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Chapter 1

Introduction

Disclaimer : Those lecture notes were written to support a Master course given by the author at Toulouse between
2016 and 2018. Since then, they were regularly updated but are still far from being complete and many references of
the literature are lacking (I promise they will be added in the next releases !).

It still contains almost surely many mistakes, inaccuracies or typos. Any reader is encouraged to send me' any
comments or suggestions.

I.1 Whatis it all about ?

We shall consider a very unprecise setting for the moment : consider a (differential) dynamical system

{ y/ = F(ta y?”(t))v (L1)

y(0) = o,

in which the user can act on the system through the input v. Here, y (resp. v) live in a state space E (resp. a control
space U) which are finite dimensional spaces (the ODE case) or in infinite dimensional spaces (the PDE case).

We assume (for simplicity) that the functional setting is such that (I.1) is globally well-posed for any initial data
Yo and any control v in a suitable functional space.

Definition 1.1.1
Let yo € E. We say that:

e (I.1) is exactly controllable from y if : for any yr € E, there exists a control v : (0,T) — U such
that the corresponding solution y, ,, of (1.1) satisfies

Yoo (T) = yr-

If this property holds for any vyo, we simply say that the system is exactly controllable.

lfranck .boyer@math.univ-toulouse.fr
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2 Chapter 1. Introduction

o (I.1) is approximately controllable from vy if : for any yr € E, and any € > 0, there exists a control
v :(0,T) — U such that the corresponding solution y, y, of (1.1) satisfies

|90,y (T) = yrllE < €.

If this property holds for any yo, we simply say that the system is approximately controllable.

e (I.1) is controllable to the trajectories from y if : for any yo € E, and any v : (0,T) — U, there
exists a control v : (0,T) — U such that the corresponding solution y, y, of (I1.1) satisfies

Yoo (T) = Yo,50 (T).

If this property holds for any vy, we simply say that the system is controllable to trajectories.

It is clear from the definitions that
exact controllability = approximate controllability,

exact controllability = controllability to trajectories.

Moreover, for linear problems we have
controllability to trajectories = null-controllability,
and it can be often observed that
controllability to trajectories = approximate controllability.
We will possibly also discuss about related topics like :
e Optimal control : find v such that the couple (y, v) satisfies some optimality criterion.

e Closed-loop stabilisation : Assume that 0 is an unstable fixed point of y — F(y,0) (we assume here that F’
is autonomous), does it exist an operator K such that, if we define the control v = Ky, then 0 becomes an
asymptotically stable fixed point of ' = F(y, Ky).

1.2 Examples

Let us present a few examples.

I.2.1 The stupid example
Y + Ay =,
y(0) = yo.

We want to drive y to a target yp. Take any smooth function y that satisfy y(0) = yo and y(T') = yr and set
v = 1y' — Ay and we are done ... Of course there is much more to say on this example, like finding an optimal control
in some sense.

Thanks to the Duhamel formula, we can write the solution explicitly as a function of yy and v

t
y(t) = e Myo + j e M=)y (s) ds.
0

It follows that y(7") = yr for some v, if we have

T
J e Ty (s) ds = yp — e My,
0

@O0 F. BOYER - JULY 16, 2022



|.2. Examples 3

Any function satisfying this integral condition will be a solution of our problem. It is clear that there exists plenty of
such admissible functions.

e Let us try to consider a constant control v(s) = M for any s € [0,7] and for some M. The equation to be

solved is
1—e AT
Mf =Yyr —¢€ Yo-
It follows that T
yr —e " Yo
M = )\71 T

The L? norm on [0, T'] of this control is given by
HUHL2(0,T) = \M|\/f

— If yr # 0, we thus have
HUHLQ(OJ) A )‘\/ﬂyi .
—+00

This proves that the cost of such a control blows up as A — 0.

This is natural since the equation is more dissipative when A is large and thus the system has more diffi-
culties to achieve a non zero state.

— Conversely, if yr = 0, we have

vl z20,1) N MW T|yole ™,
—4m

and thus the cost of the control is asymptotically small when ) is large.
e Why do not take an exponential control ? For a given u € R, we set
v(t) = Me_“(T_t),
the controllability condition reads

1 — ef(>‘+:u')T

A p

=T
=yr —¢€ Yo,

so that T
yr —e " Yo

M=+ omar

Let us compute the L? norm of such a control

T 1— —2uT

J ()2 dt = M2=— 5
0 2p

_ ()\ + :u)Q (yT - ei)\TyO)2 (1 _ €—2MT)

24 (1-— 67()\+u)T)2 ’

We will see later that this quantity is minimal for ;¢ = )\ and we then obtain
T ( L =AT 2
yr —e " yo) _oAT
P dt = 22— 22 (1 —
[NEC (=),

so that
o] z20,1) Nl V2A|yr|.

—+

Observe that this cost behaves like v/ for large A compared to the constant control case which behaves like A
for large \.

OSSO F. BOYER - JULY 16, 2022



4 Chapter 1. Introduction

1.2.2 The rocket

We consider a rocket which is trying to land on the ground. The rocket is supposed to be a single material point (!!)
and the motion is 1D (in the vertical direction). Let = be the altitude of the rocket and y its vertical velocity. The initial
altitude is denoted by zg > 0 and the initial velocity is denoted by yg (we assume yg < 0 without loss of generality).

The control v is the force generated by the engines of the rocket. The equations of motion of this very simple
example are

'(t) = y(t),
y'(t) = o(t) — g,
z(0) = xo > 0,
y(0) = yo <0,
The goal is to land the rocket at time 7" : we want z(T) = y(T') = 0.

An explicit computation leads to

t

y(t) = yo — gt + L v(s) ds,

t t

1
y(7)dr = ho + yot — §gt2 + J v(s)(t — s)ds.
0

x(t):ho+f

0

We conclude that, for a given 7" > 0, the control law v does the job if and only if it satisfies

T
| vlsds = o7+ .
0
0 ) (1.2)
f v(s)sds = —gT? + hy.
0 2

This is our first (and not last !) contact with a moment’s problem.
There is clearly an infinite number of solutions to the system (I.2). Let us try to build two examples:

e For some 7y € (0,7") and some M > 0 to be fixed later, we look for a control of the following form

M fort < Ty,
v(t) =
0 fort > Tp.

System (1.2) leads to

MTy = gT + |yol,

T2 1
M70 — 5gT‘Z + ho.

This can be solved as follows
~ gT? + 2hg

TO - )
9T + |yol
and

(9T + |yol)®
gT2 + 2hg ’

Note that the condition Ty < T gives
2h0 < |y0|Ta

which mean that such a solution is possible only for a control time 7" large enough.

@O0 F. BOYER - JULY 16, 2022



|.2. Examples 5

e For some «, (3 to be fixed later, we set
v(t) = a+ pt, Vte (0,T).
System (1.2) leads to

T2
ol + f= = 9T + |yol,
T2 7 1
— Z = ZqT?
« 5 + B 3 29 + hg,
that we can solve explicitely
T Tyl
— =h
p 12 2 7’
T? ho 2 \y0|
—_— = — T h
8 " 1'% ot Ty
to obtain 0l m 610l
Yo 0 Yo

We observe that there is no condition on the time T for this function to be a mathematical solution of our
problem. However, we have

6ho
t ~ —
I[Tolggflv( W= 72

which proves that, for small control times 7', the magnitude of the necessary power of the engines may be
infinite. This is of course not reasonable.

Similarly, for a real rocket, we expect v to be a non negative function. Looking at the expression above, we see
that the non-negativity of v holds if and only if the following condition holds

|6ho — 3Jyo|T| < gT? + |yo|T-
Here also, this condition is satisfied if 7" is large enough and certainly not satisfied for small values of 7T". It thus
seems that this particular control is not physically admissible for small control times 7.

The above solution defined in (I.3) is nevertheless interesting (from a modeling and mathematical point of view)
since we can show that it is, for a given T, the unique solution among all possible solutions which has a minimal
L? norm.

T T
f lu(t)[? dt = argminf lw(t)[? dt.

0 w admissible JO

Let us prove this in few lines : if w : [0,T] — R is a control function that drives the solution at rest at time 7',
then it also solves the equations (I.2) and in particular we have

ij —w)(s)ds = 0,

0

JT s(v —w)(s)ds = 0.

0
Since v is a linear function, that is a combination of s — 1 and s — s, the above relations give

JTU(’U —w)ds = 0.

0

This means that v — w is orthogonal to v in L? and the Pythagorean theorem leads to
[wle = (w —v) + 0|2 = w —vlF2 + o7z > o7,
with equality if and only if v = w.

The solution v is thus the optimal cost control with this particular definition of the cost.

@O0 F. BOYER - JULY 16, 2022



6 Chapter I. Introduction

Exercise 1.2.2 (The damped rocket model)

In practice, the command of the pilot is not instantaneously transmitted to the rocket. To model this behavior,
we introduce a delay time T > 0 and replace the previous model with the following one

2'(t) = y(t),

y'(t) =w(t) —g,

w/(t) = 2 (0(t) — wit),
z(0) = z9 > 0,

y(0) = yo <0,

w(0) = 0.

By using the same approach as before, show that the previous system is controllable at any time T" > (.
Compute explicitly such controls and try to find the one with minimal L*(0,T) norm.

I.2.3 Nonlinear examples

We consider a nonlinear autonomous (this is just for simplicity) ODE system of the form (I.1) and we assume that
F(0,0) = 0 in such a way that (y,v) = 0 is a solution of the system. We would like to study the local controllability
of the nonlinear system. To this end, we consider the linearized system

y' = Ay + Bo, 1.4)

where A = DyF(0,0) and B = D, F(0,0) are the partial Jacobian matrices of F* with respect to the state and the
control variable respectively.

We will not discuss this point in detail but the general philosophy is the following:

¢ Positive linear test:

If the linearized system (I.4) around (0,0) is controllable, then the initial nonlinear system (I.1) is locally
controllable at any time T" > 0. More precisely, it means that for any 7' > 0, there exists € > 0 such that for any
Yo, yr € R™ satisfying |yo|| < € and |yr| < &, there exists a control v € L*(0, T, R™) such that the solution
of (I.1) starting at yo satisfies y(T") = yr.

e Negative linear test:

Unfortunately (or fortunately !) it happens that the linear test is not sufficient to determine the local controlla-
bility of a nonlinear system around an equilibrium. In other words : nonlinearity helps !

There exists systems such that the linearized system is not controllable and that are nevertheless controllable.
e The nonlinear spring:
y' = —ky(1 + Cy?) + v(t).
The linearized system around the equilibrium (y = 0,v = 0) is

"n_

y = —ky+w,

which is a controllable system (exercise ...). Therefore, we may prove that the nonlinear system is also control-
lable locally around the equilibrium y = ' = 0.

e The baby troller: This is an example taken from [ 1.

The unknowns of this system are the 2D coordinates (y1, y2) of the center of mass of the troller, and the direction
ys of the troller (that is the angle with respect to any fixed direction). There are two controls v; and vy since

@O®S0 F. BOYER - JULY 16, 2022



|.2. Examples 7

the pilot can push the troller in the direction given by y3 (with a velocity v1) or turn the troller (with an angular
veloctiy v2). The set of equations is then

?/1 = vy cos(y3),
yh = vy sin(ys),

/
y3 - '1)2.

Observe that any point §j € R3, o = 0 € R? is an equilibrium of the system. The linearized system around this
equilibirum reads

yi = v1 cos(¥3),
yh = vy sin(ys),

yé = V9.
It is clear that this system is not controllable since the quantity
sin(y3)y1 — cos(¥3)y2,

does not depend on time.

It follows that the (even local) controllability of the nonlinear system is much more difficult to prove ... and
actually cannot rely on usual linearization arguments. However, it is true that the nonlinear system is locally
controllable, see [ ].

I.2.4 PDE examples

e The transport equation : Boundary control

Let yo : (0,L) — R and ¢ > 0, we consider the following controlled problem

Oy + cozy =0, Y(t,x) € (0, +00) x (0, L),
y(O,IE) = yO(‘T)’ Vx e (O’ L)a (IS)
y(t,0) = v(t).

When posed on the whole space R, the exact solution of the transport problem reads
y(t,z) = yo(c — xt), YVt =>0,VxreR.

This can be proved by showing that the solution is constant along (backward) characteristics. In presence of an
inflow boundary, the same property holds but it may happen that the characteristics touch the boundary at some
positive time. In this case, the boundary condition has to be taken into account.

Therefore, for a given yg and v, the unique solution to Problem (I.5) is given by

(t,2) yo(x —ct), forxze (0,L),t<x/c,
y L) =
Y ot —zfc), forze(0,L),t> z/ec.

In the limit case ¢ = z/c there is an over-determination of the solution that cannot be solved in general. It
follows that, even if yo and v are smooth, the solution is a weak solution which is possibly discontinuous. If,
additionally, the initial condition and the boundary data satisfy the compatibility condition

@O0 F. BOYER - JULY 16, 2022



8 Chapter 1. Introduction

then the exact solution is continuous.

Theorem 1.2.3

— If T = L/c the transport problem is exactly controllable at time T, for initial data and target in
L?(0, L) and with a control in L*(0,T).

If additionally we have T' > L/c and yo,yr are smooth, then we can find a smooth control v that
produces a smooth solution .

— If T < L/c the transport problem is not even approximately controllable at time T

e The heat equation : distributed internal control acting everywhere.

Let yo : (0, L) — R, we consider the following controlled problem

Oy — 02y = v(t,x), Y(t,z) € (0, +o) x (0, L),
y(O,x) = yO( )7 Vz € (OvL)7 (L.6)
y(t,0) = y(t,L) =0, Vt> 0.

Take L = 7 to simplify the computations. We look for y, v as a development in Fourier series

2) = V2/r ) yn(t) sin(na),

n=1
=/2/m Z Up (t) sin(nz)
n=1
For each n the equation (1.6) gives
Yn(t) + 102ya(t) = va(t),

where y,(0) = yno = \/2/7 So yo(z) sin(nx) dx is the n-th Fourier coefficient of the initial data yy. We try to
achieve a state yr € L*(Q) whose Fourier coefficients are given Yn,T-

For each n we thus have to build a control v, for a single ODE. We have seen that there are many solutions to
do so. We need to take care of this choice since, at the end, we need to justify the convergence in some sense of
the series that defines v.

— Reachable set from 0. We assume that yo = 0 and we would like to understand what kind of targets can
be achieved and the related regularity of the control.

* If we choose v,, to be constant in time, the computations of Section 1.2.1 show that

Formally, we have thus found a time independent control v that reads

\/TZ ynT — sin(nz).

n>1

The question is : what is the meaning of this series. Does it converges in L?(0, 7) for instance ? We
see that
ve L*(0,7) < yre H*(0,7) n H(0,7),

ve HY0,7) < yre HY0,7),
ve H2(0,7) < yre L*0,).

OSSO F. BOYER - JULY 16, 2022



[.3. General notations 9

x Can we do better 2 We have seen in Section I.2.1, that a better control (in the sense of a smaller L?
. . . . 2
norm) consists in chosing an exponential control v, (t) = M,e~™ (T=*)_ In that case, we have the
estimate

HUn”LQ(o,T) e Cnlyn,r|-
It can then be checked that the regularity of such a control is related to the regularity of y as follows.
ve L2(0,T,L*(0,m) = yr e Hy(0,7),

ve L*(0,T,H 1(0,7)) < yreL*0,nr).

As a conclusion, if one wants to control to a target which is in L?(0,7), we can either take a time-
independent control in H~2(0, 7) or a time dependent control in L2(0, T, H~1(0,7)). In some sense we
pay the higher regularity in space of v by a smaller regularity in time of v.

Another way to understand this analysis is that, if one wants to be able to control the equation with a
control that only belongs to L?((0,T) x ), we need to impose y7 € H}(0, 7). A target yr belonging to
L?(0,m)\Hg (0, ) (such as a indicatrix function for instance) is not achievable by controls in L.

Null-controllability : We ask now a different question : we assume that y = 0 and that yg is any
function. Is it possible to achieve O at time 7" starting from any yo ?

* If we choose v, to be constant in time, the computations of Section 1.2.1 show that

27
—n’e " Tynp 2 —n2T
vn(t) = T e Yn,0-

Formally, we have thus found a time independent control v that reads

—\/2/n Z —M sin(nx).

n=1

and we observe that this series converges for any yq in a possibly very negative Sobolev space H .
This is a nice consequence of the regularizing effect of the heat equation (without source terms).
It follows immediately that the null-controllability of the heat equation is much more easy to achieve
than the exact controllability to any given trajectory.

* Just like before we could then try to find the optimal control in the L? sense. We will discuss this
question in a more general setting later on.

In practice, we will be interested in control problems for the heat equation that are supported in a subset of the
domain € or on the boundary. This makes the problem much more difficult as we will see in the sequel since
it is no more possible to use a basic Fourier decomposition that lead to the resolution of a countable family of
controlled scalar, linear, and independent ODEs.

I.3 General notations

We gather in this section a few notations that we use in this document.

o Integer intervals

For any real numbers a < b we introduce the following sets of integers

GlOIS(O)

[a, 6] = N~ [a, b],
[a,b[=N n[a,b),
Ja,b] = N A (a, 8],
Ja,b[= N n (a,b)

F. BOYER - JULY 16, 2022



10 Chapter 1. Introduction

e Multi-indices

Letn > 1. A multi-index « is an element of N™. Its length is denoted by

n
af = Z Qs
=1

and its maximal value is
lalee = max a;.
i€[1,n]

Moreover, if «r, 5 € N™ are two multi-indices, we say that o < £ if and only if a; < ;, Vi € [1,n].

e The complex plane

We will denote by C* the open half-plane of complex numbers with positive real part, and D(z, R) the open
disk with centre z and radius R.

For any complex number A € C, we define e[A] to be the exponential function
e[N] & (t — e_’\t) . 17)
When evaluating this function at time ¢ we shall write e;[\] = e~**. This bracket notation is motivated by the

fact that we shall need, from time to time, to use the (generalized) divided differences formalism recalled in
Section A.2. In particular for any 5 € N we shall set

et[A(j+1)] — (ji';)je)\t' (18)

¢ Functional spaces

For every open interval I = R we denote by L?(I) the space of square integrable complex valued functions,
which is an Hilbert space when equipped with the inner product

(fs9) 2y = Lf(t)g(t) dt.

For I = (0,T), we shall also use the notation L?(0,T).
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Chapter 11

Controllability of linear ordinary differential
equations

In this chapter, we focus our attention on the following controlled system

{y’(t) + Ay(t) = Bo(t), (IL1)

y(0) = o,

where A € M,(R), B € M, »(R), y(t) € R” and v(¢) € R™. Note that A and B do not depend on time (even though
some part of the following analysis can be adapted for non autonomous systems).
We shall often denote by £ = R" the state space and by U = R the control space.

II.1 Preliminaries

II.1.1 Exact representation formula

Given an initial data yp € R™ and a control v, we recall that (II.1) can be explicitely solved by means of the funda-
mental solution of the homogeneous equation ¢ — e 4z, z € R” and of the Duhamel formula. We obtain

t
y(t) = e Ay + j e~ =94 By(s)ds, Vte[0,T].

0
In particular, the solution at time 7" (which is the object we are interested in) is given by

T
y(T) = e~TAy + J e~ (T4 By(s) ds. (I1.2)
0

We recall that the exponential of any matrix M is defined by the series

k
vy 4
© T L

k=0

which is locally uniformly convergent.
The linear part (in v) of the solution will be denoted by

T
Lrv d—eff e~ T=94By(s) ds,
0

it corresponds to the solution of our system with the initial data yg = 0.
In the non-autonomous case, we need to use the resolvant matrix as recalled in Appendix A.1.
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12 Chapter II. Controllability of linear ordinary differential equations

II.1.2 Duality

As we will see later on, it will be very useful to adopt a dual point of view in our analysis. For the moment, we simply
pick any qr € R™ and we take the Euclidean inner product of (I1.2) by g7. We get

T
W), ard = Ty, qrde + f (e~ T=9ABu(s), g ds.
0

that we can rewrite, using the adjoint operators (=transpose matrix in this context), as follows

T
(T, qr)E = Yo, e T4 qrdp + f (u(s), B¥e~T=94% 415 ds. (I1.3)
0

We can still reformulate at little bit this formula by introducing the adjoint equation of (II.1) which is the backward in
time homogeneous system (i.e. without any control term)

—q'(t) + A*q(t) = 0, (I1.4)
with the final data ¢(T") = g and which can be explicitely computed
g(t) = e T,

We will see in Section IL.5 the reason why the adjoint equation enters the game.
With this notation, (II.3) becomes

T
T, a(T)e = o, a0 + f (u(s), B*q(s))u ds, aLs)

and this equation holds true for any solution ¢ of the adjoint system (I1.4)

I1.1.3 Reachable states. Control spaces

The solution of our system (I1.2) is well-defined as soon as v € L'(0,T,R™) = L'(0,T,U), see Appendix A.1 and
the corresponding solution map L7 : v > ¥ is continuous from L' (0,7, U) into C°([0, T, E).
For any subspace V < L'(0,T,U) we define the set of reachable states at time 7" as follows

T
Ry (yo) = {G_TAyo + f

e—(T_S)ABv(s) ds, forve V} = e_TAyo + Lr(V).
0

We immediately see that Rz v (yo) is a (finite dimensional) affine subspace of E = R™. Moreover, since L is
continuous for the L' (0, T, U) topology, we obtain that

Ry (yo) = Rrv (yo),
and since this last space is finite dimensional, we finally have
Ry (yo) = Rrv (yo)-
As a consequence, for any dense subspace V of L'(0, T, U), we have
Rry(yo) = Rr.110,1,0)(%0)-

Therefore, in the sequel we can choose, without consequence, any dense subspace of L' (0,T,U) to study the con-
trollability properties of our system and the corresponding reachable set will simply be denoted by R (yp).

As a consequence of the previous analysis, we have that if yp € Rp(y) we can actually achieve this target with a
control belonging to the space C°(]0, T7).
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II.2 Kalman criterion. Unique continuation

The first criterion we have in order to decide whether or not (I1.1) is controllable is the following famous result.

Theorem I1.2.1 (Kalman rank criterion)

LetT' > 0. The following propositions are equivalent.
1. Problem (S) is exactly controllable at time T (for any yo, yr ...)
2. Problem (S) is approximately controllable at time T (for any yo, yr ...)

3. The matrices A and B satisfy

rank(K) = n, with K = (B|AB|...|A""'B) € My, un(R). (IL.6)

If any of the above properties hold we say that the pair (A, B) is controllable.

The matrix K in this result is called the Kalman matrix.
Remark I1.2.2

o This result shows, in particular, that in this framework the notions of approximate and exact control-
lability are equivalent.

e [t also shows that those two notions are independent of the time horizon T.

o [t is very useful to observe that the rank condition (11.6) is equivalent to the following property

Ker K* = {0}.

Proof :
In this proof, we assume that yg is any fixed initial data.

1.<2. Since we work in a finite dimensional setting, it follows from (I1.2) that

exact controllability from yo <= Rr(yo) = F
<= Ryp(yo) is dense in F

<= approximate controllability from .

1.=3. Assume that rank(K) < n, or equivalently that Ker K* # {0}; it follows that there exists g7 € R™\{0} such
that K*g7r = 0. But we have

K*qr =0<= B*(A")Pqr =0, Vp<n
<= B*(A*)Pqpr =0, Vp > 0, by the Cayley-Hamilton Theorem

— B*e g =0, Vs e [0,T], by the properties of the exponential.

By (IL.3), we deduce that such a g7 is necessarily orthogonal to the vector space Ry (yo) —e_TAyO, and therefore
this subspace cannot be equal to R".

3.=1. Assume that our system is not exactly controllable at time 7'. It implies that, there exists a g # 0 which is
orthogonal to Ry (yo) — e~ T4yo. By (IL.3), we deduce that for any control v we have

T
f (u(s), B*e"T=94% 45 ds = 0.
0
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14 Chapter II. Controllability of linear ordinary differential equations

We apply this equality to the particular control v(s) = B*e~(T=9)A% 1 o deduce that we necessarily have

B*e A% qr =0, Vse [0,T].

The equivalences above show that g7 € Ker K* and thus this kernel cannot reduce to {0}.

Remark 11.2.3
At the very beginning of the proof we have shown that

qr € Ker K* < qr € Qr,
where Q is the set of the non-observable adjoint states defined by
Qr ¥ {qr e R, B qr =0, Vse [0,T]}.

Thus, another formulation of the Kalman criterion is
(A, B) is controllable <= <B*68A*qT =0, Vse[0,T] = qr = 0>,

This last property is called the unique continuation property of the adjoint system through the observation
operator B*.

The point we want to emphasize here is that, in the infinite dimension case, it can be difficult to define a
Kalman matrix (or operator) if A is an unbounded linear operator (because we need to compute successive
powers of A) but however, it seems to be affordable to define the set Qr as soon as we have a suitable
semi-group theory that gives a sense to e~ sA* for s = 0 since it is not possible in general to simply set
e sA% — D=0 L (—sA*)k when A* is a differential operator.

More precisely, if we imagine for a moment that A is an unbounded linear operator in an Hilbert space (for
instance the Laplace-Dirichlet operator in some Sobolev space), then it is very difficult to define a kind of
Kalman operator since it would require to consider successive powers of A, each of them being defined on
different domains (that are getting smaller and smaller at each application of A).

Example 11.2.4
Without loss of generality we can assume that B is full rank rank(B) = m.
1. If the pair (A, B) is controllable, then the eigenspaces of A* (and thus also those of A) has at most

dimension m. For instance if m = 1, a necessary condition for the controllability of the pair (A, B)
is that each eigenvalue of A* is geometrically simple.

Another necessary condition is that the minimal polynomial of A* is of degree exactly n.
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2. Second order systems. With the same notations as before, the second order controlled system
y" + Ay = Bu,
is controllable if and only if the pair (A, B) satisfies the Kalman criterion.

3. Conditions on the control: If the pair (A, B) is controllable then we can find controls satisfying
additional properties.

e For any vg € R™ and vy € R™ we can find a control v from yq to yr for our system such that

y(0) = yo, y(T) = yr, v(0) = vo, and v(T') = vp.

e We can find a control v e CF(0,T) such that y(0) = yo and y(T') = yr.

In view of the techniques we will present later on on the controllability of parabolic PDEs, we shall now present
another proof of the previous theorem.
Proof (of Theorem I1.2.1 - direct proof):

We shall actually prove that, if the Kalman condition is satisfied then our system is indeed controllable. Moreover,
we shall give a constructive proof of the control.

For simplicity (and since we are mainly interested in presenting the method and not in the general result that we
have already proved before), we shall assume that m = 1. We also assume that y7 = 0 (which is always possible for
a linear system).

By assumption the square (since m = 1) matrix K is invertible and thus we shall use the change of variable
y = Kz in order to transform our control system. A simple computation shows that

0 - -+ 0 aiy,
1 .

0 1 0 - azy

B=K ,and AK = K | Y oasm
0 0

— 0 -+ 0 1 app

=B J

—i

It follows that the equation for 2
K7 + AKz = Bu,

becomes B B
K(2' + Az) = KBuv,
and since K is invertible
2+ Az = Bv (I1.7)

With the Kalman matrix, we thus have been able to put our system into a canonical form where A has a companion
structure (it looks pretty much like a Jordan block) and B is the first vector of the canonical basis of R”.

This structure if often called cascade systems in control theory. The important feature of A is that its under
diagonal terms do not vanish. It reveals the particular way by which the control v acts on the system. Indeed, v
directly appears in the first equation and then tries to drive 27 to the target at time 7' (observe however that the
dynamics is also coupled with the rest of the system by the term a; ,,2,)

21(t) + a1 20 (t) = v(1).
The control v does not appear in the second equation

25(t) + 21 (t) + agnzn(t) = 0,
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16 Chapter II. Controllability of linear ordinary differential equations

but this equation contains a term z; that plays the role of an indirect control of 25, and so on ...
Let us now give the construction of the control v:

e We start by defining (Z;)1<i<n to be the free solution of the system (the one with v = 0).
e We choose a truncature function ) : [0,7] — R such thaty = 1 on [0,7"/3] and » = 0 on [27'/3,T].

e We start by choosing
def

zn(t) = n(t)zn(t),
then, by using the last equation of the system (II.7), we need to define

def ¢

Zn—1(t) = 2,(t) — an—1,n2n(t).

Similarly, by using the equation number n — 1 of (I1.7), we set

Zn-2(t) = 2,1 (t) — n-2,02a(t).

by induction, we define z,,_3, .. ., 29 in the same way.

Finally, the first equation of the system (I[.7) gives us the control we need
v(t) = 21(t) + a1 nzn(t).

By such a construction, the functions (z;); satisfy the controlled system with the control v we just defined.

e Let us prove, by reverse induction that, for any k we have

zr = 2k, in |0,T/3],
k= %, in [0,T/3] (IL8)
2z, =0, in [27/3,T1.
This will in particular prove that z(7") = 0 and that z(0) = 2(0) = 2(0) = zo.
— For k = n, the properties (I1.8) simply comes from the choice of the truncature function.
- For k = n — 1, we observe that, by construction and induction, for any ¢ € [0,7"/3],
Zn-1(t) = Z;m(t) — ap—1n2n(t) = Z_n/(t) — ap-1nZn(t) = Zn-1(1),
the last equality coming from the fact that z solves the free equation.
— Andsoonuptok =1, ...
]

Exercise I1.2.5

Propose a similar proof to deal with the case m = 2 and rank(B) = m = 2.

Exercise I1.2.6

Assume that A, B are such that the rank r of the Kalman matrix K satisfies r < n. Then there exists a

P e GL,(R) such that
B A A\ 51 _ B,
A_P<O A22>P ,and B=P L

and moreover the pair (A11, By) is controllable.
What are the consequences of this result for the controllability of the initial system ?
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Exercise I1.2.7 (Partial controllability)

We assume given p < n and a matrix P € M, ,,(R). We say that (11.1) is partially controllable relatively
to P if and only if for any yo € R"™ and any §jr € RP there exists a control v € L*(0,T;U) such that the
associated solution to (11.1) satisfies

Py(T) = yr.
Show that (11.1) is partially conntrollable relatively to P if and only if

rank(Kp) = p,

where
Kp = (PB|PAB|...|PA"'B) € My mun(R).

I1.3 Fattorini-Hautus test

We are going to establish another criterion for the controllability of autonomous linear ODE systems. This one
will only be concerned with the eigenspaces of the matrix A*, and we know that there are plenty of unbounded
operators for which we can define a suitable spectral theory. It is then easy to imagine that we will be able, at least, to
formulate a similar result in the infinite dimension case.

Theorem I1.3.8 (Fattorini-Hautus test)
The pair (A, B) is controllable if and only if we have

Ker (B*) n Ker (A* — M) = {0}, YAeC. (I1.9)
In other words : (A, B) is controllable if and only if

B*¢ # 0, for any eigenvector ¢ of A*.

Let us start with the following straightforward lemma (in which the space ()7 is considered as a subspace of C™).

Lemma I1.3.9
For any polynomial P € C[X ] we have

P(A*)Qr < Qr.

Proof :
Let g7 € Q7. By definition, we have
B*GSA*qT =0, Vs e R,

so that by differentiating k times with respect to s, we get
B*e* (A*)rqr = 0, Vs e R.

It means that (A*)*qr € Q7. The proof is complete. ]
Proof (of Theorem I1.3.8):

The Kalman criterion says that (A, B) is controllable if and only if we have Ker K* = {0}. Moreover, we saw at
the end of Section II.2 that this condition is equivalent to saying that there is no non-observable adjoint states excepted
0, that is

Qr = {0}.
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18 Chapter II. Controllability of linear ordinary differential equations

e Assume first that (I1.9) is not true. There exists a A € C and a ¢ # 0 such that
A*¢ = \p, and B*¢ = 0.
Note that, in particular, X is an eigenvalue of A*. A straighforward computation shows that
B*efsA*(ﬁ _ B* (efs*gb) — e B*p = 0.
This proves that ¢ € Q7 so that Q7 # {0}. Therefore the system does not fulfill the Kalman criterion. We have
proved the non controllability of the system.

e Assume that (I1.9) holds and let ¢ € Q7. We shall prove that ¢ = 0. To begin with we take A € C an eigenvalue
of A* and we introduce F the generalized eigenspace associated with A, that is

E)\ = Kercn(A* — AI)™.
Linear algebra says that we can write the direct sum
(Cn :E/\1@'”®E)‘p’

with distinct values of (\;);.

We recall that the projector on £\ associated with such a direct sum can be expressed as a polynomial in A* :
there exists polynomials P € C[.X] such that

p
¢ = Y P\ (A*)¢, with Py (A*)¢ e Ey,, Vie [L,p]. (IL.10)
=1

By Lemma I1.3.9, we have ¢, o Py (A*)¢ € Qp. We want to show that ¢, = 0. If it is not the case, there

exists £ > 1 such that
(A* = XD)*¢y =0, and (A* — XI)*"1gy # 0.

This proves that (A* — A\I)¥~1¢, is an eigenvector of A* and, by Lemma I1.3.9 it belongs to Q7. Since by
definition we have Q1 < Ker B*, we have proved that

(A* — XI)¥1¢y € Ker (B*) n Ker (A* — \I),

which is a contradiction with (I1.9).

Therefore, ¢, = 0 for any eigenvalue A and, by (I1.10), we eventually get ¢ = 0.

Remark 11.3.10

The above proof of the Fattorini-Hautus test is not necessarily the simplest one in the finite dimension case
but it has the advantage to be generalizable to the infinite dimensional setting, see Theorem I11.3.7.

Exercise I1.3.11 (Simultaneous control)

Let us assume that m = 1 and we are given two pairs (A1, By) (dimension ny) and (Az, Ba) (of dimension
ny). We assume that both pairs are controllable and we ask the question of whether they are simultaneously
controllable (that is we can drive the two systems from one point to another by using the same control for
both systems).

Show that the two systems are simultaneously controllable if and only if Sp(A1) N Sp(A42) = .

@O0 F. BOYER - JULY 16, 2022



[1.4. The moments method 19

II.4 The moments method

We shall now describe, still in the simplest case of an autonomous linear controlled system of ODEs, one of the
methods that can be used to construct a control and that will appear to be powerful in the analysis of the control of
evolution PDEs in the next chapters. We will assume that the Fattorini-Hautus condition (I1.9) holds and we fix the
target to be yr = 0 to simplify a little the computations.

This method relies on more or less explicit formulas for the exponential matrices e~
A*.

We present the method in the case m = 1 (B is thus a single column vector) even though it can be adapted to
more general settings. Let us denote by A = Sp(A*) the complex spectrum of A*. Since m = 1, we known by the
Hautus test (or by Example 11.2.4) that all the eigenspaces are one dimensional.

For each A € A, we can then choose one eigenvector <I>9\ e C™. Let a, € N* be the algebraic multiplicity of the

* . .
s4™ using eigenelements of

eigenvalue \ and <I>f\, J € [1, [ be an associated Jordan chain, that is a sequence of generalized eigenvectors that
satisfy
(A* =N} =1 Te[1,a,].

Those vectors are defined up to the addition of any multiple of the eigenvector <I>?\. Since B*@E{ # 0 by (I1.9) we
can impose, in addition, the condition
B*®, =0, Vie[l,a,[ (IL11)

In the coming computations we will use the notation e[\] and e[AU+1)] introduced in (I.7) and (1.8), as well as
the (generalized) divided differences formalism as recalled in Section A.2.
With those notations in mind, we can compute for any s € R, the action of the exponential on the Jordan chain as

follows l

efsA* q)l)\ _ Z es[A(j+l)](I)l>\—j7
=0
or with the Leibniz formula
e ol = (e, @)[AFV].

Using (I1.3), we see that a function v is a control (with target y7 = 0) if and only if we have (here U = R)

T
J v(s)B*e T grds = —(yo, e T qryp = (e yo, arde, Yar € R™
0

Note that we can also test this equality with complex adjoint states g7 € C".

By linearity, it is enough to test this equality on a basis of C". In particular, we can use the basis (@l)\)l [f\oe A : and
€|V,
we obtain that v is a control if and only if we have

T
f v(s)(er—s B*®) [NV ds = —(e Ty, ®4), YA€ A, Ve [0,a,].
0

Using (II.11), we get that this set of equations simplifies as follows

T
(B*cpg)f v(s)er_s [NV ds = —(e T Ayo, ®4), VA e A, Ve [0, a,][.
0
Defining
wh < i 1154V (I)ZQ,
B*®]

we see that v is control for our problem if and only if the function u(t) = v(T — t) (introduced to simplify the
formulas) satisfies

T
f u(s)es A ds = wh, VAe A, Vie [0, o] (I.12)
0
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This kind of problem is called a moments problem : we need to find a function v whose integrals against a given
family of functions is prescribed, or in other words, to find a function v whose L?(0,T') inner products against a
family of functions in L? is prescribed. If this family was orthogonal in L? the solution will be straightforward but
unfortunately it is clearly not the case here.

However it can easily be seen that

E = {e[A""V], xe A le[0,an]},

is a linearly independent family in L2(0, T').
By Proposition A.3.21, we know that there exists a biorthogonal family in L?(0,7T) to E that we denote by

F={f, XeA,le[0,ar[}

This means that we have -
f e XD F5(s) ds = 601
0

It is then clear that the function .
o) —

u(t) = D, X wAA®),

AeA 1=0

is a solution to (I.12). Therefore v(t) = u(T — t) is a control that drives the solution to our system to y7 = 0 at time
T.

Remark 11.4.12

The argument above is actually an alternative proof that the Fattorini-Hautus criterion is a sufficient con-
trollability condition for our system (indeed we managed to build a control by simply using the fact that
B*¢ # 0 for any ¢ which is an eigenvector of A*).

Remark 11.4.13 (Optimal L?(0, T") control)

The construction above strongly depends on the choice of the biorthogonal family F' since there are infinitely
many such families. However, choosing the unique such family that satisfy

F c Span(E), (I1.13)

as mentioned in Proposition (A.3.21), then we can prove that the associated control, that we call vy, is the
one of minimal L*(0, T')-norm.
Indeed, assume that v € L?(0,T) is any other admissible control for our problem and let uo(t) = vo(T —t)
and u(t) = v(T —t). Since u and ug both satisfy the same system of linear equations (11.12), we first deduce
that

T

J (u(s) — up(s))es A D] ds = 0, YA€ A, VI € [0, an].
0

Using now the fact that ug is a combination of the elements in F' and by the assumption (11.13), we conclude
that

T
f (u(s) —up(s))up(s)ds = 0.
0
This naturally implies that

[ulZe = luol7z + Ju —uol?s,
and of course that

[o]72 = ol 72 + v = vollZ..

This actually proves that vy is the unique admissible control with minimal L? norm.
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IL.S Linear-Quadratic optimal control problems

In this section, we will discuss a class of problems which is slightly different from the controllability issues that
we discussed previously. However, some of those results will be useful later on and are interesting by themselves (in
particular in applications).

II.5.1 Framework

Since it does not change anything to the forthcoming analysis we do not assume in this section that the linear ODE we
are studying is autonomous. More precisely, we suppose given continuous maps t — A(t) € M, (R) and t — B(t) €
M, m(R) and an initial data yo and we consider the following controlled ODE

{y’(t) +A@)y(t) = B(t)o(t), (IL.14)

Following appendix A.1, this problem is well-posed for v € L'(0,T,R™), in which case the solution satisfies
y € C°([0,T],R™) and the solution map v € L' + y € C is continuous.

Let now ¢ — M, (t) € S;F (R), t — M,(t) € S;;(R) be two continuous maps with values in the set of symmetric
semi-definite positive matrices S, (R) and My € S,I be a symmetric semi-definite positive matrix. We assume that
M, is uniformly definite positive :

3a >0, (My(t)E, &u = afé]?, Ve e R™, Ve e [0,T]. (IL15)

For any given control function v € L?(0,T, R™), we can now define the cost functional

et 1 T 1 (T 1
P2 [ty Oute) e+ 3 [ Q00,000 b+ SOy,

where, in this formula, ¥ is the unique solution to (II.14) associated with the given control v. Since y depends linearly
on the couple (yo,v), we see that the functional F' is quadratic and convex. Moreover, it is strictly convex thanks to
the assumption (I1.15).

I1.5.2 Main result. Adjoint state
Theorem I1.5.14

Under the assumptions above, there exists a unique minimiser v € L?(0,T,R™), of the functional F on
the set L*(0, T,R™).

Moreover, v is the unique function in L*(0, T, R™) such that there exists q € C1 ([0, T],R") satisfying the
set of equations

y'(t) + A(t)y(t) = B(t)u(t),
y(0) = o,
$ =4/ (t) + A*(t)q(t) + M, (t)y(t) = 0, (IL.16)
q(T) = —Mry(T),
{ 0(t) = My ()" B*(t)q(t)

Moreover, the optimal energy is given by

1
inf  F=F(t) = —={q(0 .
e (0) = =5<4(0), 30,

Such a function q is called adjoint state associated with our optimization problem.
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Observe that there is no assumption on A and B for such an optimization problem to have a solution.

Remark I1.5.15

One of the consequence of the previous theorem is that the optimal control v is at least continuous in time
and, if all the matrix-valued functions in the problem are C* then the solution v is itself C*.

Before proving the theorem we can make the following computation.

Proposition I11.5.16
Assume that (y, q,v) is a solution to system (11.16), then we define ¢(t) = (y(t), q(t)) and we have

¢'(t) = (My(t)y(t), y(t))E + Mu(t)v(t), v(t))u-

In particular, the solution of (11.16) (if it exists) is unique.

Proof :
We just compute the derivative of ¢ to get

¢'(t) = {d' (1), y(t))e + {a(t),y' (t))E
) +

= (A*()q(t) + My ()y (), y(t))e — {q(t), A(t)y(t) — B(t)v(t))k
= (M (t)y(t),y(t))E + <B* ()q(t), v(t)u
= (My(t)y(t), y(t)) B + My (t)v(t), v(t))u.

In particular, ¢ is non-decreasing. If yo = 0, then ¢(0) = 0 and thus ¢(7") > 0 and by construction we have

H(T) = —(M7y(T),y(T))g =0

By assumption on My, we deduce that Mpy(T) = 0 (notice that My is not assumed to be definite positive) and using
the equation relating ¢(7") to y(7"), we deduce that ¢(T") = 0 and that ¢(7) = 0
It follows, by integration over the time interval (0, 7"), that

T T
fo My + (Moo, o)y di = JO §(t) dt = 6(T) — $(0) = 0.

By assumption on M,,, we deduce that v = 0. The equation for ¥ leads to y = 0 and finally the equation on ¢ gives
q=0.
]

Let us now prove the main result.

Proof (of Theorem I1.5.14):

Uniqueness of the minimizer comes from the strict convexity of F'. Moreover, F' is non-negative and therefore
has a finite infimum. In order to prove existence of the minimizer, we consider a minimizing sequence (v,)n,
L2(0,T,R™) :

F(vy,) —— inf F.

n—ao0
We want to prove that (vy,), is convergent. We may proceed by weak convergence arguments (that are more general)

but in the present case we can simply use the fact that I is quadratic and that the dependence of y with respect to v is
affine. In particular, we have

T
s (5) = [t 4 w01+ Ot

T
+ fo (My(v1 + v2) (), (v1 + v2)(t))u dt + (Mr(y1 +y2)(T), (y1 +y2)(T))E,
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and by the parallelogram formula we have

8F (”1 ; ”2> = 4F(v1) + 4F (v3)

T T
—8<f<m@uu—yﬂa»@1—yg@»Eﬁ+1[<wuw1—vﬂ@»an—vﬂ@»vw
0 0

+<M%@y—mxT»@1—mxT»E)

By (II.15), we deduce that

V1 + v
2F<122><Fwn+F@ﬂ—Mm—w@%

Applying this inequality to two elements of the minimizing sequence v,, and vy, y,, we get

Up + Un+p

21an<2F< 5

)sﬂwwwwwm—ww—%wm,

from which we deduce that

lim (sup v — Un+pL2> =0.
n—00 \ p>0

This proves that (v,,), is a Cauchy sequence in L?(0, T, R™). Since this space is complete, we deduce that (vy,)s,
converges towards some limit v in this space. Let y,, be the solution of (II.14) associated with v,, and ¥ the solution
associated with v. The continuity of the solution operator v — y (see Appendix A.1) gives that y,, converges towards
g in CO([0, T], R™).

It is thus a simple exercice to pass to the limit in the definition of F'(v,) and to prove that it actually converges
towards F'(v). The proof of the first part is complete.

Let us compute the differential of I at the equilibrium @ in the direction h € L2(0, T, R™). We have

T T
= L (M (£)y(t),6(t))p dt + L (M (t)v(t), h(t))u dt + (Mry(T), 6(T))
where 4 is the solution of the problem

{5’@) + A(t)(t) = B(t)h(t),

Let ¢ be the unique solution to the adjoint problem

—q'(t) + A*(t)q(t) + Myy(t) = 0,
q(T) = —M7y(T),

We deduce that
f@4 Sty dt = — j<q )+ A% (1)q(t), 6(1))p dt
=—J<«m8w+A@w@nwu«ﬂnﬁawE—@m»&mm

j@ W) dt — (Mry(T), 6(T))5

_ L (B*()q(t), h(t))v dt — (Mpy(T), 5(T)).
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It follows that -
o) = | QL) = B (Oa(t) e dr
The Euler-Lagrange equation for the minimization problem for F’ gives dF'(v) = 0 so that we finally find that
M,(t)o(t) = B*(t)q(t), Vte[0,T].

This is the expected condition between the optimal control ¥ and the adjoint state q. The first part of the proof is
complete.

We introduce the function ¢(t) = {q(t), y(t))r, we have ¢(T') = —(Mpy(T),y(T")) g, and by Proposition I1.5.16
we conclude that

inf F=F(5) =~ o(T f # (1) dt = —56(0) = — (w0, a(0)).

L2(0,T,R™)

I1.5.3 Justification of the gradient computation

It remains to explain how we obtain in general the equations for the adjoint state. The formal computation (that may
be fully justified in many cases) makes use of the notion of Lagragian.

Let us set J (v, y) to be the same definition as F' but with independent unknowns v and y. Minimizing F' amounts
at minimizing .J with the additional constraints that y(0) = yo and ¢/(t) + A(t)y(t) = B(t)v(t).

To take into account those constraints, we introduce two dual variables ¢ : [0,7] — R™ and ¢p € R™. The
Lagrangian functional is thus defined by

L(v,y, 4, 0) = (v, ) f 0 AWy (t) — B@)o(t))e dt + {a0,4(0) — yo)e.

A simple integration by parts leads to

L(v,y,4,90) = J(v,y) + LT<—Q/(15) + A% ()q(t), y(t))p dt — JOT<B*(75)(1(15), v(t))u di
+<a(T), y(T))E — <4(0),4(0)) + <90,%(0) — yo)&-
And finally, the initial functional F' satisfies
F(v) = L(v,y[v], g[v], go[v]),
for any choice of ¢[v] and go[v] since y[v] satisfies both constraints. It follows that the differential of F satisfies

dF(v).h = 0,L.h + 0y L.(dy[v].h) + 04L.(dq[v].h) + 0gy L.(dgo[v].h),
= OyL.h + 0y L.(dy[v].h),

since 0qL and dy, L are precisely the two constraints satisfied by y[v]. The idea is now to choose g[v] and go[v] so as
to eliminate the term in 0, L.
For any ¢ : [0,7] — R", we have

T
L8 = | Myyl0) = /(1) + A"(0)a(e). 605t + Mry(T). 6T )i + aT). 6T = Ca(0) = a0 (0

This quantity vanishes for any ¢ if and only if we have the relations

do = Q(0)7
q(T) = —Mry(T),
—q'(t) + A*(t)q(t) = —Myy(t).
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This defines the dual variables ¢ and ¢g in a unique way for a given v (and thus a given y). Those are the Lagrange
multipliers of the constrained optimization problem.
Once we have defined those values, the computation of the differential of F' leads to

T T
dF(v).h = 0y L(v,y[v], q[v], go[v])-h = L (My(t)o(t), h(t))u dt — L (B*q(t), h(t))u dt,

which is of course the same expression as above.

II.5.4 Ricatti equation

The set of optimality equations (II.16) is in general a complicated system of coupled ODEs that is not a Cauchy
problem. It is remarkable that its solution can be obtained through the resolution of a Cauchy problem for a nonlin-
ear matrix-valued ordinary differential equation. It has in particular some important applications to the closed-loop
stabilization of the initial problem.

Theorem

11.5.17 (Adjoint state and Ricatti equation)

Under the previous assumptions, there exists a matrix-valued map t € [0, T| — E(t) that only depends on
A,B, M, M, Mr, and T, such that the adjoint state q in the previous theorem satisfies

q(t) = —E(t)y(t), Vte[0,T].

In other words, the optimal control v can be realized, whatever the initial data yq is, as a closed-loop
control

0(t) = =M, (8) "' B*(t) E(t)y(1).

Moreover, the function E is the unique solution in [0,T] to the following (backward in time) Cauchy
problem associated with a Ricatti differential equation

{E’(t) = —M,(t) + A*(t) E(t) + E(H)A(t) + B(t)B(t) M, (t) "' B* (1) E(t), (IL17)

E(T) = My.

Finally, E(t) is symmetric semi-definite positive for any t and even definite positive if My is definite
positive, and we have

1
inf  F(v) = =(E(0)yo, yo)p-
e (v) = 5CE0)y0, yo)E

Observe that the Ricatti equation is a matrix-valued nonlinear differential equation which is not necessarily easy to
solve. Actually, it is not even clear that the solution exists on the whole time interval [0, T']; this will be a consequence
of the proof.

Proof :

The Cauchy-Lipschitz theorem ensures that (I1.17) has a unique solution locally around ¢t = T'.

We start by assuming that this solution is defined on the whole time interval [0, T']. It is clear that E* satisfies the
same Cauchy problem as E and thus, by uniqueness, £ = E*.

Then we define y to be the unique solution of the Cauchy problem

{y’(t) + A(t)y(t) = —B(t)M,(t)" B*(t)E(t)y(t),
y(0) = yo.

Then we set

and

GlOIS(O)
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In order to show that such a v is the optimal control, we need to check all the equations in (II.16). The first two
equations and the last two are satisfied by construction, it remains to check the third equation. This is a simple
computation

—q’(t)+A*(t)Q() () (1) + E)y'(t) — A" () E(t)y(t)
= )

( y(t) + Et)y'(t)
E()[A@®)y(t) + B()M,(t) "' B* () E(t)y(1)]
= ( Jy(t).

This proves the fact that, provided that F exists, the triple (y, v, ¢) is the unique solution of our optimality condition
equations.

The fact that the optimal energy is given by %<E (0)yo, yoyE is a simple consequence of Proposition I1.5.16 and
of the fact that ¢(T') = —(Mpy(T),y(T))E, so that

inf F=FQuv)=—= t)ydt = —=
i F=F0) = 30+ [ 60 =500
As a consequence, ¢(0) is non-positive for any y, which proves that F is semi-definite positive.

Moreover, we deduce that %<E (0)yo, Yo, is not larger than the value of the cost functional /' when computed on
the control v = 0. A simple computation of the solution of the ODE without control gives that the following bound

holds
T

r j Al
<E<o>yo,yo>E<(|MT|+ | ||My|>e o ' lyol2, vyo e R

This gives a bound on | E(0)|.
We can now prove the global existence of E on [0, 7']. Indeed, if we assume that E is defined on [¢*, T'] for some
0 < t* < T, the previous computation (with the initial time ¢* instead of 0) shows that

T T
RAGIES <MT|| - f |My> 25t 4]
t

r 2(T 14
< (MTH - |My) 25 141,

It follows that F is bounded independently of t* and therefore can not blow up in finite time. Therefore the existence
and uniqueness of E over the whole time interval [0, T] is proved. [

II.6 The HUM control

Let us come back now to the controllability question (and we assume again that A and B are time-independent).

We would like to address the question of the characterisation of a best control among all the possible controls, if
such controls exist. Of course, this notion will depend on some criterion that we would like to choose as a measure of
the “quality” or the “cost” of the control.

The HUM formulation Assume that y, yr are such that yp € Rr(yp). We can easily prove that the set of admis-
sible controls

adm(yo, yr) = {ve L*(0,T;U), yu(T) = yr},

is a non-empty convex set which is closed in L?(0,T;U). Therefore, there exists a unique control of minimal L?2-
norm, that we denote by vg. It satisfies the optimization problem

F(vy) = inf F(v), (I.18)

veadm(yo,yr)
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where we have introduced

o1 (T
Fv) d:fzfo (@2 dt, Yo e LX(0,T:U).

We recall the definition of the solution operator (without initial data)
T
Ly :ve L*0,T;U) — J e T=94By(s)ds € E,
0

in such a way that the (affine) constraint set reads
adm(yo, yr) = {v e L*(0,T;U), Lp(v) = yr —e T yo}.

Since vy is a solution of the constrained optimisation problem, we can use the Lagrange multiplier theorem to affirm
that there exists a vector gr € E such that

dF (vo).w = {qr,dL7(vo).w)p, Yw e L*(0,T;U).

Since L is linear, we have d L7 (vg).w = Ly (w) and the differential of the quadratic functional F is given by
F(vo w—f (vo(s), w(s))y ds, Ywe L*(0,T;U).

It follows that vy satisfies, for some g7 € E and for any w € L?(0,T; U) the equation

f (vo(s), w(s))u ds —f {gr,e” T Bu(s))p ds,

which gives
vo(s) = Bre”T=94% . (IL19)

This proves that the HUM control vy has a special form as shown above. In particular if one wants to compute vg
we only have to determine the Lagrange multiplier ¢7. To this end, we plug the form (I1.19) into the equation that vg

has to fulfill -
yr = e~TAyg + <J o~ (T—9)A g g ,—(T—s) A* ds> ar.
0

which is a linear system in g7 that we write
Agr = yr — e "y, (I1.20)

where we have introduced the Gramian matrix
T *
AE J e~ I=9)Agp*e—(T=9)A% gq
0

We observe that A is a symmetric positive semi-definite matrix and that is definite if and only if the Kalman criterion
is satisfied.

Finally, the HUM control vy can be computed by solving first the linear system (I1.20), whose unique solution is
denoted by g7 opt and then by using (I1.19).

It is also of interest to observe that the optimal g7, € £ is the unique solution of the optimization problem

J(qr,opt) = qiTrgE J(qr), (IL.21)

where we have introduced the functional

o 1 (T—s
J(qr) = = J HB* A% gr H ds + (yo, e T qrdp — (yr, arde-
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28 Chapter II. Controllability of linear ordinary differential equations

One can prove, by the Fenchel-Rockafellar duality theorem, that J is the adjoint problem associated with the initial
optimisation problem (IL.18).

Observe that (I1.21) is an unconstrained finite dimensional optimization problem whereas (II.18) is a constrained
infinite dimensional optimization problem. This is one of the reason why it is often more suitable to solve (I.21)
instead of (I1.18).

Actually, the explicit computation of the matrix A and its inversion can be quite heavy (in large dimension) and,
in practice, we may prefer to solve the linear system (I1.20) by using an iterative method (like the conjugate gradient
for instance) that only necessitates to compute matrix-vector products. For any given g7, the product Agr, can be
obtained with the following general procedure:

e Solve the adjoint (backward) equation —¢'(t) + A*q(t) = 0 with the final data ¢(T") = ¢, in the present case,

it gives
_ _ *
g(t) = e” T

e Define the control v by v(t) = B*q(t).

e Solve the primal (forward) problem y'(t) + Ay(t) = Bw(t), with initial data y(0) = 0. In the present case it
gives

t
y(t) = f e~ (=94 By(s) ds.
0

e The value of Agr is then given by
Agr = y(T),

since we have
T
y(T) = f e~ T=9)4By(s) ds
T
= J e~ T=9ABB*q(s) ds

T
_ f e~ (T=9)Ap pre—(T=5)A% g

o

Remark 11.6.18

At the end of this analysis, we have actually proved that the optimal control in L*(0,T;U) (the HUM
control) has the particular form (11.19), which proves in particular that vg is smooth and thus the ODE
system is satisfied in the usual sense for this control.

Remark 11.6.19

Our analysis shows, as a side effect, that vy is the unique possible control for our system that we can write
under the form (11.19).

Exercise 11.6.20

Assume that the pair (A, B) is controllable, and let T > 0 given. Show that there exists ¢ > 0 such
that for any yo,yr € E, there exists a control for our problem that belongs to C*(|0,T]) and such that
Suppv < [¢,T — ¢].
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II.7 How much it costs ? Observability inequalities

We can now ask the question of computing the cost of the control. We suppose given A, B, the initial data yy and
the target yr.

The best control vy (the so-called HUM control) is given as a solution of the optimization problem described
above and we have the following result.

Proposition 11.7.21

Assume that the Kalman rank condition is satisfied for the pair (A, B), then the optimal cost of control
from yq to yr for our system is given by

)

— *
JT lvo(8) |3 dt = sup [Kyr, arye — (yo,e T4 qr)p|?
v qreElE <AQT7 QT>E

where A is the Gramiam operator that we built in the previous section.

Proof :

Let C be the value of the supremum in the right-hand side (this supremum is finite since the quantity is homoge-
neous in ¢y and, by the Kalman condition, we know that (Aqr, gryg # 0 as soon as g7 # 0).

Let g7 op: be the unique solution to (I1.20), in such a way that vo(s) = B *gmsA¥ qT,0pt- We observe first that

T T
_ %
<AQT,opt7 QT,opt>E = J HB*E sA QT,opt||2U ds = J H’UO(S)”?J d57
0 0
and second, by (I1.20), we have

qT,opt, 4T,opt )E = YT, 4T ,opt)E — Y0, e *qT7opt>E~
A e =< 2 =< i

It follows that

Kyr, qrop)E — Yo, e T4 qropt) | T
o s e arans = | ()l ds.
Lopts AT ,opt ) E .

Conversely, if v is any control that drives the solution from g to yr we see from (I1.5) and the Cauchy-Schwarz
inequality that

1
T 2 1
_TA* 5
Kyr,arye — (o, e arym| < <J lo(s)I1E d8> (Agr,q7) -
0
Taking the square of this inequality and then the supremum over all the possible g7 gives that
T
C < | Ios)lf ds,
0
and since this is true for all possible controls, this is in particular true for the optimal control vy and we get

T
C<JH%@%%-
0

[
The previous result gives an estimate of the control cost, in the case where the pair (A, B) is controllable. We can
actually be a little bit more precise: we shall prove that the boundedness of the supremum in the previous condition is
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a necessary and sufficient condition for the system to be controllable from yg to y7.

Theorem I1.7.22

Let A, B be any pair of matrices (we do not assume that the Kalman condition holds). Then, System (11.1)
is controllable from yq to yr if and only if, for some C' = 0, the following inequality holds

T
[yrs qrye — Yo, e TV qrypl? < C? f |B*e= =04 g7 ds, Vgr e E. (I1.22)
0

Moreover, the best constant C' in this inequality is exactly equal the L*(0,T;U) norm of the HUM control
vg from yg to yr.

The above inequality is called an observability inequality on the adjoint equation. It amounts to control some
information on any solution of the problem (in the left-hand side of the inequality) by the observation (which is the
right-hand side term of the inequality). The operator B* is called the observation operator.

We also note that, by definition of the Gramiam A, the right-hand side of the required observability inequality can
also be written as follows

C*(Aqr, qr)E-

Proof :

Since e~ 14

is invertible ' we can always write
-TA| TA
yr =€ (6 yT>‘

So that the control problem is the same if we replace y7 by 0 and ¥ by o — €74y and we see that the left-hand side
in the inequality is changed accordingly.
From now on, we will thus assume without loss of generality that y7 = 0 and that yg is any element in F.

o We first assume that there exists a control v € L?(0, T') that drives g to 0 at time 7. Hence the set adm(yo, 0)
is not empty. We define v to be the unique minimal L2-norm element in adm(yg, 0). The same argument as in
the previous proposition shows that for any ¢ we have

T T
o, T4 qrdpf? < ( L Joo(s) u%ds) ( L | Bre—(T=94% 4 |2 ds) -

This proves (I1.22) with C = |vo| 2 (0,70

e Assume now that (I1.22) holds for some C' > 0. We would like to prove that adm(yg, 0) is not empty. The idea
is to replace the constraint v € adm(yo, 0) (that is y(7") = 0) in the optimization problem (II.18) by a penalty
term.

For any € > 0, we set

1 T 2 1 2
Fe(v) =5 . lo(s)lier ds + 5y (T) |z,

where in this expression, y is the unique solution of (II.1) starting from the initial data yg.

The last term penalizes the fact that we would like y(7") = 0. Formally, we expect that, as € — 0, this term will
impose y(7T') to get close from yr.

We consider now the following optimization problem: to find v. € L?(0,T'; U) such that

F.(ve) = veL2i(r(l),fT;U) F.(v). (I1.23)

'this will not be true anymore for infinite dimensional problems when the underlying equation is not time reversible, which is precisely the
case of parabolic equations
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This functional exactly falls into the framework of the LQ optimal control problems that we studied in Section
IL.5, in the particular case where

1
My(t) = 1d, My(t) =0, Vte[0,T], and My =_Id

The characterisation theorem I1.5.14 implies that this functional F; has a unique minimiser v, which is charac-
terised by the following set of equations

[ Ye(t) + Aye(t) = Bue(t),
Y(0) = vo,
) —d(t) + A*qe(t) = 0,
(1) = e (T),
L v=(t) = B*q-(t)

Our goal is to study the behavior of (ve, 3., q-) when ¢ — 0. To this end, we try to obtain uniform bounds on
those quantities.

To this end, we multiply (in the sense of the euclidean inner product of E)) the state equation (the first one) by
¢-(t) and we integrate the result over (0, 7). Using integration by parts and the other equations in the optimality
system above, we obtain

T T
f|%2ﬁ=JQbW%Mﬁ
0 0
T
= J <BU€7 Q5>E dt
0
T
= J <y; + Ay&a QE>E dt
0

T
= We(T),4:(T))E — {Y0,4:(0)) & + L Wer —qL + A%qeyp , dt

_ _EH%(T)H2 — (0,4:(0)) k-

It follows that .
lveli2i0r0y + =l (D)? = —(yo, ¢=(0))
( ) T e

And, if we set g7 = ¢-(T"), we can write this formula by using only the adjoint variable

2dt + elare|® = o e T qre) . (I1.24)

T A%
j |Be(T=04% 1.
0

We use now the observability inequality (I1.22) (where we recall that y7 was taken to be 0 here). This inequality
exactly gives us a bound on the right-hand side term

=

T 2
—(yo, e T qrop < C (J | B*e=(T=D4% g |2 dt> :
0

We deduce that
2dt < C?,

T
_ _ *
Joe]2 = f B TDA* gy
0

? <O

elgr,e
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From those estimates we obtain that (v. ). is bounded in L?(0, T; U) and therefore we can extract a subsequence
(v, )k that weakly converges towards some v € L2(0, T; U). Let y be the solution of (II.1) associated with this
control v and the initial data yg. Since the solution operator Lz is continuous from L?(0,T;U) into E, we
deduce that (L7 (ve,)); weakly converges towards Ly (v) as k — o0 (note however that E is finite dimensional

so that this convergence is also strong). It follows that y. (7)) — y(T) ase — 0

Moreover, by definition of g7, we have the relation

yE(T) = _EqT,€7

and from the bound below we deduce that

ly(T)|e < €llare|e < Cve —0.

Gathering all the above properties, we have shown that the weak limit v is such that the solution y satisfies

which exactly means that the control v drives the solution of our system from 0 to yp, or in other words

v € adm(yp, 0).

This set being non empty we can consider the miminal L? norm control vy and, from the first part of the proof

we know that necessarily we have
C < |lvollp20,m0) < vl z20,107)-
Coming back to the bound on v, obtained above we see that

limsup |[ve, [ z2¢0,7,0) < C,
k—0o0

and since v is the weak limit of (v, ), we conclude by usual properties of weak convergence in an Hilbert space

that the convergence is actually strong and that we have the equality |v||z2(o ) = C.

This implies in particular that [[v| 2o 7,0y < [vo| 20,707y and since vy is the unique minimal L?-norm control,

we deduce that v = vg. In particular C' = [vo] 2 (0,7,0)-

The standard uniqueness argument finally shows that the whole family (v ). strongly converges towards the

HUM control vyg.

Observe that the family of the optimal adjoint states for the penalized problems (¢r.). may not converge in this
setting (except in the case where the Kalman rank condition is satisfied).

Remark I1.7.23

right-hand side of (11.24) is to write

—TA*

— *
~Co, e areye < lyollle™™ gz

I

1 o
[* < Zlyol*e ™.

T
_ _ *
f |B* e T=D4% g P dt + elqre
0

course what is expected !).

@O0 F. BOYER - JULY 16, 2022

If we have no other information on the matrices A, B or on the initial data v, the only hope to bound the

and to use the Young inequality to absorb the norm of qr . by the second term in the left-hand side to obtain

This estimate is clearly useless since it does not provide a uniform bound on the control v (and this is of
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As a conclusion of this analysis, we have converted a controllability question (which is a problem of proving the
existence of some mathematical object satisfying some requirements) into an observability question which is : can we
prove an a priori inequality like (I1.22) that concerns solutions to an uncontrolled equation (the adjoint problem).

Remark 11.7.24
If, for any qr, we introduce t — q(t) the solution of the adjoint equation
—q'(t) + A*q(t) = 0, ¢(T) = qr,
the observability inequality can be written as follows
T
Curarye — oea(O)P < C* | 1B a@)lfds. Var e 2,
0

which is slightly more general since it does not require any semi-group theory (and in particular can be
generalieed to non-autonomous equations).

Let us consider two particular cases of interest:

e Exact controllability : we assume that y9 = 0 and yr € R" is any target. The control cost is denoted by
C'(0,yr) and is the best constant in the inequality

T
Kyr, aryel* < C(0,yr)? f |B*e= =04 g7 ds, Vgr e E. (I1.25)
0

e Null-controllability : we assume that y7 = 0 and yg € F is any initial data. The control cost is denoted by
C'(yo,0) and is the best constant in the inequality

T
[y, e T4 gr)E|? < Clyo, 0)? f |B*e~T=4% 47| ds, Var € E. (I1.26)
0

In the finite dimensional setting those two cases are very similar but it will make some difference when we will study
parabolic PDE:s.

Let ¢ be a normalized eigenvector of A* associated with the eigenvalue A and we assume that Re (A) > 0 (we
mimick here the expected behavior of a parabolic PDE). Let us evaluate the costs C(¢,0) and C(0, ¢).

o We first take g = ¢ in (I1.25) (with y; = ¢) to get

2Re (M)
C(0,0)? = ,
097> By = c ey

and we can obtain a rough bound from below
2Re ()
C0,0)° = e 5.

|B*¢l17;
This illustrates the fact that, if B* is a given bounded operator, the cost of the exact controllability for a given
eigenmode increases at least with the dissipation rate Re (A). In the limit Re (A) — oo, this cost is therefore
blowing up.
This is not a good news if one imagines that we eventually want to control parabolic PDEs which are typically
based on operators with sequences of eigenvalues that tends to infinity.

The physical interpretation of this phenomenon is clear : the natural behavior of such a system for large values
of Re () is to strongly dissipate the solution with time which is exactly the converse of the fact that we require
the solution to be driven to a constant normalized state ¢ at time 7.

This is the first appearance of the fact that, for dissipative systems (i.e. parabolic PDEs), the exact controllability
property is not a good notion.
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e Let us do the same computation in (I1.26) by taking yo = ¢ and qr = ¢, we get

IRe ()\)672726 \NT
|B*||%;

This is a much better behavior : if B*¢ remains away from zero, the lower bound of the cost exponentially
decreases when Re (\) increases. Of course, this is only a lower bound and thus it does not give any information
on the boundedness of C(¢, 0) itself but it seems to be reasonable to expect null controllability for a dissipative
system, and bounds that are in some sense, uniform in \.

C($,0)* =

Observe that, in both cases, the observability cost for one single mode ¢ depends on the size of | B*¢||7. The smaller
this quantity is, the larger is the observability cost.

Global notions If we want to come back to more global properties (namely that are independent of the initial data
and of the target) we have the following characterisations.

Theorem I1.7.25

1. System (11.1) is exactly controllable at time T' if and only if for some Cops ezact = 0 we have

T
A%
el < Ciperact [ 1B%¢ N arlfyds, Vor e R
If this inequality holds, then for any yo, yr there exists a control v € adm(yo, yr) such that
HUHL2(0,T;U) < Cobs,emctHyT - efTA?JOHE-
2. System (11.1) is null-controllable at time T" if and only if for some Cps puy = 0 we have
A* T A*
e ™l < Gl | 15" arlfds, Var e B
0

If this inequality holds, then for any yo there exists a control v € adm(yo, 0) such that

10l 20,750 < Cobs nutt Yol -

Of course, in the finite dimensional setting the two notions are equivalent but the values of the constants Cops czact
and Cps nyu may not be the same.

Exercise 11.7.26 (Asymptotics of the observability constants, see [ D

The above observability constants actually depend on the control time T' and it is clear that this cost should
blow up when T' gets smaller.
More precisely, we can show (by mentioning explicitly the dependence in T of the consant) that

C T o~ —
obs,exact, T—0 TKJ"%,
where K is the smallest integer such that

rank(B|AB|...|AXB) = n,

and v > 0 is a computable constant depending only on A and B.

@O0 F. BOYER - JULY 16, 2022



35

Chapter 111

Controllability of abstract parabolic PDEs

III.1 General setting

Let us consider now an abstract setting : £/ and U are two Hilbert spaces

e A: D(A) c E — E is some unbounded operator' such that —.A generates a strongly continuous semi-group
in E. The semi-group will be denoted by ¢ — e~** € L(E). We refer to usual textbooks in functional analysis
for precise definition of those concepts (see for instance [ 1, [ , Appendix A], [ 1,1 ]. We
will also give a simple contruction of the heat semi-group at the beginning of Chapter IV.

We recall that a necessary and sufficient condition for the existence of this semigroup is (Hille-Yosida theorem)
that D(A) is dense in E and

JweR,M =1, s.t. (A\I + A) is invertible for any A > w and ||[(Al + A)™™|| < M(A —w)"™,¥Vm = 0.

We will sometimes need to assume that the semi-group is analytic which means that there exists an analytic
extension z — e > in a sector Sy, of C as defined in (A.21). This property always holds in the case of
parabolic equations.

The adjoint semi-group will be denoted by ¢ — e~ A

e B:U — D(A*) the control operator. It is actually more easy to work with the adjoint B* of 3, which is, by
definition an operator from D(A*) into U (since we identify U with its dual space).

e We assume that 3 is admissible in the following sense
(s — B*e_SA*qT> e L2(0,T;U), Vqr € E,

and moreover, there exists a C > 0 such that
T T—t)A* 12 2 2
| 1B X g at < Pl var e .
0

In practice, it is enough to check the above inequality for g7 € D(A*) since D(.A*) is dense in E.

The (formal) control problem we are looking at is the following

{aty + Ay = Bvin ]0,TT, (IIL1)

y(0) = yo.

The suitable meaning we give to this problem is by duality.

"et say self-adjoint with compact resolvent, if you want to simplify
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Theorem II1.1.1 (Well-posedness in a dual sense)

For any yo € E and v € L*(0,T;U), there exists a unique y =y, ,, € C°([0,T], E) such that

t
Q) ave — wore N ayp = f (v(s), B*e™ =A%, 5 ds, Vit e [0,T], Vg € E.
0
Moveover, there exists C > 0 such that

sup. ly®)]e < Clyle + [vlL20,r0))-

te[0,T

Proof :
This is a consequence of the admissibility assumption for B and of the Riesz representation theorem.

e Letusfix at e [0,T]. We consider the linear map

t
qt € E— <y0, eft’A*qt>E —+ J <U(S), B*ef(t*S)A*qOU ds.
0

Thanks to the admissibility condition for I3, we see that this linear map is continuous on E. Thanks to the Riesz
representation theorem, we deduce that there exists a unique element y; € E satisfying the equality

t
i adE = Wo, e ae + f (o(s), B*e™ 94 050 ds, Vg € B.
0

Additionally, we have the bound
lyile < Cwole + [vlLz0m0))
for some constant C' > 0.
e We set y(t) = y; for any ¢. It is clear, by definition, that y(0) = yo. It remains to check that the map y is
strongly continuous in time.

Let (t,)n < [0,T] a sequence that converges towards some ¢ € [0, 7], we need to prove that y(t,) — y(t) in
E. To this end, we consider (g, ), © E a sequence that weakly converges towards some ¢; € F and we want
to show that

W), at )8 —— Y(t), a6
n—o0
We consider o € L?(R) the extension of v by zero outside the interval (0, 7). We can write

tn
Qltn),a e = Wor e e+ | w(s), BXe™ =94 g Sy ds
0

tTL
— e My q e+ | tn — ), B e A g, Yy ds
0

T
= (e yo, qu e + f (Ot — 5), B¢y, i ds.
0

The first term is treated by the weak-strong convergence property and using the strong continuity of the semi-
group. The second term is treated in the same way by using:

— The admissibility condition that leads to the weak convergence of s — B*e~5A" q, in L?(0,T,U) and
the strong convergence of the translations s +— ¥(t,, — s) in L2(0,T,U).
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]

Actually, we shall also encounter cases where the admissibility condition for B does not hold exactly as written

above. More precisely, assume that there exists an Hilbert space F' continuously and densely embedded in E and such
that

(t — B*e_SA*qT> e L2(0,T;U), Yqr e F,
and

T
f |B*e~ =DA% g2 dt < C*|qr|%, Var € F.
0

In that case, we may consider the dual space F’ (more precisely, its representation obtained by using E as a pivot
space) and prove the following result

Theorem II1.1.2 (Well-posedness in a dual sense - weaker form)

Under the assumptions above, for any yo € E and v € L*(0,T;U), there exists a unique y = Yoo €
C°([0,T], F') such that

¢
), a)r 7 — (Yo, e A QB = f (v(s), BFe~(tm9)AF qyu ds, Vte[0,T],Yq; € F.
0

Moreover, if F' is stable by the semi-group generated by A*, the above definition can be extended to any
initial data yo € F'.

Here also we have seen the important role played by the adjoint problem (which is a backward in time parabolic
problem)

— g+ A*q =0, (II1.2)

II1.2 Examples

Let © be a bounded smooth connected domain of R?. Let w be a non empty open subset of {2 and I'y a non empty
open subset of 0f2.

¢ Distributed control for the heat equation.

We consider the problem

oy — Ay = 1,0, inQ
y =0, on 0S).

The natural state space is E = L?((2), the control space is also U = L?(£2) (we could have defined U = L?(w)
without any real difference), the domain of A is D(A) = H2(Q) n HZ (), and the control operator is B = 1,,,
so that we get also B* = 1,,.

¢ (Dirichlet) Boundary control for the heat equation.

Let us consider the problem
oy — Ay =0, inQ
y = 1p,v, on dfd.

Here the control operator B is not so easy to define and it is in fact easier to define its adjoint 5* (through a
formal integration by parts). More precisely, we set

B* = 11,0
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In order for the admissibility condition for this operator to hold, we see that we have, for instance, to work in
the space F' = H, & (€2). Indeed, in that case, one can show by standard arguments that

t— e qp e L2(0,T, H*(Q)), VqreF,
and by trace theorems
t > On(e " qr) € L2(0, T, H/?(0Q)) < L*(0, T, L*(09)).
Actually, one may use for any any of the spaces F' = D(.A®) with s > 1/2.

¢ Distributed control for parabolic systems.
In the last part of the course, we will be interested in coupled parabolic systems, as for instance the following

problem

oy — Ay + C(t, 2)y = 1,Bv, in Q
{(ty y+ C(t,z)y v, in )

y =0, on 01,
where y is now a n-component function. The state space is E = (L?(£2))", the control space is U = (L*(Q))™,
B € M, ,»(R) is the control matrix and C' (¢, z) € M, ,(R) is the coupling matrix.

In that case, the control operator is B = 1, B and its adjoint is B* = 1, B*.

¢ (Dirichlet) Boundary control for parabolic systems.

Similarly, we can consider the boundary control problem

oy — Ay + Clt,z)y = 0, in©Q
{ty y+ C(t,z)y in a4

y = 1p,Bv, on Q.
The definition of the functional spaces and of the operator are clear.

e More general examples:

Of course we may consider a large number of other examples such as : time- and or space-dependent diffusion
coefficients, different diffusion operators for each component, first or second order coupling terms, non linear
terms, etc ...

III.3 Controllability - Observability

The general definitions for approximate/exact/null- controllability questions are formally the same as before.

We have already seen in the first chapter that exact controllability for parabolic equations is certainly not a suitable
notion. We may in fact prove that, in general, the set of reachable functions for the heat equation with a distributed
control supported on a strict subset of {2 is a very small set. For instance, usual regularity properties for such PDEs
show that any reachable target must be smooth (at least C*) in Q\@.

We will thus restrict our attention now on the approximate and null-controllability properties. By adapting the
arguments given in the finite dimensional case, we can prove the following properties.

Theorem II1.3.3 (Approximate controllability and Unique continuation)

Our system (111.1) is approximately controllable at time T > 0 if and only if the adjoint system (111.2)
satisfies the unique continuation property with respect to the observation operator B*, namely : for any
solution q of (I11.2) with q(T') € F, we have

(B*q(t) —0,Vte (o,cr)) — =0
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With the semi-group notation, the Unique Continuation property writes
(B*e_(T_t)A*qT =0,Vte (O,T)) = g7 = 0.

Notice that, if the semi-group generated by —A* is analytic, then the unique continuation property does not
depend on 7', and thus so is the approximate controllability.
Proof :

e Assume that the Unique Continuation property does not hold. There exists ¢ € F, gr # 0 such that
Bre~ (T-H)A* gr = 0. By definition, for any control v, we have

T
W), qrye r — o, e T qrdp = f (o(s), B¥e™T=9A% 15 ds = 0, (I1L.5)
0

and if follows that
W(T) — e Myo,qr)p p =0,

which proves that the reachable space at time 7' cannot be dense in F’. Indeed, if z € F’ is any element such
that (z, g7)p' r # 0, then e_TAyo + €z is not reachable for any € > 0.

e Assume that the approximate controllability does not hold in F’. By the Hahn-Banach theorem, it means that
there exists a yp € F’ and a gp € F\{0} such that

yrsaryrr = YT, qr)r F,

for any control v € L?(0, T, U).
From (II1.5) we deduce that, for any v € L2(0,T,U)

T
J (o(s), B e T4 4050 ds < Cyr — e T yo, qrde .
0

We apply this inequality to v = %B*e_(T_S)A* qr, with § > 0, which gives

I T _
R Y
0

Letting 0 going to 0 leads to
T
|| 1Bre T4 g as o
0

and since g # 0, we obtained that the unique continuation property does not hold for the adjoint problem.

Theorem II1.3.4 (Null controllability and Observability)

Our system (111.1) is null-controllable in E at time T' > 0 if and only if the adjoint system (111.2) satisfies
the following observability property with respect to the observation operator B*, namely :
There exists a C' > 0 such that for any solution q of (I1L.2) with q¢(T') € F, we have

T
lgO)]3 < C? f 1B q(0)| dt.
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With the semi-group notation, the observability inequality writes

T
e T4 gl < C2 f B e T4 2 Gt Ngr e F.
0

Remark II1.3.5

If we are interested in the null-controllability with initial data in F', then the above inequalities should hold
with |q(0)|% in the left-hand side.

Proof :
This result is a straightforward consequence of the following general result in functional analysis (which is itself
a consequence of the closed graph theorem).

Lemma II1.3.6 (see Proposition 12.1.2 in [ D

Let Hy, Ho, H3 be three Hilbert spaces and F' : Hi — Hs, G : Hy — Hj3 be two bounded linear operators.
Then the following properties are equivalent

1. The range of F' is included in the range of G.

2. There exists a C > 0 such that the following inequalities hold

HF*qul < CHG*JIHHQ, Vx € Hs.

If those properties are true, there exists a bounded linear operator L : Hy — Ho such that

F=GoL, and |L|p,—m, <C.

To prove the theorem, we apply the previous lemma with Hy = L2(0,T;U), H; = H3 = E, and
F:yOGEHe_TAyOEE,

T
G:veL*0,T,U) — J e~ T=)ABy(s)ds € E,
0

(this integral being well-defined by duality as seen before).
|

There is no natural (and easy to manage) generalization of the Kalman rank criterion in the infinite dimension
case. However, the Fattorini-Hautus test still holds under quite general assumptions but it will of course only gives an
approximate controllability result .

Theorem I11.3.7 (Fattorini-Hautus test)

Assume that:

o A has a compact resolvant and a complete system of root vectors.
e B* is a bounded operator from D(A*) (with the graph norm) into U.

We also assume that the semi-group generated by —A* is analytic, even though the result can be adapted if
it is not the case.
Then, our system (111.1) is approximately controllable at time T' > 0 if and only if we have

(Ker B*) n Ker (A* — X\I) = {0}, VA eC.

In particular, the approximate controllability property does not depend on T
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For a proof of this result in the framework above which is more general than the original one by Fattorini, we refer
to [ ].
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Chapter IV

The heat equation

In this chapter we are interested in the controllability properties of a parabolic scalar equation of the heat type in a
bounded domain. We will actually be a little bit more general by looking at the following equation.

Let Q be a bounded connected smooth domain of RY. Let v € C°(Q, R) be a diffusion coefficient such that
Ymin = infoy > 0and a € CO(Q, R) a potential term. Let .A be the differential operator defined by

(Ay)(z) = —div (v(2)Vy) + a(z)y. (IV.1)
We shall consider the partial differential evolution equation given by
oy + Ay =0, in (0,7) x Q. av.2)

If we look at A as an unbounded operator in L?(Q2) with domain D(A) = H?(Q) n H}(2), we know that A is
self-adjoint and with compact resolvent. As a consequence, we have a complete spectral theory for this operator:

e The spectrum A of A = A* is only made of positive eigenvalues, moreover A is locally finite, unbounded but
satisfies the bound from below
inf A > iréf Q. av.3)

e For each A € A, the eigenspace Ker (A — \) is finite dimensional and we have the orthogonality property in
L2(Q)
Ker (A—X) LKer (A—p), YA#pueA.

We denote by 7 the orthogonal projection in L?(2) onto the eigenspace Ker (A — ).

e We have an orthogonal spectral decomposition of the space L?(£2). This means that for any 1) € L?(£2) we have

P = map, (IV.4)

AEA

this family being summable in L?(£2), and we have the Bessel-Parseval equality

ey = 3 Imatl2eo-

AEA

e For any v € HZ(Q), the sum (IV.4) is also converging in H{ () and there exists C7, Cy > 0, depending only
on the coefficients v and «, such that

Cr Y, (L4 ADImala < [l < Co ), (1 + IADImag s
AEA AEA
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e — A generates a semi-group that can be explicitely computed as follows

e My = e Py, Ve L2(Q).

AeA
Notice in particular the following energy estimate
le™ %l 20y < e ™ M2y, Vi€ B,V = 0. (IV.5)
In the case where inf A > 0, we see that the system is dissipative in L?(2), see Remark IV.0.1.
e We shall need the following spaces
E, = @ Ker (A4 ). (IV.6)
AEA
ASp
Let P, be the orthogonal projection in L? onto E,., which can be expressed as follows
P, = Z .
AEA
A<
We can prove the following additional dissipation property

le™ 4] 12() < €[] 12(0), Yo € B, st By =0, ¥t = 0, (IV.7)
We will see in the sequel that other qualitative properties for the spectrum of the operator will be needed to analyze

the controllability of the system.
We will analyze two types of controls:

e The distributed control problem: Let w be a non empty open subset of 2. We look for a control v € L?(]0, T[xw) =
L?(0,T;U) with U = L?(w) such that the solution y € C°([0, T, E), with E = L?(2), of the problem

oy + Ay = 1,0, in Q,
y =0, on 09, (IV.8)
y(0) = wo
satisfies either ||y(7T") — yr|| g < € (approximate controllability) or y(7") = 0 (null-controllability).

e The boundary control problem: Let I'g be a non empty open subset of I". We look for a control v € L?(]0, T[xIg) =
L?(0,T;U) with U = L?(T) such that the solution y € C°([0, T, E), with E = H (), of the problem

Oy + Ay =0, in Q,
y = 1r,v, on 0%2, (IV.9)
y(0) = %o
satisfies either ||y(T") — yr| g < € (approximate controllability) or y(7T") = 0 (null-controllability).

Remark IV.0.1

From the point of view of controllability we can always assume, if necessary, that the potential o is non
negative, which implies inf A > 0 (see (IV.3)), and thus all the eigenvalues are positive.
Indeed, is one sets §j = e~y we see that §j solves the problem

which amounts at adding the constant a to .

As a consequence of the previous remark, we will systematically assume in the sequel that o > 0.
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IV.1 Further spectral properties and applications

IV.1.1 The 1D case

We assume in this section that €2 is a 1D interval, say (0, 1). From a spectral point of view this particularly implies that
all the eigenvalues are real and simple, therefore we can choose one eigenfunction ¢, in each eigenspace Ker (A — ),
that we shall take normalized in L?(2). The projection operator 7y is thus simply given for any A € A by

b = (b, dadada, Ve L2(Q).

The second property which is specific to the 1D case' is the following asymptotic property, called Weyl’s law

Nu(r) ~ w7,

r—00

for some constant x > 0, where IV, is the counting function of the family A (see Section A.5). We will present a
proof of a weaker (but sufficient) version of this result below.

IV.1.1.1 Spectral estimates

The properties stated in this section are very classical but we adopt here the formalism and proofs introduced in
[ ] that have the advantage to being easy to extend to more general situations like the discrete setting for
instance.

Proposition IV.1.2

Under the assumptions above, for both boundary and distributed control problems, we have
B*¢y # 0, YA€ A.

In particular, the heat equation is approximately controllable at any time T > 0 in both cases.

Proof :

In both cases, if we assume that B*¢, = 0, it implies that there exists a point a € [0, 1] such that ¢)(a) =
@) (a) = 0. Indeed, we either take a to be a boundary point of 2, or a point inside the control domain w.

Since ¢ satisfies a second order linear homogeneous differential equation, this would imply ¢, = 0 which is
impossible.

The approximate controllability in both cases is now a consequence of the Fattorini-Hautus test (see Theorem
1I1.3.7). |

Let us introduce the notations

00 —¢/(0), and 0,0 Y ¢'(1),

"Weyl’s law also holds in higher dimension but it becomes N () ~ K2 , where d is the space dimension
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for the left and right normal derivatives of a function ¢ : (0,1) — R.

Theorem IV.1.3
Under the assumptions above, there exists Cy(a,y,w) > 0 and Ca(c,7y), Cs(a,y) > 0 such that:

o the eigenfunctions satisfy

[6A172() = Ci(@,7,w), YA€ A,
10apr| = Ca(a, Y )V, YA€ A, Vee {l,r}.
o the family of eigenvalues A, satisfies
A= pl = Cola, M)V, YA # pe A,

Ni(r) < Cs(a,y)/r, Vr >0,
INA(7) = Na(s)| < C3(a,y)(L+A/|r —s|), Vr,s>0.

Remark 1V.1.4 (Laplace operator)

For the standard Laplace operator v = 1, a = 0, the eigenfunctions and eigenvalues are explicitely given
by
A = {k*7?, k e N*},

or(x) = V2sin(vAz), AeA.

The properties proved in the above theorem are thus straightforward it this case.

We begin with the following lemma.

Lemma IV.1.5
Let w be a non-empty open subset of Q). There exists C1(c,y) > 0 and Co(cv,v,w) > 0 such that we have,
forany \ € A,
1
X|5o¢>\\2 = Ci(a,7) Ra, Vee{l,r},
and

|61 72y = Cala,y,w) R,
where we have defined
w o 10A@P + P @)

R)\ x,yeQd 2 RICNPY; 2"
oA + 5703 ()]

(IV.10)

Proof :
e By definition of R, and the fact that ¢, (0) = 0, we have

TP = Ry (1030 + “LIA0E) = Ralor()Ps W e .

By integration over y € {2, we can use the normalisation condition and the equation satisfied by ¢, to find that
7(0)
UTAGIEEN
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For X large enough, we deduce that

"D P = o,

which gives the claim for 0;¢). A similar proof holds for d,-¢».
e Let (a,b) < w be a connected component of w. The Sturm comparison theorem (see Theorem A.4.26 and

Corollary A.4.27) implies that there is a A\g(«v, 7y, w) such that for A > )y, we can find two zeros a) < by of ¢y
such that (ay,by) < (a,b) and

by —ay = (b—a)/2. (IV.11)

We multiply by ¢, the equation satisfied by ¢, on (ay, b)) and we integrate by parts, using that a) and by are
zeros of ¢). We obtain

b b
f G2+ algal? = Af 622,

ax ax

and since we have assumed that o > 0, we find that
a 2 P Y 2
NS (v.12)
ay ax

By definition of R we have, for any x,y € ()

on@)? + 2@ > Ra (1620 + L1017

We can integrate this inequality with respect to x € (ay, by) on the one hand and with respectto y € 2 = (0, 1)
on the other hand to get

b by 1
J loAl® + f %Wﬂz = R(by — aA)JO (|¢A|2 + %‘¢3\|2) = Ra(by — ay).

ax ax

By (IV.12), the normalisation condition of ¢ in L?(€2) and (IV.11), we arrive to

Ox b—a
J 621> = R T
ax

so that, for A > )\g, we have

b—a
4

b
jw% 62 > R
w ay

Since there is a finite number of eigenvalues that satisfy A < g, the claim is proved thanks to Proposition
IvV.1.2.

Now we propose a reformulation of the differential equation that will permit us to prove uniform lower bounds
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for the quantity R).

Lemma IV.1.6

Let f : © — R be a continuous function and \ > 0. Suppose that u : Q) — R satisfies the second-order
differential equation (without any prescribed boundary conditions)

Au(z) = Mu(z) + f(x), Ve, (IV.13)
then the following equation holds

U'(x) = M(2)U(z) + Q(z)U(z) + F(x), YzeQ, (IV.14)

M(z) ¥ ) ﬁ and Q(z) ¥ ? ’ !
= X = o) 1
/3 0 Sm V@ (ﬁ)

The key-point of this formulation is that the large terms in v/A only appear in the skew-symmetric matrix A/ (x),
while the matrix Q(z) only contain bounded terms with respect to A.
As a consequence of this particular structure, we can obtain the following estimates.

Lemma IV.1.7

With the same notations as in Lemma IV.1.6, and assuming that \ = 1, there exists C o (a,7), indepen-
dent of A\, such that for any x,y € §, we have
Y
[1renas
X
Proof :

Let z, y € Q. Without loss of generality we assume y > . It is fundamental to notice that the matrices (M (s))s
pairwise commute, so that the resolvant operator associated with x — M (x) simply reads

S(y, ) exp < f " M (s) ds> .

We can then use Duhamel’s formula to deduce from the equation (IV.14) the following expression

U < Cla,7) <||U(x)| +

) . (IV.15)

Uly) = f S(y, ) (Q(s)U(s) + F(s)) ds. (IV.16)

We use now the fact that the matrix M (s) is skew symmetric for any s, and so is §¥ M (s) ds. It follows that the
resolvant S(y, s) is unitary |S(y, s)|| = 1 for any y, s. We get

U@ < U@)] +

s)| ds| +

[ 1rnad ) e (
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which gives the result since )(s) is bounded uniformly in s and A, by using the assumptions on the coefficient v and
o [
We can now prove the main Theorem of this section.
Proof (of Theorem 1V.1.3):
A first remark is that it is enough to prove the claims for A large enough and in particular we can assume without
loss of generality that A > 1.

e We begin with the proof of the first two points of the theorem. By definition, ¢ is solution of the equation

Apy = Aoy,

which is exactly (IV.13) with u = ¢ and f = 0. From Lemma IV.1.7 we deduce that there exists C' < C' (7, @),
independent of \, such that for any z,y € Q,

G+ 2001 > ¢ (Il + X2 i@P). av.17)

which exactly proves that the quantity R defined in (IV.10) is uniformly bounded from below. The claim thus
immediately follows from Lemma IV.1.5.

e We shall now prove the third point in Theorem IV.1.3. For any two A > p in A with ¢ > 1, we define

u(z) = ¢, (1)oa(z) — $h(1)dp(@),

in such a way that u(1) = «/(1) = 0 and
Au = d\u + f,

with
f@) = QM) (A=) dulx), Vre.

Using the notations introduced in Lemma I'V.1.6, we observe that by construction we have U (1) = 0 so that the
estimate (IV.15) specialized in x = 1 leads to

1 1
U@ <C f |F(s)| ds < C f |F(s)] ds, Vye Q.
Y

Using the expression for F' and f, we find that

B 1
)l < WCT (Aﬁ“wn) [ 1ot as, vy e

Thanks to the normalisation condition |¢,[|;2(q) = 1 and the expressions of U and u, we obtain for any y € €,

We integrate this inequality with respect to y € (0, 1) and we use the L?(£2) orthonormality of ¢ and ¢,, to
finally get

B 2
000 ~ AWl < - (2B

/ / / ¢ A— / ?
P < (60)7 + (60) < = (2 Ls1)

and since ¢\ (1) # 0, we conclude that
A—pu=CVA, (IV.18)

for some C' > 0 independent of \ and s.
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Let us finally prove the estimates on the counting function N,. We first observe that the inequality (IV.18) we
proved above implies that

C
N—ul = FIVA+ VYA pe A,

from which we deduce c
VA — Vil >71, VA # p e A. (IV.19)

Letus fix 7 > 0 and let A\; < --- < Ay, (,) all the elements in A n [0, 7]. We set Ag = 0.

We can write on the one hand

S (Vi V) =y < o7
k=1

and on the other hand, by using (IV.19),

Na(r)
S (VA V) = S0 -1+ VA N
k=1

with C' = min(4/A1, C1/2). Combining the two inequalities above we obtain

Assume now that 7 > s > 0 and that N, (r) = N,(s) + 2, the same technique as before leads to

V= Va2 A A
=N (e v

k=N (s)+2
> C(Ny(r) — Na(s) —2),

which gives

Nio(r) — Na(s) <2+ é\/r —s.

Note that this estimate still holds in the case where N, (r) < N,(s) + 2. The claim is proved.

IV.1.1.2 Approximate controllability

The results obtained in Theorem IV.1.3 and the Fattorini-Hautus test (Theorem I11.3.7) immediately shows that both
problems (IV.8) and (IV.9) are approximately controllable in 1D at any time 7" > 0.

IV.1.1.3 Null-controllability

We shall now prove the null-controllability of (IV.8) and (IV.9), still in 1D, by using the moments method. We already
encountered this method in Section II.4 in order to deal with the controllability of finite dimensional linear differential
systems.

The main difference here is that there is now a countable infinite number of frequencies in the system.
That is the reason why we will need to be able to prove the existence of a countable biorthogonal family functions

to the set of all real exponential functions present in the definition of our semigroup. Moreover, we shall need precise
estimate on those families.
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The use of such a strategy in the framework of controllability issues goes back to [ , ] and has been
developped since then in many works. We mention for instance the recent works [ 1, [ 1,

[ LI LI 1.

To begin with, let us introduce a few notations. First of all, even though all the eigenvalue of our operator are real
we will state the next results in a slightly more general framework in which complex eigenvalues are allowed.

Definition I1V.1.8 (Properties of eigenvalues)

o Letn > 0 be given. We say that a family A < C satisfies the sector condition with parameter 1 if we

have
Ac Sy, (Iv.20)

see Definition A.6.34.

o Letk > 0and0 € (0,1) be given. We say that a family A < C satisfies the asymptotic assumptions
with parameters k., 0 if we have
Nu(r) < wr?, ¥r>0, (IV.21)

and
INA(r) = Ny ()| < k(1 + |r —s]%), Vr,s>0. (IV.22)

o Let p > 0 be given. We say that a family A < C satisfies the gap condition with parameter p if we
have
IN—=ul=p, VA#peA. (IV.23)

With those definitions at hand, we introduce the following class of families of complex numbers
L(n,k,0,p) = {A c C, that satisfies (IV.20), (IV.21), (IV.22), and (IV.23)}.

Our results will still hold (yet with a slightly weaker statement) in the following larger class where the
second asymptotic assumption is not considered

~

L(n,k,0,p) = {A c C, that satisfies (IV.20), (IV.21), and (IV.23)}.

Remark IV.1.9

The assumption (IV.22) is strictly stronger than (IV.21). Indeed, let us consider for instance the family of
complex numbers defined by

A= {nﬁe%,k‘e [0,n],n = 1},

where a € (0,7/2) and 3 > 2 are two parameters.
It is clear that A satisfies the sector condition (IV.20) and the gap condition (IV.23) for suitable values of
the parameters as well as the following upper bound for the counting function

Ny(r) = Z n= Z n<r2/57

n=1 nefl,r1/8]
nf<r

that is (IV.21) with 0 = 2/8.
However, we clearly have
INy(nP) = Ny(nP —1)| =n, VYn>1,

so that (IV.22) is not satisfied.
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We recall that the notation e[ A] stands for the exponential function as given in (I.7) and we observe that, as soon
as Re A > 0, we have
e[\] € L*(0, + o, C).

The theorem we need at that point is the following one. Its proof is postponed to Section IV.1.2.

Theorem IV.1.10

Consider a family of complex numbers A € L (n, k, 0, p) for some values of the parameters.
Then, for any T > 0 given, there exists a family (¢, 1 )xea in L*(0,T) satisfying

(QA,T7 e[M])LQ(O,T) = 5)\,,u> VA e A,
as well as the estimate
__6
HQA,THLQ(O,T) < KeT(Re)\)/2+K(Re,\)9+KT 179’ VA€ A, (IV.24)

where K > 0 only depends on k, 0, n and p.

In the case where we have the weaker assumption Ael (n, K, 0, p), the same result holds if one replaces
0 by any value 0 € (0, 1) in the estimate (IV.24); in that case the value of K also depends on 0.

In the 1D case the eigenvalues of our operator (IV.1) satisfy the above assumptions (IV.21)-(IV.23) with 6 = 1/2,
as we have seen in Theorem IV.1.3. The sector condition (IV.20) is obviously satisfied since the eigenvalues of this
operator are real.

We are thus in position to deduce the following two null-controllability results.

Theorem IV.1.11 (Boundary null-controllability in 1D)

Assume that d = 1, Q = (0,1). Let Ty = {1} for instance. For any yo € L*(2), and T > 0, there exists a
control v € L?(0,T) such that the solution of (1V.9) fulfills y(T) = 0 and satisfying the bound

C
vl 20,y < CeT |yol L2,

where C does not depend on T and y.

Proof :
Let T > 0 be given. For any v € L2(0, T, the solution y of (IV.9) satisfies

T
Y(T), o1y = Wose T o)1 g1 = f v(t)e TR0, 5 dt, YA€ A.
0
Hence, v is a null-control for our system if and only if the function u(t) % v(T — t) satisfies

T
e f u(t)e Mo dxdt, VA€ A,
0

where we used here that yo € L?(£2). We are thus led to find a function v € L?(0,T) that satisfies the following
moment problem

T . ye AT
J u(t)e Mdt = o, ?;L . WAeA (IV.25)
0 rPA

From the properties of the eigenvalues A given in Theorem IV.1.3, we see that

1
A Lk, =
e£<7H?27p>7
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for some «, p depending only on the coefficients « and -y of our elliptic operator. Note that A < R in that case, so that
it belongs to all the sectors S, n > 0.

By Theorem IV.1.10, we know that there exists a biorthogonal family (g, +)xea to the exponentials made upon
the family A. It follows that, as we did in the finite dimensional setting, we may formally solve the moment problem

above by defining
def —{yo, ¢M>L26_MT

mo%fEZUAw,wmnw@)_ - qur(t), YpeA.
neA 7"¢#

Indeed, if this series makes sense (and if the following computation can be justified) we have for any A € A,

T . 9 —uT T _< ¢ > 26—/\T
¢ -t di = <y07 ¢M>L € J ¢ —At di = Yo, X)L ’
[, e = 3, SR g e o

ueA

g

:5%#

and the claim will be proved. It remains to show the convergence of the series in L?(0, T"). To this end, we will show
that it is normally convergent. Indeed we have

lyolzze~"
lulzzomy < 75570 laur ez, (IV.26)
rPu

and by the estimate given in Theorem IV.1.10, we deduce that

HUMHL2(0,T) < K||2}0¢’>L2| e*uTepT/u%JrK\/ﬁ
rYu

1 K+K2)/2

<K——e
|0r

e yoll 2.

Finally, we use the bound from below for |0,.¢,,| given in Theorem IV.1.3, to deduce that
(e
lupl 2.y < Ce et |yo|l 2, VYue A,

which proves, thanks to (A.18), that

C ¢
Z w2201y < i lyol 2 < +o0,
HEA

and concludes the proof. [ |
We can use the same kind of proof in the case of the distributed control problem.

Theorem IV.1.12 (Distributed null-controllability in 1D)

Assume that d = 1, Q = (0,1). Let w be any non empty open subset of Q2. For any yo € L*(Q), and T > 0,
there exists a control v € L?((0,T) x w) such that the solution of (IV.8) fulfills y(T) = 0 and satisfying
the bound

C
0] L2 ((0,7) %) < CeT [[yo] L2,

where C does not depend on T and .

Proof :
We start with the same formulation as before, for any function v € L2((0,T) x w)

T
WT), b2 — (ore )z = JO f ot ) TPy (2) dedt, VAe Al
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The solution vanishes at time 7', if and only if the function (¢, x) = v(T — t, z) satisfies the following space-time
moment problem

T
f f u(t, 2 Ma (@) drdt = —(yo, drdpze T, YA€ A.
0 w

To solve this problem, we look for a biorthogonal family (Gyr)xea in L2((0,T) x w) to the family of functions
{(t,z) € (0,T) x w > ¢(x)e~*}. We propose the following family

aef O (x)

qA,T(t7 .%') == 2 q)\,T(t)a V(t, .:U) € (O,T) X Q, V)\ € A,
H¢)\HL2 w

where (g.7)xea is the same family as in the proof of the previous theorem.
We indeed check, by the Fubini theorem, that for any A, 4 € A, we have

f f Gor(t, )y (z)e M dt = W <f quudx) <LTqNT(t)e“t dt> = Oxp

~—

:5>\,u

Finally, we can define a formal null-control u by the series

u Z wy, with u,(t, x) = —<y0,¢u>Lze*“T§mT(t,x).
JTISN

It remains to check the convergence of this series by computing

—uT |G, HL2(0,T)

HU;LHLQ((O,T)xw) < HyOHL26_MTHq~MaT“L2((07T)XQ) < |yol r2e 62
I

so that, by the estimates given by Theorem 1V.1.10,

1

lwnll L2 (0,7 xw) < T HTRAEVE Y e A.
H%Hm

By Young’s inequality, we get

1 K+K2%/2
”uMHLQ((O,T)Xw) < Kw€ T MT/4’ Vlu, e A.

Using the bound from below for [¢,, |12, in Theorem IV.1.3 and (A.18), we conclude again to the convergence
in L2((0,T) x w) of the series that defines u and the claimed estimate. |

IV.1.2 Biorthogonal family of exponentials

The main goal of this section is to prove Theorem IV.1.10.

We will thus suppose given a family of complex numbers A € L (n, , 8, p). We recall that it means that is satisfies
the sector condition (IV.20), the asympotic behavior conditions (IV.21) and (IV.22), as well as the gap condition
(IVv.23).

Note that (IV.21) implies the summability property

The proof is based on the use of the Paley-Wiener theorem and on the construction of a product of a suitable entire
functions on the complex plane:
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e The first one is the function

Qu(z) = 1_[ (1 - g) )
oeL

where L is any subset of A. We will mainly use the fact that L is exactly the set of zeros of (). Note that ),
only depends on L. The main properties of (), are stated and proved in Appendix A.7.1.

e The second one is a so-called multiplier function, denoted by M,, , ., whose main goal will be to ensure that
the product built upon ), and M,, , . is square integrable on the real line. Note that this function does not
depend on L but only on the given parameter 6, as well as a time parameter 7 and on an additional parameter
m that will be chosen during the proof. The precise definition and analysis of this multiplier function is given
in Appendix A.7.2.

Proof (of Theorem 1V.1.10):
Thanks to the first point of Proposition A.7.40, we know that there exists a constant C; > 0 depending only on
0, k such that

1Qun (—i2)| < e“1#° vzeC,vaeA. (IV.27)
We set now
m:=Ci + 2 (IV.28)
then we define
(20m)*/?
TN = ——— -
1-0

For any 7 < 79, and any A € A, we introduce the entire function defined by

_ QA\{X} (_/L.Z)Mm,e,% (Z)
QavyN) M5 (00)

D, . (2):

e By using Proposition A.7.42 we can bound the factor |M,, 4 .»(2)| by e™121/2 and with (IV.27), we see that

sup [, ()]e ! < 40,
zeC

which means that ®, , is of exponential type 7.

e By construction of ®, , and the properties of (Q,(»;, we observe that

(I))\J_(’L',LL) = 6)\,;u V:u €A

e It remains to estimate ®, . on the real line.

— First, we combine (IV.27) and (A.51), and we use the choice of m given by (IV.28), to get

0 0
‘QA\{A}(_ix>M7n,9,T/2 (x)| < Cecl|x‘9€—m|x‘9+o7' -0 < Ce,2|x|9+07179 . VzeR.
— Second, by using the lower bound (A.47) (with v = p/2) stated in Proposition A.7.40, we obtain

|QA\{A}(>\)| = B_ng,

since the product Py (1}, appearing in (A.47) is simply equal to 1 in that case.
— Finally, by using Proposition A.7.43, we get

(M, g.015(iN)| = e V.
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All in all, we have obtained the bound
__0_
|, (z)] < Ce Il HCRIHCT 0 gy e R,

Applying the Paley-Wiener theorem (Theorem A.6.36) to this function ®, ,, we obtain that there exists a function
®x.» : R — C supported in (—7, 7) such that

D, . (2) = f @,T(t)eitz dt,

and with the estimate

1 0 .
H¢)\,T“L2(—T,T) = EH@A,THB(R) < CeCN+CT 170

We set now g, ,(t) := eXTa/\VT(t — 1), for all t € R. This function satisfies the following properties:
e ¢, . is supported in (0, 27).
e For any u € A, we have

2T 2T
f Do (t)e M dt =e br,(t —T)e M dt
0 0

—eA—m7 b, (e M dt

—eP7P, (i)

=0xu-
e The norm of g, , is estimated by

0
0 1=
T(ReA)HQsA, < CeT(Re N+C\P+Cr 1-9 ‘

Hq}‘” HL2(0727) =€ T ”LQ(*T,T)

By (A.22), we end up with the estimate

0
4 “1-0
“qA,THLQ(O,%—) <Ceﬂ'(Re/\)-i-C'n(Re/\) +Cr

Choosing 7 = min(7'/2, 79) we obtain the expected estimate since we have

__0_
T <y 7 4 (T)/2) 7T,

IV.1.2.1 Comparison with some related results in the literature

In Theorem IV.1.10, we have assumed that the family A belongs to the class £ (n, x, 0, p) introduced in Definition
IV.1.8.

We would like to mention here that a similar result was obtained in [ ] for instance, in the case § = 1/2
at least”. However the assumptions chosen in this reference were much stronger as we will show now.

e First of all, in [ ], it was assumed, in addition to the upper bound, some bound from below for the
counting function of the type
Ny(r) = ay/r —b, Vr>0. (IV.29)

We do not need such an assumption here.

It is very likely that the result in this reference could have been generalized to any value of 6 € (0, 1) without pain
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e They also assume some parabolic behavior of the elements in A, namely
|Zm A < eVRe A, VAe€A, (Iv.30)
which is not necessary in the present work. We only need A to belong to some sector in the complex half-plane.

e Lastly, if we assume given a numbering A = (\,),, of the eigenvalues such that |\, 41| = |\, ], it is assumed in
[ ] that, for some integer ¢ and some p > 0, we have the following stronger gap property

plk* —n? < |M\ — M|, Vk,nsuch that |k —n| > q,
inf |\ — A\p| > 0. (IV.31)

k#n
|k—n|<q

It is clear that this assumption implies the gap condition (IV.23).

Notice that the assumptions (IV.29) and (IV.31) have the very undesirable property that, if A satisfies one of them,
then it is not true that any subfamily L = A will satisfy the same property. This is not natural at all, since if one is able
to prove the existence (and bounds) of a biorthogonal family to the exponentials (e[A]) e then it obviously provides,
by retriction, a biorthogonal family to the the exponentials (e[\])acr, for any L < A.

We will show now that the above properties imply our result.

Proposition 1V.1.13

Let A = (\,)n © CT be a family of distinct numbers, ordered by increasing modulus, that fulfills (IV.29),
(IV.30) and (IV.31). Then the counting function N satisfies the asymptotic property (IV.22).

Proof :

e We start by showing that, we have

‘!An\ —ReM| <c?, VYneN.
Indeed, we write
Al = (ReAy 1+ (222
nl A A Redn)
so that
Dl = ReAn| = (ReAn) [ 114 (EM2n ‘)
n n| — n Re)\n
(Tm An)?
_ Re An
Imn
1+ (322) +1
<
en utilisant (IV.30).
e Let us consider now two integers k£ < n such that |k — n| > ¢. We can evaluate the modulus of their difference
as follows
Ak — A2 =(Re M, — Re M) + (Tm A\, — Im \,)?
<(ReXy — Re ) + 2[(Tm Ap)? + (Tm M,)?]
<(Re M — ReAn) +2¢°[Re A + Re An|
<2(|A] = 1An])? + 2¢2[|Ak] + [An]] + 12¢*
<L2()Ak] — |An))? + 4%\, + 12¢%

@O0 F. BOYER - JULY 16, 2022



58 Chapter IV. The heat equation

We have used that the sequence (|, |), is not decreasing by assumption.

By using (IV.31), we deduce
P2k —n)2(k 4+ n)% < 2(|Mk] — [Mn])? + 4% M| + 126,

and thus

Al k| An 12¢2
P2k = n)? < 23/l — VM) ( [An] + |’“> +2c2(‘ |, 1%

k+n k+n)?2  (k+n)? (IV.32)

An An
< 8(v/[Anl —«/\)\k|)2|nQ| +2¢ 2' | +12¢%,

e Letnow s,t € (0, +00), such that s < ¢t and N, (t) — Nx(s) = g+ 1. Wesetn = N,(t) and k = N,(s) + 1 in
such a way that |\,| < ¢ and |A\g| > s. By using (IV.29), we get

avt —b < Nu(t),

that is
2t < 2N, (1)% + 207,
and finally
2 202

Using this inequality in (IV.32), it follows

PPk —n> < C(VIral = VI + C

Thanks to the definition of k£ and n above, we deduce

PN = M)~ 1P < O 1+ (Ve vay? |

so that
P?INy(t) — Na(s) — 12 < 0[1 + |t — s\],

and finally
|INA(t) — Na(s)| < C(1 + vt —s), (Iv.33)

with a new value of C.

¢ To conclude, we observe that if we increase C in such a way that C' > ¢ + 1, then (IV.33) is now true for any
t,s.

The proof is complete.

IV.1.3 The multi-D case

This will be the opportunity to encounter our first Carleman estimate. Those are weighted a priori estimate on
solutions of PDEs that imply many important qualitative properties for those PDEs such as unique continuation,
spectral estimates, and so on. We refer for instance to the references [ ]and [ ].
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We first state the following two estimates without proof. We shall actually give the proof of a slightly more general
estimate in Section I'V.3.

Theorem IV.1.14 (Boundary Carleman estimate)

Let T be a non empty open subset of 0S). There exists a function ¢ € C*(Q), a C > 0 and sy > 0 such that,
for any u e H*(Q) n HL(Q) and any s > s¢, we have

PePuldaigy + sl Vulday < € (Ie#Aultag + sle?uuldar) . V349

Theorem IV.1.15 (Interior Carleman estimate)

Let w be a non empty open subset of ). There exists a function ¢ € C*(Q2), a C > 0 and a sy > 0 such
that, for any u € H?(2) n H(Q) and any s > so, we have

S3||63§0UH%2(Q) + SHG&PVUH%Q(Q) < C (HescpAUH%?(Q) + 53“6350/&”%2(“])) . (IV35)

Proposition I1V.1.16
Let w < Qand ' < 052 as before, then the eigenfunctions of A satisfy

Il 2wy # O, and [0nd|| 2y # 0, V¢ € Ker (A — N)\{0}, VA € A,

Proof :
We start from the equation satisfied by ¢ under the following form

—Y(A¢) — 2V - Vy — (Av)p + ad = Ao,

which gives
a—A _2V¢-V7_ﬂ

A = ¢
g gl gl

¢.
We deduce the pointwise inequality
|AP| < Cay(1 + [AD]9] + C[ VL.
e Assume first that ¢ = 0 on w. We can apply (IV.35) in which the observation term cancels and we get
33”65@(25“%2(9) + SH€S¢JV¢”%2(Q) <O(1+ )\2)\\6&‘7@5”%2(9) + CHeS“"V¢Ili2(Q)-
Taking s large enough (depending on k) we can conclude that
|22 0y + 51Vl <O,
which implies ¢ = 0 and thus a contradiction.

e If we assume that 0,,¢ = 0 on ', we apply the same reasoning with the other Carleman estimate.
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Remark IV.1.17

The reasoning above shows that for s = C1\?/3 we have
3 2 2 3 2
s’ 0|72 (q) + 5[€* VPl 12y < Cs° €012,

and thus .
CPs%e™ M| 9] 72 1) < C5e™ 5P ¢] 72 (,)-

Since Hgb” L2(Q) = 1, we deduce
2/3
H(bHQIQ(w) 2 C@ Css = Ce Car .

Similarly, we can show
70/\2/3
HanfbH%%F) > Ce :

However, with the above elements, we have proved the approximate controllability properties for the heat equa-
tion. Indeed, using the Fattorini-Hautus theorem (Theorem II1.3.7), we see that the claim of Proposition IV.1.16
exactly gives the following result.

Theorem 1V.1.18

Under the above assumptions, both problems (IV.8) and (IV.9) are approximately controllable from any
initial data yo € L*(Q2) and at any time T > 0.

IV.2 The method of Lebeau and Robbiano

In order to deal with the null-controllability problem in dimension greater than 1, we will need a much stronger
spectral property for the eigenfunctions of A.

More precisely, we will prove the following spectral inequality (taken from [ ], see also [ ]) that will
be crucial in our analysis.

Theorem IV.2.19 (Lebeau-Robbiano spectral inequality)

Let Q) as before and w a non empty open subset of Q). There exists a C > 0 depending only on «, v, w such
that: for any p > 0 we have

[l L2 < CeCVE |92y, Vo€ Ep,

where I, is defined in (IV.6).

Remark 1V.2.20

The above spectral inequality (as well as the proof below of the controllability result) does not hold for the
boundary control problem. This is very easy to see, even in 1D for instance, that for any two eigenvalues
A # p, we can find a non trivial linear combination ¢ = axpx + a,¢, such that 0, ¢|,—o = 0.

The above spectral inequality can be proved by means of another kind of global elliptic Carleman estimate that
will be proved in Section IV.3. We only give here the simplified version of this Carleman estimate that we need at that
point and proceed to the proof of the spectral inequality.
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Proposition 1V.2.21

Let Q) and w as before. Let T* > 0 be given and we set Q@ = (0, T*) x ). There exists a positive function
¢ € C3(Q) such that V ,o(T*,.) = 0 and C, so > 0 such that:

For any s > sq, and any function u € C?(Q) satisfying u(0,.) = 0 and u = 0 on [0, T] x 09, we have the
estimate

s3e2seT J (T, )|> <Cse?#T™ )f |V ou(T*, )2 +CSJ 7@V u(0, )

+ 2“6890(672_'& — AU)HLQ(Q)

Proof (of Theorem 1V.2.19):
Let us consider any element v € F/,, that we write

U:Z,UAEE,UA

AEA
ASp

with vy € Ker (A — ) for each A. We define the function u : Q — R as follows

sinh \FT
= > ——"u\(2).
AEA
A<p

This function is the unique solution of the following Cauchy problem for the elliptic augmented operator 02 — A,
indeed we have

u(0,.) =0, d;u(0,.) =v, (6% — A)(u) = 0.

We can apply the above Carleman estimate to this particular function v and find
s3e25P T)J lu(T*,.)? < CSJ |52 (0) g2 CseQW(T)J |Vou(T*, )% (IV.36)
w Q

Let us compute the norms at time 7°*:

e Since the v are pairwise orthogonal in L2(Q2), we simply have

[oalZz
| ez = 3 AR (AT > 5 3 el sinh(VATOR. avan)
Q AEA 'u)\EA
A<p A<

e For the gradient term, we first observe that
J \Vou(T*, )* < C’f Y| Vau(T*,)|? = CLAU(T, *), u(T*, Dr2@) — CJ alu(T*
Q 0 Q
< CCAu(T, #),u(T*, ) )2 (q) + CJ |u(T™
Q

Then we use that, for any A, \’, we have

(Avy, vx )z = Mva] 7205,

to write
CAu(T*,.),u(T*, ) = Y Joal7:| sinh(VAT*) 2.
AeA
ASp
Using (IV.37), we have finally proved that
f |Vou(T*, )| < C(1+ M)J lu(T*, )2 (IV.38)
Q Q
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Using (IV.38) in (IV.36), we have finally obtained
s3e2o¢(T) J lu(T*, )|* < Csf 5P 0)y|2 4 Cse??(T) (1 + ,u)J |u(T™
Q w Q

Since this inequality holds for any value of s, large enough, we see that we can choose s = C /1 for some C in order
to absorb the last term by the left-hand side term of the inequality. It remains, for this particular value of s

OOV [ o, )P < Oy [ Ve,
Q w
and then, changing the values of the constants if necessary, we get

fw F<—£WMP

To conclude, we use the inequality | sinh(¢)/t| = 1 for any ¢ € R, to write

2

sinh(v/AT*)

jwwﬁ=2vﬁz¢x‘>aw2mé=@w@.
{ AeA AeA
A<p A<p

|
With this inequality at hand we can prove a partial observability inequality and a related partial distributed con-
trollability result. We recall that we assume that all the eigenvalues of A are positive.

Proposition 1V.2.22

There exists a C' > 0 such that for any time T > 0 and any 1 > 0, we have the following inequality

3 CeCVE (T
e arl < S [ e M arlag ds, Var € B

Note that the operator A is self-adjoint and thus the adjoint operator that we should have put in this inequality is
nothing but A* = 4. Moreover, we also have B = B* = 1,, which explains the form of the right hand side.
Proof :

Since the space E|, is stable by the operator A (it is built upon its eigenfunctions), we know that e (
belongs to E,, as soon as qr € E,,. Therefore, we can apply the Lebeau-Robbiano spectral inequality to this particular
element of £,

T*S)AqT

(r—

e g2y < CeOVE| =M g2,

By the dissipation estimate (IV.5), we find that
le ™ Aqr3aq) < CeOVEle™ T Aqr|2,

(with A possibly negative). We can now integrate this inequality with respect to s on (0, 7) to find
T
- 2 c —(r— 2
e Aar R < CEOT | e M rlfag,

which gives the result. [ |
For any ¢ > 0, and 7 > 0, we consider the following finite dimensional control problem

{aty + Ay = P(1ov(t, @)

(IV.39)
y(0) = yo,u € E,

@O0 F. BOYER - JULY 16, 2022



IV.2. The method of Lebeau and Robbiano 63

with v € L?(0, 7; E,,). Since E,, is stable by .A, this problem can be recast in the ODE form
y'(t) + Ayy = By,

by setting A, = Ajg, and B, = P,(1,.). The state space is E = E,, and the control space is also U = E,, with their
natural inner product.
We observe that
A=Ay, and B}, = By,.

Corollary 1V.2.23

Forany p > 0, 7 > 0 and yo ,, € E,, the partial control System (1V.39) is null-controllable at time T and
more precisely, there exists control v, € L*(0,, E,) such that the solution satisfies y(T) = 0 and such

that
OV
”UHHLQ(O,T;E#) < 07||Z/0,u E,-
Proof :

We simply use the results we proved in the finite dimensional framework and in particular the second point of
Theorem I1.7.25. [ |
Proposition 1V.2.24

For any i > 0, 7 > 0 and yo € E, there exists a control v, € L?(0,7, L2(SY)) for our original system
(IV.8) such that
P,uy(T) = 07
and
(O
vl 220, 8) < 07‘|?JOHE;
ly(P)5 < Coe™¥¥|yo 5.
Proof :

We take v, to be the control for the partial control system obtained in Corollary IV.2.23 with the initial data

Yo,u = Puyo. Let y be the solution of the full system associated with this control

oy + Ay = 1w'U;m y(O) = Yo-
We apply the projector P, (which commutes with A) to get

(Puy) + A(Puy) = Pu(lwvu), (Puy)(0) = Puyo.

This proves that P,y is the (unique) solution of (IV.39), and by construction we have P,y(7) = 0. Moreover, since
P, is an orthogonal projection in £, we have

[vullz2(0:5) < Ce“VH| Payolle < Ce“V¥ o -

Finally, we write the Duhamel formula

T

y(1) =yo + Jo e_(T_S)ABU“(s) ds,

and take the norm in £ .
ly(M)e < llyolle + JO le™ 94 Bu,(s) | i ds.
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We use now the dissipation estimate for A4 (IV.5) (with A\; > 0 here) and the fact that B = 1, is bounded with norm
1. It follows

~
ly(Dlle < lyolle + CL lvu(s)lE ds < [yol e + CVTvul 1207
and the conclusion follows by the estimate we got on the norm of v,,. [ |

Corollary IV.2.25

Forany u> 0,0 <7 < T and yo € E, there exists a control v, € L*(0,7, L*(Q)) such that

Cyn
(&
||U,LLHL2(0,T;E') <C \/F ”yO“Ea

ly(™)|e < Cae®VE= % yo| .

Proof :
The idea is to use the previous proposition on the time interval (0, 7/2). This gives us a control w,, € L*(0,7/2; E)
such that P,y(7/2) = 0 and

eCVE
lwullr2(0,7/2,8) < 07’@0”&
ly(7/2)| e < Cae®>VF|yo| .

Now, on the second half of the time interval we do nothing in order to take advantage of the natural dissipation of the
system and to the fact that all frequencies less than y have been killed at time 7/2. It means that the control we finally
consider is

on(t) = wy(t), forte (0,7/2),
g 0, fort e (1/2,7).

It is clear that v, and w), have the same L2-norm. Moreover, since v, = 0 on (7/2,7), we have
y(r) = e 2%y (7/2),
and thus, since P,y(7/2) = 0, it follows by (IV.7)

_z T
ly(M)le < ™2 |y(r/2)|p < Coe™VE2 yo |-

Theorem 1V.2.26 (Lebeau-Robbiano null-controllability theorem [ D
For any T > 0, the heat-like equation (IV.2), is null-controllable at time T

Proof :
The idea is to split the time interval (0, T") into small subintervals of size 7;, j > 1 with

ZszT,

=1

and to apply successively a partial control as in the previous corollary with a cut frequency ; that tends to infinity
when 7 — co.
More precisely, we set

7j = o7, and p; = B(2)?,

ga
with 3 > 0 to be determined later.
LetTj = >3 _ 7k, forj > 1.
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ly(®)llz2(0)
Do nothing Control
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= m ///ﬂ\\\ !
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such a way that

a way that

By construction, we have

Figure IV.1: The Lebeau-Robbiano method

ly(T2) | < CFe“2Vimt Vi)

HUJ‘HLQ(T]-_th;E) <C

lvilL20,m, ) <

Cy/p1

VL

e

C

During the time interval (0,71) = (0,7}), we apply a control v; as given by Corollary IV.2.25 with u = p, in

lyolz,

_r
[y(TV) 2 < Cae™VI="2" [y -

eCViz

During the time interval (71,71 + T2) we apply a control vy as given by Corollary IV.2.25 with p = pe9, in such

lvallp2(ry 158y < € 7 ly(Th) | s

NG
VTi

_ 71Kl T2H2
2 2

lyol -

And so on, by induction we build a control v; on the time interval (T_1,7y) such that

ly(Ti-1)lle,

ly(T;) |5 < CeC2 Thar VFE—3 Thar otk |y | .

J J J J
cgglﬁ_;;lm :@ﬁ;ﬁ_ﬁ;ﬁ
= (Con/B—5T)(2H — 1)

We are thus led to choose 3 large enough so that

and we have obtained that for any j,

g

gty

2

CQ\/B > 0,

R
lv(T)]e < CsC3e™ lyol -

e Going back to the estimate of the norm of v;, we have

€OV

GlOIS(O)

lvjll 2,y 20m) < ©

VT
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Wee that we can choose 3 even larger to ensure that

BEpB-CyB>0.
We finally got the estimate

CCs . 1 _doj
il 2ty mm) < 208 e ol

o All the previous estimates show that

2
2 il 1y < o0,
i>1

and in particular the function v that is obtained by gluing all together the (v;); is an element of L?(0, T E).
The associated solution y of the PDE is continuous in time on [0, 7"] with values in F and satisfies

R
ly(T3) < CsC3e ™ |yol & — 0

This implies y(7') = 0, since 7; — T" as j — 0.

The claim is proved.

Remark I1V.2.27

A careful inspection of the proof shows that one can take (3 of the form

«

ﬁ:ﬁa

with o > 0 large enough independent of . It follows that B and 3 will be proportional to 1/T and therefore
we can obtain the following estimate on the control cost

el
lvlz20,r:2) < CeT |yol -

This exponential behavior of the cost in the limit T — 0 is actually optimal.

IV.3  Global elliptic Carleman estimates and applications

As we have seen below, the Carleman inequalities aim at giving global weighted estimates of a solution of a PDE
(here we shall specifically consider elliptic PDEs) as a function of source terms and of some partial information on
the solution itself either on a part of the boundary, or on a part of the domain. For a more complete discussion about
those kind of estimates (including some insights on the profound reasons why they are true) we refer for instance to

[ ; I
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IV.3.1 The basic computation
Let €2 be a Lipschitz domain of R? and ¢ € C?(£2, R) be a smooth function to be determined later.

Proposition 1V.3.28

For any u € C*(Q, R), and any s = 0, we set v = e*?u. The following inequality holds
& | @DV V) - ApVeP)lof + 5 [ [2ADP)(T0, T0) + Agl Vol
Q Q
_SSJ |v¢‘25n¢|v2_sf an90|anv|2
o0 o0
< - 2sf vVou - VAp + S2j |Ap|?|v)?
Q Q

— SJ 8ng0|VHv|2 — QSJ (Vv - V)p) + QSJ Apvonv
o o o0

T e (A0) 22 -

Proof :
We first write the following derivation formulas

Ve = (sVy)e®?,

Ae? = s%| V| + s(Ap)es?.
Then we set f = Awu and we compute

Vo = e*?(Vu) + (Ve**)u = e*?(Vu) + sVe(e*fu) = e*#(Vu) + s(Vy)v,

Av = A(e*Pu) = (Ae*P)u + 2(Ve®?) - (Vu) + e*?(Au),
which gives
Av = s2|V|2v + s(Ap)v 4 25(Vp) - (Vo — su(Vp)) + 9 f,
and finally
Av = —5%|Vo*v + s(Ap)v 4 25V - Vv + ¥ f. (IV.40)

We write this formula in the following form

<Av + 52|Vg0]2v> + ( —2sVyp - Vo — 2$Agov> =% f — s(Ap)v.

" J N J
v v~

=Mv =Mosv

We write

2(Myo, Myv) 2 < [ Miv|7s + 2(Myv, Mav) 2 + |Mov|72 = [ Mo + Mav| 72 g,
= [ — s(Ap)v| 72 < 2 f[72 + 257 (Ap)v] 7.

The two right-hand side terms are the ones we expect in the inequality. Let us now compute the inner product
(Myv, Mav) 2. We denote by I;; the inner product of the term number 4 of M;v with the term number j of Mav.
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e Term [I7; : We perform two integration by parts
I = —23J (Ve - Vo)Av = —252[ 0;p0;vAv
Q = Jo
= 232j 0; Vo - Vuov + QSZJ 0;oVo;v - Vv — 2SJ (Vo - Vv)opv
—Ja —Jo o0
= 2sf D?p(Vv, Vv) + SZJ 0ip0; (|V]?) — 2sf (V- Vv)o,v
Q —JQ o0
= QSJ D?p(Vv, Vo) — SJ Ap|Vo|? + SJ On| Vol — 25] (Vo - Vv)onv.
0 Q o0 Ele)
e Term I;2: We perform one integration by parts
I = —23J ApAvv
Q
= 2Sj (Ap)|Vu)? + ZSJ (VAp - Vv)v — 2sf Apvonv.
Q Q oQ
e Term I5; : We perform one integration by parts

I = —283J IVol|? (Ve - Vo)v
Q

_SBJ Vel (Ve V)[of?
Q
- ‘ng Vol (div([v]* V) — Alo]’)
Q
=53 LV(!WPIQ) - Velo]? - s LQ |V *of* + 5° fQ(AsO)!VsOIQ\vQ

= L (2D%*0.(V, Vo) + Ap|Vel?) |v]* — s° LQ Onp| Vol o]

e The term I, is left unchanged
Iy = =25 | (Ap)ViP?
Q

Adding all the above terms and gathering all of them lead to the expected inequality. For the boundary terms, we

make use of the following formulas
V2 = [0nf? + V) £,

(Vf-Vg) =0nfong +V)f Vg

If one wants to get some interesting information from the above huge inequality, we see that first two (volumic)
terms in the left-hand side needs to have the good sign, at least on some large enough part of the domain and/or the
boundary. More precisely, we would like that, for some 5 > 0 and some subsets K < {2 and ¥ < 0f2, we have

2D?p + Ay is uniformly 3-coercive on K,
2D*p(Vip, Vi) — Ap|Vep|* = BIV]?, on K,
V| = 8, on K,

Onp < —f, onX.

Let us point out that we cannot expect those assumptions to be valid all together with K = Q and ¥ = 0:
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¢ Imagine that assumption (IV.43) holds with K = 2, then we know that  has to achieve its maximum on the
boundary 02 which proves that (IV.44) cannot hold for ¥ = 0.

e Imagine that (IV.41) holds for K = (2, then by taking the trace we deduce that
(d+2)Ap =dp, in{,

and thus, by the Stokes formula,

d
o= | Ap=-2"p|0| >0,
LQ © Lso d+2ﬁ||

which prevents (IV.44) to be true with 3 = 0€2.

Therefore, we will need to relax our requirements on K and X and that will lead to the observation terms in the
final Carleman estimate.

More precisely, it is possible to build suitable weight functions as stated in the following result whose proof is
postponed to Section [V.3.4.

Lemma IV.3.29

1. Boundary observation : Let I' < 0€2. There exists a 5 > 0 and a function ¢ satisfying (IV.41),
(IV.42) and (IV.4A3) with K = Q and (IV.44) with ¥ = 0Q\T.

Moreover, we can choose p that satisfies

VHQO = 0, on 0f).

2. Interior observation : Let w < €2 a non empty open subset of C). There exists a 3 > 0 and a function
@ satisfying (IV.41), (IV.42) and (IV.43) with K = Q\w, and (IV.44) with ¥ = 0S.

Moreover, we can choose @ that satisfies

Ve =0, on .

IV.3.2 Proof of the boundary Carleman estimate

We may now prove Theorem IV.1.14. For the moment we shall not use the fact that v satisfies any boundary condition
in order to identify the precise point where this property will be used.

We take a function ¢ associated with I', as in the first point of Lemma IV.3.29.

We apply the inequality of Proposition IV.3.28 with this particular function ¢ using its properties to get

3353J \v[2+sﬂf ‘VU‘2+83,33J MQ—i—sBJ |0nv|2
Q Q 20\ 2O\
< IVolSs® | 1o+ sl Tl [ fonol + 5IViolie [ (90 + 258l [ Jollon
r r o0 o0
+ 2||65“"(Au)\|%2(9) - 25J vVou - VAp + QSQJ |Ap|?|v]?.
0 Q
Adding the terms s {. |v|? and 58 §. |05 v|? on both sides of the inequality gives
3353J |v|2+sﬁf |Vv2+3353j |v|2+sﬁf |6nv|2
Q Q o0 o0
<2Vl [ 1o + 2519¢ko | 10wl + 51Vl | (90l + 2ol Aplus [ follono
I T o0 o0

+ 2Hew(Au)H%Q(Q) —2s JQ Vv - VA + 252 JQ |Ap|?|v]?
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We see that the left-hand side terms give global information on v and Vv in €2 and on v and J,v on 052.
The last two terms can be bounded as follows

—ZSJ vV - VAp + 252f |AQ? v < Cus|v| 2| Vol 2 + Cps?|v] 12
Q Q

< Cps®vlzz + Co| V75

We observe that the powers of s in those terms are less than the powers of s on similar terms in the left-hand side of
the inequality. Therefore, there exists a so > 0 depending only on ¢, such that those terms can be absorbed in the
inequality. We get

83B3J |v]2+sﬁf |Vv2+53ﬁ3f |v|2+sﬁf | O]
Q Q oQ oQ
< Cos® [ o+ Cos | (0wl 4 Cos [ Vol + Cis | o] + 21 (80 3
r r (%] o0

The fourth term in the right-hand side can be estimated by using the Cauchy-Schwarz and Young inequalities as
follows

C@sJ olow] < QPSQJ ]2 +6@J 1802,
o0 o) o0

It follows (thanks to the low powers in s of those terms) that, for s large enough, we can absorb those contributions
by the left-hand side terms in our inequality.
It remains the following inequality

8363J |v[2 + sﬁf |Vv\2 + 5353f |v|2 + sﬁf |8nv|2
Q Q a0 o0
< C¢33J ‘UP + Cgosf \(%U\Q + CsDSJ |VH7}’2 + QHGSSO(AU)H%%Q)’
T T o0

which is valid for any function u without any assumption on the boundary conditions.

The only term which is not an observation term is the third one in the right-hand side. At that point, we need to
consider the boundary condition for u. Indeed, if we assume that u = 0 (or equivalently v = 0) on dQ\T', we deduce
that Vv = 0 on 0Q\I' and thus we have

8363J |v[2+sﬁf |Vv2+sﬂf |Opv?
Q Q o0
<, JF o]? + CSDSL 10n0]2 + q@sL 9 j0l? + 20 (A)|22 0,

which is a first suitable Carleman estimate with observation on I'.
The announced estimate is a particular case of the above inequality in the case where v = 0 on the whole boundary
dQ (and thus Vv = 0)

5353J ol + sBJ Vol + sBJ 0] < qosf 000 ? + 2" (M) 2.
Q Q o0 r
We just finally need to go back to the function u. We first note that

o] = €*?|ul,

and
Vo = e*?(Vu) + (Ve*?)u = e*?(Vu) + s(Vy) e*?u
=v
so that we have
s|esPVul|? < s|Vu|* + s3| V|||
Moreover,
Onv = €*?(Opu) + u(0pe®*) = e*?(dpu),

since © = 0 on the boundary. The claim is proved.
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IV.3.3 Proof of the distributed Carleman estimate

We may now prove Theorem IV.1.15. We take a function ¢ associated with w, as in the second point of Lemma
1V.3.20.

We apply the inequality of Proposition 1V.3.28 with this particular function ¢ using its properties to get, for any
function v that vanishes on the boundary

B33 j [of? + 58 f Vol + 58 f 2nv]? <Cps? f 02 + Cips f Vol + 2es# (Au)|2 0,
Q\w Q\w oQ w w
+ ZSQJ |Ap|?|v|? - ZSJ vVu - VAp
0 (9]

Adding the terms s°5° J |v|? and s3 J |Vv|? on both sides of the inequality gives (with another value of the constant
C’<p) w w

535 f [o]? + 58 f Vol? + 55 f 100? <c@s3’f [of? + apsf IVof? + 2 (Au)| 22 0
(9] Q o0 w w
+ QSQJ |Ap|?|v|? - 2sj vVu - VAgp,
Q Q

and we can now absorb the last two terms as we did previously, by assuming that s > s for some sy depending only
on the weight function ¢. We finally get

5333f o? + sﬂf Vo2 + sﬂf 16.0]? < CSOSSJ ol? + c@sf T2 + 2]e* (Au)| 22 0
Q Q o0 w w

This is actually a Carleman estimate with observation terms in w but we would like a little bit more, namely to obtain
a similar estimate without observation terms containing derivatives of v. Let us show how to obtain such an estimate.

To begin with we consider a small non-empty observation domain wy such that wg = w and we apply the above
Carleman estimate to this new observation domain (this imply to use a weight function ¢ adapted to this new obser-
vation domain). It follows that

53S3J \v2+sﬁf \wmsgf 160]? < cﬁf \v[2+CsJ Vof? + 2 (Au) gy,
Q Q o0 wo wo

and we will now show how to get rid of the term Swo |Vo|?2. Let n be a non-negative smooth function compactly
supported in w and such that 7 = 1 in wy. We write by an integration by parts

sf Vol? < SJ n|Vol* = —sf vVu-Vn— sf nu(Av).
wo w w

w

Then we use the equation satisfied by v (see (IV.40)) that we recall here

Av = e*?(Au) + s(Ap)v — s%|Vp|*v + 25V - Vo,

SJ IVu|? < Gy, <SJ [v|| V| + SJ |v|e*?| Au| + SZJ lv|* + s?’f lv|* + S2j |v||VU|) .
wo w w w w w

Since s = sg, we deduce

SJ Vo> < C, (SQJ [v]|Vo| + sf |v|e*?|Au| + s3f \v|2) :
wo w w w

to obtain
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The last term is the observation term we would like to keep at the end. The second term can be bounded by the
Cauchy-Schwarz and Young inequalities

s [ poleriau <26 [ o2 [ jetau < 257 | 0P + 20 (A,
w w w w

Finally, we also use the Cauchy-Schwarz inequality and the refined Young inequality to bound the first term as follows

€ 1 € 1
SQJ |v|| Vv =J s32|v| V2| V| < sf |Vol? + sgj lv|? < SJ |Vol? + 53J lv|?,
w w 2 Jo 2¢e w 2 Jqo 2 Jo

so that we can take € small enough (depending only on () such that the term in Vv is absorbed by the corresponding
term in the left-hand side of the inequality. The proof is complete.

IV.3.4 Construction of the weight functions

Our goal is to prove Lemma 1V.3.29. We begin by constructing a first function with particular properties.

Lemma IV.3.30

Let U be a bounded domain of Bd of class C*> and V < U a non empty open subset of U.
There exists a function 1 € C*(U) such that:

e ¢ =d(.,0U) in a neighborhood of dU. In particular 1) = 0 and 0,,1p) = —1 on oU.
e Yp>0inU.

o Vi # 0 in the compact K o U\V. In particular, there exists o > 0 such that

VY| = a, in K.
Proof :
Using the Morse lemma, we can find a function ¢ that satisfies the first two properties and which has a finite num-
ber of critical points in U, let say x1, ..., x,, see for instance [ ]. Then we choose n distinct points y1, ..., Yn

in V. There exists a diffeomorphism G from U into itself such that G(y;) = x; and such that G(y) = y in a neigh-
borhood of dU. This can be done by considering the flow of a suitable compactly supported vector field. We easily
check that ¢) = ¢ o G satisfies all the required properties. [ |

We may now prove the second point of Lemma [V.3.29. We apply the previous lemma with U = Q2 and V = w.
We set ¢ = e for A > 0. and perform the following computations

Vi = AVY)p,

D*p = N(D*¥)p + N(VY) @ (V) e,
Ap = MAY)p + NV [*p.

e We first compute
2D%p + Ap = M2(D*P) + (Av))p + N (2(VY) @ (V) + [VY ),

and we see that for any & € R?

;@D% L AQ)(EE) = NV - £ + [VOPIER) — ACylel?
> (2T — Ay
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Therefore, since Vi does not vanish in K, we can choose A large enough so that
1
S(2D% + 80).(6.0) > OXIVUPLEF, K,

and since ¢ > 1, we get
2D%*p + Ap = CN|Vy|?, in K.

e We compute now

2D%*p.(Vop, V) — Ap|Vol* = N20* (2D%¢.(V), Vib) — Ap|Vi[?)
= N* (N2 |V|' + 2AD%).(Vih, Vi) — A(AY) VY| *p)
> ¢?(Mat — CypN?), in K.

Here also, for X large enough we deduce that

2D%p.(V, V) — Ap|Ve? = Ma?, in K.

Let us now prove the first point of Lemma IV.3.29. To this end, we consider a bounded open set U that contains
2 and such that 9Q n U < I'. Then we choose some non empty open subset V such that V n Q = (5.
We build a function ¢ related with this choice of U and V, and we easily see that its restriction to {2 satisfies all
the required properties since
OO\I' c oU.

IV.3.5 A Carleman estimate for augmented elliptic operators with special boundary conditions

For T* > 0, we set Q = (0,T*) x Q be a time-space domain (even though the time variable here has nothing to do
with the physical time of the initial problem). We consider the augmented elliptic operator

Ay =2+ A,

where the operator A (as well as V) only concerns the space variables. The complete gradient operator will be denoted
by

vT,m = (ara v)
Note that all the analysis below still apply with A replaced by the general elliptic operator —.A, with suitable regularity
assumptions on .

Lemma I1V.3.31

Let w < Q be a non-empty open subset of ). There exists a weight function ¢ € C*(Q) that satisfies the
assumptions (IV.41), (IV.42) and (IV.43) on the time-space domain () and moreover

Onp <0, on (0,T*) x 09,

(_67(70> < _/87 on {O} X (Q\UJ),
Orp < =0, on{T*} x Q,
Vaep(T*,.) =0, inQ.

We use this function ¢ in Proposition 1V.3.28 on the domain () for any function « that satisfies

u(0,.) =0, in €,
u(r,.) =0, on dQ forany 7 € (0,77).
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Observe that v does not vanish for 7 = T™* so that u does not satisfy homogeneous boundary condition on d@). This
is why the Carleman estimate we will prove is different from the one developed above.

‘We obtain
3[33J |v|2+sﬁj V. wv]2+53ﬁ3f (T +53J |8Tv(T*,.)|2—|—BsJ 10,00, )2
QNw
- j 2rp(T*, )V au(T*, ) + 2% (Ar )22

- ZSJ vV Vi Ar o+ 252 j |Amcg0\2|v|2.
Q Q

The last two terms can be asborbed for s > sy as before, and we can add the observation term at time 7 = 0 on w on
both sides of the inequality to obtain

S5 [ (o 458 [ [Vran ot 5 | (T 0P + s | (0T )P + B [ Jore(0
Q Q Q Q Q
<Cs [ 100,07 + s | [Ta* )P + Cle* (D) gy
w Q

Coming back to the function u, and using that ¢ does not depend on = at 7 = T, we have finally obtained the
following Carleman estimate.

Proposition 1V.3.32

For any s = s1, any u € C%(Q) such that u(0,.) = 0 and u(t,.) = 0 on 0Q for any t € (0, T*), we have
ng le*Pul? + SJ %PV, pul? + SJ 1570 0 u(0,.) 2
Q Q
+ g3e2se(T f |u(T 2 4 ge2se(T* )f |0ru(T*, )|

Csf 15200 u(0,.) |2 + Cse?# T J |Vou(T*, ) + CHes‘P(AT,Iu)H%Q(Q).
w Q

Remark I1V.3.33

All the above elliptic Carleman estimates can be adapted to more general differential operators, like
—div (vV-) for a smooth enough diffusion coefficient -y (and even for in some non-smooth cases).

IV.4 The Fursikov-Imanuvilov approach

Contrary to the Lebeau-Robbiano strategy that amounts to build, step by step, a null-control for our problem, the
method proposed by Fursikov and Imanuvilov in [ ] consists in directly proving the observability inequality on
the adjoint problem.

IV.4.1 Global parabolic Carleman estimates

We shall derive and use now a new kind of Carleman estimates. Those inequalities will directly concern the solutions
of the parabolic operator under study.

The control time 7" > 0 is fixed and we set 0(t) = (T 7 We give the following result without proof (see [ 1,
[ Jor | ]) since it follows very similar lines as the ones of the proof of the elliptic Carleman estimate (but
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with more technicalities).

Theorem I1V.4.34

Let w be a non empty open subset of §). There exists a function o € C*(Q) such that

sup ¢ < 0, and inf |Vp| > 0,
Q Q\w

and for which we have the following property: for any d € R, there exists so > 0 and C' > 0 such that the
following estimate holds for any s > so and any u € C*([0,T] x Q) such that u = 0 on (0, T) x 09

[ [porfent ] e
co( [/ Lo+ [

The sign + in the parabolic operator just means that the estimate holds true for both operators 0 — A and

o + A.

; 2
e’ "OVU‘

s6 2
e ‘p(ﬁtuiAu)‘ .

As usual we can extend, by density, this estimate to less regular functions w as soon as all the terms in the inequality
make sense.

Remark I1V.4.35

A careful inspection of the proof shows that the same estimate holds with the following additional terms in

the left-hand side
T 2 T
f f (s6)" e 20ru] " + J f (6)4
0 JOQ 0 JOQ

Notice that, since ¢ is negative and 6(t) — oo when ¢ — 0 or ¢ — T, all the weights in this estimate are
exponentially small near ¢ = 0 and ¢ = T'. This explains why the estimate holds without any assumption on the values
ofuattimet =0ort="1T.

0 2
e’ S"Au’

IV.4.2  Another proof of the null-controllability of the heat equation

With the above estimate at hand, we can directly prove the observability inequality we need.

Theorem 1V.4.36

With the same assumption as before, there exists C' > 0 such that, for any solution q of the adjoint problem

—0q — Aq =0,

with q(T) € L*(Q), then we have

T
19(0)]72q) < CQL f lq(t, )|? dt da.

As a consequence, we have proved the null-controllability of the heat equation for any time T > (.

Proof :
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We choose d = 0 and take some s > sg; then we apply the Carleman estimate above to the function ¢. Only
keeping the first term in the left-hand side, we get

T 9 T
Jy Skl <e )]
0 JOQ 0 Jw

s6p

2
ese‘Pq‘ .

Since ¢ < 0 and § > 0, we easily see that e*’¥ < 1. Moreover, we restrict the left-hand side integral to the time

interval (7'/4,3T'/4) to get
3T
4 2 T 9
[} Rt =ef Lt
% Q 0 Jw

On the interval (T'/4,3T/4) we have 6(t) < 16/3T2. We deduce that

259 > 32Tty on (T/4,3T/4) x Q.

We have thus obtained for another value of C'

3L T
f f!q\2<0f JIQIQ-
% Q 0 Jw

We use now the dissipation property of the (backward) heat equation which gives

9(0)122 < la()[32(qy> Vs € (0.7).

By integration on (7'/4, 3T /4) we get

3T

2 x
O < 7 [, 1a(6) e

AN

and the claim is proved by combining the last two inequalities. [ |
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Chapter V

Coupled parabolic equations

In this chapter, we would like to investigate controllability properties for coupled systems like (II1.3) and (II1.4). A
particular attention will be paid to the case where rank B < n, that is when there are less controls than components in
the system. We refer to the survey paper [ ] even though many results were published on this topic after
this survey.

V.1 Systems with as many controls as components

Let us first discuss the case where rankB = n (which implies that m > n). We can remove some (useless)
columns to B and assume that m = n and that B is invertible.
Theorem V.1.1

Let w be a non empty open subset of Q) and T' > 0 and assume that B is a square invertible n x n matrix.
Then, System (111.3) is null-controllable at time T'.

Notice that we do not make any structure assumption on the coupling matrix C'(¢, z), we only assume that C' €
L*((0,T) x Q).
Proof :

We propose a proof based on the global parabolic Carleman estimate. The adjoint system associated with (I1L.3)

reads
—0iq — Aq + C*(t,z)q = 0,

which can be also written, component-by-component for any i € {1, ..., n}, as follows

—01qi — Aq; = — Z cji(t, )q;.
J

We apply to each ¢; the Carleman estimate given in Theorem 1V.4.34, with d = 0, the same value of s > s¢ and,
of course, the same weight function . It follows that

T 9 T 9 T
f f esewqi‘ < C’J f ese@qi‘ + CZJ J (50)_3|e‘99“"qj|2.
0 Ja 0 Jw 7 Jo Jo

We sum over i all those inequalities and we observe that on (0, T'), the function =3 is bounded to deduce that, for all

T 2 T 2 C T 0
B, Jleeal < eX ]y Ll s SE] [ e

We see that, for s large enough (depending only on the data !), the last term is absorbed by the left-hand side term.

We deduce that
T 9 T
<cC f f
;JO JQ ; 0 w

s =580

0 0
e*?q; e*?q;

2
0 0
e*?q; e’ “’qz“ :
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Using the same arguments as in Theorem [V.4.36, we arrive at

3L T
2 2
gl <C jf%
;J% JQ‘ ‘ ;0 w‘ ‘

Still denoting by |.| the Euclidean norm in R™, this reads

T 2 g 2
f fq|<cff|q.
T Ja 0 Juw

We use now the fact that B is an invertible matrix to deduce that for some other constant C, we have

3L T

4
f f l|? <Of f |B*q|?. (V.1)
% Q 0 Jw

We would like now to use the dissipation argument. Because of the coupling terms we cannot simply use the
estimate (IV.5) for the heat equation. Instead we will prove an energy estimate for the backward equation which
implies that ||q(0)| 12 can be bounded, up to a multiplicative constant, by [¢(s)]|2(q) for any s > 0.

To this end we multiply the adjoint equation (in the sense of the Euclidean inner product of R™) by ¢(t, x) and we
integrate over €. It follows that

—J;)(&tq) ~qdx — JQ Aq-qdr = —jQ(C*Q) -qdx.

Integrating by parts the second term it follows that

~53i | P do+ | Watde == | (€0 ado <1CLue | o de.
Q Q

in particular we have
d
= Za(®) 22y < 21C] =08 B
Using the Gronwall inequality we deduce that

(s=t)]

la@) 2y <e “la(s)| L2y, VO<t<s<T,

and in particular
14(0) ]l z2y < 191 q(s) | r20y, YO < s < T.

Combining this inequality with (V.1) we obtain

19(0) 2 Of f B*qP,

and the observability inequality is proved as well as the null-controllability by duality. [ |

V.2 Boundary versus distributed controllability

We first notice that, for the scalar problems we have studied before, the boundary and distributed controllability
problems are in fact equivalent in some sense.
e Distributed controllability = Boundary controllability:

Imagine that you are able to prove the null-controllability for our system for any choice of €2 and w, then we
can prove the boundary controllability by considering an extended domain Q) that contains €2 and which is built
in such a way that Q N Q < Ty (see Figure V.1). Then we choose a region w < Q\Q
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We then extend our initial data yg to the whole domain O and apply the controllability result with control sup-
ported in w on the new extended problem, let 5 € C°([0, T'], L?(f2)) be the corresponding controlled solution.
Since w N 2 = F, we see that the restriction ofy on €2, y = g|q satisfies the heat equation (without source

term) in §2. Moreover, since ¢ vanishes on o) we see in particular that y vanishes on 0Q\I'¢ by construction of
the extended domain §2.

It remains to set v = y|p, in the trace sense, which is an element of L*(0,T; H 2 (I'p)) which is an admissible
boundary control for the original problem.

N

&)
Figure V.1: Distributed controllability implies boundary controllability

e Boundary controllability = Distributed controllability:

A similar reasoning shows that the converse implication is true, see Figure V.2.

Figure V.2: Boundary controllability implies distributed controllability

The same arguments show that boundary and distributed controllability are equivalent problems in the case where
m = rankB = n.

However, in the sequel of this chapter we shall consider coupled parabolic systems with less controls than com-
ponents in the system m < n. One can easily see that, in this case, the above reasoning does not hold anymore and in
fact we will see that the boundary and distributed controllability systems may really present different behaviors.

V.3 Distributed control problems

V.3.1 Constant coefficient systems with less controls than equations

In this section we assume that C'(¢, z) is a constant matrix C, that m = rankB < n.

Proposition V.3.2

A necessary condition for the null- or approximate- controllability for (111.3) is that the pair (C, B) is
controllable.

Proof :
Let y be any solution of (II1.3) and ¢ an eigenfunction of the Laplace operator associated with the eigenvalue A.
We deduce that the quantity

2(t) = (y(t), oa)r2 € R,
solves the following equation

d
e + Az + Cz = Buy(t), (V.2)
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where vy (t) = (v(t,.), ludxr)r2 € R™. Then, the controllability of (II.3) implies the one of (V.2), which itself
implies that the pair (C' + A\Id, B) is controllable and so is the pair (C, B). ]
Theorem V.3.3

Under the above assumptions and if we assume that the pair (C, B) is controllable, then the system (I11.3)
is approximately controllable for any time T' > 0.

Proof :
The adjoint system reads
—0iq — Aq+ C*q = 0.

Each eigenvalue of —A + C* is of the form A = ¢ + p where 0 € Sp(—A) and p € Sp(C*) and any element in
Ker ((—A + C*) — X) can be written
P, = E: }:sz uu

oeSp(—A) =1
peSp(C*)
A=0+u
where (v5;)1<i<n, is an orthonormal family of Ker (—A — o) and (®,,;)1<i<n, < Ker (C* — p).
When we apply the observation operator B* = 1, B*, we obtain

B*oy = ) Z wUoi) (2) B* @i

o€eSp(—A) 1=
peSp(C*)
A=oc+p

Assume now that B*®, = 0. This implies, by the Lebeau-Robbiano spectral inequality (Theorem 1V.2.19), that

we actually have
No
0= Z Z Vo i(x)B*®,,;, Ve Q.
oeSp(—A) i=1
peSp(C*)
A=0+u

Since all the functions (vy;)s,; are orthonormal, we can take the L?(£2) norm and obtain

0= 2 ZHB*

o€eSp(—A)
uESp(C*)
A=oc+u

This implies that B*®,, ; = 0 for any £ and any 4. Since the pair (B, C) is controllable and ®,, ; € Ker (C* — 1), the
finite-dimensional Fattorini-Hautus test leads to ®,, ; = 0 for any x and any 7 and finally, we find that ®, = 0.
It follows that our adjoint system satisfies the (infinite dimensional) Fattorini-Hautus test from which we deduce
the approximate controllability of the system. [ |
Actually, a stronger result can be obtained by using Carleman estimates.

Theorem V.3.4

Under the above assumptions the system (111.3) is null-controllable for any time T > 0.

Proof :
To simplify a little bit the proof we assume that n = 2 and m = 1; however the same proof easily extends to the
general case.
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Let us introduce the Kalman matrix K = (B, C'B) and we perform the change of variable y = Kz to obtain
Koiz— KAz+ CKz = 1,Bv,

Since K is invertible and KC = CZ and B = K B, with

~ 0 C12 ~ 1
= B =
(1) o)
the system is transformed into a cascade system
01z — Az + Cz = 1,,Bu,

that we write
{(%gzl — Az + Ccl2z9 = 1yuv,

Orzo — Azg + 21 + o020 = 0.

The corresponding adjoint system is

— o1 — Aq + @ =0,
— 0tq2 — Aga + c12q1 + c22q2 =0,

and the observation operator if B* = 1,B* = 1, (1 0), which is nothing but the operator that takes the restriction
on w to the first component of the adjoint state.

We notice that the approximate observability is clear from the elliptic Carleman estimate.

In other words, the observability inequality we need to prove for this adjoint system is

T
rmm@@+mmnam=mw;<chWm?

As we have seen before, we already know how to prove the same inequality but with an other observation term
on w involving the term g2 but here we do not want this term in the inequality. The only way to get rid of this term is
to express ¢z as a function of ¢; by using the first equation ¢ = drq1 + Agq;. However, this will make appear high
derivatives of ¢; that are not allowed.

We thus need to come back at the Carleman estimate level. To simplify the computations, we define the quantities

2
esespf‘ .

meﬂfLwﬂ

With those notation, we write the parabolic Carleman estimate for ¢; with d = d; and for g with another value
d = d2. Moreover, we will take into account some of the terms allowed by Remark 1V.4.35. For ¢; we get

J(d17 q1, Q) + J(dl - 27 th Q) < CJ(d17 q1, W) + CJ(dl - 37 ath + AQh Q)7
and for ¢o

J(d27q27Q) + J(dQ - QaVQ%Q) + J(dQ - 47 atq27 Q) + J(d2 - 47 AQQ,Q)
< CJ(dQ,QQ,OJ) + CJ(dQ - 37 &tq2 + AQQ) Q)a

We use now the equations satisfied by ¢; and ¢2, to get

J(dlv q1, Q) + J(dl - 27 VQI> Q) < Cj(dla QI7("‘)) + CJ(dl - 37 q2, Q)v (V3)

J(d2) (127 Q) + J(d2 - 27 VQQv Q) + ‘](dQ - 47 atqZ: Q) + J(d2 - 4) AQQ, Q)
< C‘](d27 QQ,W) + CJ(dQ - 37 q1, Q) + C‘](dQ - 37 q2, Q)? (V4)
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In order to perform the following computations we choose now d; = 7 and do = 4 and we add (V.3) that we multiply
by some € > 0 and (V.4). We obtain

eJ(7,q1,Q2) +eJ(5, Va1, Q) + J(4,q2, Q) + J(2,Vga, Q) + J(0, drq2, ) + J (0, Agz, )
< Cel(7,q1,w) + CeJ(4,q2,Q) + CJ(4,q2,w) + CJI(1,q1,Q) + CJI(1,q2,9).

By chosing € > 0 small enough (depending only on the data) we can absorb the second term in the right-hand side
by the third one of the left-hand side. This value of € being now fixed, we will not make it appear in the sequel.
Moreover, we use that

(s0)! = (s0)4(s0) 73 < —(s0)%,

(s0)r = (39)7(59)76 < (59)7,

C
53
C
56
to say that, for a well chosen s; (depending only on the data), and any s > s;, we can absorb the last two terms in the
right-hand side by the first and third of the left-hand side.

To sum up, we have now the following estimate

J(7,q1,) + J(5, Va1, Q) + J(4, g2, Q) + J(2, Ve, Q) + J(0, g2, Q) + J(0, Aga, Q)
< CJ(7,q1,w) + CJ(4,q2,w).

We still have two observation terms and we would like to get rid of the one in ¢». It seems that we do not have make
great progresses compared to the estimate obtained in Section V.1. However, the additional term in the left-hand side,
as well as the different powers of (s6) in both terms is a real progress.

First of all we replace the observation set w in the above estimate by a smaller one wy (such that @y < w). This
requires of course to consider a slightly different weight function but we do not change the notation. We consider now
a function 1 compactly supported in w and such that 0 < 7 < 1 and = 1 in wy. It follows, by using the first equation
of the system that

J(4,q2,w0) = f Lo(sa)‘*

< LT L n(s0)*

T
= J J 17(5(9)4625950q2(5tq1 + Aqy).
0 Jw

0
e’ %2‘

2
6599@(]2’

We evaluate now the term (referred to as I1) in g1 and the one (referred to as I5) in A¢g; independently.

e In the term I, we perform an integration by parts in time (observing that there is no boundary term since the
weight €259¢ is exponentially flat in 0 and 7.

T T
I = —J f n(s0)*e**% (0,q0)qn —J f ns0% (40’ + 2500 p)e* % qaqy .
0 Jw 0 Jw

Using that #" < (02, and the Cauchy-Schwarz inequality (with a suitable repartition of the weights (s6)*® in
both terms), we get (for s > 1)

T T
L <J J n(s0)*e**?|q10,q2] + CJ j 1(50)°e**%%|gaqu |
0 Jw 0 Jw

<CJ(0,5tQ2,Q)%J(8,Q1,w)% +CJ(4, Q2,Q)%J(87Q1,w) :

[N

Observe that we have mentioned (2 instead of w in the terms concerning g5 since we actually don’t care that
there are supported in w (we will absorb them by left-hand side terms of the estimate). However, it is crucial
that the terms in g; are localised in w; those will contribute to the observation term at the end.
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e In the term I we perform three successive integrations by parts in space (without boundary terms since 7 is
compactly supported), in order to make all the derivatives apply on g5 instead of ¢;. It follows

T T
I =— f J 77(89)46250‘qu2 Va1 — f J (39)46259¢’qg(V17 + 250V ) - Vi
0 Jw 0 Jw
T T
:f f 77(39)4623950(Aq2)q1 + f J (39)46289¢q1(V77 + 250V ) - Vo
0 w 0 w
T
+ J J (50)1e*%V gy - (V) + 250V )1
0 Jw
T
+ J f (50)2e25% (An + 250 A + 250V p - Vi) + 45%0%|Vo|*) o
0 Jw

T T T
<C f f (se>4e25"%q2\|ql+cf f (s6)7¢%%| 1] [ Vo] + C f f (56)°¢>%| g1 ga
0 w 0 w 0 w

<CJ(0, Aga, 2)2J(8,q1,w)? + CJ(2, Vo, 0)2J(8,q1,w)? + CJ(4,q, )

(NI
N|=

J(8,q1,w)2.
We gather the bound on /; and the one on /5 and we use Young’s inequality to obtain
J(7,q1,2) + J(5, Va1, Q) + J (4,42, 2) + J(2, Vg2, Q) + J(0, 0rq2, ) + J(0, Aga, 2)
<CJ(7,q1,w) + CJ(8,q1,w).
We finally obtained an estimate with a unique local observation term in ¢
J(7,q1,2) + J(5,Vq1,Q) + J(4,q2,Q) + J(2, Vg2, Q) + J(0, g2, Q) + J(0,Aq2, Q) < CJ(8,q1,w).
We retain from this inequality only the terms in ¢; and g
J(7,q1,9) + J(4,¢2,Q) < CJ(8, q1,w),

from which the observability inequality can proved the same way as before, by using dissipation estimatesonq. H

V.3.2 Variable coefficient cascade systems - The good case

In the case where the coupling coefficients in the system depend on z, we will see that the controllability properties
of the system may be quite different.

If we assume that the significant coupling coefficients (i.e. the ones that are responsible for the indirect action
of one controlled component of the system on the non-controlled components) do not identically vanish inside the
control domain w, the analysis is simpler. More precisely, as an example, we consider the following 2 x 2 system

(V.5)

Oz1 — Az + c11(z)z1 + c12(x)z2 = 1,0,
Orzo — Azg + co1(x)z1 + coa(x)z2 =0,

and we assume that co; does not identically vanish in w, and more precisely : there exists a non-empty wy < w such
that
Jwp € w, s.t. infeg| > 0. (V.6)
wo

Using similar techniques as in the scalar case, based on elliptic Carleman estimates, we can prove the following
result.

Proposition V.3.5

Under the assumption (V.6), the system (V.5) is approximately controllable for any time T' > 0.
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Proof :

We will use the Fattorini-Hautus criterion. Let ¢ be a (complex) eigenfunction of the adjoint elliptic operator
associated with the (complex) eigenvalue A\. We assume that B*q = 1,,¢1 = 0 and we would like to prove that ¢ = 0.
The equation satisfied by ¢ are

—Aq +ci(z)gr + ea(x)g2 = A1,
— Aqa + c12(z)q1 + c2(x)g2 = Ao

By assumption, we have ¢; = 0 in wg and inf,,, |c21| > 0 so that the first equation leads to g = 0 in wg. We apply
now the global elliptic Carleman estimate given in Theorem IV.1.15 (for the observation domain wg) to ¢; and g2 and
we sum the two inequalities to obtain for any s > s,

s°le*?q] 720y + 5°le*P @l 7o) < C<€S¢AQ1 1720 + €% Ag2l72(q) + 5° €% a1 2 + 33’\GWQ2%2(0J0)>‘
Since ¢; = g2 = 0 in wy and using the equations to express Ag; and Agq, we get
a2 (q) + 5° € a2 () < C(H;%X leijlze + IM?) (le*?al22(q) + €7 a2l72(q))-

Taking s large enough gives
e a1z () + °le*P 2]z ) <O,

and the claim is proved. [ |
In fact the following, much stronger, result holds.

Proposition V.3.6

Under the same assumption (V.6), the system (V.5) is null-controllable at any time T' > 0 (even if we allow
the coefficients c;; to depend on time).

Proof :
The strategy we used in Section V.1 can be applied exactly in the same way for such variable coefficients cascade
systems. The only point is to be able to express g2 as a function of ¢; in wy by writing

1
Q= — <<7t(h + Aq — 011(11>~
21

Details are left to the reader. [ ]

V.3.3 Variable coefficient cascade systems - The not so good case

In this section we will consider particular cascade systems in which the support of the coupling terms do not intersect
the control region.

oy + Ay + C(z)y = 1,Bv, inQ
w+ Ay + C(a)y v, in V)
y =0, on 01,
with

1
0

B=1].],and C(z) =0, inw.
0

It is clear that the strategies relying on Carleman estimates are not usable in such a case since we will not be able to
remove the unwanted observation term at the end as we did in Section V.1.
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The general analysis of such systems (in particular in higher dimensions) remains an open problem at that time.
We will concentrate here on the case of the 2 x 2 systems in the cascade form, that is we assume that the coupling

matrix reads
0 0
C(z) = (021(96) 0) . (V.8)

Most of the analysis will rely on a precise knowledge of the eigenelements of the operator

L= A+ Cla)".

V.3.3.1 Description of the spectrum of £*
A very simple analysis, using the Fredholm alternative, gives us the structure of the spectrum of L£*.

Proposition V.3.7 (Spectrum of £*)

We have Sp(L*) = Sp(A). For any A\ € Sp(A), let ny = dim Ker (A — \) and (¢x;i)ic[1,n,] be an
orthonormal family of eigenfunctions of A associated with \. For each i € [1,n,] we define

Ii(car) = J ca1léail? dx.
0

1. Foreachi € [1,n,], the vector-valued function

q))\,’i = (¢871> y

2. Foreachi € [1,n,] such that Iy ;(ca1) = O, there exists an eigenfunction of L* of the form

2 _ (9
®)\,7, (QS)\,i) y

where <Z~>M- is a solution of (A — )\)<l~5)\,i = —C210,i-

is an eigenfunction of L*.

3. Foreachi € [1,n)] such that I ;(ca1) # 0, there exists a generalieed eigenfunction of L* satisfying
(L* = AN)(Wy;) = @, of the form

By, = <<5M>
" Du(ear) \ @)
where <Z~>,\,z- is any solution of (A — )\)J)A,i = — <021 — IM(021)> D

Finally, the family {®y ;, @4, X\ € A,i € [1,n,]} is linearly independent and complete in (L*(Q))>.

V.3.3.2 Approximate controllability in any dimension

By using the Fattorini-Hautus test, we known that the study of the approximate controllability of our system amounts
at determining whether or not the eigenfunctions of £* belong to the kernel of B* = 1, B*.
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In any dimension, we have a sufficient approximate controllability condition which is the following.

Theorem V.3.8

Assume that cs1 is continuous not identically zero and that co1 = 0, then the 2 x 2 system (V.7) with C
given by (V.8) is approximately controllable at any time T' > .

Proof :

By assumption on co1, we know that for any A € A and any ¢ € [1,n,] the number I ;(c21) cannot vanish since it
is the integral of a non-negative function which is not identically zero. Indeed, by Proposition IV.1.16, we know that
any eigenfunction of .4 cannot identically vanish on the non-empty open subset {x € 2, co1(x) > 0}.

Therefore, we know from Proposition V.3.7 that every eigenfunction ® € Ker (£* — A) can be written

LN

P = Z a)\7i@)\7i.

=1

By definition of the observation operator B* we thus have

nx
B*® = 1, (Z a)\,i¢)\,i> :
i=1

Therefore, if B*® = 0 we deduce that a) ; = 0 for every ¢ thanks to Proposition IV.1.16 and thus ® = 0.
From the Fattorini-Hautus test (Theorem I11.3.7), the claim is proved. [ ]

V.3.3.3 Approximate controllability in 1D

In the 1D case (see [ ]), we can give a more precise result which is a necessary and sufficient approximate
controllability condition. Since, in that case, each eigenvalue of A is simple we can use Proposition V.3.7 with
n) = 1 for any . As a consequence, we will drop the index ¢ in the notation. To get a complete analysis we will need
to introduce a function %, linearly independent from ¢, and that solves the ODE

Ay = M.
Note that 1)) does not satisfy the Dirichlet boundary conditions.

Definition V.3.9

For any \ € Sp(A), any interval [a,b] < [0,1], and any integrable function f, we define the following
element of R?

b
Gg ;iﬁ . if[ab] 00 = &,
M)\(fa [av b]) déf ° A

b
<Sa£‘f’k) L ifab] m 0Q £ &.

Theorem V.3.10

Assume that ca1 identically vanishes in the control region w.
Then the 2 x 2 cascade system (V.7) is approximately controllable if and only if, for any X € Sp(.A), there
exists a connected component [a, b] of Q\w such that

My (c219x, [a,b]) # 0.
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Remark V.3.11

If co1 does not identically vanish in w, we already know by Theorem V.3.8 that the system is approximately
controllable, in any dimension.

Proof :

o Let us show that the condition is sufficient. To this end, we assume that the system is not approximately con-
trollable. By the Fattorini-Hautus test (see Theorem II1.3.7) we know that it necessarily exists an eigenfunction
® of L* associated with the eigenvalue A such that B*® = 0.

— If Ix(c21) # 0, then we know that ® is necessarily a multiple of &) = (%’\> and therefore B*® is a

multiple of 1,,¢, which cannot be identically zero.

— We thus conclude that I (cg1) = 0, and thus up to a multiplicative factor ® is necessarily of the form

(o
*= <¢A)’

where (ﬁ » satisfies, along with the Dirichlet boundary conditions, the equation

(A= N)dy = —cay.
By assumption we have B*® = 0 which implies that ¢, = 0 on w.

— Let [a, b] be a connected component of \w, and let us compute by integration by parts

b b 3
j el 2 de = — f (A= N)dx)n do

a a

= [ydhonlh — [vdradhll.

Let us show that all the terms in this last formula vanish.

* Ifa € Q, we have a € Jw, and since we have assumed that ¢~)>\ = 01in w, we obtain qg,\ (a) = (Z)’/\(a) =0

and thus ) )
(vohPA) (a) = (YPhéa)(a) = 0.

s If a € 0Q then ¢ (a) = ¢ (a) = 0 thanks to the boundary conditions and thus we also have

(7040 (@) = (v\da)(a) = 0.

* A similar reasoning holds for the point b.

It follows that we necessarily have

b
J cot|al* dz = 0.

a

- If, in addition, [a, b] does not touch the boundary of €2 we can compute similarly

b b )
J co1Px\y dx = —f ((A—=XN)pa)¥ndz

[vdAvall — [vorhlh
0,

by the same argument as before.
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— Allin all, we have eventually shown that

M/\(021¢)\7 [a'7 b]) = 07

and the claim is proved.

o Let us now show that the proposed condition is necessary. Let us assume that for a given eigenvalue A, we have
My(c219x, [a,b]) = 0 for any connected component [a, b] of Q\w.

This implies, in particular that for any such [a, b] we have

b
f e a2 dar = 0,

a

and since cp; = 0 in w, we eventually find by summation that

f 021’¢)\‘2 dx = 0.
Q

This exactly means that Iy (c2;) = 0.

By Proposition V.3.7 we conclude that there any function of the form

P = D) + fd,y,

with 5 € R, is an eigenfunction of £*. In particular we have

B*® = 1,(dx + Bo)).

We set ( = gg A + B¢y and we will determine (3 is such a way that ¢ identically vanish in w.

— We will first find a value of 8 and a point xg € @ such that {(xg) = ¢(zg) = 0.

GlOIS(O)

x If w N 0Q # &, then we take any xg € w N 0f). We immediately have ((xo) = 0 and ¢'(zg) =

&) (0) + B (20). Since ¢ (o) # 0 we see that one can choose 3 such that ¢’ () = 0.

x Ifw n 0Q = &, we consider [0, b] the connected component of \w that contains 0. By assumption,

we have

b
f 621‘¢A|2 = 0.

0

We can find a § > 0 small enough such that |b, b + d[< w and ¢, (b + &) # 0. We can then choose 3
such that

0= (b + ) + Bopa(b + 8) = ((b+0).

Since ¢91 = 0 in w, we deduce that

b+0
ozf co1|pa|* dx
0

b+
- | =200 ds
(BN + 5),

where we have used that ((0) = ¢(0) = ((b+6) = 0.
Since (b + 0) (b + ) # 0, we necessarily have ¢'(b + §) = 0 and therefore the point g = b + §
fulfills our requirements.

F. BOYER - JULY 16, 2022



V.3. Distributed control problems 89

— Let us show now that ((z1) = 0 for any point ;1 € w. Assume for instance that z; > xo. Since
[z0, 1] N Q\w is an union of connected components of 2\w we have, by assumption

L1 Tl
f co|al® do = J 2192\ dx = 0.

o o

Using again an integration by parts, the equations satisfied by (, ¢ and 1, and the fact that {(zg) =
¢'(zo) = 0, we obtain the two equations

0= —C'(z1)pa(21) + ((21)P) (1),
0 = —¢'(@1)Ya(z1) + ((z1)P) (21).

Since ¢, and v, are two linearly independent solutions of the same second order linear ODE, we know
that the Wronskian determinant satisfies

da(z1)  Ya(wr)

(1) () T

and thus we conclude that
C(z1) = ¢'(21) = 0.

The claim is proved.

We have thus found an eigenfunction ® = (; > of L£* such that B*® = 1,( = 0 and thus (V.7) is not
A

approximately controllable, thanks to the Fattorini-Hautus test.

Some examples. Let us analyze some particular examples of such systems. We will see that many different situa-
tions can occur.
e We consider the set O = (1/4,3/4) and we take for some a € R
co1(x) = (z —a)lo(z).

— Subcase 1 : Assume that w < (3/4, 1). The only connected component of 2\w that touches the coupling
support O contains (0,3/4). In that case we know that the system is approximately controllable if and
only if

J 021‘¢>\|2d$ # 0.
o
A simple computation thus shows that
the system is approximately controllable <= a ¢ {a)} e,

where

J z|al®
ay="9——  VieA.
RS
o
— Subcase 2 : Assume now that w n (3/4,1) # Jand w n (0,1/4) # . If a ¢ {ax}ren, then it is clear

that the system is approximately controllable from the previous analysis. However, since the concerned
connected component of Q\w does not touch the boundary of 2, we have to check whether or not we have

f eandathy = 0.
(@)
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This condition is not explicit in general but we can discuss a particular case where A = —02. In this case
we have A = {k?72, k > 1} and ¢, (z) = sin(v/Az) and (x) = cos(v/Az) and we can check that
ay = 1/2 forany \ € A.

It remains to compute, for a = ay = 1/2,

3/4 =L (—1)k/2 if A = k272 with k even
c = z —1/2) sin(vVAz) cos(VAz) = { 8VA ’ ’
J(’) 21PAYA L/4 ( / ) ( ) ( ) {z&(_l)(k_l)p’ if A\ = k272 with k odd.

Since those quantities never vanish, we deduce that our system, for this choice of w, is always approxi-
mately controllable.

V.3.3.4 Null controllability in 1D

The main result in this direction proved in [ ]1is, in a simplified version, the following

Theorem V.3.12

Assume that w in an interval that touches the boundary of €} and that ca1 = 0 in the control domain w.
Then there exists a time Ty(ca1) € [0, +0] such that

e ForT > Ty(ca1), the system (V.7) with (V.8) is null-controllable.
o ForT < Ty(ca1), the system (V.7) with (V.8) is not null-controllable.

Moreover, for any T* € [0, 0|, there exists a coupling function co1 such that Ty(ca1) = T*.

Note that in the above reference a more or less explicit formula for Ty(co1) is given.
The proof strategy is the following

e Compute the eigenelements of the operator £*. We find that the eigenfunctions are the

(%)

with the associated generalized eigenfunctions given by
(@)
o)’

e Case T > Ty(cy2) : the positive controllability result is proved by using the moments method.

for some explicit function 1.

e CaseT < Ty(ci2) : the negative controllability result is proved by showing that the observability inequality does
not hold for some well-chosen final data g7 built as a combination of the above two (generalized) eigenfunctions
of L*.

V.4 Boundary controllability results for some 1D systems

We will only consider here the following constant coefficient system in the 1D interval 2 = (0, 1)

{0ty+Ay+Cy=0, inQ=(0,1) V9

Yy = 1{0}31}, on 0f).

We will point out the main differences with the distributed control problem for the same system.
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V4.1 Approximate controllability
Proposition V.4.13

A necessary condition for the null- or approximate- controllability for (V.9) is that the pair (C, B) is
controllable.

Proof :
Let y be any solution of (V.9) and ¢, an eigenfunction of .4 associated with an eigenvalue A. Then, we obtain that
the quantity z(t) = (y(t), ¢»)r2 € R™, solves the following ordinary differential equation

%z + Az + Cz = £, (0)Bo(t). (V.10)

Then the null-controllability (resp. approximate controllability) of (V.9), implies the null-controllability (resp. ap-
proximate controllability) of the reduced system (V.10). It implies that the pair (C' + AId, ¢, (0) B) is controllable and
since ¢, (0) # 0, this gives in turn that (C, B) satisfies the Kalman criterion. ]

Theorem V.4.14

Assume that m = 1 = RankB (the general case can be studied similarly).
System (V.9) is approximately controllable at time T' > 0 if and only if the pair (C, B) is controllable and
the following condition holds

otp=od+y =o=0, (V.11)
forany o,0" € Sp(A) and p, 1’ € Sp(C*).

Proof :
Each eigenvalue of £* = A + C* is of the form A\ = o + p where o € Sp(A) and p € Sp(C*) and any element
in Ker (£* — ) can be written

(I)/\ = Z (250 (x) V,lm
o€eSp(A)
peSp(C*)
A=0c+u

where each V), belongs to Ker (C* — p).
When applying the observation operator B* = B* %p&:o we obtain

B*0y =~ > ¢,(0)B*V,.
o€eSp(A)
HeSP(C*)
A=o+p

e Assume that Condition (V.11) holds. It implies that there is only one term in the sum above. It follows that
B*®)\ = —¢,(0)B*V,,

for a given o and a given p. Since we have assumed that (C, B) is controllable the finite dimensional Fattorini-
Hautus test proves that B*V), # 0, and since ¢/, (0) # 0 we deduce that B*®) # 0.
This proves the Fattorini-Hautus condition.

o Assume that (V.11) does not hold. Then there exist 0,0’ € Sp(A) with o # ¢’ and u, ¢’ € Sp(C*) such that
oc+pu=0oc +u.
We pick V,,, V,, two eigenvectors of C* associated with y and p’ respectively. Then, the function

_ 9,:(0) ¢5(0)

d(z) = _
(@) = B, B*V,

¢o(x)vﬂ

¢O" (ZE> V,u/ )
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which is well-defined since, by the Fattorini-Hautus test applied to the pair (C, B), we have B*V,, # 0 and
B*V,, # 0. By construction, ® is an eigenfunction of our adjoint operator £*. Moreover we have

B*d — _%;i‘/): 4, (0)B*V,, + g"(ﬁ: 6, (0)B*V,y 0.
This shows that the Fattorini-Hautus test is not fulfilled by our system and thus it is not approximately control-
lable.
[
Remark V.4.15

Observe that Condition (V.11) automatically holds when C* has only one eigenvalue, which is the case for
instance when C' is a Jordan block, that is to say when our parabolic system has a cascade structure.

V.4.2 Null-controllability

Let us now study the null-controllability of (V.9). The usual Kalman matrix change of variable let us put the system
in cascade form (observe that it is crucial here that the same diffusion operator appears in each equation.
To simplify the presentation we assume n = 2 and m = 1 and thus we consider the following cascade system

dwyr + Ay =0, in (0,1)
aty2 + «43/2 +y1 =0, in (07 1)

Ytz =1) = (8) L and y(t,z = 0) = <(1)> o(t).

The proof will rely on the moments method. Since our system contains eigenvalues with algebraic multiplicities,
we need a generalized version of the results given in Section I'V.1.2 and that we will present now.

(V.12)

V.4.2.1 More about biorthogonal families of exponential type functions

We will make use here of the notation introduced in (I.8) as well as the formalism of generalized divided differences
that we recall in Appendix A.2. We notice that, as soon as Re A > 0, we have e[AU+1)] € L2(0, +o0).

We can then formulate the suitable generalization of Theorem IV.1.10 in order to take into account the multiplicity
of the eigenvalues in our control problems. We refer to Definition IV.1.8 for the definition of £ (7, x, 8, p).

Theorem V.4.16 (Generalized biorthogonal families of exponentials)

Consider a family of complex numbers A € L (n, k, 0, p) for some values of the parameters.
Then, for any L = 1 and T > 0 given, there exists a family (¢} ) rea in L*(0,T) satisfying
” lefo,L]

(qi,T7 e[lu‘(j+1)])L2(0,T) = 5A,u5l,j7 V)\v JIAS A7 VZL? € [[07 L[[7
and the estimate
__0
”qlA,THLQ(O,T) < KeT(Re)\)/2+K(Re)\)9+KT 1—0’ VAe A, Vle [[O,L[[, (V.13)

where K > 0 only depends on k, 0, n, p and L.

In the case where A only belongs to the larger class L (n, K, 0, p), the same result holds if one replaces 6 by
any value 6 € (0, 1) in the estimate (V.13); in that case the value of K also depends on 6.

The proof is postponed to Section V.4.2.3.
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V.4.2.2 Application to the null-controllability of (V.12)
Theorem V.4.17

For any initial data yo € (L?())% and any T > 0, there exists a control v € L?(0,T) such that the
solution of (V.12) satisfies y(T') = 0. Moreover, we have the estimate

c
vl 20,y < CeT |yol 2,

where C' > 0 does not depend on T

Proof (Existence of the control):
The spectrum of the adjoint operator £* = A + <8 é) is described in Proposition V.3.7 (with c2; = 1 here).

Note that all the eigenvalues are real in that case. Since, in the current setting we have ny = 1 and I)(co1) = I (1) # 0
for any A, we deduce that for each A € A, there is, up to a constant, a single eigenfunction

and an associated generalized eigenvector
= 0
D, =
(@) ’

B*®, = ¢)(0), B*®, = 0. (V.14)

and we observe that

We can immediately compute
{e_tﬁ* P, = e_t/\(IJ)\,

eitﬁ*(i))\ = eft/\((i))\ — t‘I)/\).
In that case it is cleat that the family {®y, ®y, A € A} is an Hilbert basis of (L?(Q))? (we actually only need that

it is complete) and therefore a function v € L?(0,T) is a null-control for our problem if and only if it satisfies the
following moments equations

T
e M yo, PryE = f v(s)e M B*®, ds
0
~ T ~
e My, @\ — TO\p = f v(s)e M= B () — (T — )@, )ds.
0

Those equations can be simplified using the definitions of ®, P » and (V.14) as follows

A

(ot dadie = j " o(5)e M09 g
o (o) MooV = | ’

e—TA

T
m <<yo,1,¢,\>/;z — T<y0,2,¢>\>,;2> = L v(8)[—(T — 3)]6—A(T—s)ds

Setting u(t) % v(T — t), we are now looking for a function u that solves the following moment problem

T
f w(t)er N dt = g,
0

T
J u(t)er NNt = w1
0
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where
T —TA

0 def € 1 def €
w = o1, $x)r2, and w = <<yo,27 dayre — T{yo, ¢A>L2>-
AT yo ¢/>\(O> ATy ¢/}\(0)

This moment problem can now be solved by using the generalized biorthogonal family given by Theorem V.4.16 (in
the present case we have only real eigenvalues and the maximal multiplicity is L = 2) as follows

u(t) = 20 (W gy @r(t) + WA gy @r (1)) -
AEA

Indeed, by the estimates given in the Theorem and the definition of the terms w, we find the convergence of the series
in L2(0,T), exactly as we did in the proof of Theorem IV.1.11. Moreover, it clearly satisfies the required moment

problem by construction of the biorthogonal family.
]

V.4.2.3 Proof of Theorem V.4.16

The proof of this theorem will be obtained as a consequence of a more general result concerning the block moment
method. This approach consists in solving moment problems, with suitable estimates, in the case where the family of
eigenvalues A does not satisfy anymore the gap condition (IV.23).

The content of this section is a generalization of some results in [ 1. We also refer to [ ] for similar
results, yet with slightly different set of assumptions.

The weak gap condition In the next sections we will be facing the case where the family of eigenvalues we need
to deal with is obtained as a union of a finite number of families (Ai)z‘e[[l, 1] each of them belonging to a certain class
‘C (7717 Ki, 0i7 pz)
Itis clear that A = [ J A; may not satisfy a gap condition (IV.23). For instance, the families Ay = {k,k > 1}
i€[1,1]
and Ag = {k + %, k = 1} both satisfies the gap property but their union does not since

e3) 4o

This phenomenon, which is called spectral condensation, is very important to take into account in control problems
as we will see in the sequel.
To begin with, let us introduce the weak gap condition and the related classes.

Definition V.4.18

Let p > 0, and n € N* be given. We say that a family A < C satisfies the weak gap condition with
parameters p and n if any open disk of diameter p contains at most n elements of A, that is :

inf
k

#<A N D(,u,p/2)> <n, VueC. (V.15)

We can now introduce a new class of families of complex numbers satisfying a sector condition, an asymp-
totic assumption and the weak gap condition as follows

Ly (n,K,0,p,n) = {A c C, that satisfies (IV.20), (IV.21), IV.22), and (V.IS)}.

As we did in Definition 1V.1.8, we will also introduce the larger class where the second asymptotic assump-
tion is not considered

~

Ly (0, k,0,p,n) = {A c C, that satisfies (IV.20), (IV.21), and (V.15) }
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Remark V.4.19

It is an easy exercice to check that, when n = 1, the weak gap condition (V.15) is nothing but the previous
gap condition (IV.23) that we have considered.
As a consequence, we have

Ly (,6,0,p,1) = L (1,5,0,p), and Ly (n,k,0,p,1) = L (1,5,0,p).

Lemma V.4.20

For i = 1,2, we consider parameters n; > 0,r; > 0,0; € (0,1), p; > 0,n; € N*.
Forany Ay € Ly, (1, k1,01, p1,n1) and Ny € Ly, (02, K2, 02, p2, n2), we have

Al UA2€£7.U (naﬁ;797pan)7

with
.

n= maX(nth)u
0= max(ﬁl, 92),

o 6
{ K = max </€fl + ky?, 2(k1 + /@2)) )

p = min(p1, p2),
L = N1 + na.

The same result holds when replacing the classes L., by the larger classes Ew.

Proof :

e Since ) < n; fori = 1,2, we have S;, = S,,. Thus, Ay U Ay = S),.
e Concerning the counting functions, we first observe that, for any 0 < s < r, we have

Na(r) = Na(s) =#{ e A1 U Ay, s < || <71}
S#MNeAL,s< | N <r}+#{ e Ay, s < |\ <r}
= (NAl(r) — NAl(s)) + (NAQ(r) — NA2(S)).

In particular, taking s = 0, we get
Ni(r) < Ny, (1) + Nay(r).

By assumption we have

and thus

=

since 6 > 0;, and N, () = 0 as soon as &, r < 1. By addition, we obtain

0 0
Ny(r) < </€191 + /@'292) r?.
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e If we assume that |r — s| < 1, we get
Na(r) — Nu(s) < 2(k1 + ko) < 2(k1 + k2)(1 + |r — s]%),
whereas in the case |r — s| > 1 we have

No(r) = Na(s) < k(1 +|r — s|91) + ro(1+ |r — s|92) < (k1 + ko)1 +|r— 3]9).

e Finally, if we choose any 1 € C, we have
#((A1 U Az) N D(ﬂ,p/2)> < #<A1 N D(u,p/2)> + #(Az N D(u, p/2)>

< #(8 0 DGs /2 ) +# (820 Dlper))
<ni+ng=n,

since p < p1 and p < po.

Lemma V4.21

Let A a family of complex numbers that satisfies (IV.20), (IV.21) and (IV.22), then for any h € (0, 1), the
Sfamily A + h also satisfies those assumptions with the same value of 0 and 1 and k replaced by 2k.

Proof :
e For any z € S, and h > 0 we have
|Zm (z + h)| = |[Zm (2)| < (sinhn)(Rez) < (sinhn)(Re(z + h)),
which proves that S, + h < S,,. In particular, A + h < 5.
e Forevery A € A, since Re A > 0 and h > 0, we have
A+ h| > |A|

It follows that
Nawn(r) = #{A e A, A+ | <} <#{Ae A A <1} = Ni(r).

It is thus clear that A + h satisfies (IV.21) with the same value of x and 6.

e Finally, for every 0 < s < 7, we have
[Nagn(r) = Naga(s)| = #{ e Ajs <[A+h| <7}
| <}

<#{NeAs—h<|A
= N,(r) — Npo(s — h)

< k(14 |r—s+h|"
<KL+ A+ |r—s|%)
< K24+ |r —s|%)
< 26(1 + |r —s|%),
where we have used that 0 < h < 1.
The proof is complete. [ |
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A block moment resolution for simple eigenvalues Let us consider a family A < C that satisfies the assumptions
(IV.20), (IV.21) and (IV.22). Note that we do not assume for the moment any weak gap condition on A at this stage.

Inside this family we assume that we can identify a finite subset of elements that we call a group and that we
denote by GG and we suppose given three parameters v > 0, p > 1 and n,,., € N* such that

#G < Ninaxs (V.16)
diam(G) < p, (V.17)
d(Conv (@), A\G) = 7. (V.18)

‘We introduce the notation
re = min(Re ) > 0.
¢ ,\eG( )

Thanks to the sector condition and to (V.17), we see that

rG<R€A<TG+p, VAEG, (V19)

re < |A| < (coshn)re +p, VAeG, (V.20)

where we have used the inequality (A.22).

For each element in G we suppose given a complex value ¢, € C. We collect all those data in the notation

¢ = (G)reg € CC.
Our goal is to find, for any T' > 0, a function g . € L?(0,T) that solves the following moment equations

A, =(, YAeG,
{(6[ | 4c.cr)r2om) = G (V.21)

(e[A], (JG,c,T)L2(0,T) =0, ViAeA\G,

together with a sharp estimate of its norm.
In the case where the cardinal of G is 1 (say G = {\}) and if we take (, = 1, then the equations (V.21) are nothing
but the biorthogonality conditions

(e[u], Q(,\),u},T)L?(O,T) =0\u VHEA

In this sense, we are generalizing Theorem IV.1.10.

Theorem V.4.22

Let A satisfying (IV.20), (IV.21), and (IV.22) and G < A satisfying (V.16), (V.17) and (V.18).
Forany T > 0 and ¢ = ((\)xec < C, there exists a function qg . € L*(0,T) satisfying the moment
equations (V.21) and the estimate

]
el ] —1—0
HQG,C,T”LQ(O,T) < Ce s THOrG+OT 170 Iglcag IC[L]], (V.22)

where C' > 0 depends only on the parameters k, 0, n appearing in the assumptions on A and on the
parameters N, p, 7y appearing in the assumptions on G.

In the case when we do not assume (1V.22), the same result holds if one replaces 0 by any value 6 e (0,1)
in the estimate (V.22).

The proof of this result will follow again from the Paley-Wiener theorem, but we need a slightly more subtle
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construction than in Section IV.1.2.

Proposition V.4.23

Let A and G be as in Theorem V.4.22.

There exists 19 > 0 depending only on 6 and k such that for any T € (0, 79) and any set of complex values
¢a = (&3)req < C, there exists a function @ ¢ . : C — C that satisfies:

1. ®¢ . . is entire and of exponential type T.

2. Forany )\ € A we have
£A7 lf)‘ € Ga

o id) = {o iFA ¢ G

3. Forany x € R, we have

__0
[P e.r ()] < CoFHATHET T max €[]
cG

Here, the value of C depends only on the parameters k, 0, 1 appearing in the assumptions on A and
on the parameters N., p, Y appearing in the assumptions on G.

Proof :

The proof starts in the same way as the one of Theorem IV.1.10, except that we consider the subset L = A\G
instead of L = A\{\} as the starting point of the construction.

By the first point of Proposition A.7.38, we know that there exists a constant C; > 0 depending only on 6, x such
that

Que(—iz)| < e’ vzec. (V.23)
We define now
m = C1 + 2, (V.24)
then we set
(20m)'/?
= —""—,
1-06

and for 7 < 75 we introduce the entire function

W(z) := Qac(2) M, 0./2(i2).
We define
Dpc.(2) & W(—iz)P(—iz),

where P is the unique Lagrange interpolation polynomial of degree less than n = #G, satisfying

&

PO) = ey

VAeG. (V.25)

Note that this definition makes sense since, by construction, W () # 0 for A € G. Moreover, by our choice of 7y, the
condition (A.49) is satisfied.

e By using Proposition A.7.42 we can bound the factor |M,, , ,/»(iz)| by e™#/2 and since P is polynomial, we
clearly get that

supe |0 ¢ (2)] <+,
zeC

which means that & . , is of exponential type 7.
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e The fact that @ . (i\) = 0 for A € A\G just comes from the fact that such a \ is a zero of ()¢, by definition.

In the case where A € G, we clearly have @ . . (i\) = &, by construction of the polynomial P.

e It remains to estimate ® . , on the real line. To this end we combine (IV.27) and (A.51), and we use the choice
of m given by (IV.28), to get

2] 2]
. 0 _ 0 — _ [ —
LL —IT)| e e e RS e ! 9. .
<C C1lz| m|z|®+CT <C 2|z|®+C1 (V26)

The Newton formula for the interpolation polynomial satisfying (V.25) given in Proposition A.2.3 and the
corresponding estimate from Corollary A.2.5 leads to

(VfV) [L]D (1 + |2] + |Gt

|P(2)] < Mimax (anCaéc

Using the Leibniz formula given in Proposition A.2.8 as well as the estimate of Corollary A.2.10, we deduce

that
< 1 >(k) < 1 >(k)
max su
QA\G kEIIOJ’LIICOn\E)G Mm,9,7/2

X (max|§[L]]> (14 |z| +|G])"™m=.
Moreover, using Corollary A.7.41, we get for some C' > 0 depending on ~,n, 7,

LcG
QA\G

< 1 >(k)
Mm,@,T/Q

because Conv(G) < S, (since G < S, and .S, is a convex set).

P(z)| <C| max su
| ( )| (ke[[om[[Con\?G

6 (e
max  sup < CellGl+Cr

ke[0,n] Conv (@)

and by Corollary A.7.45 we have

6 (e
max  sup < CellGl+Cr

ke[0,n] Conv(iG)

All in all, we have obtained
P = (a2l ) 1+ 2]+ 6
LcG

We can control the polynomial factor in |z| by CellZIH1ED? for some C depending only on n,,,,, which leads,
still with another value of C, to

‘P(Z)| <C (anCaéqg[L“) e\z|9+C\G‘e‘

Combining this inequality with (V.26) gives the claimed estimate.

We can now proceed with the proof of the main theorem of this section.
Proof (of Theorem V.4.22):
Let 7 = min(7T, 79)/2. From the values { we construct a new set of complex values given by

& E M, VAeG,
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to which we associate the function ® ., given by Proposition V.4.23. Note that our choice of 7 implies that the
condition 7 < 7 holds.

Since, @ . , is of exponential type 7, we can use the Paley-Wiener theorem (Theorem A.6.36) to get that & ,
is the inverse Fourier transform of a function ¢ ¢ ., supported in (—7, 7), that is

T

(I)G@T(Z) - f (PG’&T(t)eitz dt

—T
Moreover, we have the estimate

1 |G| +Cr ™ T-0
H‘PG@,THLQ(—T,T) = \/T—F”‘I)G,.EJHL?(R) < Ce ILngéi IE[L]],

and
&, ifAeG,

0, ifr¢G.

—T

f (pgﬂgﬂ-(t)ei)\t dt - @G’&T(Z’)\) - {

We set now gq ¢ ,(t) = Pae.(t — 7), which is a function supported in (0, 27) and which satisfies for any A € A

2T T

¢, ifAe@,

0, otherwise.

(e[ o (1)) = f

0

qG’CYT(t)eiAt dt - f

—T

gDG,&T(t)ef)\(tJrT) dt = 67)\7—€>\ _ {

This is exactly the problem (V.21) we wanted to solve.
In addition, we have the estimate

0 196
lge.c.rlr20.27) = IPaerlizrry < CeCIHET 7 max [¢[L]].

We can express the right-hand side as a function of the (, by using Corollary A.2.10. To this end, we consider the
function g = e_, : A\ — e” and we write

max sup |g¥| < <max Tk) sup  [e”?]
kel0,n] Conv(G) ke[o,n] zeConv(G)

< (1 + Tnmax) sup eT(Re z)
zeG

< (14 7max)erlr ),

Corollary A.2.10 thus gives

2]
T T o T 1-90
ldc.c.-l 22027 < C(1+ 7mex)emoPemr et CGTHET T maxc|([L]) .
LcG
Using finally (V.20), we see that we can replace |G| by 7 in this estimate, up to a change of the constant C'. Since
we have chosen 7 = min(7’, 79)/2, the claim is proved. ]

A block moment resolution taking into account multiplicities We will now show how to take into account mul-
tiplicities in the solution of our block moment problem. More precisely, to each element A in G we associate a
multiplicity o, € N* and a set of complex values (¢J) je[0,ax[- The multiplicities are gathered in a multi-index

o € (N*)G and we denote by ¢ = (¢]) seq the set of all the given data.
jE 0,0L)\[[

Our goal is now to find a function g .+ € L?(0, T) that satisfies the moment equations

{(G[A(jJrl)]yQG,g,T)LQ(O,T) = da VAe G, Vje [0,an] (V.27)

(M) qoer)2om) =0, YAe N\G,Yje [0, L],
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along with a suitable estimate. In this set of equations, L is an upper bound of the multiplicities, that is an integer
satisfying L > || and we refer to (I.8) for the definition of e[ AU+1)].

We will solve this problem by using an approximation process consisting in replacing the equations (V.27) by a
well chosen standard block moment problem (without multiplicities) that converges, in a certain sense, towards our
target problem.

Let us start with the following elementary lemma.

Lemma V.4.24

For any A € C" and any j € N, we have

e[A, ..., A+ jh] 7 e[AITD], strongly in L?(0, +0).

Proof :

Using Lagrange theorem (Proposition A.2.6) we immediately get

—_4)J .
et[A, ..., A+ jh] = eiMet[O7 ..., jh] = ( ]t') e MemEhtt = ¢, [)\(]H)]e*shvtt,

for some e, 4 € [0, jh]. It follows that e; [\, ..., A + jh] e [AU*+D] for every ¢ and moreover
—0

. —t)J
e[\, .. A+ jh]| < |e AUV = Qe—mem, V¢ > 0,Yh > 0.
jl

Our claim thus follows from the Lebesgue dominated convergence theorem. [ |
With this lemma at hand, we can proceed to the proof of the main result of this section.

Theorem

V4.25

Let A and G be as in Theorem V.4.22 and let L > 1 be an integer.
For any T' > 0, any multi-index o € (N*) such that |a|w < L and any set of complex values { =

(¢]) xec < C, there exists a function qg .+ € L*(0,T) satisfying the equations (V.27) and the estimate
jElI0,0L)\[[

P
”qcv‘,C,THLQ(O,T) < CerGT/2+CrG+CT —6 mag’C[G(“)]
peN
B

; (V.28)

where C' > 0 only depends on L and on the parameters &, 0, 1, Nimax, P, 7Y appearing in the assumptions

on A and G.

In the case when we do not assume (1V.22), the same result holds if one replaces 0 by any value 6 e (0,1)
in the estimate (V.28).

Proof :

We define the following quantity, depending on the (local) gap between the elements in the group G,

1 -
ho € = min [A—A| >0, (V.29)
L ) jea
A#A

and we consider a small parameter h € (0, k) which is meant to tend to 0. We introduce the set

GlOIS()

Gh =[N A+ (an — DR},
AeG
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and thanks to (V.29) we see that all the values in the definition of G, are distinct. In other words, the cardinal of G,
is exactly equal to the length of «, thatis |a| = > «,.

AeG
We can now introduce ;
~1
Ap = Gpu (U (A\G) + m)) .
1=0
L1
Since A, © |J (A + [h), we can apply Lemma V.4.20 and Lemma V.4.21, to get
1=0
Ah (e 5777

Ny, (r) < R,
[Ny, (r) = Na, ()| < &1+ |r = s]%),

for some & that does not depend on h.
Moreover, we have
diam(G}p) < 2p,

re, = inf ReA=r
Gp, AeG), G

#Gh < nmaxL7

and
d(Conv(Gp), Ap\Gr) = v/2,

as soon as
h<——.
L2
In other words, we proved that we can apply Theorem V.4.22 to Aj, and G}, in a uniform way with respect to h. It
remains to build a suitable data set to which we will apply this theorem.
To this end, we take F' : C — C to be be any holomorphic function, that satisfies

F(j)()\)
4!

=, YAeG,Yje[0,a,[

Note that the function F' is chosen independently of the value of h (for instance it can be the interpolation polynomial
given in Proposition A.2.15 but this is not mandatory).
As mentioned above, we apply Theorem V.4.22 to the family Ay, the group G}, and to the data (" € CE» defined
by
(= F(\+jh), YAeG,Vje[0,a,[ (V.30)

Since all the properties of Ay and GG}, are uniform with respect to the parameter h, this theorem gives us a function

qgh € L?(0,T) satisfying
(6[)\ + lh]v qZh,ch,T)L2(07T) = F()‘ + ]h)a VAe G,Vje [[07 OKA[[? (V.31)
(e[ + 1R], qgmyT)LZ(O,T) =0, YAeA\G,Vielo, L[, (V.32)
as well as the bound
(7]
r TO ~—1—-0
Hqﬁh crllzzor < Ce GT/2+Crg+CT 170 max |§h[G§L”h)]’ , (V.33)
T HRENTR
|/’L}L|OO<1

the crucial point being that the constant C' is uniform with respect to the parameter h.
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By using (V.30) and the Jensen inequality given in Proposition A.2.7, we see that the right-hand side in this
estimate is bounded by C|| F' (lal=1) | o (17)» uniformly in h, where U is a sufficiently large open convex neighborhood
of G.

We deduce that the family (qZ,L,gh,T) 1 possesses weak accumulation points in L?(0,7T') when h — 0. We choose

gc.cr to be one of those weak accumulation points. By Proposition A.2.14, we can pass to the limit in (V.33) to get
the expected bound, that is

6
0 T
||qg,<,THL2(07T) < CeTGT/2+C'I’G+CT -0 ma)é |<[G(H)]|
neN
I3 e

It remains to show that this function g actually solves the required moment problem (V.27).

e Let A € A\G, and j € [0, L[. By linear combination of the equations (V.32), we clearly have that

(e[As- o A+ Rl gt n )20y = 0. (V.34)

By using Lemma V.4.24, we can use the weak-strong limit principle in (V.34) to get that
(e[)‘(j+1)],QG,Q,T)LQ(O,T) =0.

e Letnow A € G and j € [0, a,[. By linear combination of the equations (V.31), we obtain

(e[, ..., A+ jh], qgh‘h’T)LQ(O,T) = F[\,...,\+jh]. (V.35)

By Proposition A.2.14, the right-hand side in this equality converges towards % which is exactly equal to
¢J by our choice of the function F'. Using again the weak-strong convergence in the left-hand side, we end up
with

(G[A(JH)L QG,C,T)LZ(O,T) =

The proof is complete.

Back to generalized biorthogonal families of exponentials It is now straightforward to prove Theorem V.4.16.
Indeed, let us fix a A € A, and an integer [ € [0, L.
We consider the group G = {\}, containing a single element, as well as the multi-index o = (L) (which is here a
mono-index ...) and the data set
; 1 forj =1,
o]

0 forj e [0, L[\{l}.

Note that, the assumptions (V.16) and (V.17) are straightforward, whereas the assumption (V.18) comes from the
gap property (IV.23) we have assumed for A.

Finally we can apply Theorem V.4.25 in that setting and obtain a function, that we call ¢! . € L?(0,T) which
satisfies all the requirements of Theorem V.4.16. Indeed, we can see that by construction, the generalized divided
differences that come in the estimate are given by

(AU =l =65, Vielo. L]
and, in particular, we have

AU = 1,
e [0
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V.5 The block moments method

In the previous section we have made a step forward the block moment method that allows to precisely solve

moment problems when some spectral condensation phenomena arise. It was introduced in [ ] as a tool to
study the minimal time of null-controllability for some parabolic systems. .
The results we provide here are a bit more general than the ones in [ ], since the assumptions we need on

the family of eigenvalues of the operator are weaker. Moreover, we obtain here the precise estimate of the cost of the
controls with respect to the control time.

Let A = C* be a family of complex numbers and ¢ = (1)) ep € C* a family of data values. We are interested
in the existence of a function g € L?(0,T') that solves the moment problem

(el\ D r2m) = ¥n, YAEA, (V.36)

We will start by analyzing necessary conditions on 1) for such a moment problem to have a solution. We will then
prove that, under suitable assumptions on A, those necessary conditions may be also sufficient. This result will be
achieved by solving partial moment problems corresponding to well-chosen groups of elements in A as we have seen
before.

V.5.1 Necessary conditions for the solvability of a moment problem

Assume that a solution ¢ to (V.36) exists. Then for any finite subset I — A, by linearity of the divided differences, we
have

YIL] = (e[L]; @) 20,1y,

and thus, by the Cauchy-Schwarz inequality, we have

[WIL]| < llglrz0,mlel L] z2(0,7)-

We set n = #L so that by the Jensen inequality (Proposition A.2.7) we see that for any ¢ > 0, there exists a
z € Conv(L) such that

tnfl tnfl

tnfl
e =
(n—1)!

e—t(Re z) < e~ trL

e[ L]] < =1 (=1 ;

with 7, < inf{Re A, A € L}, so that we have

1 1
lellz200:m < lelEiz0:0) < Gy gy 2~ 20

independently of L.
It follows that, for any finite . — A, we have

C
WL < lal 20

L

for some universal constant C' > 0, and therefore we have, for any n € N*,

limsup |[¢[L]| = 0. (V.37)
LcA

#L<+00

7 —>+00

In the sequel, we shall prove that, with suitable assumptions on the family A, a condition very close to (V.37) (we
shall assume some exponential decay) is also sufficient to ensure the solvability of the moment problem (V.36).
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V.5.2 Weak gap and groupings

We first need to prove that any family of complex numbers satisfying the weak gap condition can be decomposed in
a countable family of groups that all satisfy the properties stated in Section V.4.2.3.

Proposition V.5.26

Let A < C be a family satisfying the weak gap condition (V.15) for some p > 0 and n € N*. Then, there
exists a countable family G made of finite subsets of A such that

e A=Ugeg G-
e ForeachG # G e G, wehaveGmézg.

e Each G € G satisfies

diam G < p,
#G < n,
and ] P
(Conv G, A\G) = ST

Proof :

We prove this result by induction on n.

e In the case n = 1, the result is straightforward by chosing groups of cardinal 1 as follows:

G ={{A},xe A}

e Assume that the result holds for a value of n > 1 and let us prove it for the value n + 1.

— For any A € A and any r > 0 we introduce

GlOIS(O)

Grr =AnD(\T),

then we set

/~\ = {A S A, #G)\7p/4 =n-+ 1}

We make the following remarks
« Forany \ € A, we have

G p/a = G p2- (V.38)

Indeed, the inclusion c is straightforward and by the weak gap assumption (V.15) (at the rank n + 1)
we know that

#G)\yp/g <n+1= #GA:P/‘P

The situation is illustrated in Figure V.3 where the gray region does not contain any element of A.
For any A\, A € A we have either G p/a 0 G;\7p/4 =JorGy p = GS\,p/4'
Indeed, assume that there exists a p € G ;4 NG S,p/4r By the triangle inequality we have

A=A < A= pl+|n— Al < p/d+p/d = p/2,
and therefore \ € Gz pj2- By (V.38), if follows that Ae Gy pa and thus |\ — A < p/a.
Using again the triangle inequality, it follows that

D(\, p/4) = D(A, p/2),
so that, again with (V.38),
GX,p/4 < Ghp2 = G ppa-

Those two sets having the same cardinality, the claim follows.
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Figure V.3: Construction of the groups. Situation around an element A € A withn + 1 = 5.

— We can now set ~ ~
g = {G,\’p/4, A E A}.

By the discussion above, we know that this family is made of disjoint subsets of A of cardinal n + 1, of
diameter no greater than p/2. Moreover, still by (V.38), we see that

d(Conv G, A\G) > Z > 4%, YG e G.

— Letnow Ay g = UGeG G and consider the new family
A=AApyi.

* By construction, A satisfies the weak gap condition (V.15) with parameters n and p/8. Indeed, if for
some € C we have #(A n D(, p/8)) > n, then we can take any A € A n D(u, p/8) and observe
that

D(p, p/8) < D(A, p/4),
so that it comes, in particular,
#A A D(X, p/d) > n,

which is in contradiction with the fact that A ¢ A, 1.
* The induction hypothesis shows that we can write

A= U G,
GeGn

where G,, is a family of disjoint finite sets of cardinality less than 7, and of diameter less than p/8
and such that

A p/8 p
d(Conv G, A\G) > T = 5 VG € Gp,.
* We may now set .
g = gn o g

The only point that remains to be proved is that

d(Conv G, \) > ﬁ, VG € G, VA€ Ayt

Let G € Gy, and A € Ay11. By construction, we have G = D(u, p/8) for some i € A and there
exists A € A such that A € G5 e
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Since 1 ¢ Ayy1, we have p ¢ G5 pja = G5 )2 By the triangle inequality, it follows that for any
z € D(u, p/8), we have

(VRIS

<|u—5\|<|,u—z|+|z—>\|+|)\—5\|<§+]z—)\|+§,

and thus
)

— Al = .
|z = Al 2.47

=

0D

V.5.3 Solving moment problems by the block moment method

Now that we are able to build a grouping of the elements in A that satisfies the properties above, we can manage to
solve a moment problem by the block moment approach. Roughly speaking this method allows to solve a moment
problem even if the elements in A can be exponentially close, as soon as the data of the moment problem is suitably
chosen. In other terms the data of the moment problem should compensate the condensation of the eigenvalues in A;
this is the meaning of the necessary condition (V.37).

Our first result in that direction is the following. It gives conditions on the data, and on the time horizon to be able
to solve a general moment problem.

Theorem V.5.27

Let A be a family belonging to a class L, (1, k, 0, p,n) for some values of the parameters. Let (G)geg be
a grouping as given by Proposition V.5.26. N

Let 1) € C» be a family of complex numbers. We assume that, for some T > 0 and M > 0, we have

max |[L]] < Me T, VG eg. (V.39)
LcG

Then, for any 7 € (0,4T/ 3], there exists a function q € L?(0, 1) satisfying the moment problem

(6[)\], q)L2(0,T) =1, VAEA,

as well as the estimate .
e
lalz2(0.) < MCe“T 7,
where C' depends only on n, K, 0, é 0, M.
In the case where we have the weaker assumption ANe Ly (n,k,0,p,n), the same result holds by replacing
0 by any 0 € (0, 1) in the estimate above; the constant then depends also on 6.

The condition (V.39) has to be compared to the necessary condition (V.37) that we have obtained above. The main
differences are that:

1. we ask for an exponential decay of the quantity of interest

2. we only evaluate the quantity ¢)[L] for L being a subset of one of the groups G. This makes this assumption
more tractable than studying this quantity for any possible subset L of A.

Proof :
Let 7 € (0,47/3] be given. For each G € G, we can use Theorem V.4.22 to find a function ¢z € L2(0,7)
satisfying the partial moment problem

Yy, VAed,

A, T) =
(e[Al, g) L2(0,7) {07 VA e A\G,
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and the estimate

__0
raT/2+Cr+Cr~ 10 max|1/)[L]|.

lacllz2(0,) < Ce nax

Using (V.39), and the fact that T> 37/4, we get

~ 0
_ 0 ]
HQGHL2(O,7—) SMC@TG(T/Q T)+Crg+Cr 1-0

__0
<M067TgT/4+CT%+CT 1-0

and, by Young’s inequality, it follows

__06
lgelz20.7) < MQe rem/8+0T 170,

By (A.18) and the sector condition, we obtain that

ez C
2 e—T’QT/S < Z e—(Re)\)T/S < Z e |>‘|8coshn <=2,
GeG AeA Aeh T

where C' depends only on 7, 6 and .

This proves that the series
def

q = 4da,
Geg

absolutely converges in L?(0,7) and that ¢ solves the moment problem we are looking at and satisfies the claimed
estimate. [ |

As we have seen before, for instance in (IV.25) for the heat equation, applying this Theorem to a parabolic null-
control problem, amounts at considering particular data sets that are issued from the computation of the free solution
of the problem to any initial data in the state space. This leads to the following corollary. In particular, those data
values are usually exponentially small we respect to A. That is why the following corollary is of interest.

Corollary V.5.28

Let A be a family belonging to a class L, (1, k, 0, p,n) for some values of the parameters. Let (G)geg be
a grouping as given by Proposition V.5.26.
Let ¢ € CM be a family of complex numbers. We assume that, for some M > 0, we have

max [¢[L]| < M, VG e (V.40)

Then, for any T > 0, there exists a function q € L*(0,T) satisfying the moment problem

(e[A, @20y = € M dr,  VAEA,

as well as the estimate .
“1-0
Il 20,m) < MCe“T 7,
where C' depends only on n, K, 0, 9~, 0, M. N
In the case where we have the weaker assumption ANe Ly (n,k,0,p,n), the same result holds by replacing
0 by any 0 € (0,1) in the estimate above; the constant then depends also on 6.

Proof :
We simply set 1), = e *T'¢,. Let us pick a group G € G.
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We introduce the function g = e7 : A — e *T, and we apply Corollary A.2.10 to get

max [[L]|

N

ke[0,n] Conv(X) LeG

e ( max  sup |g(k)|> max |¢[L]|
g Mmax —1 7TGT
e(1+T Je™"¢" max |g[L]]

< e(1 4 Trmax—1) prereT

(e — 10 (14— (T )™ v

< e(Npax — 1)!C’M673TGT/4.

N

We can now use Theorem V.5.27, with T' = 3T /4 and 7 = T to get a solution to our moment problem that satisfies
the estimate .
lal 201y < €(npex — DICMEST 7,
which proves the claim. [ |
We can also obtain a useful result in the case where the uniform bound (V.40) is replaced by an exponentially
increasing bound (with respect to the group GG). In that case, we only obtain a solution to the moment problem in the
case where the time 7' is large enough.

Corollary V.5.29
We consider the same assumptions as in the previous corollary except for (V.40) that we replace by
max |¢[L]] < Me'éT*, VG eg, (V.41)
LcG

for some M > 0 and T* = 0.
Then, for any T > T* there exists a function q € L?(0,T) satisfying the moment problem

(e[A, @) 20y = e My, VAEA,

as well as the estimate

Il 20,0y < MO(1 + (T*)™)eCT=T%) 1=°

)

where C' depends only on n, K, 0, 9~ 0, M.
In the case where we have the weaker assumption ANe Ly (n,k,0,p,n), the same result holds by replacing
0 by any 0 € (0,1) in the estimate above; the constant then depends also on 6.

Proof :
For any A € A, we set

— %
Gh=e AT O

As we did in the previous proofs, we can use Corollary A.2.10 to deduce, for any G € G, the bound
max [C[L]] < C(1+ (T*)")e " max| o[ L]
<C(+ (T*)")M.
Since T — T* > 0, Corollary V.5.28 shows that there exists § € L2(0,T — T*) satisfying
(el D2 r—1+) = e MG, vAaeA.
We denote by g € L2(0,T') the extension by 0 of §, so that by definition of ¢, we finally get
(e[Al, @) 20,y = e Moy, VAeA,

as well as the expected estimate. [ |
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V.6 An alternative construction of biorthogonal families to exponentials

In this section, we shall propose an alternative way to construct and estimate biorthogonal families of exponentials.
This other approach seems to be the first one that appears in the literature in [ , , ], and gives in some
cases a sharper estimate since it amounts, at least in infinite time horizon, to building the minimal biorthogonal family.

Moreover, it appears that we are able to adapt this approach to a time-discrete situation as in [ ], whereas
the Paley-Wiener approach does not seem to be usable in this context.

We shall also consider the case of generalized exponential functions (to deal with multiplicities of the eigenvalues),
that was for instance considered in [ ]. However, our proof is slightly different here.

V.6.1 The case of an infinite time horizon

Let us start by discussing necessary and sufficient conditions for the existence of biorthogonal families to exponentials
in L2(0, +00).
Theorem V.6.30

Let A = C* be a family of complex numbers. We assume further that 0 is not an accumulation point of A,
which is equivalent here to the condition

inf [A| > 0. (V.42)
AEA

1. If there exists a family (q» ., )aen Which is biorthogonal to the family (e[\])aea in L?(0, +00) then

we have
D Re () < +o. (V.43)
AeA

In particular, if we have A < S,, for some 1 > 0, then we have

Z < +o. (V.44)

2. Conversely, if we assume that A < S,, for some 1 > 0, and that the summability condition (V.44)
holds, then there exists a biorthogonal family (qx ) xe to the family (e[\])aea in L?(0, +00).

We refer in the sequel to the notations and results given in Appendix A.3 and we start by making some preliminary
computations.

Let us first observe that e[\] € L2(0, +-o0) for each A € A, since Re A > 0. Then, by a straightforward computa-
tion we get that for any A, u € A we have

1
(e[l elu]) L2(0,40) = v (V.45)

A+
For any subset L of A, we introduce the family £, < {e[u], u € L} in L?(0, +00). As defined in Section A.3, we
introduce 7¢, the orthogonal projection in L?(0, +00) onto Span &;,.
For any finite subset L of A, for which an arbitrary ordering is chosen, we see by (V.45) that the Gram matrix G,
of the family &, in L?(0, +00) is just the Cauchy matrix

1
G,=(——) .
t (>\+M>M€L

AeL

Its determinant is explicitly computable (see Proposition A.3.25) as follows

A, =
. (Hmm) ‘Mu

)\#;L
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By usual results on Gram determinants (see Proposition A.3.20) we have that for any ¢ € A and any finite L. < A
with o ¢ L,

and we finally obtain the explicit formula

1 o—u
s £)? = V.46
(elo). 6" = 3 s L o3z (V:46)
peL
We can now proceed with the proof of Theorem V.6.30.
Proof :
1. We assume that (e[A])aca possesses a biorthogonal family in L2(0, +00).
e Observe first that there exists ¢ € A such that
lo]

|| = 5 Y e A. (V.47)

Indeed, if it were not the case, we would be able to find a sequence (o, ), in A such that |, 11| < |0y, |/2.
This would be a contradiction with (V.42).

e Let us now choose such a o € A, satisfying (V.47).

By using Proposition A.3.23 and the fact that we assumed the existence of the biorthogonal family to the
exponentials, we know that
d(efa], Exyiey) > 0.

We choose any finite . = A, and use the explicit formula (V.46) to obtain

0<CU<H

peL

2
o —p
=

where ¢, = 2(Reo)d(e[c], Exoy)? only depends on o. Taking the logarithm, we get

Z —log

peL

2
TP < ~loge,. (V.48)

o+ U

We observe now that, from (V.47), we have

p—ol’ 1 _ 4 (Reo)(Rep)
p+o |+
o1 MReRen)
9]
since |p + | < 3|pl. It follows that
log|P0 ‘ 4(Reo)(Rep)
p+o 9ul?

where we have used the fact that

4(7360)(;%#) < Aol 8
9l Np[ — 9

<1,

and that —log(1 — x) > x for every x € (0, 1).
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It follows from this computation and (V.48), that

Re u 9log cy
< - .
||? 4Re o

pel

Since this is valid for every finite L included in A, we conclude that

which is the claimed property since Re (1/u) = (Re u)/|u|? for every u # 0.

e In the case where A — S;), we can use (A.22) to deduce that

2. We assume here the sector condition as well as the summability condition (V.44). Note that this last condition
implies in particular that A is locally finite.

By using the function introduced in Definition A.7.37, we can define for any subset L — A, the function

W, (2) @u(z) _ I1 <1 — §> , (V.49)

z
o€l 1+3

which is well-defined and holomorphic on C\(—L) and in particular on C*. It follows from (V.46), that

1
é(elo], &) = %‘WL(U”- (V.50

A priori, this formula is only valid for a finite subset L of A. However, by Lemma A.3.17 we know that
0(0, Enoy) = 1im 5(0, Exnoy)s

where, for instance, we have chosen A,, % A D(0,n). By (V.50) and the uniform convergence property of

the infinite product we get

6(0,Eney) = lim [Wy,,\ (0} (0)]

1 1
- —  Wa(0)] >0,
N VaReo " neo)]

since Wy, only vanishes on A\{c}.

This property being for any o € A, we deduce by Proposition A.3.23 that there exists a family (¢o,00)oen in
L?(0, +00) which is biorthogonal to £,, which proves the claim.

Note also, for further use, that it satisfies

1

HQU,WHL2(O7+CD) - @@ = 2R€O’

(V.51)
6(0,Enioy)

Moy (@) |
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Remark V.6.31

In the case where A does not lie in a sector, the condition (V.44) is too strong. For instance, let us consider
A={1+1in, n=0}andT = 2m. A simple computation shows that

f27r e(=1+im)t

=t gp — On.m,
0 27

which proves that (e[\]) xea possesses a biorthogonal family in L*(0,T) and thus in L*(0, +00). It appears

that (V.43) holds since
1 1
R = — < 0,
2 €<1+m> Z|1+m\2
n=0

n=0

but (V.44) does not since

1
— =+
Z |1+ in|

n=0

V.6.2 The case of finite time horizon
Let us introduce the linear space spanned by all the exponential functions corresponding to A
E, ¥ Span(&,),
and the closures of this space in L?(0, +00) and L?(0, T), for every T > 0, denoted respectively by
Frop, € BP0 Fyp € EFOD YT > 0.
We define I', 1 to be the restriction operator
Par: f€Fyw— floo € Far,

which is of course linear, continuous and onto.
In the sequel of this section we will use the following result that states the inversibility of this operator.

Theorem V.6.32

Assume that A < S, for some 1) > 0 and that it satisfies (V.44).
Forany T > 0, there exists a C > 0, depending on T and A such that

[ Flz2(0,400) < ClTaxflr200r), VI € Frce- (V.52)

The proof of this result can be found in [ ]. We will not give its proof here in full generality but we will
prove some particular cases in Theorem V.6.37 and Theorem V.6.39.
We can now move to the study of the existence of biorthogonal families to the exponentials (e[A]) e in L2(0, T).

Theorem V.6.33
Let A = C* be a family of complex numbers and T > 0.

1. If there exists a family (g r)xen Which is biorthogonal to the family (e[X])aea in L*(0,T) then we
have the summability property (V.43).

In particular, if we have A < S, for some 1) > 0, then we have the summability property (V.44).

2. Conversely, if we assume that A < S, for some 1 > 0, and that the summability condition (V.44)
holds, then there exists a biorthogonal family (qy 1 )xen to the family (e[A])aea in L?(0,T).
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Proof :

1. By assumption we have

T
M= f Gor(t)e Phdt, YA e A,
0
and thus -
O = f or(t)ele ™ FEV g YA e A
0

This proves that the family (e[)]),_z, where A = A + 1, possesses a biorthogonal family in L2(0, T') and thus,
in particular, in L?(0, +-0).

o Let us show, by contradiction, that Ais locally finite.
Assume that there exists an infinite subset L — A such that

AN—p| <1, VYA pel. (V.53)

We fix a value o € L and for any n we take a subset Ly, of E\{a} of cardinality n. By (V.46), we deduce
that ) | |
=0

olelo], & ) = — .

( [ ] Ln) /QREO' 5:1[ |/J,+O'|

HELin

By construction of INX, all the elements in Zn have a real part greater than 1 and by using (V.53) we deduce

that ] 1
lelo], &) < —.
It follows that §(e[o], £z, ) —— 0 and since d(e[o], Ex(,y) < d(e[c],E;,,) for any n, we deduce that

n—00
5<e[0]757x\{a}) =0,

which is a contradiction with the existence of a biorthogonal family to (e[o]), _; in L*(0,+0), see
Proposition A.3.23.

e Since A is locally finite, so is A and thus we deduce that infycp |[A| > 0, using that 0 ¢ A. Moreover,
(gr.17)xen is a family biorthogonal to the exponentials in L?(0, +00), and thus we can apply the first part
of Theorem V.6.30 to deduce the claim.

2. We make use of the inverse of the restriction operator introduced above and, for any A € A, we set

def

B = (T G, (V.54)

where (gy..)xea is the biorthogonal family to &£, in L2(0, 4+o0) given by Theorem V.6.30. Notice that, by
construction, we have g, ., € I, .., so that formula (V.54) makes sense.

We can now check that this family (g, +)xea satisfies the required properties. Indeed, for any A\, i € A, we have
(qA,Tae[M])LQ(O,T) = ((FX,IT)*QA,WFA,TG[M])B(QT) = (r 00 (FA,T)AFA,TG[N])L2(0,+oo) = O
Note moreover that, for any A € A, we can use Proposition V.6.39 to get
lanrlzzomy < ITam)*Hareol 20,4000 = ITx 5l @r 00 £2(0,400)

and thus, the bounds on (g, ., ) en are transferred to (g, ) ea With an additional constant, that is

1
< Ffl 2 A|— .
larrllzz0r) < ITR5IV2ReA ‘WAW(A)‘
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V.6.3 Estimates on the biorthogonal families

Let us now move to an estimate as precise as possible of the size of the biorthogonal families we have built in the
previous sections. For the applications we have in mind, as we have seen before, we need an estimate of ¢, ,, (resp.
q».r) with respect to the eigenvalue A, but we also want to investigate the dependency on the family of eigenvalues as
a whole and on the time horizon 7.

V.6.3.1 The case of infinite time horizon

The first result in this direction is the following.

Theorem V.6.34

Assume that A < S, for some 1 > 0, and that the summability condition (V.44) holds. We denote by R a
remainder function associated to A.

We also assume that A satisfies the weak gap condition (V.15).

Additionally, we assume either that

(log ) R(r) —— 0, (V.55)
or
d:=sup(N(r+1)—N(r)) < +o0, (V.56)
r>0

then, we have the estimate

1 AD A
HQA,OCHLQ(O,-H;O) < m 68(‘ Dl ‘, YA eA.
neEA
0<[A—pl<p

where ¢ : (0, 4+00) — (0, +00) is a function tending to zero at infinity, that only depends on R, p (and on §
in the case (V.50)).

Remark V.6.35

Notice that in the real-valued case, that is if A < (0, +00), then the weak gap condition (V.15) immediately
implies (V.56).

Proof :
As we have seen in (V.51), estimating the size of g, ., amounts at estimating the quantity

I

1
‘WA\{A}()\)

where the Blaschke product W, is defined in (V.49).
The claimed estimate is thus a straightforward consequence of the bound from above of @ _z(\) and of the bound

from below for Q. (\), with L = A\{\} and v = p, obtained from Proposition A.7.38. [ ]
In the case where the gap condition holds, the estimate above simplifies a lot as follows.
Corollary V.6.36

In the particular case where A satisfies the usual gap condition (IV.23), then the estimate simplifies into

sl 220400y < €SI,
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V.6.3.2 The case of finite time horizon

We can now prove a version of Theorem V.6.32 which is slightly less general and deduce an estimate of the biothog-
onal family in a finite time horizon.

Theorem V.6.37

Assume that A < S, for some n > 0, and that the summability condition (V.44) holds. We denote by R a
remainder function associated to A and we assume that either (V.55) or (V.56) hold.

We also assume that A satisfies the usual gap condition (IV.23)

Let T > 0 be given. There exists a K > 0 depending only onT' > 0, p, R (and ¢ in the case (V.56)) such
that,

1flz20,400) < KlTaxflr201) Vf € Fao- (V.57)

As a consequence, the biorthogonal family (q\.r)xe Satisfies the estimate
laxrllzz20,1) < KefDIN -y e A,

where ¢ : (0,+00) — (0, 4+00) is a function tending to zero at infinity, that only depends on R, p (and on o
in the case (V.56)) but not on T

Proof :

By density, is is enough to prove (V.57) for f € E5. We will use a contradiction argument.

Letus fix a7 > 0 and assume that this inequality is false: then there exists a sequence (A"™),, of subsets of S, each
of them satisfying the summability condition (V.44) with the same remainder function R, the gap condition (IV.23)
with the same value of p, and the same value of J, as well as a sequence of functions f,, € Fa» such that

I fullr20,400) = 1, and [Can 7 ful 2207y < 1/n. (V.58)
Each f,, can be written
falt) = ) aked], (V.59)
AeA™

where a’y # 0 only for finitely many values of A\. From Theorem V.6.34, we know that, for each n there exists a
biorthogonal family (¢ ) xean to Exn in L?(0, 00) that satisfies

12X ol 22(0,400) < MDAy e A,

where ¢ is a locally bounded function tending to 0 at infinity which does not depend on n since all the A™ share the
same values of p and 7 and the same remainder function R.

Taking the inner product of (V.59) by ¢ ., and using the biorthogonality property, we have, for any n and any
Ae A"

CLS\L = (fns qg\l,oo)L2(0700)'

From the Cauchy-Schwarz inequality and the bounds above, we deduce that
la| < efADAL wx e A vn > 1.
By using (A.22), this leads to the estimate
|a}| < eesADREN) = yx e A" vn > 1, (V.60)

where ¢, = cosh.
We consider now any z € S where 7) > 0 is chosen such that

(sinhn)(sinh7) < 1/2.

@O0 F. BOYER - JULY 16, 2022



V.6. An alternative construction of biorthogonal families to exponentials 117

Bu using the definition (A.21), we observe that
|a§\L€z [)\] | <60n5(|)\|)(726 /\)ef(’Re AN)(Rez)+(ZmA)(Imz)

<eenf(AD(ReX) o —(ReA)(Re 2)+1(ReX)(Rez)

<o ReN[Rez—2e,e(A)]

Since ¢ tends to 0 at infinity, we observe that the formula

fa(z) & )7 afe:Al,

AEA™
defines an holomorphic extension of f,, in the sector S5, and that moreover, we have, for any v > 0

Fale)| < 3 b ReN[Rez2es2()]
AEA™

< Z e_%(ReA)[7_2C7’€(‘A|)], Vze Si,Rez > .
AeA™

(V.61)

Using (A.18), we get that the sequence (f,), is bounded on every compact subset of S;. By Montel’s theorem,
we deduce that, up to the extraction of a subsequence, we can assume that ( f,,),, converges locally uniformly in Sj
towards an holomorphic function f.
By (V.58), we also have ||[U'an 7 fn 20,7y — O when n — oo which implies that f = 0 on (0, 7). Since f is
holomophic in 57, we deduce by the isolated zeros principle that f = 0 everywhere in Sj.
As a consequence, for any S > 7', we have
s

S
[Cim@ra— [Tsopa=o
0 0
We choose now
S = 4y sup{e(r),r € [1/R(0), +00)}.

By (A.17), we have
S

e(JA) £ —, VAeA", Vn=>1.
4c,)
Therefore, with such a value of S, we deduce from (V.61) that, for any t > S and any n > 1,
|fn(t)| < Z e—(’Re)\)t/4 < Z e*Wﬁ’
AeA™ AeA™
and thus, using (A.18), we get

+00 4 s
J a(Dldt < Y T
S

N
< deyR(0) Y e M
AEA™
< 4c%(R(O))2.
S

It follows that
+0
[
S S—o0

uniformly in n. Since ( fy,)y, is uniformly bounded on [S, 4-oo[ this implies

+00 +00
f a2 dt < C f Fu(Ddt —— 0.
S S S—o0

uniformly in n. All in all, we have finally proved that || f,, | 72 (0,+00) — 0 which is a contradiction with the initial
assumption in (V.58) that | fu[ 129, +o0) = 1. The claim is proved.
]
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V.6.4 Sharper estimates on biorthogonal families in infinite time horizon

In the case where the asymptotics of the counting function of A is known we can make the dependency on A of the
above estimate more precise.

Theorem V.6.38
Let A be a family as in Theorem V.6.34.

o [f the counting function of A satisfies the asymptotic assumption (IV.21) then, in the conclusion of
Theorems V.6.34 and V.6.37, we can take

for any 6 e (0,1), C being a constant depending only on 6 and r, and p-

e [f the counting function of A satisfies the asymptotic assumptions (IV.21) and (IV.22) then, in the
conclusion of Theorem V.6.34 and V.6.37, we can take

C

e(r) = -0

where C' depends only on 0, k, and p.

The proof of Theorem V.6.38 simply consists, using the additional assumptions on the counting function N, to
use the precised estimates on the Blaschke products given in Proposition A.7.40.

V.6.5 Even more sharper estimates of the biorthogonal family in the real case.

In the case where we assume that A (0, +00) as well as the asymptotic behavior (IV.21), we can obtain an explicit
estimate of the norm of the restriction operator I'y 7 as a function of 7" and then an explicit estimate of the norm of
the biorthogonal family with respect to 7" and .

More precisely, we can obtain the following result which is a refinement of Theorem V.6.32, in the particular case
of real eigenvalues. It is important to notice that this result do not require any gap assumption on the family A.

Theorem V.6.39

Assume that A is a family of positive real numbers that satisfies the asymptotic assumption (IV.21), then
there exists C1 > 0, depending only on k and 0, such that for any T > 0, we have

__0
1l r20,400) < C1eT | Tazflizory, VF € Fa.

The main consequence of this result is the following more accurate estimate of the biorthogonal family to the
exponentials.

Theorem V.6.40

Assume that A is a family of positive real numbers that satisfies the asymptotic assumption (IV.21) as well
as the gap condition (1V.23).

Then for any T > 0, there exists a biorthogonal family (qx 1) xea to the family (e[\])ea in L*(0,T) which
satisfies the estimate

2]
6 —1-0
lax 20,y < CeCNFOT 701y e A,

where C' > 0 depends only on p, k and 6.
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The proof of this result just consists in using Theorem V.6.39 in combination with Theorems V.6.37 and V.6.38.
In this particular case, this estimate of g, r appears to be sharper than the one obtained in Theorem IV.1.10.

The remainder of this section is devoted to the proof of Theorem V.6.39. Note that, all the constants C; in the
statements and proofs of this section will only depend on the parameters « and 6.

The proof makes use of real and complex analysis tools. Our first goal will be to construct an entire function
satisfying the following properties.

Proposition V.6.41

There exists 7o > 0 depending only on 0,k such that for any T € (0, 7)), there exists an entire function
G A7 satisfying:

1. G is of exponential type T,

2. Ga-(0) =1,

3. Gor(iX) = O forany X € A,

4. G r is square integrable on the real axis and satisfies

_0
1-0

|G Azl L2r) < Coe®T

Proof :
We use here the notation and results obtained in Appendix A.7. The function G5 - is built as follows

GA,T(Z> = QA(_iz)Mm,9,7/2(2)7
where 1 will be chosen later. By construction, we have G (0) = QA(0)M,, 4.,/,2(0) = 1 and
Ga-(iN) = 0,VX € A,

since QA (A) = 0 forevery A € A.
Moreover, from Proposition A.7.40, we know that there exists a C; > 0 depending only on 6 and x such that

Qa(~iz)| < T,
then we set 1 = Cy + 1 and we assume that 7 satisfies (A.49). It follows from Proposition A.7.42 that

|Mi6..2(2)| < €2l vz e C,

__0
| Mi0.22(2)| < e~mlal’+Cr 10 Vo e R.

All in all, we have obtained

—0
0 T -0
|Gar(2)] < eC1lleslel < 27Tl 2 e C,
so that G ; is of exponential type 7, and moreover

0 0
0 _ 0 T1-9 —|l? T1-90
|GA,T($)’ < eCl|x\ e ulz|+Cr —e lz|+CT

so that G ; is square integrable on R with the claimed estimate of its norm.
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V.6.5.1 Estimates on sums of real exponentials and on generalized Miintz polynomials.

The value of the parameter 7y given in Proposition V.6.41 is now fixed.

Proposition V.6.42

There exists C > 0, such that for any T € (0, 70) and any function f in €, = Span(e[0], e[A], A € A)
that we write

f=ao+ Z axe[\],

AEA
we have the estimate

) “1-9
Jim [F(B)] = lao| < C3e™™ 7 alr2020)-

Proof :
Applying the Paley-Wiener theorem (Theorem A.6.36) to the function G 7 built in Proposition V.6.41, we get
the existence of a function gy » € L?(R) such that

T

G (2) = f ann (D) d,

—T

and ) .
2®) = 5lGarlrzm) < Coe®m 7

HQA,T

We compute the following integral

T

ga-(t) dt + Z f,\e_MJ e Mg (t) dt

T T

F(t+ 7)gan(8) dt = fo J

-7 -7 AeA -7
= foGa7(0) + >} fae M Ga~(iN)
AeA
= an
by using the properties of G5 . The conclusion follows from the Cauchy-Schwarz inequality and the estimate of
HQA,THLQ(R)- [ ]

We use the results given in Appendix A.8. In particuliar the set of Miintz polynomial functions M (A U {0}) is the
set of functions defined as

p(l’) = po + Z p)\l')‘, T € [07 +OO)7
AEA

where only a finite number of coefficients p) are non zero.

Proposition V.6.43

There exists Cy > 0 such that for any 0 < 7 < min(7p, 1) we have

p(0)] < Cae®™ " pllea—r1y, VP E M(AU{O}).

Proof :
We set
F&)E ple), Vi>o.

By construction, we have f € £, so that we can apply Proposition V.6.42. Since p(0) = py we get

e
p(0)] < C3e®s™ ° 1 lz2(0,27)-
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Since 7 < 1, we can bound the L? norm by the L® norm

__0
p(0)] < C3e“™ " | fll Lo 0.2m)

—1-0
< Cze®m ! Ip| oo (e-27 1

Since €727 > 1 — 27, we finally get
Cyr T
‘p(O)’ < C3e™" ||pHL°°(1—2T,1)7
and the claim is proved by changing 7 in 7/2 and adapting the constant accordingly. [ |
Theorem V.6.44

Let s > 0 and A be a closed subset of [0, 1] whose Lebesgue measure is at least s. Under the same
assumptions as above, we have

__0
1] oo 0.t 4) < Cae® 7 plpoay,  Vpe M(A U {0}).

Proof :

Let Lo < A U {0} be the finite subset corresponding to the non zero coefficients of p in the basis of M (A). We
define the interval I; = [1 — s, 1].

Let 77, 1, be the generalized Tchebychev polynomial corresponding to Lg and to the set I, as defined in Appendix
A.8.

We use Theorem A.8.55 with I = I (since |A| = s = |I5| and sup A < 1 = sup I) and we deduce that

Pl oo (0,inf 4) < |TLo,1, (0)] IP] oo ()
Applying Proposition V.6.43 to 17, ;, (and 7 replaced by s) we get

__0
[ Tro,r, (0)] < Cae®s 7,

and the claim is proved. [ |
We can now move to a similar L2 estimate.

Theorem V.6.45

There exists Cs > 0 such that for any 0 < s < 1, we have

HPHL2(0,1) < 0560557170 HPHL2(1—S,1)7 Vpe M(A u {0}).

Proof :
For any s > 0 and p € M (A U {0}), we introduce the compact set

2
As = {‘T € [1 -5 1]7 |p(IE)| < \/;”p|L2(1s,1)} )

Bs =[1—s,1]\As.

and

Integrating |p|? on B, we get
2
2 2 2
IPIZ2(1—s1) = JBS p|” = g||pHL2(1—s,1)|Bs|7
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from which we deduce that
|Bs| < /2,

and consequently
|Ag| = s/2.

We apply Theorem V.6.44 to this set A to get

0 ]
~1=-0 ~1=-0 2
I (0,1-s) < Cae?® " plLoa,) < Cae“r 0\/;p‘L2(1—s,1)7

and consequently
2]
e 2
IPlz2(0,1—s) < Cae®*® \/?p|L2(1s,1),
and finally

252
Cus 1-0
Il < Cs {1+ 2 Il

The claim is proved. u
We can now come back to our original problem and prove the expected result.
Proof (of Theorem V.6.39):

of . 1 - . :
We set \g & min <R(O)’ 1>. Let f = > cp axe[A] € Ex and let 0 < ¢ < +00. By using straighforward changes

of variable we get

- - 2
t t
f FOR dt — J S e dt
0 0 |xeA
i 2
= J Z aAe*(A*AO/Q)t e~ ot ¢
0
AeA~ , (V.62)
1 Aot _Azdezylt
S aye 2o e "dt
Ao 0 AeA
1 A—Xg/2
=J a)r o dz.
e M0t [3\eA

Ao {“AO/Q, )\eA} < (0, +20).

By (A.17), we see that inf A > )g, and thus we have

(inf A) ~ Xo/2 _ 1
0

inf A =

[\]

In particular, the counting function IV of this new family satisfies

~ 1
N(T’)ZO, VT’<§,

and, moreover
\ 1
N(r) = N(Ao/2 + Xor) < N(2X\or) < N(2r) < w2979, Wr > 5

since Ag < 1. Therefore, N satisfies the same assumption as (IV.21) with x changed into k20,
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A1
We then apply Theorem V.6.45 to q(z) < D eA pmc<*0 2> € M(A), that we reformulate by using formula
(V.62) with £ = +oo and £ = —log(1 — 5)/Ag. It follows

+00 _12;9 _logg\lofs)
j F(O) dt < CseCs® fo ()2 dt.

0

Since — log(1 — s) < 2s for any s € (0, 1/2), we deduce that

2s

i 2 Css T8 [P0 2
| rwra < csees ™ [P a,
0 0
from which, for any T < %0, we can set s = T'\o/2 and obtain
0
+0o0 Txg\~ 129 (1
[ rora <o [ropa

0 0

and the proof is complete for T' < /\% ForT > /\1—0, the result is a straightforward consequence of the previous case. B

V.6.6 Biorthogonal families to generalized exponentials

As we did in Section IV.1.2, we will start by proving the result with 7" = 400, then we will present how to adapt the
restriction argument to justify the construction in the case T < +00.

V.6.6.1 Infinite time horizon.

Assume that A satisfies (IV.23) and (V.44). For any A > 0 we introduce the new family

Ap = A+ jh).
j=0

Lemma V.6.46
Assume that h < o2, then the family Ay, satisfies the weak gap condition (V.15) with the gap p/2 and
n=m+ L

Moreover, Ay, has a remainder function R which only depends on R, m and p.

Proof :

e Assume that (V.15) does not hold for Aj; with the given parameters. Then, for some 1 € C we have

# (80 DGup/) = ot 1.

In particular there are two elements in D(u, p/4) that are of the form A + ih and X' + jh with A # )\ and
i,7 € [0,m]. In particular we have
(A +ih) = (N +5h)] < /2,

and thus
IAN=N| < p/2+ i —jlh < p/2 +mh < p.

This is a contradiction with (IV.23).
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e Note that, since h > 0 and Re A > 0 for every A € A, we have |\ + ih| = |\| forall i € N.

Let r > 0, we have

IR

O'EA}
lo|>r \)\+zh|>r

i=0 AeA
[A+ih|>r

NgE

1
s > N
AEA
|A|>max(r—ih,0)

< (m+1) Z |§\|

0

<.
I

AEA
[A|>max(r—mh,0)
= (m + 1)R(max(r — mh,0))
< (m+ 1)R(max(r — p/2,0)).

All in all, we got that the function
R(r) ¥ (m + 1)R(max(r — p/2,0)),

is a remainder function for Ay, that does not depend on h, which proves the claim.

| |
Let us consider now a fixed element A € A and we define the subset
Ly S | J (VA + ).
7=0
For any o € (0, +00) with o ¢ Ly, we define now
prlo] S elo] —mr,elo],
and we set
Py p def {phP\LPh[}‘a A+ h],opn[N A+ mh]}.
Proposition V.6.47
The minimal biorthogonal family in L?(0, +00) to the family Py j,, denoted by (qé\ n)iefo,m] Satisfies
0oy < CeEPDM T yh < po(N), (V.63)

for some ho(X\) depending only on N\, C > 0 depending only on m and € a function such that
lim,_, 1o £(r) = 0 depending only on R, p and m.

Proof :
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Using Propositions A.3.24 and A.3.25 we obtain that for any o, o’ ¢ Ly, we have

(Prlo]. pulo]D) 20, 4+00) = 5 i = I 8 +J/))(()\O—+O:\/;
AeL
_ 1 1_[ 1 - %) 1- %)
o+o i 1-}-%) (1—1—%)

—_
|

S| 19

~—

N— | —
>

m

~

>

/ N\|/
—_

+

N———

+
>l |>I9

Those computations are justified as we did for (V.50) by considering first a finite subfamily of L; and then pass to the
limit.
Let us introduce the quantities

fulo] = _pulo] Vo ¢ Ly,

WLh (U) ’
so that the computations above read
1
(fulols fulo'D 20, 40) = e
In particular, it appears that
(fulol, fulo) L2 (0,400) = (elals elo']) 20,400 (V.64)

We consider the (linearly independent) family
Py, & {(273@ MY2 ] QRe N2 A+ R, (2ReA)™ T2 f [N, A+ mh]},

that spans the same space as P j,.
By using (V.64) we get for any k, [ € [0, m] that

<(2Re N2 E N A+ kR CRe NV f N A+ m])
L2(0,+0)

(
= 2Re N (e[A, . A+ kR e[, A+ Th]) 120 4 o

N (2R6A)k+l+1 ( [ (k+1) ],e[)\ (1+1) ]>

h—0 L2(0,400)

— (2ReA)FHH FOO( t)* (= t)’ o gy

. I
+ k I
_ (2Re )\)k+l+1f C (=7 (=) o~ 2AReNE gy
Y T
+00 (_t)k+l .
= e “dt.
L I

It follows that the Gram matrix of F) j, converges, when h — 0 towards a matrix which is independent of A and which
is, in fact, nothing but the Gram matrix of the family ¢ — (—t)*/k! in the weighted space L?(0, +o0, e~ dt).

Therefore, by Propositions A.3.20 and A.3.21, there exists ho(A\) > 0, such that for any A < hg, the minimal
biorthogonal family of F) j,, denoted by (g/\,h,i)ie[[o,m]] satisfies the uniform bound

il 22(0,400) < C, (V.65)
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where C' > 0 depends only on m.
We set now

o 1 . ;
Qf\,h dof 2 (WL ) [A+1h,...,\+ jh](2Re )\)]Hpg,\,h,j.
j: h
It is clear that qg\ ;, € Span(P ) and we compute the following inner product

(pnlA, - A+ kh],d} 1) L2(0,400)

»

Z W, At iho o A+ RRI(fulN o A 4601, 0500) 120 o)

kK m
DY Wi, [A+ih, .. >\+k:h]<

1=0j5=I

~.
o

)[)\+lh,...,)\+jh]
Ly

x 2RV (2Re NV FulA oo, A4 ih], 9A ) 20 o0 -

"
=0i;

In the case where k < [, the sum above is zero since it is not possible that 7 = j. Assume now that & > [, thanks to
the Leibniz formula (Proposition A.2.8), the sum reduces to

k
) 1
(ph[)\a co At kh]a ql)\,h)L2(0,+Oo) = Z WLh [)\ +ih, . A+ kh] <W

>[/\+lh,...,>\+z'h]
i=l L

%% A+lh,.... AN+ kh
N T—

= 1[A+ 1, ..., A+ kh]
= Sry.

This proves that (ql)\ n)ie[0,m] 1S indeed the minimal biorthogonal family to Py .
Moreover, thanks to (V.65) , we have the explicit bound

) < C(Re )\)m’L% max
jellm]

1
N+1h, ... )+ R]|.
<WLh>[ jh]

Thanks to the Jensen inequality (Proposition A.2.7) and to the estimates given in Corollary A.7.39, we finally
get the uniform bound (V.63). Note that the polynomial factor (Re A\)™*'/2 can be written under the expected form
eI with e(r) = (m + 1/2)'2 for r > 0.

Here we have used that L, satisfies the weak gap assumption as well as the summability condition uniformly with
respect to h, thanks to Lemma V.6.46.

The proof of the proposition is complete. |

We can now terminate the proof of our main result by passing to the limit when h — 0. Let € A.

o If u # A, then p + ih € Ly, for any i € [0, m], and thus by construction we have

(e[u + ih], Qf\,h)L2(o,+so) =0,

which gives, by linear combinations,
e[y ..., + kh], qg\,h)L2(0,+oo) =0, VYkel[0,m].
e If ;= ), still by construction, we have

(e[A, -, A+ kRh], dh ) 1200, 400) = (€[N, ..., A+ kh] — mp,e[A, ..., A + kh], qgﬁh)Lz(OM)
= (p[\, ... A+ K], 4Ap) 12 (0. 400)
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We have thus proved that
(eltts - 1+ kh], 1) 12(0,400) = OrpuOhas Vi€ AVk, L€ [0,m]. (V.66)

By using Lemma V.4.24, we know that

k+1)]

e[y ..., 1+ kh] 0 e[ , strongly in L?(0, 4+00),

and in the same time, by (V.63) we see that, up to a subsequence, we can find a qf\ e L%(0, +-o0) such that
qf\,h P qf\, weakly in L2(0, o),
and that satisfies the same bound as in (V.63).
The claim is finally proved by performing a weak-strong limit in (V.66).

V.6.6.2 Restriction argument on (0, 7).

The estimate of the restriction operator obtained in Theorem V.6.32 can be easily extended to the present case by
replacing £, by
gm = LA e A, ke [0,m]},

and Ey (resp. FA,r and F) ) by E\" (resp. F){" and E’ ) accordingly.

This gives us the proof of the theorem in a finite time horizon.

We will just now indicate how to obtain the precise estimate when the eigenvalues are real and satisfy the suitable
asymptotic properties.

Assuming that the counting function of A satisfies (IV.21) we can also extend Theorem V.6.39 to obtain a sharp
estimate of the restriction operator as a function of time.

Theorem V.6.48

Assume that A is a family of positive real numbers that satisfies the asymptotic assumption (IV.21), then
there exists Cg > 0, depending only on k, 6 and m, such that for any T' > 0, we have

_ o
12200, +00) < Cs€“T " 2y Vf € ER-

Proof :
Let f € £ that we write

f=2 2 AV,
7=0)XeA

where only a finite number of coefficients (ai) j,» are non zero. For h > 0 we define
m
fo=D" Y delh ... A+ jh] €&y, .
7=0XeA
It is straightforward to see that the counting function N, of Ay, satisfies
Np(r) <mN(r), ¥Yr >0,

and thus

Ni(r) < mwr®, ¥r>0.

This estimate being uniform in h we can apply Theorem V.6.39 to f, so that for a C' > 0, independent of h, we have

_ 0
IfrllL2(0,400) < cefT 1l z20,m)- (V.67)
The conclusion follows by passing to the limit as ~ — 0 in this estimate since, as we have already seen, we have

— in L2(0, o0).
fh b0 fa n ( 7OO)
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Appendix A

Appendices

A.1 Linear ordinary differential equations

We collect in this section some classical results on linear ODEs.

A.1.1 Non-autonomous linear ODEs. Resolvant

We consider a linear, non autonomous and homogeneous ODE of dimension n as follows

{y'(t) +A(t)y(t) = f(b), (A.1)

y(0) = yo,
It can be proved that there exists a unique map (¢, s) € R x R +— R(t, s) € M, (R) called the resolvant that satisfies
d
%R(ta tO) + A(t)R(t’ tO) = 07
R(to,to) = 1d.
This maps satisfies the group property

R(tl, t2)R(t2, tg) = R(tl, t3), th, tQ, t3 e R.

With this definition, the unique solution to the problem (A.1), is given by the Duhamel formula
t

y(t) = R(t,0)yo + L R(t, ) f(s) ds.

Example A.1.1 (Autonomous case)

When A(t) = A does not depend on time, we can check that
R(t,s) = "4,

and the above formula becomes

¢
y(t) = e*tAyo + f e*(t*S)Af(s) ds.
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A.1.2 Linear ODEs with integrable data
Consider the following system of ODEs, with A € M,,(R) independent of time and f € L'(0, T, R"),

{y'(f) + Ay(t) = f(t),
y(0) = yo,

The usual Cauchy theorem applies (with minor adaptation related to the fact that, because of the non regularity of f,

the solution 3 may not be of class C') and gives a unique solution .
Let us prove that the linear solution map

®: (yo, f) € R® x L*(0,T,R"™) — y € C°([0, T],R™),

is continuous. The Duhamel formula gives

t
y(t) :<f¢Ayo+-J'e—@—@AJXs>da
0

and by taking the norm, for a given ¢ € [0, T'], we get

t T
nm><aAwu+fe“@Auw>ﬁ<cwma+fHﬂ$mw
0 0

Which proves that
lylcoco,rmmmy < Crllyoll + | £l 1 0,7,mm))-

A.2 Divided differences

A.2.1 Definition and basic properties

Let K = R or C and V' a K-vector space. For n € N*, we suppose given x1,...,x, € K that are pairwise distinct

(see Section A.2.3 for a generalization). We set X = {z1,...,2,}.
We suppose given fi,..., f, € V.

Definition A.2.2
The divided differences associated with the data above are defined by

flei = fi, Vie [1,n],

and then recursively for any k € [2,n], for any pairwise distinct i1, ... i, € [1,n], by
act STirs - wi ] — flwiy, - w ]
f[CL‘il,...,CEik] = .
Tiy — Tgy,

A divided difference is a symmetric function with respect to all its arguments. As a consequence we shall use,

from times to times, the more compact notation
fIY],

where Y is any non empty subset of X, with the convention that f[¢f] = 0.
With this notation, the definition above can be rewritten as follows

_ fIV\{a}] = FIY\{b}]

b—a ’

fTY]

forany Y ¢ X with #Y > 2,and a,be Y, with a # b.
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The divided differences are a natural tool in interpolation theory as recalled in the following classical result.

Proposition A.2.3 (Newton formula for the Lagrange interpolation polynomial)

With the notations above, the polynomial P : K — V defined by

P(z) = flza] + flzn, 22z —20) + -+ flon, o an](z —21) -+ (2 — 2n1),
is the unique polynomial of degree less than or equal to n — 1 that satisfies

P(z;) = fi, Yie[l,n].

Proof :

The proof is done by induction. The result being straightforward for n = 1, we assume that it holds at the rank
n — 1 for n > 2. In particular, the polynomials

Q-(2) = floa] + flrr, w2](z — 1) + - + flzr, .., 2p-1](z — 21) -+ (2 — Tp2),

Q+(2) = flaa] + flw2,23](2 —22) + -+ + fl22, ..., 20](2 —22) -+ (2 — Tp—1),

of degree less than or equal to n—2, are respectively interpolation polynomials of our data on the points (z1, ..., Z,—1)
and (2, ..., 2p).
We set

P(2) = Qo(2) + a_(z —21) -+ (2 — 1), and Py (2) = Qo (=) + as (2 —22) -+ (2 — aa),

for some a_,ay € K. Since P_(z;) = Q_(z;) = f; fori € [1,n — 1], there exists a unique value a_ such that,
in addition, we have P_(z,) = f,. Similarly, there exists a unique value a such that P,(z1) = f; and thus
P, (z;) = f; forie [1,n].

It follows that P, and P_ are of degree less than or equal to n — 1 and coincide on the n distinct points x;,7 €
[1,n], whence we have P, = P_.

Identifying the dominant terms in P, and P_ we get that a; = a_, and we simply denote by a this value. By
subtraction, we get

Q+(2) —Q-(2)

a[(z—:m)-'-(z—xn—l)—(2—1132)"'(2—3371)]

= (@ —01)(z = 39) -+ (2 — war),
and identifying the dominant coefficient in this equality we get
flxay - yxn] — flxa, ..y 2n—1] = a(x, — 21).

This proves that
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and eventually that P, = P_ = P is indeed the Lagrange interpolation polynomial we are looking for.

Remark A.2.4

introduce the notation

PX(Z) < H(Z—CE),

reX

then consider an increasing sequence (X (i))ieﬂo n] of subsets of X satisfying

X0 <« X0+ vie[o,n]
#Xx0 =i Vie[o,n].

Note that X© = @ and X = X.
With this formalism, Newton formula above reads

n

P(z) = > FIXD] Py (2).

i=1
It is the unique polynomial of degree less than n — 1 that satisfies

P(z) = flz], VzelX.

Corollary A.2.5
Using the notations above, we have the following estimate for the Newton polynomial P:

PO <n (g ) 0+ 41X v e

where we have introduced | X | = maxgex ||.

Proof :
Forany Y < X,Y # X, and any z € K, we set Kk = #Y and obtain

1Py ()| <[] [(z—=)
zeY
<[] +z + =)
zeY

< (1+ 2]+ X"
< (1+ |2 +|x) L.

It follows from (A.2) that

n

P < 1A (1+ 2] + X))
i=1

< (g YD) 1+ 1el + XD

The claim is proved.
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A.2.2 Lagrange theorem and Jensen inequality

If f: K — V is a given function it will be implicitely assumed that the data are given by f; = f[z;] = f(x).
In the real-valued case, we can have the following classical result.

Proposition A.2.6 (Lagrange theorem)

Assume that K = R, V = R, and that f € C"~! (Conv(X), R).
Forany k € [1,n], and any Y < X with #Y = k, there exists a x € Conv(Y") such that

AR C))
k-1l

Yl =

In the complex-valued case, a weaker result is available.

Proposition A.2.7 (Jensen inequality)

Assume that K = C, V = C, and that f is an holomorphic function in a convex neighborhood U of X.
Forany k € [1,n], and any Y < X with #Y = k, there exists a z € Conv(Y") such that

FED(2)

Y]] < =1

Moreover, for any z € Conv(Y') we have

A )

< CU,f,k diam(Y").

We recall a simple way to compute divided differences of a product which is known as the Leibniz rule.

Proposition A.2.8

Let g : K — Kand (f;)icp1,n) © V given. We simply define the product data set given by
(9.N)[wi] < g(wi) flwi] € V.

Then, the finite differences of g f can be computed as follows

(9h)x1, .. zn] = Zg[ml,...,xi]f[a:i,...,a:n].

=1

Remark A.2.9

In the previous formula, by symmetry of the finite differences, the left hand-side term does not depend on
the numbering of the elements in X. However, each term in the sum of the right-hand side actually depends
on this numbering.

Moreover, using the notation introduced in Remark A.2.4, the above formula reads

(9DIX] = 3 glX D)\ X0

i=1

Combining Leibniz formula and Lagrange/Jensen (in)equalities, we can prove the following fact that appears to
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be useful.

Corollary A.2.10

Let g : K — K a smooth function (holomorphic in the case K = C), and f1,..., fn, € V. We have the
estimate

max|(af)[Y]] < e ( max  sup )rg“w) (max Y ]\) |

ke[0,n] Conv(X YeXx

If we assume that V' is endowed with an inner product ¢-, -) (that is a sesquilinear form) then we can adapt the
above Leibniz formula as follows, by taking into account the antilinearity of the inner product with respect to its
second variable.

Proposition A.2.11

Let (i)ic[1,n] and (fi)ie[1,n] be two given families of elements in V.
For each i € [1,n] we simply set

Then, the divided differences of {g, ) can be computed as follows

(g, Pl 20 Z<g z1, ..z, flT - D,

where, for each i € [1,n], we have set

As an example, when n = 2, this formula reduces to

{91, f1) =92, f2) > < >
1 — Ty B T — T 1 — Xy ’

and this can be checked by hand.

A.2.3 Generalized divided differences

We keep the same notation as before that is : X = {z1,...,x,} is a set of n elements in K, V is a K-vector space.
We suppose given now a multi-index o« € N which encodes the multiplicity we will consider for each element in X .
Without loss of generality we assume that «; > 0, Vi € [1, n], since if we have a;, = 0 for some i, we can simply

remove z;, from the set X.
We consider now a set of elements in V' that we gatherin a f, € V1ol and that are indexed as follows

fz‘lv iE[[l,n]],lE[[0,0éi[[-

Definition A.2.12
For any p € N™ with || > 0 such that p < o, we can define f[a:g‘“), .. (“")] € V, by using the following
rules
Flal e = i = 0 forall i £ i, (A.3)
and for all i1 # 19 and p;; > 0, i, >0
(piy —1) (1tig) (1iy) (miy—1)
f[:z;(“l)... 2] = Sl ™ oy =l ,...]. (Ad)
b T Liy — Tig
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Remark A.2.13 (Forgetting about the numbering)

The above definition does not depend on the order in which we apply the second rule (A.4).
Moreover the obtained value are independent on the initial numbering we choosed for the elements in X.
Therefore, to simplify the writing of many formulas, we can see the multi-indices as elements in N* and use

the following notations

fi, xe X,l€[0,a.[,

for the data, and
f[X(“)]7 Vi e NX such that i < o,

for the associated generalized finite differences.

It is important to observe that the definition above is consistent with the standard divided differences definition in

the following sense:

Proposition A.2.14

Assume that f : K — V is a smooth function (holomorphic in the case K = C), and let o € NX be a given
multi-index. If we consider the set of data given by

O]
pod l'(x),vx e X,V e [0, aul, (A.5)
then for any 1 € NX, 11 < a, the associated generalized divided difference satisfies

FIX0] = lim fyf ],

for any choice of elements (ylh)ie[[u ] € K that satisfy
e Foreach h > 0, the elements (yzh)ie[[u u|] @re pairwise distinct,

], limp 0 yg exists and belongs to X,

e Foreachpe [1,|u

e Foreach x € X, there is exactly . values of p such that limy_,( yg = .

With the notation above and for any multi-index ;2 € N, it will be convenient to generalize the notation introduced
in Remark A.2.4 by setting

Py (2) = [ ](z = )t

reX
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Proposition A.2.15 (Newton formula for generalized divided differences)

Let (4P )pe[o,a|] be a sequence of multi-indices satisfying
WP =p, VYpel[o,|af],
pPmt < b, pell,lal],
plol = a.

Then the polynomial defined by

P(z) = 3} [IXU] Py (2),

is the unique polynomial of degree less than or equal to || — 1 that satisfies

PO ()

T = fi, Ve X,Vie [0,

Note that there are many possible choices for the sequence (), but of course, the polynomial P does not depend on
this choice.
We may now state a Leibniz formula that generalizes Proposition A.2.8 to generalized divided differences.

Proposition A.2.16 (Leibniz rule for generalized divided differences)

a

Let (ﬂp)pe[[o,\aﬂ] be a sequence of multi-indices like in Proposition A.2.15, and let f, € V1°l and g, € K!
be two sets of data.
We define the new set of values (gf) € V1l as follows

l
(9L = D ghfik, vVre X le[0,aql.
k=0

Then, we have the Jensen identity

|

(gf)[X] = g[x W] pLx (e,

p=1

A.3 Biorthogonal families in a Hilbert space

A.3.1 Notation and basic result

Let H be a complex Hilbert space' and A be any subset of H. We denote by 7, the orthogonal projection onto
Span(A) and we introduce the quantity

5(x, A) < d(z,Span(A)) = d(x,Span(A)) = |z — maz|gy, Ve H. (A.6)

We will see below a systematic way, based on linear algebra, to compute 6(x, A) when A is finite. The following
elementary result gives us a way to compute §(z, A) when A is countable by approaching A by a sequence of finite

!Conventionally we assume that the inner product is linear with respect to the first variable and antilinear with respect to the second variable.
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sets A,,.
Lemma A.3.17
Let A be any subset of H and (A,,), an increasing sequence of subsets such that
A= U A,. (A.7)
n=1
For any x € H, we have
WAn.f > AT,
n—0o0
and in particular
0(x, Ap) —— 0(x, A).
n—ao
Proof :

def
Let us define the operators 1), = 74, — Ta.
We have the standard estimate |7},|| < 2 from the properties of orthogonal projections. Moreover, thanks to (A.7)
we know that for any x € Span(A) there exists a ng such that € Span(A,,) for any n > ng so that

T,x =0, Vn =ng,

and in particular
lim T,z =0, Vze Span(A), (A.8)

n—o0

For any = € H, and y € Span(A) we can write
Tz < [To(z —9)|a + [Tayle < 2|z —yla + | Twyl g,
and thus by (A.8), we get

limsup |Thx| g < 2|z —y|#H.
n—o0

By density of Span(A) into Span(A), we deduce that
lin(}o T,x =0, VzeSpan(A).

1 we have

Moreover, by construction, for any x € Span(A)
Ma, & = max = 0,

and thus T}, = 0 for any n. The claim is proved since

H = Span(A) @ Span(A)*.

A.3.2 Gram matrices. Gram determinants

For any finite subset £ = {e1,...,e,} — H, the Gram matrix of E is defined” by

GE déf ((ej,ei)H> y
1,7€[1,n]

2We use the usual convention that the entry (i, j) of G is (e;,e;)m and not (e;, e;) zr, which makes no difference in real Hilbert spaces
but does in complex Hilbert spaces. This will simplify some computations
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and the associated (Gram) determinant is denoted by A et G 5. Note that G is hermitian.

Lemma A.3.18

For any X € C" we have

(X,GpX) = [2]?,

where x = Z?Zl xie;. In particular, A g is a non negative real number.

Proof :
The first property is a simple computation

n
(X,GeX) = Y 2i(GeX);
i=1
n
= Z zi(ej, €)HT;
ij=1
n
= Z x;Zj(ei, e5)H
ij=1
= (Z Ti€4, Z a:je]>
H
= ||
This proves that any eigenvalue of G, is a non-negative real number and so is Aj. |

Note that the matrix G depends on the numbering of the elements of E but not the value of A .

Lemma A.3.19 (Linear independence characterization)

We have the following two properties.

1. The family FE is linearly independent if and only if

5(61',E\{€Z‘}) >0, Vie [[1,n]].

2. The family E is linearly independent if and only if Ag # 0.

Proof :

1. Since F is finite, Span(E\{e;}) is closed and it follows that
d(ei, E\{ei}) > 0 < e; ¢ Span(F\{e;}),
which proves the claim.

2. We know that A = 0 if and only if 0 is an eigenvalue of G. By Lemma A.3.18, this happens if and only if
there exists a non trivial X = (x;); € C" such that )" | z;e; = 0.
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Proposition A.3.20

Proof :

With the notation above, for any x € H \E we have

do, B = S22,

Note that for x € E we have 6(x, E) = 0.

We observe, by elementary operations on rows and columns, that Ap .y = Apy(s—rp.). Moreover, since r —mpx
is orthogonal to all the vectors (e;);, this last Gram matrix has the following block-by-block form

Gy 0
GEu{szEr} - ( 0 ||ﬂc — 7TE$|%{> ’

and therefore we have

AEu{a:—ﬂ'Ex} = H‘T - WE.CCH%_IAE,

which is the claimed formula. [ ]

Proposition A.3.21 (Bi-orthogonal family. Finite case)

Let E = {e1,...,e,} < H be a finite family in H.
The following two properties are equivalent.

1. The family FE is linearly independent.

2. There exists a finite family F' = {f1, ..., fu} of cardinal n such that
(ei, f])H = (51'7]‘, Vl,] € [[1,71]]. (A9)
We say that F' is a biorthogonal family of E.

If those two properties hold then there exists a unique such biorthogonal family such that F' — SpanE. It
satisfies moreover the matrix equality
GEGF = Id,

and in particular we have

1

I fil o = e Bel) Vi e [1,n]. (A.10)

Remark A.3.22

If Fis any biorthogonal family of E in H, then the orthogonal projections f; = mg f; still satisfy (A.9) and
belong to Span(FE). Therefore it is the unique family F' given in the proposition.
It follows that F' is the minimal biorthogonal family to E in the sense that

| filer < [filler, Vie [1,n].

Proof :
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e Assume that F" is a biorthogonal family of £ and let (a;)e[1,,] < C such that

n
0= Z ;€.
=1

For any j € [1,n] we take the inner product of this equality with f; and we get

0=> ailes, fi)u = ay.

i=1
This proves that E is linearly independent.

o Assume now that E is linearly independent. We will look for a family F' in the following form

n
fi =D arjer,
k=1

where the matrix A = (ay;)r,; € My (C) has to be determined.

The conjuguates of equations (A.9) can be written for any i, j € [1,n],

n

0ij agj(ersei)H
k=1

=(GpA)ij.

This reduces to the matrix equation Gy A = Id. Since E is linearly independent, we know that G ; is invertible
and thus that there exists an unique matrix A (which appears to be hermitian) that satisfies our requirements.
This proves existence and uniqueness of the biorthogonal family F'. We can then compute

which implies that A = G so that G = Ggl. We can then express G thanks to the cofactor matrix of G
and in particular, for the diagonal coefficient || f;||%; of G r, using that the associated cofactor of G is nothing
but the Gram determinant A, .., we obtain

Agp ..

and thus (A.10) follows by Proposition A.3.20.
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When F is an infinite family, the existence of a biorthogonal family is no more equivalent to the linear indepen-

dence of F/, and we need a slightly stronger assumption.

Proposition A.3.23 (Bi-orthogonal family. Infinite case)

Let E be any family of elements of H.
The following two propositions are equivalent.

1. There exists a family F' = (f.)eep < H such that
(é, fe)H = 5e,év Ve,e€ E.
Such a family is called a biorthogonal family to E.

2. We have
o(e, E\{e}) >0, VeekFE.

1
|felzr = =——=+—~, VeekFE.

d(e, E\{e})’

Proof :
e Assume that there exists a biorthogonal family F' to E then for any y € Span(FE\{e}) we have

L= (e fo)u = (e —y, fe)u <le—ylulfeln
Taking the infimum with respect to y, we get
1< o(e, EN{e})|fel s
which gives (A.11).

e Conversely, assume (A.11) and define

1
e = S e e~ e
By construction, if € € F\{e} we have

- 1 -
(fe,€)m = W(e — Ty €)g =0,

and
1

1
(fe€)m = W(e — Tp\(e)€; €) H = W(‘f — Tr\(e)€; € — Toyep€)m = 1.

The claim is proved.

A.3.3 Generalized Gram determinants

If those properties hold, there is a unique such family F' such that F' < Span(FE) and it satisfies

(A.11)

Let E = {e1,...,epyand F = {f1,..., fn} two finite families of elements of H. We introduce the generalized Gram

matrix

GE,F = ((fj,ei)H> 5

i,j€[1,n]
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and the associated Gram determinant is denoted Ay » = det Gz p.
With this definition we can find a useful generalization of Proposition A.3.20.

Proposition A.3.24

Let E = (e;)1<i<n be a linearly independent family in H.
For any z,y € H\E we have

AEU(ILEU{y}

(@ = ma,y — o)y = S

Proof :
The proof is very similar to the one of Proposition A.3.20. We first use elementary operations on the columns of
G o2}, moly) tO prove that

AEUMLEu(y} = AEu{w},Eu{y—wa}a
then we use elementary operations on the rows of this matrix to get
AEu{z},Eu{y} = AEu{z—WEz},Eu{y—wa}'

Since x — mzx and y — Yy are orthogonal to F, this generalized Gram matrix is block diagonal

G (G 0
Eu{z—mpgx}, Eu{y—7Tgpy} — O (y . TI'Ey, 7 — 7TE$)H .

The claim is proved by computing the determinant. |

A.3.4 Cauchy determinants

As an example of Gram determinant we will need to compute Cauchy determinants. More precisely, given two
families A = {a1,...,a,} € Cand B = {by,...,b,} = C of complex numbers such that 0 ¢ A + B, we introduce
the associated Cauchy matrix

def 1
Cap = <ai+bj

Let us recall the following explicit formula for this determinant.

>i,je[[1,nﬂ '

Proposition A.3.25
For any n and any families A, B such that 0 ¢ A + B, we have
n 1 (ai—a-)(bi—h)
det Cy p = ! e,
ehas (B a; + b,‘) % H (ai + bj)(aj + bi)

1,5€[1,n]
i<j

In the particular hermitian case where B = A, we get

n
1 la; — a;
detCyz = X — 1
ad <H 2Re CLi) ljl_[[i[nﬂ ]ai + 6j|
9 i#j’

Proof :
Let us perform the proof by induction. For n = 1, the result is clear. Let us now assume n > 2 and we write

A=Au{a,}, with A = {a1,...,an_1},
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B = B U {b,}, with B = {b1,...,b,_1}.

In the definition of det C4 5 we perform row manipulations to cancel all the upper diagonal entries in the last
column. We obtain that

o M
det Oy p & det < . ? > ,
an+bn ,]E[[l n]

where M isa (n — 1) x (n — 1) matrix whose entries are

anp —a; by —b; 1
bn+aian+bjai+bj’

mg; = Vi,jeﬂl,n—l]].
In other words we have
M = DA,B,IOA,BDA,B,%

where Dy, (resp. D s pp) isa (n—1) x (n — 1) diagonal matrix whose entries are §2-7¢ (resp. a"+b ). Computing

the determinant, it follows that

- ) (by, — by
det M = (det Cx 5) H I M;
and finally
n — b
det Cy 5 = (det Cx 5) x +b H o, +a§

The claim follows by using the induction hypothesis.
In the case where b; = @; for any ¢, the formula becomes

det C ﬁ 1 < T] lai = a;”

€ A= T =12

M\ 2Rea et 1%+ 3l
i<j

and, by symmetry, we can change in the product the condition 7 < j by ¢ # j as soon as we remove the squares on
each factor. The proof is complete. [ |

A.4 Sturm comparison theorem

Theorem A.4.26

Let I be an interval of R, v € C*(I), withy > 0 and q1, qo € C°(I). Let uy and us be non trivial solutions

to the differential equations
— 0z (V(x)0zu1) + q1(z)u; = 0, on I,

—0x((x)0pu2) + q2(x)uz = 0, on I.

We assume that q1 = q2 in I. Then for any distinct zeros a < [3 of uy one the two following proposition
holds

e Either, there exists one zero of ug in the open interval (o, 3).

e Or, uy and uy are proportional in [a, 8], which implies in particular that g1 = g3 on [, B].

Proof :
The main needed ingredient is the Wronskian of w1, us defined as follows

W(x) = (v0zu1)ug — u1(y0ruz),
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whose derivative has the following expression, using the two equations satisfied by u; and wuo
W'(x) = (q1 — q2)urus. (A.12)

Let o < 3 be two zeros of u; in I and assume that there is no zero of us in («, #). Without loss of generality we
can assume that « and 5 are consecutive zeros of u1. This means that we can change the sign of u; and us in such a
way that

up > 0and ug >0, in (c,f3).

And since uj (o) = u1(8) = 0, we necessarily have dyu;(a) > 0 and d,ui(5) < 0.
We can now collect the following facts:

e We have W (a) = (v0zu1(a))ua(a) = 0 and W(a) = 0 if and only if us(a) = 0.
e We have W () = (v0zu1(5))u2(B) < 0and W () = 0 if and only if ua(8) = 0.

e Since ¢1 > g2, and uy, uy are positive in (v, 3), we deduce from (A.12) that W’ > 0 in («, 8) and in particular
that W is non decreasing in [«, /3].

The above three properties are only possible if W is identically zero in (¢, 3), and in particular us(a) = u2(8) = 0.
It follows that we necessarily have W’ = 0 in (a, 8) which implies, from (A.12), that g1 = ¢2 on [a, §].
Therefore, u; and ug are solutions to the same equation on [, 3] and both vanish at «. It follows that u; and

v = Uy Zéggg solve the same linear Cauchy problem in [«, 5] and thus are equal. The claim is proved. [ |

Corollary A.4.27

Let I be an interval of R, v € C*(I), withy > 0, ¢ € C°(I) and \ > 0. Let u be a non trivial solutions to
the differential equation

—0z(v(x)0zu) + q(x)u = Au, on I.

Let a < b two points in I. Then, if

4 \? 1
A= — =y’ A3
oo + (52 ) Tl + 1 (A13)

there exists two distinct zeros of u in [a, b] denoted by «, [ such that

oo = B = a —b]/2.

Proof :
Let us introduce the function

which satisfies the equation

and that have the following two explicit zeros

w(a) = 0, w(a—i—b;a) —0.

Let us set v = ,/yw and observe that v has the same zeros as w. Moreover, a straightforward computation shows that
v solves the equation
—0z(Y0zv) + Gv = 0,
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where we have defined

By the assumption (A.13) on A, we have for any z € [a, ]

. 4 \? 1

i@ > - (52) o= 51l
> lallo — A
> q(x) — A\

Therefore, we can apply the comparison principle (Theorem A.4.26) to v and w and deduce that between any two
zeros of w there is a zero of w. In particular, there exists a zero of u, in the interval [a, a—+ Z’TT“], that we call a.

By the exact same reasoning we find a zero of u in the interval [b — bTTa, b] that we call 3 and it is straightforward
to check that | — | = |a — b|/2. ]

A.5 Counting function and summation formulas

Let A = C be a family of complex numbers.

Definition A.5.28 (Counting function)
The counting function associated with the family A is defined, for any r € R, by

Nio(r) = #{re A, st |\ <r}eNuU{+wn}.

If there is no ambiguity we shall simply call it N.

Remark A.5.29

It will be useful to observe that, for any subset L — A and any s < r we have

No(r) — Np(s) < Ny(r) — Ny(s), (A.14)

since{ze L,s<|z|<r}c{zelA s<|z|<r}

We will make use of the following summation formulas.
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Proposition A.5.30

Let f : [0,4+0) — R be a C! function. For any s < r such that N(r) < +00, we have the following
Sformulas

ST A = FON() — jo FON)dt,

NES
D, FUN) = FIN(r) = f(s)N(s) — f F(ON(t)dt,
s<>i§fgr ’

and, if N(t) < +oo, for any t € R,

+00

DA = =f(r)N(r) - fRN()dt,
AEA T
(A|>r

provided that the sum or the integral converges.

Proof :
Since N is an integer-valued, right-continuous and non-decreasing function on the interval [s, r], there exists a

finite sequence (o )o<i<p such that
s=ag <o <...<ap_1<op=r,
and N is constant on each interval [c;, «;+1). More precisely, we have
N(r) = N(oy), forall r € [a, avjr1) withi € {0,...,p — 1}.
It follows that

Q41

r p—1
J FON@dE =Y j N dt
1=0 %

S (a7

p—1
= 3 N(aw)[f(ei1) — Fla)]
=0

= > f(ei)[N(ai1) = N(ew)] + N(ayp) f(op) — N(ao) f(exo)
=1
= = > f(ai)[N(ai) = N(ai_1)] + N(r)f(r) = N(s) f(s)
=1
== > FUA)+N()f(r) = N(s)f(s)
s</\\§\|<r
The other formulas follow immediately. [ |
We assume now that
Z &' < +o0, (A.15)
AeA

and we define the following notion.
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Definition A.5.31 (Remainder function)
A function R : R — [0, +0) is called a remainder function for the family A, if it satisfies

R is locally bounded and linolo R(r) =0,

and )
Z — < R(r), VYreR.

Note that a remainder function is not required to be continuous nor non-increasing.

Proposition A.5.32
Assume (A.15) and let R be a remainder function for A.
1. For any s < r we have
N(r) — N(s) < TR(s). (A.16)
In particular, we have
1
inf [A] = inf [\ > —— A7
inf [A] = inf [A| RO)’ (A.17)
N(T)/T m 0.
2. For any T > 0 we have
Z €—|A|’T < 4R(O> e—Tinf‘A|/2. (Alg)
Aeh T
Proof :
1. The following quantity
Z 1
s<|A|<r |>\|

can bounded from below by 1/r multiplied by the number of terms which is exactly N (r) — N(s) and can be
bounded from above by R(s). This proves the first claim.

Taking s = 0 and r = inf |A] in (A.16), we get
1 < (inf |A]) R(0),

since N(0) = 0 and N (inf [A]) > 1.
Now for any given s, the inequality (A.16) gives

Taking the superior limit when » — 0, it follows

lim sup N(r)

r—00 r

< R(s).
This inequality being true for any s, we can take the limit as s — o0 to get the claim

N
lim sup (r)

r—00 r

<0.
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2. We use Proposition A.5.30 and (A.16) to get the estimate

+a0
Z eI = J e TN (t) dt

AeA 0
+00
< f Te TN (t) dt
inf |A]
+00
< e—Tinf|A|/21J tTe_tT/2 Nt(t)Tdt

T Jo

+
< o TinfIAl2 (0)f Ooeft/2tdt
0

T

4R(O> e—Tinf \A|/2.

T

The claim is proved.

[
In the case were we have a more precise upper bound on the counting function, the result above can be precised
as follows.

Proposition A.5.33

Assume that, for some 0 < 0 < 1, and some x > 0 we have
N(r) < wr?, ¥r>0.
Then, we have the following bound from below

inf |\ > k7, (A.19)
AeA

and the function

K 1 1-6
R - 9
(r) 1-40 (max(r, /<c_1/9)>
is a remainder function for A.
Moreover, the estimate (A.18) becomes

Z T < C%e—rinflAl/{ (A.20)
AEA

where C depends only on 0.

Proof :
Let us now prove (A.19). Since there exists at least one Ao € A such that |Ag| = infyep [A

N (inf |>\|)> > 1,
AEA

and therefore, with the assumption on N, we deduce

0
1<k (inf ]/\|> ,
AeA

, we obviously have

and the claim follows.
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Note now that the assumption on NV implies that (A.15) holds necessarily. We apply the summation results of
Proposition A.5.30 with f(r) = 1 to obtain, since N (t) = 0 for t € [0, k= 1/?),

T

Z 1 _ N

©
+L N (@) di

AeA |>\| r
[A|>r
N(r ®© 1
r max(r,x~1/9) 3
o0
< nf 972 at
max(r,k—1/9)

< 17?9 max(r, 5~ /9)071,

Finally, in order to prove (A.20), we come back to the proof of (A.18) and we use the assumption on N to get

_ s 1
2 e AT < ke Tlnf‘A|/279
AEA T

K . +00
< B mrinf|Al2 f o120 gy
0

+00
f e 2 ()07 dt
0

-0

\]

]
A.6 Reminders on complex analysis
We start with the definition of sectors in the complex plane.
Definition A.6.34
For any n > 0, we define the sector
S, = {2€C, st Rez>0, and|Imz| < (sinhn)(Rez)}. (A.21)
Lemma A.6.35
We have the following inegality
|z| < (coshn)(Rez), Vzels,. (A.22)

Proof :

This is straightforward to see that for any z € S, we have

2|2 = (Re 2)® + (Zm 2)? < (1 + (sinhn)?)(Re 2)*.
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Theorem A.6.36 (Paley-Wiener, [ , Theorem 19.3])

Let 7 > 0and F : C — C be an entire function that satisfies”

supe T F(2)] < +o0,
zeC

and
F e L*(R).

Then there exists a function f € L*(R) supported in [—T, 7] such that

Fl) jR FB)et= dt — _ F(B)e da.

Moreover we have

o) = 1 lirr) = 7= Pliogey

“We say that F is of exponential type 7

A.7 Some useful holomorphic functions

In this section, we will define and analyze some infinite products of holomorphic functions that play a key role in
the analysis of the moment method.
We will make use in this section of the log™ function defined by

log® r % max(logr,0), Vr > 0.
A.7.1 Blaschke products
We consider a family of complex numbers A < C that satisfies the summability condition
2 — < +o0. (A.23)

This implies in particular that O ¢ A and that A is locally finite.

Proposition and Definition A.7.37

Under assumption (A.23), for any L < A, the following product
def z
QuEUT](1-2), vzec,
el

is absolutely convergent. The function Q) is holomorphic on C and its zeros are exactly the points in L.

Proof :
In the case where L is finite, the claim is straightforward. Assume now that L is infinite and let us fix M > 0. We
write

Qu(2) = Q1 (2).Q1 (2);

- 1] (-2) we @t 1] (-3)
ok g oS3 0
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Since L n D(0,2M) is finite, the product @} is a polynomial, thus its properties are clear. Let us study the other
factor Q7 on the open disk D(0, M).

lo|

For any || > 2M, and z € D)y, we have |z| < ‘5 and thus, using that, for any w € C such that |w| < 1/2, we

have

2

|log(1 4+ w)| < [

< 2fu,
= [u]

we eventually get that

hog (1 2] < 220 < 2W

g

By using (A.23) we get that the infinite product @} is uniformly convergent in D), and has no zeros in Dj;. The

claim is proved.

Proposition A.7.38

We assume the summability condition (A.23) and we suppose given a remainder function R for A.

1. There exists a locally bounded function r € (0, +00) — &(r) such that lim e = 0, depending only on
o0

R such that, for any L < A, we have

1Q.L(2)] < eIV vz e . (A.24)
. We assume further that either
R(r)(logr) —— 0, (A.25)
or
5 < sup (N(r+1) = N(r)) < 4. (A.26)
r>0

Let vy > 0 be a fixed number. There exists a locally bounded function r € (0, +00) — &(r) such that
lJirm e = 0, depending only on =y, R (and § in the case (A.26)) such that, for any L — A, we have
e}

Q. (2)| = |Pryle =D IE vz e C, (A.27)

where we have introduced the quantity Py, - . defined by

Prae= ] (z-0).

o€l
lo—z]<y

Before proving the proposition, let us start with the following corollary.

GlOIS(O)
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Corollary A.7.39

Assume the same assumptions as in the previous proposition.

1. For any k > 0, there exists a locally bounded function ¢ such that lJirme = 0 depending only on R
0

and k such that, for any L ¢ A, we have

’Q(Lk)(z)’ <l vy e C.

2. Assume (A.25) or (A.26), and let v > 0. Then for any k > 0 there exists a locally bounded function
€ such that lim e = 0 depending only on R, k, v (and 6 in the case (A.26)) such that, for any L < A,
[oe}

(@)«

we have

<DL o e €, st d(z, L) > .

Proof :

1. Letus fix z € C. Since @), is entire, we can apply the Cauchy formula to the circle centered at z and of radius
1 for instance. It follows that

QP () <C sup Q)]
e

where C depends only on k. By using (A.24), it follows that

QW) < sup  Qu(6)] < CeflEDIAL

¢eC
|z|—1<[€]<]2|+1
where &(r) = SUDye[, 1,411 £(5).

2. Let z € C such that d(z, L) > . Since é is holomorphic on D(z,~), we can apply the Cauchy formula to
this function on the circle centered at z with radius /2. It follows that

1 \® . 1
_ < .
‘(Q) ) et ’QL@)’
|§—2|=v/2

Now we apply (A.27), with y replaced by /2 on each ¢ such that |{ — z| = /2, that is

QL(E)] = [Ppqyale <€D

By assumption on z, it appears that Py, ., 5 ¢ = 1 so that the above inequality simplifies into

1Q,,(6)| = e=(eDlel,

The conclusion follows as we did in the first point, with a constant that depends now on +y.

We move now to the proof of the proposition.
Proof (of Proposition A.7.38):
Letus fixa z € C.
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1. Bound from above for Q) (z)|. We start by writing

Let us fix some value zy € R such that 0 < zg < |z| that will be determined later and we write the right-hand
side of the above inequality as the product of two factors ()1 and Q2 defined as follows

0= J] <1+’|j’|>, and  Q2(2) = ] <1+‘ED.

oelL oeL
lo|<zo lo|>20
e Inthe term (); we have |o| < zp < |2| so that 1 + % 2|| “ and it follows that
2|z
log@i(2) < 3 log ( | ‘)
oeL
lo|<zo

<N (z0)log™ (iff’TA|>
N(zo)log™ (2R(0)|2])
|

< |
<R(0)z0log™ (2R(0)|2])

|z

where we have used (A.16) to get N (zp)/z0 < R(0) and (A.17).

e In the term ()2, we can use the bound 1 + |‘ || < el#l/lol to obtain

oz @(2) < Y L < [2lR().

Finally, we have proved that

log |Q.(2)| < R(0)zlog™ (2R(0)|2]) + |2|R(z0)-

Choosing N
z
O @ logT RO (420
we eventually get
R(0) 2
1001 < H| g ey~ (o) (A2

which is the expected estimate with a function ¢ that is given by

B R(0) r
") = T e RO 1 ((1 n log+(2R(O)r))2> , ¥r>0.

2. Bound from below for |Q,(2)|.

We write |1, (z)| as a product of five terms
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@2(2) = H ‘1_3

o

I

el
|z1/2<|o|<]z]—

Qe [T -2,

cel
|zl —y<lol<|z]+y

@4(2) déf | | ‘1_3‘7
el g
|zl +y<lol<22]
~ def z
=11 |- f‘ .
Q5(z) ‘ o

o€
2[z|<lo|

e All the factors in @1 are larger than 1 so that @1(2) = 1.

e Let us deal with the term @2. Note that if |z| < 2+, then the product defining @2 is empty and thus
Q2(z) = 1. We assume now that |z| > 2.

logQa(z) = D, log (|z|;|g|> ,

o€l
|z|/2<|o|<|z]—y

zZ| — |0
S 1Og<| ||Z|I |>’

|z|/2<|o|<[z]—y
— In the case (A.25), we can simply use (A.14) and the fact that |z| > 27 to get from (A.30)
log Q2(2) = —(Nz(|2]) — Ni(|21/2)) log™ (|]/7)
> —(N(|z]) — N(|2[/2)) log™ (|21 /7).
By Proposition A.5.32, we can conclude that
log Q2(2) = —|z|R(|2]/2) log™ (|z|/7). (A31)

— In the case (A.26), we need to proceed in a different way. We use Proposition A.5.30 to express the
right-hand side in (A.30) as follows

We start by writing

(A.30)

~ |z|—y
08 Q2() 2 o8(o|)N,(2 ) ~log1/2Nu(e1/2) + [ Ny
/2 N (1] — o) — N (|2 — u
— — (1og2)[N (el =)~ No(lzy2)] - [ SHEED == g,

Y
(A.32)

We can then use Remark A.5.29 and the following two estimates on N = N, for u € [v, |z|/2].
*« The first one comes from Proposition A.5.32, that gives for any u € [, |z|/2], the inequality

0 < N(lz| =) = N([z| = u) < ([2] = 7)R(|z| — u) < [2|R(]2/2). (A.33)
x The second one comes from (A.26) that leads to
N(ir+s)—N(r) < Nr+E(s)+1)—N(r) <6(E(s)+1)<d(s+1), Vs>0.(A34)

It follows that
N(lz] =v) = N(|z| —u)

u+t1) (A.35)

@O0 F. BOYER - JULY 16, 2022



A.7. Some useful holomorphic functions 155

We can then combine the two inequalities (A.33) and (A.35) as follows

N<|z|v>1v<|z|u><\/‘s“7 D R(ll/2)van T2

so that

5 u

<z\/5(1j” R(2l/2)V/[2I]2)2
<Csl2IVER(1/2).

As a conclusion, we have proved in that case that
log Q2(2) = —(log 2)|2|R(|2I/2) — Cs4)2v/R(]21/2). (A.36)

e Let us deal with the term @3. By definition of Py, ., . we have

~ 1 z—0
oel el
|z—o|<y |z]—y<l|o|<|z|+y
|z—ol=y

and therefore we have
@3(2) = |PrLy,2|Qs(2),
where we have introduced ( )
A~ . min(ry,1
Q3(2) Lot —_—
Q |o|
lz|—v<lo|<|z|+v

Moreover, we have

~ g
log Q3(2) = — Z IOgmin’(q'/l)

oel
2| —y<l|o|<|z|+v

|z +~v+1
S S SRk
2 it
|2l —v<lol<|zl+v
|z + v +1
> _log AT (N — N(lz| = ).
og ELETEL(((z| + ) - (2] - )

In the case (A.25), we can use a similar inequality as in (A.33) to get

|z +~v+1
_log T2
miny, 1)

log Q3(z) = (121 +7) R(|2l =), (A.37)

whereas in the case (A.26), we use (A.34)

[zl +7 +1

log Qg( )= —0(2y+1)log min(y 1) (A.38)
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e The term Q4 is treated in a similar way as Qg We observe that if |z| < -, then the product defining Q4 is
empty and thus Q4 (z) = 1. We assume now that |z| > .

logQu(z) = ). log(’ab—_"z’),

|zl +v<lol<2|2|

o] — |4
> )
2. log( o1

o€
2|+ <lof<2|2|

We start by writing

(A.39)

— In the case (A.25), we just write

log O4(2) > — (No(2]2]) — Ny (|2]) log* <25,>

2|]
> = (N(2l) = N(eog” (%),
By Proposition A.5.32, we can conclude that

log Q4(2) = —2|2|R(|2) log* (2|z]/7). (A.40)

— In the case (A.26), we start from (A.39) to get

~ 2|2|
g 0u(2) =1o8(1/2)N, 012)) ~log G/ 21DNLEl +9) = | =@y
2|+

Ny (2] + u) = Ni(|2] +)
u

~ (log2) (VL (2/z]) — No(|2] + 7)) —f du
i
N (2] + u) — N(J2] + )

u

du.

~ (log2)(N(22]) — N(j2| + 7)) - f

~

We conclude by using (A.14) and by combining the following two inequalities
IN(Iz] +w) = N(l2] + )| < 2|z[R(]2]),

IN(J2] + 1) = N(z| +7)] < ‘Wu

as we did for @2 to get

logQ4( ) = —2(log 2)|z|R(|z|) — Cs 4|2/ R( (A41)

e For the term @5 we use that
l—u=e Vuel0,1/2],

so that

- 1
log @s(2) = —2|2| )] Y — = —2[2R(22). (A.42)

oeL ’ | oceA
2|z[<|o] 2|z|<|o]

Collecting all the estimates above, we have eventually obtained the claimed bound from below
log |Qr(2)| = log|PL.z| — e(|2])]z],

where ¢ has the following form

e(r) :== CR(r/2) + Cs/ R(r/2) + (1),
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with

C 5w in the case (A.26).

Hr) {Cy[log(r +7+ 1)R(r —v) + R(r/2) log(r/v)] inthe case (A.25)
Y r

Thanks to the assumptions on A, we clearly have that lim,_, ;o £(r) = 0.

|
Proposition A.7.40
o Assume that the counting function of A satisfies
N(r) < wr®, ¥r>o0, (A.43)
for some k> 0and 6 € (0, 1). Then, for any L — A, we have the upper bound
1Q.(2)] < F’ vzec, (A.44)
where C' depends only on 0 and r, and the lower bound
1Q1(2)] > [Prazle € vzec, (A.45)
for any 0 € (0,1), with C dependind only on , 0, . and .
o Assume that the counting function of A satisfies in addition
IN(r) = N(s)| < k(1 + |r —s]%), Vr,s>0. (A.46)
Then, for any L c A, we have the lower bound
1Qu(2)] = |Pr,.le ¥, vzec, (A.47)
for some C depending only on v, 0, k.
We recall that Py, -, . is introduced in Proposition A.7.38.

Proof :
Under those assumptions, we know thanks to Proposition A.5.33 that we can choose the remainder function R as
follows

K 1 1-6
R(r) = T <max(r, /1—1/9)> . (A.48)

e Let us come back to the proof of Proposition A.7.38 and explain the changes in the estimates in the case we
assume (A.43).

First of all, we change the proof of the upper abound of @ (z)|, by writing

<] (1+).

o€l
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By using the summation formulas given in Proposition A.5.30, we obtain

log |QL(z Elog <1+>

oeL

+00
- 'f t+| ok
+o0

+OO

| yf’rw 1 dt
= KR|Z ——F .
o t(t+1)

The claim is proved.

Concerning the bound from below for |Q,(z)|, we keep the estimates (A.31), (A.37), (A.40) and (A.42) but
specified with the remainder function R given in (A.48)

log 3a(2) = —[#IR(J21/2) log " (12]/) = — 55— log* (12| /) 1%

)81

log Q3(2) = “og* (12 + v + 1)(J2] + (|2l -

“1-6
>~ Cy ollog™ [2])]2,

~ 2K
log Qa(2) = —2|2|R(|z]) log™ (2|2]/7) = —glog+(2|2\/v)lf€|{’,

~ 2K 0
= — .
log 0s(2) > o |2

Putting those estimates altogether prove that we can take in the inequality a function ¢ that satisfies

e(r) = C(1 +log™ (r))r?1,
for r large enough. It follows that, for any 6 e (0,1) we get
e(ry < Crf L,
and the claim is proved.

¢ It remains to show that, in the case where we assume the stronger asymptotics (A.46) for the counting function,
we can take § = 6 in the previous computation. This amounts to get rid of the logarithm factor in the estimates

of Q2. Q3 and Q.

— Concerning the term @2, we rewrite (A.32) by using Remark A.5.29 as follows

A2 N (2| = 9) = N(le — )

U.

log Ja(2) > —(log 2)N(|]) — f

Y

By using (A.46), it follows

21 4 (=)’
u

log Q2(2) = — k(log2)|2|? — EJ du

Y

- 1
— (l0g2)|2I” — Flog(|21/29) — iy |=1°
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— For the term Q3 we write

A +v+1
log O > — log* 11 T+ Ly _N(2| -
0g Q3 o8 iy 1) (N (2| +7) = N(l2| = 7))
1
> gt FLEY Lo 1 9099

min(y,1)
> — Cprr(l+2%).

— The term @4 is estimated in the same way as we did for @2.

The result of the previous proposition immediately implies the following corollary (which is a precised version of
Corollary A.7.39).

Corollary A.7.41

Assume that A satisfies (A.43) and (A.46).
e Forany k € N, there exists C depending only on k, 0 and k, such that, for any L. € A, we have

\Q(Lk)(zﬂ <cef’ vzec.

e Forany k € Nand vy > 0, there exists C depending only on k, 0, k and ~, such that, for any L c A,

we have
1\ *)
|(@> )

In the case when we only assume (A.43), the same estimates if one replaces 0 by any 6 e (0,1).

< Cec|z|9, VzeC, s.t.d(z,L) > 7.

A.7.2 Multiplier

In this section we define a multiplier function. It is designed to decrease sufficiently fast on the real line while being
simultaneously of a given exponential type in the complex plane.

A7.2.1

Definition and basic estimates

Proposition A.7.42 (Multiplier)

Proof :

Foranym > 0, 0 € (0,1) and T > 0 satisfying

20m) /%
- M (A49)

there exists an holomorphic function M,, , . on C satisfying the following properties:

| Mo, (2)| <™, vzec, (A.50)

__6
M, 0. (z)] < Ce™ll"+0T 7 yr e R, (A.51)
and M,, ,.(0) = 1.

In the estimate above, the constant C' > 0 only depends on 6 and m but not on .
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e Let us introduce
A 20m

and we consider a 7 > 0 satisfying (A.49), that is

)

(A.52)

with

e The inequality (A.52) implies that rg > 0 and that

inflL = ((1igeyr>‘w—e‘ (A.53)

It is very easy to prove that the counting function IV, associated with L satisfies
A(r —r9)? =1 < N.(r) < ArY, ¥r >0,

and of course
N (r) =0, r<infL.

e Moreover we have the property

Z%ér (A.54)

infL T
“ o1
<A 5 Ar
infL 7
= (inf L)?~1
=T.
e We can now introduce the following multiplier
. sin(z/1)
M. (2) % .
0 g z/l
— We note that, for any complex number z, we have
: 2k 2k 2k
T Y B
z = (2k + 1)! = (2k + 1)! = (2k)!

Thus, since > ;. % < +o0, we see that M, , , is entire and that

M, (2)] < e(Zie 1)IFl < 712l

by (A.54).
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— We simply write for any x # 0

and we use that the sinc function is less than 1 to obtain

sin(z/1) l

Moo, (2)] < <M

' £1 @/l £lm
I<|z| I<|z|

Taking the logarithm, it follows that for any « such that |z| > inf L, we have

l
log |M,,,0..(z)] < Z log <’$‘)

leL
I<|z|
lz| N
:_J Nlr)
inflL T
lz| 1 _ _ 0
gf 1—A(r —ro) dr
inf L r

log (|| /inf L) <Afx| 1 o d
= infL) — -
o8I el \ =)0 r(r—r)? ) ¥
To

< log(|z|/inf L) — ?((|$| — To)e — (infL — r0)0> + Ajoo r(r_i

d
ro)t—? '

. A . » 1
< log(|x]/1nf L) — 5 <(‘ZC| — ,,40)9 — (me — 7"0)9> + ATgL Wd?"

Using that (inf L — fro)‘9 = %, the sublinearity of the function r — r? and (A.53), we deduce that

20m

A 1
log | M, <l — Sz + —— (1
08 M) <logol = el + 12 (1og
(4 (7 * 1
+2m7’0+2¢9mT0J; Wdr

1
1 Z
+ 0gT>—|-(9

Since 19 < inf L and using (A.53), we obtain that for some C' > 0 (depending only on #, m and k), we
have by definition of A, and thanks to the upper bound on 7,

log | M, 4. (x)| <log|z| — 2m|x|9 e (1 " 7‘71%9> '

The claim comes from the comparison between x +— log || and 2 — 2m/|z|’ at infinity.

For z satisfying |z| < inf L, we simply use that | M,, , . (z)| < 1 to achieve the claim.

A.7.2.2 Bound from below

We shall prove in this section that the multiplier we constructed before is not too small on the imaginary axis, and
even in a suitable neighborhood of the imaginary axis. We refer to Definition A.6.34 for the definition of the sector
Sy
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Proposition A.7.43

1. There exists a R > 0 depending only on 0 and m such that

1 _
M, 0.(iz)] = 3 Vz e D(0,R). (A.55)

2. Foranyn > 0, there exists a C depending only on 6, m and n such that

M, 4. (i2)] = e " vzes,. (A.56)

We emphasize the fact that the values of C' and R in this Proposition do not depend on 7, as soon as it satisfies
(A.52).
Let us start by a basic lemma.

Lemma A.7.44

log 2

5o we have

1. Forany z € C, such that |z| <

1 _6722 _
’ >e 26|z|.

2z

log 2
2e

2. There exists Cy, depending only on ), such that for any z € S,, and any | > 0, with |z|/l >
have

we

1— 672,2/[

=
2z/1 ¢

Um'

Proof :

e We simply write
1— 6—22 (_1)n+1(2z)n
2z _1+222 (n+2)! "’

n=0

so that, if 2|z| < '°82, which is less than 1,

e °

1— 6—22
‘ 2z

1
>1-—2|z| > 1—e|z| = e %N
;0 (n+2)!

The last inequality comes from the following straightforward fact

l—y=e?, Vye|0,(log2)/2].

¢ By the triangle inequality and (A.22), we get

]
1

]_ — 6—2(R€ Z)/l ]_ — eiﬁi ]_ log 2 l
2|z|/1 - 2|z|/1 ( )

1— 6—22/[
2z/1

=

Proof (of Proposition A.7.43):
We start with the observation that for any z € C

sin(iz) 1—e 22

2z

_ eRez

. (A.57)
1z
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1. Assume that |2| < 182 A=1/0 50 that |2|/] < %82
A.7.44 we get

2e

M > 6*(1+26)% viel
iz/l ’ ’
so that
1M, . (i2)| = e~ T2 ZieL T 5 o= (1+2e)7l2],
By using (A.52), it comes

for every [ € L. From (A.57) and the first point of Lemma

1
[
M, (i2)] = e (2T,

The claim comes by choosing for instance R =

1+2e

sin(iz) -

(1—0) log 2 A_%

=

12

It follows that, for any z € S, we have

M0, (i2)] = | |

leL
We set ¢ = 2¢/(log 2) and we split the right-hand side into two factors

zZ
1—e 2

7= T

def
Z and Th = H
leL 7 leL
I>c|z| I<c|z|
e Estimate of T7:

We use the first point of Lemma A.7.44 to deduce

1
log T} = — 2elz| Z 7

leL
I>c|z|

Ni(clz])
= — 2€|Z| <—LCZ|

+00 Atﬁ

clz|

2¢ Ac?

0
¢
e Estimate of T5:

We use now the second point of Lemma A.7.44 to get

Cyl
log Ty > Z log (")

leL 2]

I<c|z|

clz|
~log(cCyielz) - | M (f)

F. BOYER - JULY 16, 2022

clz

t2

—=dt

t

clz] AtY
- f A gt
0 t

1—e 27

Assume now that z € .S;,. In particular, we have Re z = 0 so that (A.57) leads to

1— 6—2,2
‘ 2z

zZ
1 —62l|

27

[}
z

l

+ J“‘FOO NLdroit(t) dt)
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The proof is complete.

]
The previous estimate can be extended to the derivatives of the multiplier as follows.
Corollary A.7.45
Forany k € N, and any n > 0, there exists C' depending only on 0, m, n and k such that
1 (k) 0
( ) (iz) < CeCFI vze s, (A.58)
Mm,G,T
Proof :
To simplify the notation we set f(z) = 47 19 (iz) which is holomorphic on the simply connected domain

(C\(iR)) | D(0, R), where R > 0 is given in Proposition A.7.43.

e We set 1 R

coshn 4°

p =
For any £ € S, we claim that B B
D(gap) < D(OvR) Y Sﬁa
where
7 = asinh(1 + 2sinh 7).
Note that this quantity only depends on 7.
Indeed, assume that z € C is such that |z — | < p and |z| > R. By (A.22) and the triangle inequality we get

1

cosh77|£|
1

coshn(R =7
1 R

Re& =

=

where we used that fact that p < R/2 so that R — p > R/2. It comes
Rez=Re&—p=p,
and thus, using that € € 5,

[Zmé| +p

(sinhn)(Re&) + p
(sinhn)(Re z) + p(1 + sinhn)
(1 + 2sinhn)(Re z),

|Zm z|

<
<
<
<

which proves that z € Sj.

e Observe that, combining the two points of Proposition A.7.43, we have that
£(2)] < 2e°F° vz e D(0, R) U S5,

where C' depends only on 7, m and 6.
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We can then use the Cauchy formula to get, for any £ € 5,

F9(e) = ’“'L e,

2w Jop(e,p) (2 = &FF
It follows that

k!
FP©I< = s |f(2)]
P™ zedD(€,p)
|
SQ% sup
P” 2edD(¢,p)

0

|
<2 ccue+or
0

|
< Qk—];epgeome.

The claim is proved.

A.8 Generalized Tchebychev polynomials

Most of the material in this section is taken and adapted from [ , ]. We will only give here the results
we need in such a way that those lecture notes are as self-contained as possible. We let the interested reader have a
look at those references for a much more complete study of those properties.

Our main objective is to establish a Remez-type inequality

Il zos 0,inf 4) < Clp[ Lo (a)s

for any generalized polynomial
N-1
p(z) = Z pkx)\k’
k=0

with \g = 0 and \; € (0,+0) for k € [1, N — 1], and any compact set A in (0, +00). More precisely, we will
identify the best constant C' in this inequality and how it depends on A and on the set L = {0, A1, ..., Anx—_1}. The
precise result will be given in Theorem A.8.55.

A.8.1 Interpolation in Miintz spaces

Let L < [0, +0) be a finite subset of non negative numbers. In all this section we assume that

0OelL,

def

and we set N = #L. If N > 2 we define
pr = inf (L\{0}),

to be the first non zero element in L.
Let us define the following subset of C°([0, +c0), R) called, Miintz space,

M(L) ¥ Span{z — z*, Ae L}.

We plot in Figure A.1 an example of such set
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0.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Figure A.1: Muntz space associated to the family L = {0, 1,1.2,1.5,2,2.5}.

Proposition A.8.46 (Interpolation properties)

The following properties hold
1. 0 is the only element of M (L) that has at least N distinct zeros in [0, +00).

2. If f € M(L) has exactly N — 1 distinct zeros in [0, +00), then the sign of f changes in the neigh-
borhood of each of its zeros.

3. For any distinct points x1 < --- < xy in [0,400), and any values y1,...,yn € R, there exists a
unique f € M (L) such that

f(l'z) = Yi, Vi e Hl,N]].

We say that the set M (L) is a Tchebychev system on [0, +00).

Proof :

1. We prove the result by induction on N.

e Let assume that N = 1, that is L = {0}. In that case, the functions in M (L) are simply constants, and the
claim is clear.

e Assume that the result holds at rank N and let us consider a set L of cardinal N + 1.
We assume that there exists a function f € M (L) that vanish at N + 1 distinct points 1 < -+ < Ty 41
in [0, +00).
We observe that (x — xf'(x)) € M(L\{0}) and that by the Rolle Theorem, f’ has at least N distinct
zeros in [0, o0). Thus, the function 2 — g(z) = (xf’(x))/z"* belongs to M(L\{0} — z11,) and has at leat
N distinct zeros. Since L\{0} — yz, contains 0 and has a cardinal NV, the induction assumption shows that
g = 0, which implies f’ = 0 and thus f = 0.

2. We apply again the Rolle theorem that proves that f” has at least N — 2 zeros in (0, 4+00) that are distinct from

the zeros of f.
def

We set g(x) = (xf'(x))/x*2 and we observe that g is not identically 0, that it belongs to M (L\{0} — X2) and
has at least NV — 2 zeros in (0, +00) that are distinct from the zeros of f. Therefore, g cannot have any other
zero and in particular g cannot vanish at the zeros of f. This implies the f’ cannot vanish at the zeros of f. In
particular, f changes of sign in the neighborhood of each of its zero.
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3. The linear map

®:feM(L)— (f(z:))i e RY,

is injective thanks to the first point and maps a space of dimension N into another space of dimension /V.
Therefore, ® is a bijection, and the claim is proved.

|
Proposition A.8.47
Let L = {)\0,...,)\N_1}Wilh0 =X < <AN_1.
1. Forany0 < x1 < --- < xn we have
def Aj
Vi(z, ... zn) %< det (xif)ie[wﬂ > 0. (A.59)
Je[O,N]
If the points x1,...,xN are not ordered, the sign of the determinant is the signature of the corre-

sponding ordering permutation.

2. Forany k < N — 1 and any points 0 < wy < - -+ < wy < +00, there exists a p € M (L) such that

p(w;) =0, Vie [1, k],
(—=D)ip(w) >0, Yw e (w;,wir1), Vie [0,k],

. lef def
where, for convenience, we have set wy = 0 and w41 = +o0.

Proof :

1. Les 0 < y1 < --- < yn be another ordered set of points. For any ¢ € [0,1] we have Vi (tx; + (1 —
ty1,...,teny + (1 —t)yny) # 0 by the previous proposition. By continuity, we deduce that V7, (z1,...,zN)
and V7,(y1, . .., yn) have the same sign. We fix the first N — 1 points and we let zy go to +00. By developing
the determinant along the last column, we see that

VL(xl,...,xN) ~ VL/(xl,...,xN_l)Jfg\I,naXL),
T N—0
with I/ = L\{max L}. This implies that Vi, (z1,...,zy) has the same sign as V/(z1,...,2nx_1) and we

conclude by induction.

2. We first remark that it is enough to consider the case k = N — 1. Indeed, if £ < N — 1, we replace L by any
subset L' < L of cardinal k£ + 1 and containing 0, for which M (L") ¢ M (L).

That being said, for a given sign s € {—1, 1} to be determined later, we define the function p as the following
determinant

p(w) ot sV (w,wy,...,wn-1), Yw e [0,+00).

By developing the determinant along the first column we get that p € M (L) and moreover it is clear that
p(w;) =0forany 1 <i< N — 1.

The sign properties come from (A.59) and the choice of s.
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Proposition A.8.48 (Elementary Lagrange interpolants)

For any set X = {x1 < --- < azn} < (0,+00) of N distinct points there exists a unique family
(®L,xk)ke[i,n] © M (L) such that

O xk(xj) =0k, Vi, ke[l,N].
Moreover, if we set xo = 0 and xy 11 = +0, the sign of P, x i is as follows
o & x> 00n (xp_1,TK41)
o (—1)EtL D > 0o0n (), 741) for j € [0,k — 1].
o (—1)**®p ) > 0o0n (zj,241)forj € [k,NJ.

Finally, we have
(—1)k+1(1)L7X,k(0) > 0.

Let us show an example of such elementary Lagrange interpolants in Figure A.2

Figure A.2: Muntz space associated to the family L = {0,1,1.2,1.5,2,2.5} and the points X =
{0.2,0.5,0.8,1,1.4,1.8}.

Proof :

The existence and uniqueness of such a family of functions is just a consequence of the third point of Proposition
A.8.46. It cannot have another zero in [0, +00) since in that case we would have @, x ;, = 0 everywhere by the first
point of the same proposition.

From the second point of Proposition A.8.46, we know that ®;, x ;. has a constant sign between two consecutive
zeros and it changes of sign at each of those points. It is then straightforward to compute its sign by induction on each
given interval starting from the fact that &7, x ,(x;) =1 > 0.

We have seen above that @, x (0) # 0 and therefore it has the same sign as ®, x 4 on (0, 1), which is (—1)k*1.

@O0 F. BOYER - JULY 16, 2022



A.8. Generalized Tchebychev polynomials 169

Proposition A.8.49 (Comparison principle)

Let X = {x); < - <an}, X = {#1 < --- < &n} be two subsets of (0, +0) made of N distinct points.
Let k € [1, N] and assume that

x < Tk,
|zj —wx| = |25 — Tgl, Vje[l,N],

then
1L, x.1(0)] < [®f % ,(0)],

with equality if and only if X = BX for some 0 < 3 < 1.

Proof :

e Let us first define 8 = ;—:, which is less than or equal to 1 by assumption. We define the set X = BX. By
construction, we have Z; = x; and

|z — x| = |35 — 2k, V5 e [1,N]. (A.60)

def

Letusset g(z) = ® (Bz), for all x € [0, +00). By homogeneity we have that g € M (L) and satisfies

L.Xk
9(@i) = Py 5 1 (BTi) = Py ¢ (&) = Gk
Therefore g = ®; ¢ .. In particular, we have
‘I)L,X,k(o) = (IDL,X,k(O)’
The problem is thus reduced to proving that
[PL,xk(0)] <[P 5 4 (0)],

with equality if and only if X = X . This will take several steps.

e We define the following sets:

— For: = [[0, k‘]], we set X? < {:L‘l, e Ty Ty .,:i‘N}.
Note that X° = X and that for i € [1, k], we have x; < x, and &; < & = xy so that (A.60) gives

which implies
T < -fi+1-

Therefore the points in X are distinct and well ordered.

. ; def A A~
— Fori: = [[k,N]], we set X' = {1‘1, ey Th—1, Ly oo o sy ENAk—iy ENfk—itly -+« .%'N}.
Note that XV = X and that for i € [k, N[ we have x ., ,_; > 2 and & 44_; = &1 = o}, so that (A.60)
gives

TNyk—i = TNyk—i
so that
TNt k—i < TNk—it1;

and here also the points in X? are distinct and well ordered.
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Observe finally that both definition coincide for i = k since z; = &, and that X* = X*~1 Moreover, by
construction, for any 4, X’ and X**! differ at most by one single point.

It thus remains to show that

Dy xi+1 £(0)] < [P xi£(0)], Vie[0,N],

with equality if and only if X? = X1,

o Assume that X’ »# X! for some i. We set g = @ i) — @ yi+1 5, which is a function in M (L), and we
see that g cancels at the N — 1 distinct points that are common to X? and X**!. Let us analyse the sign of g at

0.

— The function g cannot have any other zero. Indeed, in that case it would have /N distinct zeros, and thus it

would identically vanish. This would imply that X* = X?*! a contradiction.
This gives the equality case in our claim since @, xi ;(0) and @}, xi+1;(0) have the same sign, which is
(—1)k*1 (see Proposition A.8.48).

— By the second point of Proposition A.8.46 we know that g changes it sign at the neighborhood of each of

GlOIS(O)

its zeros. We are going to prove that

(=1)F1g(0) > 0. (A.61)

We separate the analysis into two cases depending on the position of ¢ with respect to k — 1 (we recall that
i = k — 1is not possible since in that case we would have X* = Xi*1),

x Case 1:17¢€[0,k[:

We compute

9(@i+1) = o xi p(@ir1) — Pp xirr g (@it1) = Pp xo 1 (Tiv1), (A.62)
since x;+1 is a zero of @, xit1 .
By assumption on ¢ we have ;11 < x} and ;41 < 2 = x, and we know that z; 1 # Z;+1, so that
(A.60) gives

Tit1 < Tit1,
and thus x; 1 € (2, ;41). By (A.62), and Proposition A.8.48, we know that the sign of g(z;4+1) is
such that
(=) g(ziq1) > 0.

Using that g changes it sign in the neighborhood of each of its zeros, we know that it changes it sign
exactly 7 times in [0, 2;11] and we get (A.61).
Case2:i€e[k—1,N]J:
We compute

9@N+k-i) = Pp xi k(EN+k—i) = Pp xi+1 R (EN4h—i) = —Pp xi1 (EN4h—i), (A.63)
since T ki is a zero of @y xi p.
By assumption on ¢, we have xn._; > xr and Tnip_; > T = Tp, and we know that zy,_; #
TN+k—i so that (A.60) gives

IN+k—i < TN+k—is
and thus Zn 4 k—; € (EN+k—i—1, LN+k—i)- By (A.63), and Proposition A.8.48, we know that the sign
of g(Zn4k—q) is such that
(=) g(Ensk-i) > 0.

Using that g changes it sign in the neighborhood of each of its zeros, we know that it changes it sign
exactly N + k — ¢ — 1 times in [0, Z y;%—;| and we also get (A.61).

To conclude the proof, we write

B O = O = GO ) = T 0) = (1) 9(0) > 0.
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A.8.2 Best uniform approximation in Miintz spaces

Theorem A.8.50 (Best uniform approximation in Miintz spaces)

Let A be a (possibly infinite) compact subset of [0, +0|. We assume that #A > N + 1.
For any function f € C°(A), there is a unique p € M (L) such that

— © = inf — ©(A)- A.64
If = pllze(a qelﬁ(L)Hf qll o a) (A.64)

Moreover, p is the unique element in M (L) such that f — p equi-oscillates in at least N + 1 points of A.
This means that there exists xt1 < -+ < xn+1, T; € A, and a sign s = +1, such that

f@i) = p(i) = s(=1)"| f = pllreca), Vie[l,N+1]. (A.65)

Remark A.8.51

In the case where #A < N, then by the interpolation property (Proposition A.8.46) shows that there exists
p € M(L) such that f = p. Therefore, the best uniform approximation property is straightforward in that
case.

Proof :

e Existence of at least one such best approximation is just a compactness argument related to the fact that, M (L)
is finite dimensional.

e Let us first show that any such best approximation p satisfies the claimed equi-oscillation property. We set
g o f — p and we assume that there exists a maximal equi-oscillating sequence for g in A of length k < N + 1

denoted by x; < --- < x; and we will obtain a contradiction.

For any i € [[1, k] we introduce C; Lof {xe Az <z <xi1, g(x) = g(x;)}, where we have conventionally
set zg = —oo and xg 1 = +00. Since g is continuous on A, C; is a closed subset of the compact set A, and in
particular it’s a compact set itself.

We define the convex hull of C; to be
D; < convC; = [z, x]].
We observe, by compacity, that ;" x:r e C;.
— We claim that the intervals D; are disjoint. We are thus going to show that

xf <, Vie[lLk[

By construction we know that z; € C; and z; 1 € Cj41 thus, we clearly get that

+

l‘i 7x;+1 € [‘riul‘i-i-l]u

and that
9(z;") = g(xi), 9(ziy) = g(zis),
that have two different signs. Hence, we deduce that =" # z;_ ;.

Assume that for some 7, we have 7, ;| < a;j . It would imply that the sequence
T <'--<{L‘Z‘<$i—+1 <aci+ < Tip1 <o < T,

is an equi-oscillating sequence of length k£ + 2, which is a contradiction with the maximality assumption
for the original sequence. The claim is proved.
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— We have thus built compact disjoint intervals D; = [z; , ;"] surrounding each z; such that
lgllzencay = s(=1)'g(x) > =lgllr=(a), Vo€ An D
By continuity of g, we can find §,7; > 0 small enough such that
lgllzecay = s(=1)"g(x) > =(1 = m)lglLe(a), Vo€ An Dy,

where D; 5 =|z; — 8§,z + d] is the open d-neighborhood of D;.
k

— Introducing D = U D; s, we observe that, by construction, D contains all the points = € A, where
i=1
lg(x)| = |lg] = (). Therefore, for some 72 > 0 small enough, we have

9(@)] < (1= m2)lgllLe(a), Voe AD,

since ¢ is continuous on the compact set A\D.

— We will now obtain a contradiction with the fact that p solves the best uniform approximation property
(A.64).

+ -
Forie [1,k — 1] we set w; = 50 ;Z“ . By Proposition A.8.47, since k < N, there exists an element 7 €

M (L) such that 7(w;) = 0 for any i, and such that s(—1)*z > 0 on each D; 5 and ||| 0 (a) < 9]z (a)-
We set ¢ = p + nm with 7 > 0 chosen such that 7 < min(71,72) and we will show that | f — ¢|z0(4) <

lgllzo(ay-
Letx € A.

* If x € A n D; s for some %, then we write
s(=1)'(f = a)(2) = s(=1)"(g(x) — nm(x)) = s(=1)'g(z) —ns(~=1)'n(2),
and by the sign property of 7 on D; 5 we get

i

—(L =)l gl zeay = lglreay < s(=1)'(f — a)(z) < s(—1)"g(x),

so that we have the strict inequalities

—[lgllreecay < s(=1)'(f — @) () < gl ree(a),
and consequently
[(f = @) @)| < lgllre(a)-
« If 2 € A\D we just write
[(f =) @)| = lg(x) —nm(z)] < lg()] + nlm(@)] < (1 =n2)lgllr=ca) + nlglreay < lgloeca-
We have thus proved that || f — q[ =4y < | f — pl/1(a) Which contradicts (A.64).
e We can now prove the uniqueness of the best uniform approximation in A.

Let us define d < infeerr(ry [ f — ¢l (a) and we assume that py, p2 € M (L) are such that || f — ps|| 4y = d.
Then, by the triangle inequality, p = Z3P2 also satisfies | f — p|| L=(4) = d. Thanks to the equi-oscillation
property, there exists /V + 1 distinct points 1 < - -+ < zx4+1 wWhere

1
d = |f(zi) = p(zi)| = S(f(zi) = pr(2)) + (f (@) = p2(20)],
and since | f(z;) — p1(x;)|, |f(x;) — p2(z;)] are both less than d, we obtain that necessarily f(z;) — p1(z;) =

f(zi) — pa2(x;). We deduce that p;(z;) = pa(z;) for any i € [1, N + 1]. By the uniqueness property of the
Tchebychev system, we conclude that p; = ps.
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e Finally we prove that any p € M (L) such that f — p has the equi-oscillation property on A (wecall z; < --- <
N1 the associated family of points) is indeed a best uniform approximation of f on A. To prove that claim,
we assume that there exists ¢ € M (L) such that

|f —dalze <[ = plLe.
This implies in particular that
|(f (i) = p(x)) + (p(z:) — q(@))| < [f = pllrecay = |f (@) — pz)],
and since f(z;) — p(z;) has the sign s(—1)?, we deduce that the sign of (p — ¢q)(x;) is s(—1)*"! (and of course

this quantity cannot be zero). Hence, p — ¢ changes its sign at least N + 1 times, and by the intermediate value
theorem p — ¢ has at least IV distinct zeros in (0, +00). By point 1 of Proposition A.8.46, this implies p = q.

Proposition and Definition A.8.52 (Generalized Tchebychev polynomials)

Let A be a compact subset of [0, +0) such that #A > N + 1. There exists a unique (up to a multiplicative
factor) element in M (L) that equi-oscillates in A at exactly N points.
We denote by T, s the unique such function that, in addition, satisfies the normalisation properties

(o

lLo(ay = 1,
Ty, a(max A) > 0.
Moreover,
o T, 4 has exactly N — 1 zeros in [0, +0). They are all located in the open interval (inf A, sup A).

o The map
2 = |Tp, (@)l

is decreasing on [0, inf A].

The function T7, 4 is called the generalized Tchebychev polynomial on the set A with respect to the family
L.

We illustrate this definition in Figure A.3.
Proof :

If L = {0}, the result is straightforward (and T, 4 = 1).

Assume that N > 1 and let L = L\py,. We consider m € M (IN/) the unique uniform best approximation of
& +— M on Ain M(L') given by Theorem A.8.50. We know that the function T'(z) = 2~ — 7(z) belongs to M (L)
and equi-oscillates at least #L’ + 1 = N times. Moreover, T cannot equi-oscillate /V 4 1 times because if it were
the case 7" would be the unique best uniform approximation of 0 on A in M (L), and it will immediately imply that
T = 0 on A which is not possible.

Note that the equi-oscillation property implies that T has at least N —1 zeros in the open interval I = (inf A,sup A).
It is clear that T' cannot vanish on [sup A, +0) since in that case, the function would have IV distinct zeros and thus
will be identically equal to 0. Therefore, the normalisation conditions we consider are uniquely solvable.

Observe that, if inf A > 0 we also have that T cannot vanish on [0,inf A]. Finally, if inf A = 0, we also have
T (0) # 0. Indeed, if we assume that T(O) = 0 and since we have 0 € L, we can easily see that T actually belongs to
M (L\{0}). However, the only function in M (L\{0}) that has at least IV zeros in (0, 4+00) is the function 0, which is
a contradiction.
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Ay

Figure A.3: The Tchebychev polynomial 77, 4 for L = {0,1,1.2,1.5,2,2.5} and A = [0.2, 2].

Finally, using Rolle’s theorem, we know that TL 4 has at least N — 2 zeros in (min A, max A). Moreover,
(Tr.4)" € M(L\{0}) thus it cannot have another zero. In particular (77, 4)" has a constant sign on [0, inf A) and 77, 4
does not vanish in this interval. The claim is proved. [ |

Proposition A.8.53 (Maximality property of 77, _4)

Assume that inf A > 0 and let y € [0, inf A). Then for any p € M (L), such that |p| =4y < 1 we have

lp(y)| < |Tr,a(y)]-

Equivalently, we have
pW)| < |TL.a@) [Pl Le(a), Vpe M(L).

Proof :
The map ¥ : p e M(L) — |p(y)| is clearly continuous, thus it attains it maximum on the compact set K = {p €

M(L), [plre(ay <1}

It is clear that this maximum is achieved on a p € M (L) such that |[p[z=(4) = 1.

Assume that p equi-oscillates exactly & times with £k < NN. As in the proof of A.8.50 we can build disjoint
(ordered) open intervals D; 5,4 = 1,. .., k such that

1> s(—1)'p(x) > —(1—m), Yze An D;gs,

for D = u;D; s,
Ip(z)] <1—ma, Ve A\D.

For each i € [1, k[, we pick a set of point w; 1, between D; 5 and D; 11 s and we consider a w € M (L) such that
7r(wl-+1/2) = O, Vi e [[1, kl]:,
m(y) = 0,

and ‘
s(—1)'m >0, on D;s.

This is possible since k < IN. We normalize 7 in such a way that

w7 (A) = 1.
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For > 0 small enough, we see that § = p + nm € M (L) satisfies

and
1G]l ooy < 1.

Therefore the element ¢ = G/||G[ 1= (4) is in K and satisfies

U(q) = lg(y)| > Ip(y)| = ¥(p),

which is a contradiction. ]

Proposition A.8.54 (Monotonicity of the generalieed Tchebychev polynomial with respect to A)

Let A be any compact subset and I any compact interval of (0, +0) such that
|A| = |I|, and sup A < sup .

Then we have ’ (0)‘
sup — L < Ty 1 (0)):
peM(L) [Pllze(a)

In particular, we have
|T2,4(0)| < |T,7(0)].

Proof :
o Let X = {Z1,...,ZnN} be the equi-oscillations points in I of 77, ;. In particular we have
Tr.1(#) = (-1)N7% Vie[1,N]. (A.66)
Introducing the elementary interpolants ® L%, Wecan write
N
Trr= ) (DN, ¢
i=1

e Let¢: se[0,+0[— |An][s,+00)|. This function is continuous, non-increasing, maps [0, +oo[ onto [0, | A
and ¢(s) = 0 for s > sup A. In particular, since |I| < |A|, there exists 0 < s; < --+ < sy < +00 such that

I.

¢(8Z) = ’I N [:Z'Z', +OO>|
We then define
x; = inf <A N [Si, +OO)>
By compactness of A, we have that z; € A. From now on we set X < {z1,..., x5} C A.

e Let us now compare X and X.

By definition of ¢ we have ¢(z;) = ¢(s;) since [s;,x;) N A = . This means that
|A N [z, +0)| = [T N [Z4, +00)].

Note that those quantities are positive and in particular we have x; < sup A < sup /.
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Take now any j, k € [1, N], j < k, we have

ok — x| = |[zj, )]
> |A N[z, zy)|
=|An [z, +0)| — |A N [zf, +0)|
=|I n[Zj,4+00)| —|I n[Z, +0)
= I n [}, Z)]

since [ is an interval that contains Zj, and ;.

Similarly we have for any k

xp —max A| = |A n [z, +0)|
= [I [k, +0)]

= |Zx — max [|,
and since max I > max A, we deduce that x; < Zy.

e Due to the previous properties, we can apply Proposition A.8.49 to X and X and conclude that, for any k €
[1, N], we have

1L xk(0)] < [P 5, (0)]. (A.67)

Take now any p € M (L) and let us decompose it in the Lagrange basis (®1, x )

N
Z :L'k (I)LXk ), Vx € [0, ~|-OO).

We evaluate this formula at z = 0 and we apply the triangle inequality

<Z [P, x k(0 ) Ipll e 4y,

where we have used that all the () belong to the set A, by construction.

Applying (A.67), we get
(Z ’(I)LXk ) HPHLOC

but the sign of @, 5, (0) is (—1)**1 and thus by (A.66),

N N N
2,120,540 = |3, (02 2, 0)| = | 3 Trr@) 2, 2,40)| = 1Ts O
k=1 k=1 k=1
The proof is complete.
It is clear that we can apply the above result to p = T}, 4 since, by definition, |77, A o4y = 1. |

Combining the previous results we finally obtain the following result that was actually the main aim of this
appendix.
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Theorem A.8.55 (A Remez inequality)

Let A be a compact subset of (0, +0), I a compact interval of (0, +00) such that
|A| = |I|, and sup A < sup .
Then for any p € M (L) we have

Il Loe 0,inf 4y < |TL1(0)] [P Loe a)-

Proof :
We take any p € M (L) and any y € (0, inf A) and we apply Proposition A.8.53 to get

()| < 1Tr, AWl Lo (-

Then we use the monotonicity of 77, 4 on [0, inf A) and the fact that y < inf A to obtain

()| < 1T, 400)|[pll oo (4)-

The conclusion comes from the inequality |77, 4(0)| < |77, 7(0)| that we established in Proposition A.8.54. |
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