ď C ż `8 S |f n ptq| dt ÝÝÝÑ SÑ8	0,
	uniformly in n. c bna	F. BOYER -JUNE 27, 2023

  then we set µ " C 1 `1 and we assume that τ satisfies (A.53). It follows from Proposition A.7.48 that |M m,θ,τ {2 pxq| ď e ´m|x| θ `Cτ ´θ 1´θ , @x P R. Λ,τ is of exponential type τ , and moreover |G Λ,τ pxq| ď e C 1 |x| θ e ´µ|x| θ `Cτ ´θ 1´θ " e ´|x| θ `Cτ ´θ 1´θ , so that G Λ,τ is square integrable on R with the claimed estimate of its norm. Estimates on sums of real exponentials and on generalized Müntz polynomials.

	V.6.5.1	
		|M m,θ,τ {2 pzq| ď e	τ 2 |z| , @z P C,
	All in all, we have obtained	
		|G Λ,τ pzq| ď e C 1 |z| θ e	τ 2 |z| ď e C 2 τ ´θ 1´θ e τ |z| , @z P C,
	so that G c bna	F. BOYER -JUNE 27, 2023

θ ,

  We apply Theorem V.6.47 to this set A s to get }p} L 8 p0,1´sq ď C 4 e C 4 s ´θ 1´θ }p} L 8 pAsq ď C 4 e CC 4 s ´θ 1´θ

	from which we deduce that				
	and consequently						|B s | ď s{2,
							|A s | ě s{2.
							c	2 s	}p} L 2 p1´s,1q ,
	and consequently					
			}p} L 2 p0,1´sq ď C 4 e C 4 s ´θ 1´θ	c	2 s	}p} L 2 p1´s,1q ,
	and finally					
			}p} 2 L 2 p0,1q ď C 4 ˆ1 `e2C 4 s ´θ 1´θ 2 s	˙}p} 2 L 2 p1´s,1q .
	The claim is proved.					
	We can now come back to our original problem and prove the expected result.
	Proof (of Theorem V.6.42):				
	We set λ 0 of variable we get def " min	ˆ1 Rp0q	, 1 ˙. Let f "	ř λPΛ a λ erλs P E Λ and let 0 ď t ď `8. By using straighforward changes
			ż t 0	|f ptq| 2 dt "	0 ż t	λPΛ ˇˇˇˇÿ	a λ e ´λt ˇˇˇˇ2 dt
					" "	ż t 0 1 λ 0	ˇˇˇˇÿ λPΛ 0 ż λ 0	a λ e ´pλ´λ 0 {2qt ˇˇˇˇ2 e ´λ0 t dt λPΛ t ˇˇˇˇÿ a λ e ´λ´λ 0 {2 λ 0 t ˇˇˇˇ2 e ´t dt	(V.62)
					"	ż 1 e ´λ0	λPΛ t ˇˇˇˇÿ	a λ x	λ´λ 0 {2 λ 0	ˇˇˇˇ2 dx.
	Let us define a new family Λ as follows		
				Λ def "	" λ ´λ0 {2 λ 0	, λ P Λ	*	Ă p0, `8q.
	By (A.21), we see that inf Λ ě λ 0 , and thus we have
				inf Λ "	pinf Λq ´λ0 {2
					r1 ´s, 1s, |ppxq| ď	c	2 s	}p} L 2 p1´s,1q	+	,
	and					
	Integrating |p| 2 on B s we get	B s " r1 ´s, 1szA s . L 2 p1´s,1q ě }p} 2 ż Bs |p| 2 ě 2 s }p} 2 L 2 p1´s,1q |B s |,
	c b na				F. BOYER -JUNE 27, 2023

  Note that, since h ą 0 and Re λ ą 0 for every λ P Λ, we have |λ `ih| ě |λ| for all i P N. is a remainder function for Λ h , that does not depend on h, which proves the claim. rλs, p h rλ, λ `hs, . . . , p h rλ, . . . , λ `mhs

	' Let r ą 0, we have					
			ÿ σPΛ h |σ|ąr	1 |σ|	ď	m ÿ i"0	ÿ λPΛ |λ`ih|ąr	1 |λ `ih|
						ď	m ÿ i"0	ÿ λPΛ |λ`ih|ąr	1 |λ|
						ď	m ÿ i"0	ÿ λPΛ |λ|ąmaxpr´ih,0q	1 |λ|
						ď pm `1q	ÿ λPΛ |λ|ąmaxpr´mh,0q	1 |λ|
						ď ˘. " pm `1qR `maxpr ´mh, 0q pm `1qR `maxpr ´ρ{2, 0q
	All in all, we got that the function			
			Rprq	def " pm `1qR `maxpr ´ρ{2, 0q ˘,
	Let us consider now a fixed element λ P Λ and we define the subset
							m
				L h	def "	ď j"0 pΛztλu `jhq.
	For any σ P p0, `8q with σ R L h , we define now
				p h rσs	def " erσs ´πL h erσs,
	and we set					
			"			
	P λ,h	def "	p h			
							1 `jhq| ă ρ{2,
	and thus					
			|λ ´λ1 | ă ρ{2 `|i ´j|h ď ρ{2 `mh ă ρ.
	This is a contradiction with (IV.23).			
	c bna		F. BOYER -JUNE 27, 2023

*

.

  6.35 can be easily extended to the present case by replacing E Λ by E m

	Λ Λ (resp. F m def " ␣ erλ pk`1q s, λ P Λ, k P 0, m and E Λ (resp. F Λ,T and F Λ,8 ) by E m Λ,T and E m Λ,8	(	,

  Let g : K Ñ K a smooth function (holomorphic in the case K " C), and f 1 , . . . , f n P V . We have the estimate

	be useful.				
	Corollary A.2.10				
	max Y ĂX	|pgf qrY s| ď e ˜max kP 0,n	sup ConvpXq	Y ĂX |g pkq | ¸ˆmax	|f rY s| ˙.
	c b na	F. BOYER -JUNE 27, 2023	

  Let pX piq q i be a family of subsets of X as in A.2.4. Let us set Y " X Y txu and we introduce # Y piq " X piq , if i P 0, n , Y pn`1q " Y,

	A.2. Divided differences	139
	2.	
	c b na	F. BOYER -JUNE 27, 2023

  For any x P H, and y P SpanpAq we can write}T n x} H ď }T n px ´yq} H `}T n y} H ď 2}x ´y} H `}T n y} H ,

	and thus by (A.12), we get
	lim sup

nÑ8

}T n x} H ď 2}x ´y} H .

By density of SpanpAq into SpanpAq, we deduce that lim nÑ8

  1 ď δpe, Ezteuq}f e } H , which gives (A.15). By construction, if ẽ P Ezteu we have pf e , ẽq H " 1 δpe, Ezteuq 2 pe ´πEzteu e, ẽq H " 0, and pf e , eq H " 1 δpe, Ezteuq 2 pe ´πEzteu e, eq H " 1 δpe, Ezteuq 2 pe ´πEzteu e, e ´πEzteu eq H " 1. The claim is proved.

	' Conversely, assume (A.15) and define	
	f e "	1 δpe, Ezteuq 2 pe ´πEzteu eq.

  The proof is very similar to the one of Proposition A.3.26. We first use elementary operations on the columns of G EYtxu,EYtyu to prove that ∆ EYtxu,EYtyu " ∆ EYtxu,EYty´π E yu , then we use elementary operations on the rows of this matrix to get ∆ EYtxu,EYtyu " ∆ EYtx´π E xu,EYty´π E yu . Since x ´πE x and y ´πE y are orthogonal to E, this generalized Gram matrix is block diagonal As an example of Gram determinant we will need to compute Cauchy determinants. More precisely, given two families A " ta 1 , . . . , a n u Ă C and B " tb 1 , . . . , b n u Ă C of complex numbers such that 0 R A `B, we introduce the associated Cauchy matrix C A,B def " ´1 a i `bj ¯i,jP 1,n .

	A.3.4 Cauchy determinants	
	0 py ´πE y, x ´πE xq H G EYtx´π E xu,EYty´π E yu " ˆGE 0	˙.
	The claim is proved by computing the determinant.
	c bna	F. BOYER -JUNE 27, 2023

jP 1,n , and the associated Gram determinant is denoted ∆ E,F " det G E,F .

With this definition we can find a useful generalization of Proposition A.3.26.

Proposition A.3.30

Let E " pe i q 1ďiďn be a linearly independent family in H. For any x, y P HzE we have px ´πE x, y ´πE yq H " ∆ EYtxu,EYtyu ∆ E .

Proof :

  Therefore, u 1 and u 2 are solutions to the same equation on rα, βs and both vanish at α. It follows that u 1 and pαq solve the same linear Cauchy problem in rα, βs and thus are equal. The claim is proved.Let I be an interval of R, γ P C 2 pIq, with γ ą 0, q P C 0 pIq and λ ą 0. Let u be a non trivial solutions to the differential equation ´Bx pγpxqB x uq `qpxqu " λu, on I. By the exact same reasoning we find a zero of u in the interval " b ´b´a 4 , b ‰ that we call β and it is straightforward to check that |α ´β| ě |a ´b|{2.Let Λ Ă C be a family of complex numbers.The counting function associated with the family Λ is defined, for any r P R, by If there is no ambiguity we shall simply call it N .It will be useful to observe that, for any subset L Ă Λ and any s ă r we have N L prq ´NL psq ď N Λ prq ´NΛ psq, (A.18)

	A.5 Counting function and summation formulas
	v " u 2 2 Corollary A.4.33 u 1 1 pαq u 1 Definition A.5.34 (Counting function)			
	Let a ă b two points in I. Then, if N Λ prq	
			λ ě }q} 8	`ˆ4π b ´a ˙2 }γ} 8	`1 2	}γ 2 } 8 ,	(A.17)
	there exists two distinct zeros of u in ra, bs denoted by α, β such that Remark A.5.35
						|α ´β| ě |a ´b|{2.
	Proof :				
	Let us introduce the function				
			wpxq " sin ˆpx ´aq	b	4π ´a ˙,
	which satisfies the equation				
	and that have the following two explicit zeros λPΛ	´w2 " f p|λ|q " f prqN prq ˆ4π b ´a ˙2 w, ´ż r 0	f 1 ptqN ptq dt,
		ÿ să|λ|ďr λPΛ	wpaq " 0, w ˆa |λ|ďr f p|λ|q " f prqN prq ´f psqN psq `b ´a 4 ˙" 0. ´ż r s	f 1 ptqN ptq dt,
	and, if N ptq ă `8, for any t P R,	
	where we have defined	qpxq " |λ|ąr ÿ λPΛ	« ´ˆ4π b ´a ˙2 γ f p|λ|q " ´f prqN prq ´γ2 2 `1 4 ´ż `8 pγ 1 q 2 γ	ff	.
	By the assumption (A.17) on λ, we have for any x P ra, bs
		qpxq ě ě }q} 8 ´ˆ4π b ´a ˙2 }γ} 8 ´λ ě qpxq ´λ.	´1 2	}γ 2 } 8
	c bna			F. BOYER -JUNE 27, 2023

c b na F. BOYER -JUNE 27, 2023

Let us set v " ? γw and observe that v has the same zeros as w. Moreover, a straightforward computation shows that v solves the equation ´Bx pγB x vq `qv " 0, Therefore, we can apply the comparison principle (Theorem A.4.32) to u and w and deduce that between any two zeros of w there is a zero of u. In particular, there exists a zero of u, in the interval " a, a `b´a 4 ‰ , that we call α.

def " # tλ P Λ, s.t. |λ| ď ru P N Y t`8u.

since tz P L, s ă |z| ď ru Ă tz P Λ, s ă |z| ď ru.

We will make use of the following summation formulas.

Proposition A.5.36

Let f : r0, `8q Ñ R be a C 1 function. For any s ă r such that N prq ă `8, we have the following formulas ÿ r f 1 ptqN ptq dt, provided that the sum or the integral converges.

  can bounded from below by 1{r multiplied by the number of terms which is exactly N prq ´N psq and can be bounded from above by Rpsq. This proves the first claim.

	1. The following quantity			
					ÿ să|λ|ďr	1 |λ|	,
	Taking s " 0 and r " inf |Λ| in (A.20), we get
				1 ď pinf |Λ|q Rp0q,
	since N p0q " 0 and N pinf |Λ|q ě 1.		
	Now for any given s, the inequality (A.20) gives
		N prq r	ď Rpsq	`N psq r	, @r ą s.
	Taking the superior limit when r Ñ 8, it follows
			lim sup rÑ8	N prq r	ď Rpsq.
				lim sup rÑ8	N prq r	ď 0.
	2. We use Proposition A.5.36 and (A.20) to get the estimate
	ÿ λPΛ	e ´|λ|τ "	ż `8 0	τ e ´tτ N ptq dt
		ď	ż `8 inf |Λ|	τ e ´tτ N ptq dt
		ď e ´τ inf |Λ|{2 1 τ	ż `8 0	tτ e ´tτ {2 N ptq t	τ dt
		ď e ´τ inf |Λ|{2 Rp0q τ	ż `8 0	e ´t{2 t dt
		"	4Rp0q τ	e ´τ inf |Λ|{2 .
	c b na	F. BOYER -JUNE 27, 2023

This inequality being true for any s, we can take the limit as s Ñ 8 to get the claim

  2M , and z P D M , we have |z| ă |σ| 2 and thus, using that, for any w P C such that |w| ă 1{2, we haveWe assume the summability condition (A.27) and we suppose given a remainder function R for Λ.1. There exists a locally bounded function r P p0, `8q Þ Ñ εprq such that lim `8 ε " 0, depending only on R such that, for any L Ă Λ, we have |Q L pzq| ď e εp|z|q |z| , @z P C.Let γ ą 0 be a fixed number. There exists a locally bounded function r P p0, `8q Þ Ñ εprq such that lim Before proving the proposition, let us start with the following corollary.Assume the same assumptions as in the previous proposition.1. For any k ě 0, there exists a locally bounded function ε such that lim `8 ε " 0 depending only on R and k such that, for any L Ă Λ, we have ˇˇQ pkq L pzq ˇˇď e εp|z|q |z| , @z P C.2. Assume (A.29) or (A.30), and let γ ą 0. Then for any k ě 0 there exists a locally bounded function ε such that lim `8 ε " 0 depending only on R, k, γ (and δ in the case (A.30)) such that, for any L Ă Λ, Let us fix z P C. Since Q L is entire, we can apply the Cauchy formula to the circle centered at z and of radius 1 for instance. It follows that|Q L pξq| ď Ce εp|z|q|z| ,where εprq " sup sPrr´1,r`1s εpsq.2. Let z P C such that dpz, Lq ą γ. Since 1 Q L is holomorphic on Dpz, γq, we can apply the Cauchy formula to this function on the circle centered at z with radius γ{2. It follows that Now we apply (A.31), with γ replaced by γ{2 on each ξ such that |ξ ´z| " γ{2, that is

	where C depends only on k. By using (A.28), it follows that
	Proposition A.7.44	|Q	pkq L pzq| ď C	sup ξPC
					|z|´1ď|ξ|ď|z|`1
						(A.28)
	2. We assume further that either or ˇˇˇˇˆ1 Q L	˙pkq	Rprqplog rq Ý ÝÝ Ñ rÑ8 pzq ξPC |ξ´z|"γ{2 Q L pξq 0, ˇˇˇˇď C sup ˇˇˇ1	ˇˇˇ.	(A.29)
				δ	def " sup rą0	`N pr `1q ´N prq ˘ă `8.	(A.30)
						σPL	pz ´σq.
						|σ´z|ďγ
	Corollary A.7.45				
	we have		ˇˇˇˇˆ1		
	| logp1 `wq| ď Q Proof : we eventually get that	|w| 1 ´|w|	ď 2|w|,
	ˇˇlog ´1 1. |Q pkq ´z σ L pzq| ď C sup ¯ˇˇď 2|z| |σ| ď ξPC	2M |σ| |Q L pξq|, .
						|ξ´z|"1
	c b na		F. BOYER -JUNE 27, 2023

By using (A.27) we get that the infinite product Q L is uniformly convergent in D M and has no zeros in D M . The c b na F. BOYER -JUNE 27, 2023 claim is proved. `8 ε " 0, depending only on γ, R (and δ in the case (A.30)) such that, for any L Ă Λ, we have |Q L pzq| ě |P L,γ,z |e ´εp|z|q |z| , @z P C, (A.31) where we have introduced the quantity P L,γ,z defined by P L,γ,z def " ź L ˙pkq pzq ˇˇˇˇď e εp|z|q |z| , @z P C, s.t. dpz, Lq ą γ.

  and Q 2 pzq we have used (A.20) to get N pz 0 q{z 0 ď Rp0q and (A.21). In the term Q 2 , we can use the bound 1 `|z| |σ| ď e |z|{|σ| to obtain log Q 2 pzq ď ÿ Rp0qz 0 log `p2Rp0q|z|q `|z|Rpz 0 q.

	' σPL |σ|ąz 0	|z| |σ|	ď |z|Rpz 0 q.
	Finally, we have proved that				
	log |Q L pzq| ď Choosing z 0 " we eventually get	|z| p1 `log `p2Rp0q|z|qq 2 ,	(A.32)
	log |Qpzq| ď |z|	"	Rp0q 1 `log `p2Rp0q|z|q	`R ˆ|z| p1 `log `p2Rp0q|z|qq 2 ˙ȷ ,	(A.33)
	which is the expected estimate with a function ε that is given by
	εprq "	Rp0q 1 `log `p2Rp0qrq
						ˆ1	˙.
						def "	ź σPL |σ|ąz 0	`|z| |σ|
						|σ| ď 2|z| |σ| and it follows that
						ďN
				log Q 1 pzq ď	ÿ σPL |σ|ďz 0	log	`ˆ2|z| |σ|
						ďN
					`ˆ2|z| inf |Λ| pz 0 q log `p2Rp0q|z|q pz 0 q log ďRp0qz 0 log `p2Rp0q|z|q
	c b na			F. BOYER -JUNE 27, 2023

' In the term Q 1 we have |σ| ď z 0 ď |z| so that 1 `|z| where

  us deal with the term r Q 2 . Note that if |z| ď 2γ, then the product defining r Q 2 is empty and thus In the case (A.29), we can simply use (A.18) and the fact that |z| ą 2γ to get from (A.34) log r Q 2 pzq ě ´pN L p|z|q ´NL p|z|{2qq log `p|z|{γq ě ´pN p|z|q ´N p|z|{2qq log `p|z|{γq. We can then use Remark A.5.35 and the following two estimates on N " N Λ for u P rγ, |z|{2s. * The first one comes from Proposition A.5.38, that gives for any u P rγ, |z|{2s, the inequality 0 ď N p|z| ´γq ´N p|z| ´uq ď p|z| ´γqRp|z| ´uq ď |z|Rp|z|{2q. (A.37) * The second one comes from (A.30) that leads to N pr `sq ´N prq ď N pr `Epsq `1q ´N prq ď δpEpsq `1q ď δps `1q, @s ą 0. (A.38) In the case (A.29), we can use a similar inequality as in (A.37) to get The term r Q 4 is treated in a similar way as r Q 2 . We observe that if |z| ď γ, then the product defining r Q 4 is empty and thus r Q 4 pzq " 1. We assume now that |z| ą γ. We conclude by using (A.18) and by combining the following two inequalities |N p|z| `uq ´N p|z| `γq| ď 2|z|Rp|z|q, Collecting all the estimates above, we have eventually obtained the claimed bound from below log |Q L pzq| ě log |P L,γ,z | ´εp|z|q|z|, By using the summation formulas given in Proposition A.5.36, we obtain log |Q L pzq| ď ÿ Concerning the bound from below for |Q L pzq|, we keep the estimates (A.35), (A.41), (A.44) and (A.46) but specified with the remainder function R given in (A.52) log r Q 2 pzq ě ´|z|Rp|z|{2q log `p|z|{γq ě ´κ θ2 θ´1 log `p|z|{γq|z| θ , log p Q 3 pzq ě ´Cγ κ 1 ´θ log `p|z| `γ `1qp|z| `γqp|z| ´γq θ´1 ě ´Cγ,κ,θ plog `|z|q|z| θ , Putting those estimates altogether prove that we can take in the inequality a function ε that satisfies εprq " Cp1 `log `prqqr θ´1 , for r large enough. It follows that, for any θ P pθ, 1q we get εprq ď Cr θ´1 , and the claim is proved.' It remains to show that, in the case where we assume the stronger asymptotics (A.50) for the counting function, we can take θ " θ in the previous computation. This amounts to get rid of the logarithm factor in the estimates of r Q 2 , p Q 3 and r Q 4 .-Concerning the term r Q 2 , we rewrite (A.36) by using Remark A.5.35 as follows

	-By Proposition A.5.38, we can conclude that log r Q 2 pzq ě ´|z|Rp|z|{2q log `p|z|{γq. -In the case (A.30), we need to proceed in a different way. We use Proposition A.5.36 to express the (A.35) right-hand side in (A.34) as follows log r Q 2 pzq ě logpγ{|z|qN L p|z| ´γq ´logp1{2qN L p|z|{2q `ż |z|´γ |z|{2 1 |z| ´t N L ptq dt " ´plog 2q " N L p|z| ´γq ´NL p|z|{2q ‰ ´ż |z|{2 γ N L p|z| ´γq ´NL p|z| ´uq u (A.36) ě ´log |z| `γ `1 minpγ, 1q log r Q 4 pzq ě ´2plog 2q|z|Rp|z|q ´Cδ,γ |z| a Rp|z|q. (A.45) `N p|z| `γq ´N p|z| ´γq ˘. The claim is proved. du. and therefore we have r Q 3 pzq ě |P L,γ,z | p -For the term p Q 3 we write Q 3 pzq, where we have introduced p Q 3 pzq def " ź σPL |z|´γă|σ|ď|z|`γ minpγ, 1q |σ| . Moreover, we have log p Q 3 pzq ě ´ÿ σPL |z|´γă|σ|ď|z|`γ log |σ| minpγ, 1q ě ´ÿ σPL |z|´γă|σ|ď|z|`γ log |z| `γ `1 minpγ, 1q |N p|z| `uq ´N p|z| `γq| ď δp1 `γq γ u, as we did for r Q 2 to get σPL log ˆ1 `|z| " log p Q 3 ě ´log `|z| `γ `1 minpγ, 1q ě `N p|z| `γq ´N p|z| ´γq |σ| |z| ż `8 0 N L ptq ď |z| ż `8 0 leqκ|z| ż `8 0 " κ|z| θ ż `8 0 t 1´θ pt `1q dt. 1 tpt `|z|q dt t θ tpt `|z|q dt N ptq tpt `|z|q dt ´log `|z| `γ `1
	log p Q 3 pzq ě ´log Q 5 we use that ' For the term r	|z| `γ minpγ, 1q `1	`|z|	`γ˘R p|z| ´γq,	(A.41)
	It follows that We can then combine the two inequalities (A.37) and (A.39) as follows N p|z| ´γq ´N p|z| ´uq ď N p|z|q ´N p|z| ´uq ď δpu `1q ď δp1 `γq γ u. N p|z| ´γq ´N p|z| ´uq ď d δp1 `γq γ Rp|z|{2q ? u a |z|, whereas in the case (A.30), we use (A.38) log p Q 3 pzq ě ´δp2γ `1q log |z| `γ 1 ´u ě e ´2u , @u P r0, 1{2s, `1 . minpγ, 1q so that ' We start by writing log r Q 4 pzq " ÿ σPL |z|`γă|σ|ď2|z| log ˆ|σ ´z| ě ÿ σPL log 2|z| ˆ|σ| ´|z| ˙. |σ| ˙, log r Q 5 pzq ě ´2|z| ÿ σPL 2|z|ă|σ| 1 |σ| ě ´2|z| ÿ σPΛ 2|z|ă|σ| 1 σ log r Q 4 pzq ě ´2|z|Rp|z|q log `p2|z|{γq ě ´2κ log `p2|z|{γq|z| θ , θ ě ´2|z|Rp2|z|q. log r Q 5 pzq ě ´2κ 1 ´θ |z| θ .	(A.39) (A.42) (A.43) (A.46)
	so that -In the case (A.29), we just write	|z|`γă|σ|ď2|z|	
	ż |z|{2 γ	N p|z| ´γq ´N p|z| ´uq u log r Q 4 pzq ě ´pN L p2|z|q ´NL p|z|qq log du ď d δp1 `γq γ Rp|z|{2q `ˆ2|z| a |z| γ ě ż |z|{2 γ ? u du 1
	r Q 2 pzq " 1. We assume now that |z| ą 2γ. We start by writing log r Q 2 pzq " ě ´pN p2|z|q ´N p|z|qq log ÿ σPL |z|{2ă|σ|ď|z|´γ log ˆ|z ´σ| |σ| ÿ σPL |z|{2ă|σ|ď|z|´γ log ˆ|z| ´|σ| ˙, |z| ˙, ď2 d δp1 `γq γ Rp|z|{2q a |z| ˙. `ˆ2|z| γ where ε has the following form ďC δ,γ |z| a By Proposition A.5.38, we can conclude that Rp|z|{2q. As a conclusion, we have proved in that case that log r Q 2 pzq ě ´plog 2q|z|Rp|z|{2q ´Cδ,γ |z| a Rp|z|{2q. a |z|{2 ' Let us deal with the term r Q 3 . By definition of P L,γ,z we have r Q 3 pzq " |P L,γ,z | ¨ź σPL |z´σ|ăγ 1 |σ| ‹ ‹ ' ¨ź σPL |z|´γă|σ|ď|z|`γ |z´σ|ěγ |z ´σ| |σ| ‹ ‹ ‹ ‹ ' , log r εprq :" CRpr{2q `Cδ,γ a Rpr{2q `εprq, Q 4 pzq ě ´2|z|Rp|z|q log `p2|z|{γq. -In the case (A.30), we start from (A.43) to get log r Q 4 pzq " logp1{2qN L p2|z|q ´logpγ{2|z|qN L p|z| `γq ´ż 2|z| |z|`γ 1 t ´|z| with log r Q 2 pzq ě ´plog 2qN p|z|q ´ż |z|{2 γ N p|z| ´γq ´N p|z| ´uq du. u N L ptq dt " ´plog 2qpN L p2|z|q ´NL p|z| `γqq ´ż |z| γ N L p|z| `uq ´NL p|z| `γq u ě ´plog 2qpN p2|z|q ´N p|z| `γqq εprq def " # C γ " ‰ in the case (A.29) By using (A.50), it follows logpr `γ `1qRpr ´γq `Rpr{2q logpr{γq C γ,δ logpr`γ`1q r log r Q 2 pzq ě ´κplog 2q|z| θ ´κ ż |z|{2 γ 1 `pu ´γq θ du u ´ż |z| ě ´κplog 2q|z| θ ´κ logp|z|{2γq ´κ 1 2 θ θ |z| θ .	(A.34) (A.40) (A.44) du
	c b na c b na c b na	F. BOYER -JUNE 27, 2023 F. BOYER -JUNE 27, 2023 F. BOYER -JUNE 27, 2023

γ N p|z| `uq ´N p|z| `γq u du. c b na F. BOYER -JUNE 27, 2023 in the case (A.30). Thanks to the assumptions on Λ, we clearly have that lim rÑ`8 εprq " 0. c b na F. BOYER -JUNE 27, 2023

  Proposition A.7.49 1. There exists a R ą 0 depending only on θ and m such that |M m,θ,τ pizq| ě 1 2 , @z P Dp0, Rq.(A.59)2. For any η ą 0, there exists a C depending only on θ, m and η such that |M m,θ,τ pizq| ě e ´C|z| θ , @z P S η .(A.60)We emphasize the fact that the values of C and R in this Proposition do not depend on τ , as soon as it satisfies (A.56).Let us start by a basic lemma. There exists C η depending only on η, such that for any z P S η , and any l ą 0, with |z|{l ě log 2The last inequality comes from the following straightforward fact 1 ´y ě e ´2y , @y P r0, plog 2q{2s. Assume that |z| ď log 2 2e A ´1{θ so that |z|{l ď log 2 2e for every l P L. From (A.61) and the first point of Lemma A.7.50 we get ˇˇˇs inpiz{lq iz{l ˇˇˇě e ´p1`2eq |z| l , @l P L,The claim comes by choosing for instance R " p1´θq log 2 1`2e A ´1 θ . 2. Assume now that z P S η . In particular, we have Re z ě 0 so that (A.61) leads to It follows that, for any z P S η , we have |M m,θ,τ pizq| ě źWe set c " 2e{plog 2q and we split the right-hand side into two factors

	1. so that By using (A.56), it comes		|M m,θ,τ pizq| ě e ´p1`2eq|z| |M m,θ,τ pizq| ě e ´p1`2eq A ř lPL 1 l ě e ´p1`2eqτ |z| . 1 θ 1´θ |z| .
	Lemma A.7.50					ˇˇˇs inpizq iz	ˇˇˇě ˇˇˇ1	2z ´e´2z	ˇˇˇ,
		1. For any z P C, such that |z| ď log 2 2e we have
							ˇˇˇ1	´e´2z 2z lPL ˇˇˇˇ1 ˇˇˇě e ´2e|z| . l l 2 z ´e´2 z ˇˇˇˇ.
		2. 2e we
		have	T 1	def "	ź lPL ląc|z|	ˇˇˇˇ1	ˇˇˇˇ1 ´e´2z{l 2z{l ´e´2 z l 2 z l ˇˇˇˇa nd T 2	ˇˇˇˇě C η def " ź |z| l lďc|z| lPL ˇˇˇˇ1 .	l ´e´2 z l 2 z	ˇˇˇˇ.
	Proof :	' Estimate of T 1 : We use the first point of Lemma A.7.50 to deduce
	' We simply write		1 ´e´2z 2z log T 1 ě ´2e|z| " 1 `2z ÿ 1 ląc|z| lPL l	ÿ ně0	p´1q n`1 p2zq n pn `2q!	,
	so that, if 2|z| ď log 2 e , which is less than 1, ˇˇˇ1 ´e´2z 2z ˇˇˇě 1 ´2|z| " ´2e|z| ˜´N L pc|z|q ÿ ně0 c|z| 1 pn `2q! ´2e|z| ż `8 c|z| At θ t 2 dt	`ż `8 c|z| ě 1 ´e|z| ě e ´2e|z| . ȩ N Ldroit ptq dt t 2
	" We use now the second point of Lemma A.7.50 to get ´2eAc θ 1 ´θ |z| θ ' Estimate of T 2 : ' By the triangle inequality and (A.26), we get ˇˇˇˇ1 ´e´2z{l 2z{l ˇˇˇˇě 1 ´e´2pRe zq{l 2|z|{l ě 1 ´e´2 cosh η 2|z|{l log T 2 ě ÿ lPL lďc|z| " |z| l ě 1 2 ´1 ˆCη l log |z| logpcC η qN L pc|z|q ´ż c|z| N L ptq t 0 Proof (of Proposition A.7.49): We start with the observation that for any z P C ě ´log `ˆ1 cC η ˙Ac θ |z| θ ´ż c|z| 0	´e´l og 2 e cosh η dt At θ t dt	¯l |z|	.
					ˇˇˇs inpizq iz " ´ˆlog ˇˇˇ" e Re z ˇˇˇ1 `ˆ1 cC η ´e´2z 2z ˙Ac	ˇˇˇ.	(A.61)
	c b na			F. BOYER -JUNE 27, 2023

c bna F. BOYER -JUNE 27, 2023 θ `A c θ θ ˙|z| θ . c b na F. BOYER -JUNE 27, 2023

  Take now any j, k P 1, N , j ď k, we have|x k ´xj | " |rx j , x k q| ě |A X rx j , x k q| " |A X rx j , `8q| ´|A X rx k , `8q| " |I X rx j , `8q| ´|I X rx j , `8q| " |I X rx j , xk q| " |x k ´x j |,since I is an interval that contains xk and xj .Similarly we have for any k|x k ´max A| ě |A X rx k , `8q| " |I X rx k , `8q| " |x k ´max I|,and since max I ě max A, we deduce that x k ď xk .' Due to the previous properties, we can apply Proposition A.8.55 to X and X and conclude that, for any k P 1, N , we have |Φ L,X,k p0q| ď |Φ L, X,k p0q|. (A.71) Take now any p P M pLq and let us decompose it in the Lagrange basis pΦ L,X,k q k

	ppxq "

c b na F. BOYER -JUNE 27, 2023 N ÿ k"1

this will not be true anymore for infinite dimensional problems when the underlying equation is not time reversible, which is precisely the case of parabolic equations

It is very likely that the result in this reference could have been generalized to any value of θ P p0, 1q without pain c b na F. BOYER -JUNE 27, 2023

We use the usual convention that the entry pi, jq of GE is pej, eiqH and not pei, ejqH , which makes no difference in real Hilbert spaces but does in complex Hilbert spaces. This will simplify some computations

In any dimension, we have a sufficient approximate controllability condition which is the following.

Theorem V.3.8

Assume that c 21 is continuous not identically zero and that c 21 ě 0, then the 2 ˆ2 system (V.7) with C given by (V.8) is approximately controllable at any time T ą 0.

Proof :

By assumption on c 21 , we know that for any λ P Λ and any i P 1, n λ the number I λ,i pc 21 q cannot vanish since it is the integral of a non-negative function which is not identically zero. Indeed, by Proposition IV.1.16, we know that any eigenfunction of A cannot identically vanish on the non-empty open subset tx P Ω, c 21 pxq ą 0u.

Therefore, we know from Proposition V.3.7 that every eigenfunction Φ P Ker pL ˚´λq can be written

By definition of the observation operator B ˚we thus have

Therefore, if B ˚Φ " 0 we deduce that a λ,i " 0 for every i thanks to Proposition IV.1.16 and thus Φ " 0.

From the Fattorini-Hautus test (Theorem III.3.7), the claim is proved.

V.3.3.3 Approximate controllability in 1D

In the 1D case (see [START_REF] Boyer | Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients[END_REF]), we can give a more precise result which is a necessary and sufficient approximate controllability condition. Since, in that case, each eigenvalue of A is simple we can use Proposition V.3.7 with n λ " 1 for any λ. As a consequence, we will drop the index i in the notation. To get a complete analysis we will need to introduce a function ψ λ linearly independent from ϕ λ and that solves the ODE Aψ λ " λψ λ .

Note that ψ λ does not satisfy the Dirichlet boundary conditions. Definition V.3.9

For any λ P SppAq, any interval ra, bs Ă r0, 1s, and any integrable function f , we define the following element of R 2 M λ pf, ra, bsq

Theorem V.3.10

Assume that c 21 identically vanishes in the control region ω.

Then the 2 ˆ2 cascade system (V.7) is approximately controllable if and only if, for any λ P SppAq, there exists a connected component ra, bs of Ωzω such that M λ pc 21 ϕ λ , ra, bsq ‰ 0.

Appendix A

Appendices

A.1 Linear ordinary differential equations

We collect in this section some classical results on linear ODEs.

A.1.1 Non-autonomous linear ODEs. Resolvant

We consider a linear, non autonomous and homogeneous ODE of dimension n as follows

It can be proved that there exists a unique map pt, sq P R ˆR Þ Ñ Rpt, sq P M n pRq called the resolvant that satisfies

Rpt, t 0 q `AptqRpt, t 0 q " 0, Rpt 0 , t 0 q " Id.

This maps satisfies the group property

Rpt 1 , t 2 qRpt 2 , t 3 q " Rpt 1 , t 3 q, @t 1 , t 2 , t 3 P R.

With this definition, the unique solution to the problem (A.1), is given by the Duhamel formula We may now state a Leibniz formula that generalizes Proposition A.2.8 to generalized divided differences.

Proposition A.2.19 (Leibniz rule for generalized divided differences)

Let pµ p q pP 0,|α| be a sequence of multi-indices like in Proposition A.2.18, and let f α P V |α| and g α P K |α| be two sets of data. We define the new set of values pgf q P V |α| as follows

Then, we have the Leibniz identity pgf qrX pαq s "

grX pµ p q sf rX pα´µ p´1 q s.

To conclude this section, we will prove more explicit formulas for generalized finite differences as we did in Section A.2.3.

Proposition A.2.20

The following properties hold. 1. For any β P X N , such that β ď α, we have P X pαq rX pβq s " 0.

2. For any β P X N , such that α ď β and |β| " |α| `1 P X pαq rX pβq s " 1.

3. For any β P X N such that |β| ą |α| `1 P X pαq rX pβq s " 0.

Proof :

1. By definition of P X pαq , we know that for each x P X and each j P 0, α x we have pP X pαq q pjq pxq " 0.

The claim follows easily by induction from the definition of the generalized divided difference.

2. Let pµ p q pP 0,|α| be a sequence of multi-indices as in Proposition A.2.18. We define µ |β| " β, so that we can apply (A.8) to f " P X pαq and this new sequence of multi-indices. We get that P X pαq pzq " |β| ÿ p"1 P X pαq rX pµ p q sP X pµ p´1 q pzq.

By the first point we proved above, all the terms in this sum cancel except the one for p " |β|. It remains P X pαq pzq " P X pαq rX pβq sP X pαq pzq.

This proves that P X pαq rX pβq s " 1.

3. This point comes from the Lagrange theorem applied to a generalized divided difference of order |α| `2 to a polynomial of degree |α|.

Corollary A.2.21

For each x P X and α P X N , we introduce the multi-index αzx obtained from α by cancelling the index corresponding to x, that is for any y P X,

We have the following formula

By definition, we recall that grx pjq s " g pj´1q pxq pj´1q! for any function g, thus the formula above also reads

Proof : By linearity we known that there exists coefficients pa j y q yPX jP 1,αy

, depending only on X and α, such that, for every function f , we have

f ry pjq sa j y , and our goal is to compute those coefficients. Let x P X be fixed and g be any function. We consider the function f " gP X pαzxq to which we apply the formula above. By construction it is clear that it only remains the contributions corresponding to the point x f rX pαq s "

Moreover, the usual Leibniz formula for functions gives

grx pkq sP X pαzxq rx pj´k`1q s, so that we get
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In the same time, the Leibniz formula for generalized divided differences from Proposition A.2.19, gives the equality f rX pαq s " grx pαxq s.

It follows that we need to have the equality

for any function g. This shows that the coefficients pa j x q j should satisfy αx´k`1 ÿ j"1 P X pαzxq rx pjq sa j`k´1

x " δ k,αx , @k P 1, α x . (A.9)

If one sets a j x :" ˆ1 P X pαzxq ˙rx pαx´j`1q s, @j P 1, α x , we get for every k, by using the Leibniz formula

which is exacly the equation (A.9). The proof is complete.

A.3 Biorthogonal families in a Hilbert space A.3.1 Notation and basic result

Let H be a complex Hilbert space 1 and A be any subset of H. We denote by π A the orthogonal projection onto SpanpAq and we introduce the quantity δpx, Aq def " dpx, SpanpAqq " dpx, SpanpAqq " }x ´πA x} H , @x P H. (A.10)

We will see below a systematic way, based on linear algebra, to compute δpx, Aq when A is finite. The following elementary result gives us a way to compute δpx, Aq when A is countable by approaching A by a sequence of finite sets A n .

Lemma A.3.23

Let A be any subset of H and pA n q n an increasing sequence of subsets such that

For any x P H, we have

and in particular δpx, A n q ÝÝÝÑ nÑ8 δpx, Aq.

1 Conventionally we assume that the inner product is linear with respect to the first variable and antilinear with respect to the second variable. Let E " te 1 , . . . , e n u Ă H be a finite family in H. The following two properties are equivalent.

1. The family E is linearly independent.

2. There exists a finite family F " tf 1 , . . . , f n u of cardinal n such that pe i , f j q H " δ i,j , @i, j P 1, n .

(A.13)

We say that F is a biorthogonal family of E.

If those two properties hold then there exists a unique such biorthogonal family such that F Ă SpanE. It satisfies moreover the matrix equality

and in particular we have

If F is any biorthogonal family of E in H, then the orthogonal projections f i " π E fi still satisfy (A.13) and belong to SpanpEq. Therefore it is the unique family F given in the proposition. It follows that F is the minimal biorthogonal family to E in the sense that

Proof :

' Assume that F is a biorthogonal family of E and let pα i q iP 1,n Ă C such that 0 "

For any j P 1, n we take the inner product of this equality with f j and we get 0 "

This proves that E is linearly independent.

' Assume now that E is linearly independent. We will look for a family F in the following form

where the matrix A " pa kj q k,j P M n pCq has to be determined.
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The conjuguates of equations (A.13) can be written for any i, j P 1, n ,

This reduces to the matrix equation G E A " Id. Since E is linearly independent, we know that G E is invertible and thus that there exists an unique matrix A (which appears to be hermitian) that satisfies our requirements. This proves existence and uniqueness of the biorthogonal family F . We can then compute

We can then express G F thanks to the cofactor matrix of G E and in particular, for the diagonal coefficient }f i } 2 H of G F , using that the associated cofactor of G E is nothing but the Gram determinant ∆ Ezte i u we obtain

and thus (A.14) follows by Proposition A.3.26.

When E is an infinite family, the existence of a biorthogonal family is no more equivalent to the linear independence of E, and we need a slightly stronger assumption.

Proposition A.3.29 (Bi-orthogonal family. Infinite case)

Let E be any family of elements of H. The following two propositions are equivalent.

1. There exists a family F " pf e q ePE Ă H such that pẽ, f e q H " δ e,ẽ , @e, ẽ P E. Such a family is called a biorthogonal family to E.

We have

δpe, Ezteuq ą 0, @e P E.

(A.15)

If those properties hold, there is a unique such family F such that F Ă SpanpEq and it satisfies

, @e P E.

Proof :

' Assume that there exists a biorthogonal family F to E then for any y P SpanpEzteuq we have 1 " pe, f e q H " pe ´y, f e q H ď }e ´y} H }f e } H .

It follows that

f pα i q " N pα i´1 q ´N pα i q ‰ `N pα p qf pα p q ´N pα 0 qf pα 0 q " ´p ÿ i"1 Then there exists a function f P L 2 pRq supported in r´τ, τ s such that

a We say that F is of exponential type τ

A.7 Some useful holomorphic functions

In this section, we will define and analyze some infinite products of holomorphic functions that play a key role in the analysis of the moment method.

We will make use in this section of the log `function defined by log `r def " maxplog r, 0q, @r ą 0. where C depends only on θ and κ, and the lower bound

for any θ P pθ, 1q, with C dependind only on γ, θ, κ and θ.

' Assume that the counting function of Λ satisfies in addition |N prq ´N psq| ď κp1 `|r ´s| θ q, @r, s ą 0.

(A.50)

Then, for any L Ă Λ, we have the lower bound

for some C depending only on γ, θ, κ.

We recall that P L,γ,z is introduced in Proposition A.7.44.

Proof :

Under those assumptions, we know thanks to Proposition A.5.39 that we can choose the remainder function R as follows The following properties hold 1. 0 is the only element of M pLq that has at least N distinct zeros in r0, `8q.

2. If f P M pLq has exactly N ´1 distinct zeros in r0, `8q, then the sign of f changes in the neighborhood of each of its zeros.

3. For any distinct points x 1 ă ¨¨¨ă x N in r0, `8q, and any values y 1 , . . . , y N P R, there exists a unique f P M pLq such that f px i q " y i , @i P 1, N .

We say that the set M pLq is a Tchebychev system on r0, `8q.

Proof :

1. We prove the result by induction on N .

' Let assume that N " 1, that is L " t0u. In that case, the functions in M pLq are simply constants, and the claim is clear.

' Assume that the result holds at rank N and let us consider a set L of cardinal N `1.

We assume that there exists a function f P M pLq that vanish at N `1 distinct points x 1 ă ¨¨¨ă x N `1 in r0, `8q. We observe that px Þ Ñ xf 1 pxqq P M pLzt0uq and that by the Rolle Theorem, f 1 has at least N distinct zeros in r0, 8q. Thus, the function x Þ Ñ gpxq def " pxf 1 pxqq{x µ L belongs to M pLzt0u ´µL q and has at leat N distinct zeros. Since Lzt0u ´µL contains 0 and has a cardinal N , the induction assumption shows that g " 0, which implies f 1 " 0 and thus f " 0.

2. We apply again the Rolle theorem that proves that f 1 has at least N ´2 zeros in p0, `8q that are distinct from the zeros of f .

We set gpxq def " pxf 1 pxqq{x λ 2 and we observe that g is not identically 0, that it belongs to M pLzt0u ´λ2 q and has at least N ´2 zeros in p0, `8q that are distinct from the zeros of f . Therefore, g cannot have any other zero and in particular g cannot vanish at the zeros of f . This implies the f 1 cannot vanish at the zeros of f . In particular, f changes of sign in the neighborhood of each of its zero. 3. The linear map

is injective thanks to the first point and maps a space of dimension N into another space of dimension N . Therefore, Φ is a bijection, and the claim is proved.

Proposition A.8.53

Let L " tλ 0 , . . . , λ N ´1u with 0 " λ 0 ă ¨¨¨ă λ N ´1.

1. For any 0 ď x 1 ă ¨¨¨ă x N we have

If the points x 1 , . . . , x N are not ordered, the sign of the determinant is the signature of the corresponding ordering permutation.

2. For any k ď N ´1 and any points 0 ă w 1 ă ¨¨¨ă w k ă `8, there exists a p P M pLq such that # ppw i q " 0, @i P 1, k , p´1q i ppwq ą 0, @w P pw i , w i`1 q, @i P 0, k , where, for convenience, we have set w 0 def " 0 and w k`1 def " `8.

Proof :

1. Les 0 ď y 1 ă ¨¨¨ă y N be another ordered set of points. For any t P r0, 1s we have V L ptx 1 `p1 tqy 1 , . . . , tx N `p1 ´tqy N q ‰ 0 by the previous proposition. By continuity, we deduce that V L px 1 , . . . , x N q and V L py 1 , . . . , y N q have the same sign. We fix the first N ´1 points and we let x N go to `8. By developing the determinant along the last column, we see that

with L 1 " Lztmax Lu. This implies that V L px 1 , . . . , x N q has the same sign as V L 1 px 1 , . . . , x N ´1q and we conclude by induction.

2. We first remark that it is enough to consider the case k " N ´1. Indeed, if k ă N ´1, we replace L by any subset L 1 Ă L of cardinal k `1 and containing 0, for which M pL 1 q Ă M pLq.

That being said, for a given sign s P t´1, 1u to be determined later, we define the function p as the following determinant ppwq def " s V L pw, w 1 , . . . , w N ´1q, @w P r0, `8q.

By developing the determinant along the first column we get that p P M pLq and moreover it is clear that ppw i q " 0 for any 1 ď i ď N ´1.

The sign properties come from (A.63) and the choice of s.

Observe finally that both definition coincide for i " k since x k " xk and that X k " X k´1 . Moreover, by construction, for any i, X i and X i`1 differ at most by one single point.

It thus remains to show that

with equality if and only if X i " X i`1 .

' Assume that X i ‰ X i`1 for some i. We set g def " Φ L,X i ,k ´ΦL,X i`1 ,k , which is a function in M pLq, and we see that g cancels at the N ´1 distinct points that are common to X i and X i`1 . Let us analyse the sign of g at 0.

-The function g cannot have any other zero. Indeed, in that case it would have N distinct zeros, and thus it would identically vanish. This would imply that X i " X i`1 , a contradiction. This gives the equality case in our claim since Φ L,X i ,k p0q and Φ L,X i`1 ,k p0q have the same sign, which is p´1q k`1 (see Proposition A.8.54).

-By the second point of Proposition A.8.52 we know that g changes it sign at the neighborhood of each of its zeros. We are going to prove that p´1q k`1 gp0q ą 0.

(A.65)

We separate the analysis into two cases depending on the position of i with respect to k ´1 (we recall that i " k ´1 is not possible since in that case we would have X i " X i`1 ).

* Case 1 : i P 0, k : We compute gpx i`1 q " Φ L,X i ,k px i`1 q ´ΦL,X i`1 ,k px i`1 q " Φ L,X i ,k px i`1 q, (A.66)

By assumption on i we have x i`1 ă x k and xi`1 ă xk " x k , and we know that x i`1 ‰ xi`1 , so that (A.64) gives x i`1 ă xi`1 , and thus x i`1 P px i , xi`1 q. By (A.66), and Proposition A.8.54, we know that the sign of gpx i`1 q is such that p´1q i`k`1 gpx i`1 q ą 0.

Using that g changes it sign in the neighborhood of each of its zeros, we know that it changes it sign exactly i times in r0, x i`1 s and we get (A.65).

* Case 2 : i P k ´1, N : We compute gpx N `k´i q " Φ L,X i ,k px N `k´i q ´ΦL,X i`1 ,k px N `k´i q " ´ΦL,X i`1 ,k px N `k´i q, (A.67) since xN`k´i is a zero of Φ L,X i ,k .

By assumption on i, we have x N `k´i ą x k and xN`k´i ą xk " x k , and we know that x N `k´i ‰ xN`k´i so that (A.64) gives xN`k´i ă x N `k´i , and thus xN`k´i P px N `k´i´1 , x N `k´i q. By (A.67), and Proposition A.8.54, we know that the sign of gpx N `k´i q is such that p´1q N ´igpx N `k´i q ą 0.

Using that g changes it sign in the neighborhood of each of its zeros, we know that it changes it sign exactly N `k ´i ´1 times in r0, xN`k´i s and we also get (A.65). To conclude the proof, we write Let A be a (possibly infinite) compact subset of r0, `8r. We assume that #A ě N `1.

For any function f P C 0 pAq, there is a unique p P M pLq such that }f ´p} L 8 pAq " inf qPM pLq }f ´q} L 8 pAq .

(A.68) Moreover, p is the unique element in M pLq such that f ´p equi-oscillates in at least N `1 points of A. This means that there exists x 1 ă ¨¨¨ă x N `1, x i P A, and a sign s " ˘1, such that f px i q ´ppx i q " sp´1q i }f ´p} L 8 pAq , @i P 1, N `1 . (A.69)

Remark A.8.57

In the case where #A ď N , then by the interpolation property (Proposition A.8.52) shows that there exists p P M pLq such that f " p. Therefore, the best uniform approximation property is straightforward in that case.

Proof :

' Existence of at least one such best approximation is just a compactness argument related to the fact that, M pLq is finite dimensional.

' Let us first show that any such best approximation p satisfies the claimed equi-oscillation property. We set g def " f ´p and we assume that there exists a maximal equi-oscillating sequence for g in A of length k ă N `1 denoted by x 1 ă ¨¨¨ă x k and we will obtain a contradiction.

For any i P 1, k we introduce C i def " tx P A, x i´1 ď x ď x i`1 , gpxq " gpx i qu, where we have conventionally set x 0 " ´8 and x k`1 " `8. Since g is continuous on A, C i is a closed subset of the compact set A, and in particular it's a compact set itself.

We define the convex hull of C i to be

We observe, by compacity, that x í , x ì P C i .

-We claim that the intervals D i are disjoint. We are thus going to show that x ì ă x í`1 , @i P 1, k .

By construction we know that x i P C i and x i`1 P C i`1 thus, we clearly get that x ì , x í`1 P rx i , x i`1 s, and that gpx ì q " gpx i q, gpx í`1 q " gpx i`1 q, that have two different signs. Hence, we deduce that x ì ‰ x í´1 . Assume that for some i, we have x í`1 ă x ì . It would imply that the sequence

is an equi-oscillating sequence of length k `2, which is a contradiction with the maximality assumption for the original sequence. The claim is proved.
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For η ą 0 small enough, we see that q " p `ηπ P M pLq satisfies qpyq " ppyq, and }q} L 8 pAq ă 1.

Therefore the element q " q{}q} L 8 pAq is in K and satisfies

Ψpqq " |qpyq| ą |ppyq| " Ψppq, which is a contradiction. In particular, we have |T L,A p0q| ď |T L,I p0q|.

Proof :

' Let X " tx 1 , . . . , xN u be the equi-oscillations points in I of T L,I . In particular we have T L,I px i q " p´1q N ´i, @i P 1, N . p´1q N ´iΦ L, X,i .

' Let ϕ : s P r0, `8rÞ Ñ |A X rs, `8q|. This function is continuous, non-increasing, maps r0, `8r onto r0, |A|s, and ϕpsq " 0 for s ě sup A. In particular, since |I| ď |A|, there exists 0 ď s 1 ď ¨¨¨ď s N ă `8 such that ϕps i q " |I X rx i , `8q|.

We then define

x i " inf ˆA X rs i , `8q ˙.

By compactness of A, we have that x i P A. From now on we set X def " tx 1 , . . . , x N u Ă A.

' Let us now compare X and X.

By definition of ϕ we have ϕpx i q " ϕps i q since rs i , x i q X A " H. This means that |A X rx i , `8q| " |I X rx i , `8q|.

Note that those quantities are positive and in particular we have x i ă sup A ď sup I.