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ON ADDITIVE BASES IN INFINITE ABELIAN SEMIGROUPS

PIERRE-YVES BIENVENU, BENJAMIN GIRARD, AND THÁI HOÀNG LÊ

Abstract. Building on previous work by Lambert, Plagne and the third author, we study
various aspects of the behavior of additive bases in infinite abelian groups. We show that, for
every such group T , the number of essential subsets of any additive basis is finite, and also
that the number of essential subsets of cardinality k contained in an additive basis of order
at most h can be bounded in terms of h and k alone. These results extend the reach of two
theorems, one due to Deschamps and Farhi and the other to Hegarty, bearing upon N. Also,
using invariant means, we address a classical problem, initiated by Erdős and Graham and
then generalized by Nash and Nathanson both in the case of N, of estimating the maximal
order XT (h, k) that a basis of cocardinality k contained in an additive basis of order at most

h can have. Among other results, we prove that XT (h, k) = O(h2k+1) for every integer k > 1.
This result is new even in the case where k = 1. Besides the maximal order XT (h, k), the
typical order ST (h, k) is also studied. Our methods actually apply to a wider class of infinite
abelian semigroups, thus unifying in a single axiomatic frame the theory of additive bases in
N and in abelian groups.

1. Introduction

Let (T,+) be an abelian semigroup. If A,B are two subsets of T whose symmetric difference
is finite, we write A ∼ B. Also if A\B is finite, we write A ⊂∼ B. Further, the Minkowski sum
of A and B is defined as {a + b : (a, b) ∈ A × B} and denoted by A + B. For every integer
h > 1, the Minkowski sum of h copies of A is denoted by hA.

A subset A of T is called an additive basis of T , or just a basis of T for brevity, whenever
there exists an integer h > 1 for which all but finitely many elements of T can be represented
as the sum of exactly h (not necessarily distinct) elements of A. In other words, A is a basis
of T if and only if hA ∼ T for some h > 1. Thus 2N+ 3 is not a basis of N, but 2N ∪ {3} is.
The smallest possible integer h > 1 in the definition above is then denoted by ord∗T (A) and is
called the order of A over T . If A is not a basis of T , then we set ord∗T (A) = ∞. Note that
what we call a basis is sometimes referred to as a “basis with an exact order” (and our order
as the exact order).

The study of additive bases already has a rich history, especially in the special case where T
is the semigroup N of nonnegative integers; it originated in additive number theory, motivated
by Goldbach-type problems, and became a topic of research in its own right. Some of the most
natural and widely open problems in the area happen to deal with the “robustness” of this
notion, an active area of research at least since Erdős and Graham [6, 7]: what happens when
one removes a finite subset from a basis? Does it remain a basis, and if so what happens to the
order of the basis? Lambert, Plagne and the third author [19] initiated the systematic study
of these questions in general infinite abelian groups, when the removed subset is a singleton,
and obtained partial results. The present paper expands on these results, and generalize them
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to arbitrary finite subsets. Note that when A is a basis of order h of an infinite abelian group
G and x ∈ A, letting B = A \ {x}, the set B′ = B − x is a weak basis in the sense that
⋃h

i=0 iB
′ ∼ G. This property, which was systematically used in [19] to derive properties of B,

vanishes when one removes more than one element.
We now proceed to describe our results.

1.1. Essential subsets and the function ET (h, k). Let A be an additive basis of T . A
subset F ⊂ A such that A \ F is no longer an additive basis of T is called an exceptional
subset of A. Observe that any subset of A containing an exceptional subset of A is exceptional
itself. This last observation motivates the following definition. An exceptional subset which
is minimal with respect to inclusion will be called an essentiality of A. A finite essentiality is
called an essential subset. For instance A = {1, 2, 3} ∪ 6N is a basis of order 3 of N, where
{1, 2, 6} is exceptional but not essential, the essential subsets are {1, 3} and {1, 2}, whereas
{2} is not exceptional (but its removal increases the order).

This notion was introduced by Deschamps and Farhi and, in the special case where T = N,
they showed that the number of essential subsets in any given basis must be finite [8, Théorème
10]. Lambert, Plagne and the third author proved that this holds in any infinite abelian group
for essential subsets of cardinality one (also called exceptional elements) [19]. We generalize
this latter result to arbitrary essential subsets, thus proving a Deschamps-Farhi theorem in
infinite abelian groups.

Theorem 1. Every basis of an infinite abelian group G has finitely many essential subsets.

Deschamps-Farhi’s method is specific to N, so we develop a new argument using the quo-
tients of the group. To put the theorem above into perspective, we recall that, as proved by
Lambert, Plagne and the third author, additive bases abound in infinite abelian groups, since
every such group admits at least one additive basis of every possible order h > 1 [19, Theorem
1].

Going back to the special case where T = N, Deschamps and Farhi observed that, for
every integer h > 2, additive bases of order at most h can have an arbitrarily large number
of essential subsets. However, the situation changes drastically when we restrict our attention
to the number of essential subsets of cardinality k that a basis of order at most h can have.
Indeed, for any infinite abelian semigroup (T,+) and any integers h, k > 1, let us define

ET (h, k) = max
A⊂T
hA∼T

|{F ⊂ A : F is essential and |F | = k}|,

and set ET (h) = ET (h, 1). We also introduce the variant ET (h,6 k), defined identically
except that the condition |F | = k is relaxed into |F | 6 k, so ET (h, k) 6 ET (h,6 k).

The function EN(h) was introduced and first studied by Grekos [10] who proved that
EN(h) 6 h − 1, which was later refined in [9]. For their part, Deschamps and Farhi asked if
the function EN took only finite values [8, Problème 1]. This was later confirmed by Hegarty
[15, Theorem 2.2], who went on and obtained several asymptotic results such as

EN(h, k) ∼ (h− 1)
log k

log log k
(1)

for any fixed h > 1 as k tends to infinity, and

EN(h, k) ≍k

(

hk

log h

)

1

k+1

(2)

for any fixed k > 1 as h tends to infinity [16, Theorems 1.1 & 1.2]. His results actually also
hold for EN(h,6 k). However, it is still an open problem to know whether, for all k > 1, there
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exists a constant cN,k > 0 such that EN(h, k) ∼ cN,k(h
k/ log h)1/(k+1) as h tends to infinity;

so far it is only known for k = 1 thanks to Plagne [24].
In the framework of infinite abelian semigroups, far less is known concerning the function

ET (h, k). In [19, Theorem 2], Lambert, Plagne and the third author proved that EG(h) 6 h−1
for every infinite abelian group G and every integer h > 1, and also that, as far as infinite
abelian groups are concerned, this inequality is best possible for all h > 1. However, beyond
this result, even the finiteness of EG(h, k) when h, k > 2 was left to be established (note that
it follows easily from the definition that EG(1, k) = 0). We do so in this paper, even bounding
EG(h, k) uniformly in G. We actually give two bounds, corresponding to the two asymptotic
regimes where h or k is large.

Theorem 2. Let G be an infinite abelian group.

(i) For any fixed k > 2, for any h > 2 the bound EG(h, k) ≪k hk holds.
(ii) For any fixed h > 2, for any k > 1 we have EG(h, k) ≪h (k log k)h−1.

We will actually bound EG(h,6 k) which is at least as large as EG(h, k). Our proof reveals
the intimate link between the function EG and the set of finite quotients of G. Thus our
methods rely on the theory of finite abelian groups, including duality. As our next theorem
shows, there are no nontrivial universal lower bounds for EG; thus, notwithstanding the just
stated universal bound, the function EG depends greatly on the structure of G, more precisely
on its finite quotients.

Theorem 3. Let G be an infinite abelian group.

(i) The function EG is trivial (i.e. EG(h, k) = 0 for all h, k) if, and only if, G contains no
proper finite index subgroups.

(ii) If G admits (Z/2Z)d as quotient for any d > 1, then we have EG(h, k) > (h− 1)(2k− 1)
for any h and infinitely many k.

(iii) For h = 2, we can improve Theorem 2 into EG(2, k) 6 2k − 1.

Therefore, EG = 0 whenever G is a divisible group such as R or Q (i.e. for any x ∈ G,n ∈
N>0 there exists y ∈ G such that x = ny), whereas EG grows at least linearly in h and in k
when G is (the additive group of) ZN or F2[t] for instance. This contrasts sharply with EN

in view of the estimates (1) and (2). Also note that we have a quite good understanding of
EG(2, k). In item (ii), we may replace Z/2Z by any cyclic group, the quality of the bound
decrasing with the exponent of the cyclic group.

1.2. Regular subsets and the function XT (h, k). Let T be an infinite abelian semigroup.
Let A be an additive basis of T such that ord∗T (A) 6 h. What can be said about ord∗T (A \ F )
for those subsets F ⊂ A such that A \ F remains an additive basis of T ? Such an F ⊂ A is
called a regular subset of A.

To tackle this problem, we define the function1

XT (h, k) = max
A⊂T
T∼hA

{ord∗T (A \ F ) : F ⊂ A,F is regular and |F | = k},

and set XT (h) = XT (h, 1).
In other words, XT (h, k) is the maximum order of a basis of T obtained by removing a

regular subset of cardinality k from a basis of order at most h of T .

1In N, this function is also denoted by Gk(h) in the literature. Our notation accommodates the fact that we
will be working with an infinite abelian group denoted by G, and also unifies different notations for the cases
k = 1 and k > 1.
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The function XN(h) was introduced by Erdős and Graham in [6] under another name and
under this name by Grekos [10, 11]. It is known that

XN(h) ≍ h2, (3)

see [22] for the best currently known bounds. A conjecture of Erdős and Graham [7] asserting
that XN(h) ∼ dNh2 for some absolute constant dN > 0 as h tends to infinity still stands to
this day.

The function XN(h, k) was first introduced by Nathanson [21]. For fixed k > 1 and h → ∞,
Nash and Nathanson [20, Theorem 4] proved that

XN(h, k) ≍k hk+1. (4)

Their proof also yields XN(h, k) ≪h kh for any fixed h > 1 and k → ∞. For a more detailed
account and more precise estimates of XN(h, k), we refer the reader to the survey [18].

In the context of infinite abelian groups, Lambert, Plagne and the third author [19, Theorem
3] proved that, for a rather large class of infinite abelian groups G (including Zd, any divisible
group and the group Zp of p-adic integers), one has

XG(h) = OG(h
2). (5)

However, the techniques do not carry over from these particular groups to arbitrary infinite
abelian groups and, until now, it was not even known whether XG(h) is finite for all infinite
abelian groups G and integers h > 1. We now confirm that this is indeed the case and prove
a Nash-Nathanson theorem in groups.

Theorem 4. For any infinite abelian group G and integer k > 1, we have XG(h, k) 6
h2k+1

k!2
(1 + ok(1)) as h tends to infinity.

This bound may well not be optimal. In fact, if A is a basis of order h of G and B ⊂ A a
basis of cocardinality k, we find that B −B is a basis of order O(hk+1), which is optimal. In

the regime where h is fixed and k tends to infinity, we find that XG(h, k) 6
hk2h

h!2
(1 + oh(1))

holds.
Nash-Nathanson’s proof of (4) uses Kneser’s theorem2 on the lower asymptotic density

of sumsets in N. Now such a theorem is not available in every infinite abelian semigroup
T . Our main tool in proving Theorem 4 will be invariant means, that is, finitely-additive
translation-invariant probability measures on T . Invariant means are similar in many ways to
the asymptotic density, but they are defined abstractly and it is less straightforward to infer
properties of a set from its probability measure. In [19, Theorem 7], invariant means were
already used, but their use in the study of XT is new. We believe that invariant means will
become part of the standard toolbox to study additive problems in abelian semigroups.

Imposing specific conditions on the semigroup T allows one to control the function XT (h, k)
more finely. We found a class of abelian groups for which a bound of the shape (4) may be
achieved. We say that a group G is σ-finite if there exists a nondecreasing sequence (Gn)n∈N
of subgroups such that G =

⋃

n>0Gn. Examples include (C[x],+) for any finite abelian group
C or

⋃

n>1 Udn where Uk is the group of k-th roots of unity and (dn)n>1 is a sequence of
integers satisfying dn | dn+1 for any n > 1; the latter example includes the so-called Prüfer
p-groups Up∞ . Combining a result of Hamidoune and Rødseth [14] on this class of groups with
the argument of Nash and Nathanson, we will prove the following bound.

Theorem 5. Let G be an infinite σ-finite abelian group. Then XG(h, k) 6 2hk+1

k! +O(hk).

2This is not the same as, but related to, Kneser’s better known theorem on the cardinality of the sumset of
two finite sets in an abelian group.
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In [19, Theorem 5], it was shown that for infinite abelian groups G having a fixed exponent
p, where p is prime, XG(h) is in fact linear in h: 2h+Op(1) 6 XG(h) 6 ph+Op(1). We now
extend this to all infinite abelian groups having a prime power as an exponent, and show the
same phenomenon for XG(h, k).

Theorem 6. Let G be an infinite abelian group of finite exponent ℓ. Then the following two
statements hold.

(1) XG(h, k) 6 ℓ2k(h+ 1)− ℓk + h.
(2) If ℓ is a prime power, then XG(h) 6 ℓh+ ℓ2 − ℓ.

Finally, we discuss lower bounds. Again, they depend on the finite quotients of the group.
In contrast to the function EG, and unsurprisingly in view of Theorem 6, it is large cyclic
quotients rather than large quotients having small exponent which cause XG to be large.

Theorem 7. Whenever G admits arbitrarily large cyclic quotients, we have for each fixed k
and infinitely many h the bound XG(h, k) ≫k hk+1 and for each fixed h and infinitely many k
the other bound XG(h, k) ≫h kh.

Beyond Z and groups which admit Z as quotients, this property is satisfied by Zp for any
prime p and G =

⋃

n>1

∏

m6n Z/mZ, the latter being σ-finite. Combining with Theorem 5

and equation (5), we therefore have XG(h, k) ≍k hk+1 for this latter group and XZp(h) ≍
XZd(h) ≍ h2.

1.3. Semigroups. The results announced so far reproduce in the frame of infinite abelian
groups some results known in the semigroup N (at least qualitatively). It turns out that our
proofs do not entirely use the group structure, and are naturally valid in a wider class of
semigroups which comprises N and infinite abelian groups, which we term translatable and
which we will now describe. Therefore, another aspect of our work is to unify the treatment
of additive bases in N and in abelian groups. But since our results are new and interesting
mostly in the case of groups, we decided to defer the introduction of translatable semigroups
until now.

An abelian semigroup T is cancellative if whenever a, b, c ∈ T satisfy a + c = b + c, the
relation a = b holds. It is well known that such a semigroup is naturally embedded in a group
GT called its Grothendieck group that satisfies GT = T − T (see Section 2.1).

A translatable semigroup is an infinite cancellative abelian semigroup (T,+) such that for
any x ∈ T , the set T \(x+T ) is finite; in other words, T ∼ x+T . Every infinite abelian group
is a translatable semigroup. Other examples of translatable semigroups include N, numerical
semigroups (i.e. cofinite subsemigroups of N) and also C × N for any finite abelian group
C. These examples, in a sense, classify all translatable semigroups (see Proposition 32). In
contrast, neither (Nd,+) for d > 2 nor (N∗,×) are translatable.

Note that such a semigroup has the convenient property that whenever A ⊂ T is a basis
and x ∈ T , then x+A is still a basis, of the same order. This property actually characterizes
translatable semigroups, since A = T is a basis of order 1, and bases of order 1 are precisely
the cofinite subsets of T .

Having introduced translatable semigroups, we can now state our results in a more general
setting.

Proposition. Theorems 1,2 and 4 are also valid when the group G is replaced by a translatable
semigroup T .

The following identity says that the functions E defined over T and over its Grothendieck
group are the same.
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Theorem 8. Let T be a translatable semigroup and G its Grothendieck group. Then ET = EG.

In particular EN = EZ, which is already new. It also follows from Theorems 8 and 3(iii)
that ET (2, k) 6 2k − 1 for all translatable semigroups T . It is an interesting problem to
determine if we also have XT (h, k) = XG(h, k).

To conclude this subsection, observe that for general infinite abelian semigroups, even can-
cellative ones, the finiteness of the set of essential subsets (Theorem 1) fails dramatically.
Indeed, let T = (N∗,×). Let A = {2k : k ∈ N}∪ {2j+1 : j ∈ N}. Then the decomposition of
any positive integer as a product of a power of 2 and an odd integer shows that A is a basis of
order 2. However, every prime is essential. Indeed, h(A \ {2}) does not meet {n ∈ N : n ≡ 2
mod 4} for any h > 1. If p is an odd prime, the set h(A \ {p}) does not meet {2kp : k ∈ N}.
Hence, if one wants to keep this finiteness result, one needs to specify appropriate axioms. We
stress that translatability is a joint generalization of N and infinite abelian groups. However,
it may well be the case that the finiteness of ET (h, k) and XT (h, k) holds in an even more
general class of semigroups. Indeed, one can show that ENd(h, k) is finite for any h, k and
d, though (Nd,+) is not translatable when d > 2. This is not obvious; in fact, even the fact
that ord∗

Nd is well-defined (i.e. if hA ∼ Nd then (h + 1)A ∼ Nd) is not obvious. We plan to
investigate this finiteness phenomenon beyond translatable semigroups in the future.

1.4. The “typical order” and the function ST (h, k). Define ST (h) to be the minimum s
such that for any basis A with ord∗T (A) 6 h, there are only finitely many elements a ∈ A such
that ord∗T (A \ {a}) > s. In particular ST (h) 6 XT (h). Grekos [11] introduced the function
S = SN and conjectured that SN(h) < XN(h). In [2], Cassaigne and Plagne settled Grekos’
conjecture and proved that

h+ 1 6 SN(h) 6 2h. (6)

In [19, Theorem 7], using invariant means, the authors showed that we also have h + 1 6

SG(h) 6 2h for every infinite abelian group G. It is an open problem to find the exact
asymptotic of SN(h), or ST (h) for any fixed translatable semigroup T . The proof of [19,
Theorem 7] also gives a bound for the number of “bad” elements, that is, elements a of a basis
A of order at most h such that SG(h) < ord∗G(A \ {a}). The proof of [19, Theorem 7] implies
that the number of such elements is at most h2. We now give a slight generalization of this
fact to translatable semigroups, while showing that in the case of groups we do have a sharper
bound.

Theorem 9. Let T be a translatable semigroup, and let h > 2 be an integer. Then ST (h) 6 2h.
In fact, if A is a basis of T of order at most h, then there are at most h(h− 1) elements a of
A such that ord∗T (A \ {a}) > 2h. If T is a group then the number of such elements is at most
2(h− 1).

While we do not know if 2(h− 1) is best possible, it is nearly so because certainly EG(h) is
a lower bound for the maximal number of bad elements, and it was observed in [19, Theorem
2] that for the group G = F2[t], one has EG(h) = h− 1 for any h > 1.

As a generalization, define ST (h, k) to be the minimum value of s such that for any basis
A with ord∗T (A) 6 h, there are only finitely many regular subsets F ⊂ A, |F | = k with
the property that s < ord∗T (A \ F ). Thus ST (h, 1) = ST (h). We have the trivial bound
ST (h, k) 6 XT (h, k), and it is interesting to know if this inequality is strict. We have a partial
positive answer.

Theorem 10. Let T be a translatable semigroup, and let h > 1 be an integer. Then

ST (h, 2) 6 2XT (h). (7)
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Furthermore, if A is a basis of T of order at most h, there are at most O
(

h2XT (h)
2
)

regular
pairs F ⊂ A such that ord∗T (A \ F ) > 2XT (h). If T is a group, then the number of such pairs
is at most 4h(XT (h)− 1).

We underline that already in the semigroups T = N or Z, the bound (7) is nontrivial
because XT (h) is much smaller than XT (h, 2). Indeed, XT (h, 2) ≫ h3 by (4) and Theorem
7 while XT (h) = O(h2) by (3) and (5). Thus ST (h, 2) = O(XT (h, 2)/h) = o(XT (h, 2)) as h
tends to infinity.

The organization of the paper is as follows. In Section 2 we introduce some tools used in our
proofs, including a generalization of the Erdős-Graham criterion for finite exceptional subsets.
In Sections 3, 4 and 5, we prove results on the functions ET , XT ), and ST respectively.

2. Preliminary results

2.1. Translatable semigroups and their Grothendieck groups. Let T be a cancellative
abelian semigroup. We let GT be the quotient of the product semigroup T×T (with coordinate-
wise addition) by the equivalence relation R defined by (a1, a2)R(b1, b2) if a1 + b2 = a2 + b1.
It is clear that the equivalence relation is compatible with the addition, so that the quotient is
again an abelian semigroup. Further the class of (x, x) is a neutral element which we denote
by 0 and (a1, a2) + (a2, a1) = 0, so that GT is an abelian group. Also T is embedded in GT

via the map x 7→ (x+ t, t) (for any t ∈ T ). This group is called the Grothendieck group of T .
By identifying x ∈ T with (x, 0) ∈ GT , we have T ⊂ GT , and we observe that GT = T − T .

We will often omit the index and let G = GT .
Recall that a translatable semigroup is an infinite cancellative abelian semigroup with the

property that for any x ∈ T , the set T \ (x+ T ) is finite, or equivalently T ∼ x+ T . We now
list some immediate consequences of this property that we will use frequently.

Lemma 11. Let T be a translatable semigroup, G = GT , and H be a subgroup of finite index
of G. Then

(1) For any x ∈ G, we have T ∼ x+ T .
(2) If A is a subset of G, then for any x ∈ G, we have T ∩ (x+A) ∼ x+ T ∩A.
(3) If F is a finite subset of G, then there is t ∈ T such that t+ F ⊂ T .
(4) For any x ∈ G, T ∩ (x+H) is infinite.
(5) T ∩H is also a translatable semigroup. Furthermore, H = T ∩H − T ∩H.
(6) If R contains a system of representatives of G/H and S ⊂ G satisfies T ∩H ⊂∼ S, then

T ⊂∼ R+ S.

Proof. Since G = T − T , we may write x = a− b where (a, b) ∈ T 2. Then

x+ T = (T + a)− b ∼ T − b ∼ (T + b)− b = T

so that x+ T ∼ T because the relation ∼ is transitive.
If A ⊂ G, then

T ∩ (x+A) = x+ (T − x) ∩A ∼ x+ T ∩A

since T ∼ T − x.
For part (3), for each x ∈ F we write x = ax − bx where ax, bx ∈ T . Thus t =

∑

x∈F bx
satisfies t ∈ T and t+ x ∈ T for all x ∈ F .

If H has finite index, there exists a finite set F such that G =
⋃

x∈F (x + H). By the
pigeonhole principle, one of the sets (x+H)∩T for x ∈ F must be infinite. Hence all of them
are infinite by part (2).

For part (5), the translatability of T ∩H follows from part (2), since for any x ∈ T ∩H, we
have x + T ∩H ∼ T ∩ (x +H) = T ∩H. Now let x be any element of H. Then there exist
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a, b ∈ T such that x = a − b. By part (4), there exists c ∈ T such that a + c ∈ H. We also
have b+ c ∈ H. Therefore, x = (a+ c)− (b+ c) ∈ T ∩H − T ∩H.

For part (6), notice that we may assume that R is finite, and in this case,

T =
⋃

r∈R

(r +H) ∩ T ∼
⋃

r∈R

(r +H ∩ T ) ⊂∼

⋃

r∈R

(r + S) = R+ S.

�

We have a good understanding of the structure of translatable semigroups. Since we will
not use this result, its proof is given in Appendix.

Proposition (Proposition 32). Let T be a translatable semigroup. Then either T is a group
(i.e. T equals its Grothendieck group GT ), or T ∼ C ⊕ xN, where x ∈ T and C is a finite
subgroup of GT .

As a consequence of this structure result, any translatable semigroup T admits a basis of
any order h > 2 (Proposition 33). This shows that our theorems are not vacuous in any
translatable semigroup.

In proving our results, we will often have to translate a basis by an element of GT , and
the translated set is not necessarily a subset of T . It is therefore advantageous to introduce
a slightly more general notion of basis. For A ⊂ GT , we say that A is an additive GT -basis
(or simply a GT -basis) of T if there exists h > 1 such that T ⊂∼ hA. Again the order ord∗T (A)
of the basis A over T is then the minimal such h. Note that any basis of T is automatically
also a GT -basis of T of the same order. We can then speak about regular, exceptional and
essential subsets of GT -bases in the same way as bases.

2.2. A generalization of the Erdős-Graham criterion. In the early eighties, Erdős and
Graham proved [6, Theorem 1] that if A is a basis of N and a ∈ A, then A \ {a} is a basis of
N if and only if gcd (A \ {a} −A \ {a}) = 1. This criterion was generalized to groups in [19,
Lemma 7], as we now recall. Let T be a translatable semigroup and GT be its Grothendieck
group. For B ⊂ GT (in particular for B ⊂ T ), let 〈B〉 be the subgroup of G = GT generated
by B. The criterion states that if A is a basis of G and a ∈ A, then A \ {a} is a basis of G if
and only if 〈A \ {a} − A \ {a}〉 = G. We now generalize further this criterion to translatable
semigroups and exceptional subsets instead of exceptional elements.

We first prove the following more general form of [19, Lemma 7].

Lemma 12. Let T be a translatable semigroup and G be its Grothendieck group. Let s, t, h > 1.
Suppose B ⊂ G and a ∈ G satisfy

T ⊂∼

h
⋃

i=h−t+1

(iB + (h− i)a).

Suppose (sB+a)∩(s+1)B 6= ∅ (in particular, this is the case if sB−sB = G). Then T ⊂∼ h′B
where h′ = (t− 1)s+ h.

Proof. Suppose c ∈ (sB + a)∩ (s+1)B. Then 2c ∈ (2sB +2a) ∩ ((2s+1)B + a)∩ (2s+ 2)B.
Continuing in this way yields

(t− 1)c ∈
t−1
⋂

i=0

(

((t− 1)(s + 1)− i)B + ia
)

.
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For all but finitely many x ∈ T , we have x ∈ (t− 1)c+ T , and the hypothesis implies that for
all but finitely many of them,

x ∈ (t− 1)c+

t−1
⋃

i=0

((i+ h− t+ 1)B + (t− 1− i)a).

It follows that for all but finitely many x ∈ T , we have

x = (x− (t− 1)c) + (t− 1)c ∈ ((t− 1)(s + 1) + h− t+ 1)B + (t− 1)a = h′B + (t− 1)a.

Since T ∼ T + (t− 1)a, this implies that T ⊂∼ h′B, as desired. �

We can now state our generalization of the Erdős-Graham criterion.

Lemma 13. Let T be a translatable semigroup of Grothendieck group G. Let A be a G-basis of
T . Let F be a finite subset of A. Then A\F is a G-basis of T if and only if 〈A\F−A\F 〉 = G.

In the case of N, this was proved by Nash and Nathanson in [20, Theorem 3]. Their proof
uses the fact that, in N, any set of positive Schnirelmann density is a basis. Our argument is
different from theirs.

Proof. Let B = A\F . To prove the “only if” direction, let us suppose that H = 〈B−B〉 ( G.
Let us prove that T 6⊂∼ ℓB for any ℓ > 1. Let ℓ > 1. We may suppose that ℓB ∩ T is
infinite, since otherwise we are done. Note that ℓB lies in a coset x + H for some x ∈ G.
In particular, (x +H) ∩ T is infinite. Let y ∈ G \ (x +H); by Lemma 11 part (2), we have
(y+H)∩T ∼ y−x+(x+H)∩T so (y+H)∩T is an infinite subset of T that does not meet
ℓB. In other words, T 6⊂∼ ℓB, as desired.

We now prove the “if” direction. First, note that there exists s > 1 such that sB∩(s+1)B 6=
∅. Indeed, let b ∈ B. Since b ∈ G = 〈B − B〉, there exists s > 1 such that b ∈ s(B − B).
Therefore, there exists (x, y) ∈ (sB)2 such that b = y − x. Now y = x + b ∈ sB ∩ (s + 1)B
yields the desired nonempty intersection. According to Lemma 12 (with a = 0), it now suffices

to show that T ⊂∼
⋃ℓ

i=1 iB for some ℓ > 1. Since 〈B − B〉 = G, each element x ∈ F has a
representation of the form

x =
sx
∑

i=1

(ai(x)− bi(x)), (8)

where sx ∈ N and ai(x), bi(x) ∈ B. Since A is a G-basis of T , let h > 1 satisfy T ⊂∼ hA. All
but finitely many elements g ∈ T can be written as

g =
∑

x∈F

mx(g)x+ y,

where mx(g) > 0 and
∑

x∈F mx(g) 6 h whereas y ∈ (h −
∑

x∈F mx(g))B. Replacing each
occurrence of x ∈ F with (8) and translating by g0 = h

∑

x∈F

∑sx
i=1 bi(x) ∈ T , we find that

g + g0 =
∑

x∈F

sx
∑

i=1

(mx(g)ai(x) + (h−mx(g))bi(x)) + y,

where the right-hand side is a sum of

h
∑

x∈F

sx + h−
∑

x∈F

mx(g)

elements in B. Let ℓ = h
∑

x∈F sx+h. This shows that g0+T ⊂∼
⋃ℓ

i=1 iB and by translatability,
we conclude. �
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As pointed out by Nash and Nathanson [20], the conclusion of Lemma 13 is no longer true
for the semigroups T = N or T = Z if F ⊂ A is allowed to be infinite. For example, consider
A = {1} ∪ {2n : n ∈ T}, a basis of order 2 of T , and F = {n ∈ T : ∀k > 1, n 6= 6k}.

More generally, let T be a translatable semigroup and h > 2. We invoke the construction
of a basis A of order h in Proposition 33. With the notation of that construction, let B =
⋃∞

i=0Λi ⊂ A and F = A \ B. Then 〈B − B〉 = GT . However, for any ℓ > 1, the sumset ℓB
misses all elements whose support has cardinality strictly larger than ℓ, so B is not a basis.
This means that in any translatable semigroup, the finiteness of F is crucial for Lemma 13.

2.3. Characterizations of exceptional and essential subsets. As demonstrated by Lemma
13, the subgroups 〈A \ F −A \ F 〉, where F is a finite subset of a given basis A, play an im-
portant role. We now prove some preliminary results on these subgroups. The next lemma
states that whenever F is a finite subset of A, the subgroup 〈A \ F − A \ F 〉 cannot be too
small.

Lemma 14. Let T be a translatable semigroup of Grothendieck group G. Let A be a subset of
G such that T ⊂∼ hA for some h > 2 and let F be a finite subset of A. Let H = 〈A\F −A\F 〉.
Then for any x ∈ A \ F , we have (h− 1)(F ∪ {x}) +H = G. Consequently,

[G : H] 6

(

h+ |F | − 1

h− 1

)

.

Proof. By the definition of H, we have A\F ⊂ x+H, so that A ⊂ (x+H)∪F and A meets a
finite number of cosets of H. This fact and the finiteness of T \ hA imply that the projection
of T in G/H is finite. However, T − T = G, so G/H is finite.

Let g ∈ G/H. We may write g = t +H for some t ∈ T . Now hA ⊂ hF ∪
⋃h−1

i=0 (iF + (h −
i)x + H). Note that hF ∪ (T \ hA) is finite and (t +H) ∩ T is infinite by Lemma 11. This

implies that g = t′ +H for some t′ ∈
⋃h−1

i=0 (iF + (h− i)x). Finally,

G ⊂ H +
h−1
⋃

i=0

(iF + (h− i)x) = H + x+ (h− 1)(F ∪ {x})

as desired. This implies that [G : H] 6 |(h− 1)F ′| where F ′ = F ∪{x} has cardinality |F |+1.
The bound follows from counting the number of (h − 1)-combinations of elements from F ′

with repetition allowed. �

We are now ready to prove the first part of Theorem 3.

Proof of Theorem 3(i). Lemma 14 implies that if G does not have proper subgroups of index

at most
(h+k−1

h−1

)

, then a basis A of order at most h cannot contain an exceptional (and

in particular essential) subset F of cardinality at most k. This yields the first implication of
Theorem 3(i). For the second one, let G be an infinite abelian group and H a proper subgroup
of finite index. Let R be a (finite) set of distinct representatives modulo H. Then A = R∪H
is a basis of order 2 of G and R is an exceptional set, which contains an essential subset.
Therefore, EG(2, k) > 0 for some k. (We will encounter similar arguments in Section 3.4.) �

Lemma 13 gives the following characterization of essential subsets of a basis.

Corollary 15. Let T be a translatable semigroup of Grothendieck group G and A be a G-basis
of T and E ⊂ A be a finite subset. Then E is an essential subset of A if and only if the
following two statements hold.

(1) H = 〈A \ E −A \ E〉 is a proper subgroup of G.
(2) G/H is generated by x− a, where x is any element of E and a is any element of A\E.
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In particular, if E is essential then G/H is a finite cyclic group.

Proof. Lemma 13 implies that E is essential precisely when G 6= H, but G = 〈(A \ E) ∪
{x} − (A \ E) ∪ {x}〉 for any x ∈ E. The claimed characterization follows by noting that
〈(A \ E) ∪ {x} − (A \ E) ∪ {x}〉 is generated by H ∪ {x− a} for any a ∈ A \E.

The second claim follows from the fact that G/H is finite, by Lemma 14. �

The next lemma gives a correspondence between essential subsets and proper subgroups.

Lemma 16. Let T be a translatable semigroup of Grothendieck group G and A be a G-basis
of T . Let E be an essential subset of the basis A and F be any subset of A such that E 6⊂ F .
Then 〈A \ (E ∪ F )−A \ (E ∪ F )〉 ( 〈A \ F −A \ F 〉.

Proof. We have 〈A \ (E ∪ F ) − A \ (E ∪ F )〉 ⊂ 〈A \ E − A \ E〉 ∩ 〈A \ F − A \ F 〉. Further,
since A \ (E ∩ F ) = (A \E) ∪ (A \ F ), we have

〈A \ E −A \E〉+ 〈A \ F −A \ F 〉 = 〈A \ (E ∩ F )−A \ (E ∩ F )〉.

Since E ∩F ( E, it follows from the essentiality of E and Lemma 13 that the right-hand side
is G 6= 〈A \E−A \E〉. So 〈A \F −A \F 〉 6⊂ 〈A \E −A \E〉, which finally yields the desired
result. �

2.4. Invariant means. Let (T,+) be an abelian semigroup. Let ℓ∞(T ) denote the set of all
bounded functions from T to R. An invariant mean on T is a linear functional Λ : ℓ∞(T ) → R

satisfying the following conditions.

(M1) Λ is nonnegative: if f > 0 on T , then Λ(f) > 0.
(M2) Λ has norm 1: Λ(1T ) = 1 where 1T is the characteristic function of T .
(M3) Λ is translation-invariant : Λ(τxf) = Λ(f) for any f ∈ ℓ∞(T ) and x ∈ T , where τx is

the translation by x: τxf(t) = f(x+ t).

Note that by restricting Λ to indicator functions of subsets of T , we induce a function
d : P(T ) → [0, 1], that we will usually call density satisfying the following three properties.

(D1) d is finitely additive, i.e. if A1, . . . , An ⊂ T are disjoint, then

d

(

n
⋃

i=1

Ai

)

=
n
∑

i=1

d(Ai).

(D2) d is translation-invariant, i.e. for all A ⊂ T and x ∈ T , we have d(x+A) = d(A).
(D3) d is a probability measure, i.e. d(T ) = 1.

Note that the axiom (D1) implies that for any A1, . . . , An ⊂ T , we have d(
⋃n

i=1Ai) 6
∑n

i=1 d(Ai). Also, if A is finite, then d(A) = 0.
If there exists an invariant mean on T , then T is said to be amenable. It is known that

all abelian semigroups are amenable (for a proof, see [4, Theorem 6.2.12]). However, even in
N, all known proofs of the existence of invariant means are nonconstructive3, and require the
axiom of choice in one way or another (e.g. the Hahn-Banach theorem or ultrafilters).

In Sections 4 and 5, we will use the existence of invariant means as a blackbox and make
crucial use of their properties to prove our results. For now, we record the following simple
fact, which is an immediate extension of the so-called prehistorical lemma to invariant means.

Lemma 17. Let T be a cancellative abelian semigroup, G be its Grothendieck group and d be
a density on T . If A,B ⊂ T and d(A) + d(B) > 1 then T ⊂ A − B ⊂ G. In particular, if T
is a group then T = A−B.

3Observe that popular densities such as the lower asymptotic one do not satisfy the first axiom: only an
inequality is true in general.
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Proof. Let t ∈ T . By (D2), d(A) + d(t + B) = d(A) + d(B) > 1. By axioms (D1) and (D3),
we infer that A ∩ (t+B) 6= ∅. Let a = t+ b ∈ A ∩ (t+B), then t = a− b ∈ A−B. �

We will also make use of the following observation, which says that if T is translatable, then
any invariant mean on T can be extended to all of G in a trivial way.

Lemma 18. Let T be a translatable semigroup, G be its Grothendieck group and Λ be an
invariant mean on T . For f ∈ ℓ∞(G), define Λ′(f) = Λ(f |T ), where f |T is the restriction of
f on T . Then Λ′ is an invariant mean on G.

Proof. Since G = T − T , it suffices to verify (M3) for any f ∈ ℓ∞(G) and x ∈ T . We have

Λ′(τxf) = Λ((τxf)|T ) = Λ(τx(f |T−x))

= Λ(τx(f |T )) + Λ(τx(f |(T−x)\T ))

= Λ(f |T ) + Λ(f |T\(T+x))

= Λ′(f)

since T \ (T + x) is finite and f is bounded. �

When T is a group, in proving Theorem 9, we will require the following additional property
of d.

(D4) d is invariant with respect to inversion, i.e. d(A) = d(−A) for all A ⊂ T .

This property may not be satisfied by all invariant means, but invariant means having this
property abound (see for instance [5, Theorem 1]).

3. Essential subsets of an additive basis

3.1. Finiteness of the set of essential subsets. We first prove Theorem 1.

Proof of Theorem 1. Let T be a translatable semigroup and G be its Grothendieck group. Let
also A be an additive G-basis of order h > 1 over T . We assume for a contradiction that the
set FA of all essential subsets of A is infinite. It follows that h > 2 and there exists an infinite
sequence (Fi)i>1 of pairwise distinct elements of FA. In addition, extracting an appropriate

infinite subsequence of (Fi)i>1 if need be, we may assume that Fi+1 6⊂
⋃i

j=1 Fj for all i > 1.

Let us set Hi = 〈A \
⋃i

j=1 Fj −A \
⋃i

j=1 Fj〉 for all i > 1. On the one hand, it follows from

Lemma 16 that (Hi)i>1 is a decreasing sequence of proper subgroups of G, and from Lemma
14 that, for every i > 1, the quotient group Gi = G/Hi is finite (in particular, Hi is infinite).
On the other hand, for every i > 1, there is a unique coset K∗

i of Hi such that A\K∗
i is finite.

In particular, one has K∗
j ⊂ K∗

i for any j > i.

Now, for each i > 1, let us define di = min{ℓ > 1 : |(ℓA)∩ (x+Hi)| = ∞, ∀x ∈ G}. In other
words, di is the smallest integer ℓ > 1 such that every coset of Hi has an infinite intersection
with ℓA. Alternatively, one also has di = min{ℓ > 1 : Gi ⊂ K∗

i + (ℓ − 1)πi(A)} where, for
every i > 1, πi denotes the canonical epimorphism from G to Gi.

It is easily noticed that by definition, the sequence (di)i>1 is nondecreasing. Also, since Hi

is a proper subgroup of G and K∗
i is the only coset of Hi having an infinite intersection with

A, one has 2 6 di for all i. Finally, since T \ hA is finite by assumption and each coset of Hi

has an infinite intersection with T , one has di 6 h for all i.
At this stage, observe that by translatability, any translation of the original additive G-basis

A by an element a ∈ G results in a new additive G-basis A′ = a + A of order h itself over
T . The sequence (F ′

i )i>1 obtained by translating each Fi by a then is an infinite sequence of
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essential subsets of A′ satisfying F ′
i+1 6⊂

⋃i
j=1 F

′
j for all i > 1, and starting from which the

previous definitions yield the very same sequences (Hi)i>1 and (di)i>1 as for A itself.
Our aim is to prove that, starting from any given i > 1, the nondecreasing sequence (dj)j>i

cannot be constant, which will give the desired contradiction. To do so, let us fix some i > 1
and let xi ∈ G such that K∗

i = xi +Hi. Now, using the just described translation-invariance
of (Hi)i>1 and (di)i>1, we can assume from now on that xi = 0 and K∗

i = Hi. In particular,
di = min{ℓ > 1 : Gi ⊂ (ℓ− 1)πi(A)}.

It follows from the minimality of di > 2 that there exists at least one coset Ki of Hi

belonging to (di − 1)πi(A) \ (di − 2)πi(A). Now, pick an integer j > i. Since we are done if
dj > di, assume that dj = di and let Kj be any coset of Hj such that Kj ⊂ Ki.

Since dj = di, one has Kj ∈ K∗
j + (dj − 1)πj(A) = K∗

j + (di − 1)πj(A). Let Kℓ2 , . . . ,Kℓdi
be any di − 1 elements of πj(A) such that in Gj , one has

Kj = K∗
j +Kℓ2 + · · ·+Kℓdi

.

For every j > i, let f i
j : Gj → Gi be the group homomorphism sending every coset Kj of

Hj to the unique coset Ki of Hi such that Kj ⊂ Ki. Note also that by definition, one has
f i
j ◦ πj = πi. Since f i

j(K
∗
j ) = K∗

i = Hi, applying f i
j to both sides of the equality above in Gj

results in the following relation in Gi,

Ki = f i
j(Kℓ2) + · · · + f i

j(Kℓdi
).

For every 2 6 k 6 di, there exists by definition an element ak ∈ A such that Kℓk = πj(ak).
However, ak ∈ K∗

i would imply f i
j(Kℓk) = (f i

j ◦ πj)(ak) = πi(ak) = K∗
i = Hi and readily

give Ki ∈ (di − 2)πi(A), which is a contradiction. As a result, Kℓk ∈ πj(A \ K∗
i ), for every

2 6 k 6 di. We now have all we need to complete our proof.
On the one hand, each Kℓk can take at most |πj(A \ K∗

i )| 6 |A \K∗
i | values, so that the

number of possible sums of the form Kℓ2 + · · ·+Kℓdi
in Gj is at most

(

|A \K∗
i |+ di − 1

di

)

,

which is independent of j.
On the other hand, there are [Hi : Hj] cosets of Hj that are contained in Ki, and in order

for each of them to be an element of K∗
j + (di − 1)πj(A), we must have

[Hi : Hj] 6

(

|A \K∗
i |+ di − 1

di

)

.

Since [Hi : Hj] tends to infinity when j does so, the previous inequality holds only for finitely
many integers j > i, so that at least one of them satisfies dj > di. Since i > 1 was chosen
arbitrarily, we obtain that (di)i>1 tends to infinity when i does so, which contradicts the fact
that di 6 h for all i, and proves the desired result. �

3.2. Bounding the number of essential subsets. We now prove Theorem 2. Let A be
a GT -basis of order at most h over T , and let k > 2 be an integer. It readily follows from
Theorem 1 that the set F of essential subsets of cardinality k of A is finite. Our aim is to
bound N = |F| in terms of h and k alone. We will actually prove the following precise bounds:

N 6 (50h log k)k (9)

and
N 6 (50k log k)h−1. (10)

We first prove the following lemma.
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Lemma 19. Take a minimal sequence F1, . . . , Fn of elements of F with the property that
⋃

i6n Fi =
⋃

F∈F F . Then n 6 15(h − 1) log k.

We will show later (Remark 2) that this bound is sharp, up to the constant, which is why
we decided to state it as an independent lemma.

Proof. We may assume that n > h− 1, since otherwise we are done. By minimality, note that
Fi 6⊂

⋃

16j<i Fj for any i ∈ [n]. Also, |
⋃

F∈F F | 6 nk. Let Hi = 〈A \
⋃i

j=1 Fj −A \
⋃i

j=1 Fj〉.
By Lemma 16, one has

Hn ( Hn−1 ( · · · ( H1 ( G.

Therefore,
[G : Hn] > 2n. (11)

On the other hand, it follows from Lemma 14 that

[G : Hn] 6

(

h+ nk − 1

h− 1

)

(12)

since |
⋃n

j=1 Fj | 6 kn. Combining (11) and (12), one has 2n 6
(h+nk−1

h−1

)

. Using the elementary

bound
(a
b

)

6 (eab )
b, we have

2n 6

(

e(h − 1 + nk)

h− 1

)h−1

6

(

2enk

h− 1

)h−1

.

This implies that n
h−1 6 2 log(6 nk

h−1). A quick analysis of the real function x 7→ x− 2 log(6xk)

reveals that this inequality may only be satisfied if n 6 15(h − 1) log k. �

We return to the proof of Theorem 2. We start with the first item of that theorem. Using
again the bound

(

a
b

)

6 (eab )
b, we have

N 6

(

nk

k

)

6 (en)k. (13)

Injecting Lemma 19 above yields N 6 (50h log k)k ≪k hk, as desired.
We now prove the second item of Theorem 2. Let H = 〈A \

⋃

F∈F F −A \
⋃

F∈F F 〉. Then
we prove the following lemma.

Lemma 20. There exists an injection from F to the set of cyclic subgroups of G/H.

Proof. First consider the map E 7→ HE = 〈A\E−A\E〉 defined on F . It is injective because
of Lemma 16. Note that H 6 HE for any E ∈ F . Further the map HE 7→ HE/H is also an
injection (as a restriction of the classical bijection between subgroups of G containing H and
subgroups of G/H). Let Q = G/H. This is a finite abelian group. The theory of characters
of finite abelian groups implies that there exists an involution f of the set of subgroups of
Q such that for any K 6 Q, the groups K and Q/f(K) are isomorphic; cf [17]. Consider
the map E 7→ f(HE/H), which is injective as a composition of three injective maps. Finally,
f(HE/H) ≃ (G/H)/(HE/H) ≃ G/HE , which is cyclic by Corollary 15. �

In particular, we have N 6 [G : H]. Because of Lemma 14, we infer N 6
(

h−1+nk
h−1

)

6
(

e(h−1+nk)
h−1

)h−1
and injecting again Lemma 19, we conclude N 6 (e(1 + 15k log k))h−1

6

(50k log k)h−1.

Remark 1. Note that these proofs also show that ET (h,6 k) ≪k hk and ET (h,6 k) ≪h

(k log k)h−1. One must simply replace (13) by N 6 k
(nk
k

)

by unimodularity of the binomial
coefficients and the assumption that n > 2 (otherwise n = N = 1).
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Remark 2. We point out that Lemma 19 is optimal up to the constant, for any h and k = 2r−1

for some r > 1. Indeed, let G =
⊕h

i=1Gi, where Gi
∼= Fr

2 for i = 1, . . . , h − 1 and Gh is an

infinite group. Then A =
⋃h

i=1 Gi is a basis of order h of G. Using Lemma 13, one can show
that F ⊂ A is an essential subset if and only if for some 1 6 i 6 h− 1, F ⊂ Gi and Gi \F is a
maximal subgroup of Gi. In other words, F is the complement of a hyperplane of Gi and has
cardinality k = 2r−1. For each 1 6 i 6 h−1, in order to cover all complements of hyperplanes
of Gi, we need at least r of them. Hence, in order to satisfy the hypothesis of Lemma 19, we
need n > (h− 1)r = (h− 1)(log2 k+1). What may not be optimal in the bounds (9) and (10)
is how we infer an upper bound for the total number N of essential subsets from the upper
bound on n.

3.3. Comparing ET and EGT
. In this section we prove Theorem 8. We first need the

following generalization of Lemma 13.

Lemma 21. Let T be a translatable semigroup of Grothendieck group G. Let A be a G-basis
of T and F ⊂ A be any finite subset. Put B = A \ F and H = 〈B −B〉. Let b be an arbitrary
element of B. Then T ∩H is a translatable semigroup of Grothendieck group H and B − b is
an H-basis of T ∩H.

Clearly, Lemma 13 is a special case of Lemma 21 when H = G. In N, Lemma 21 was
proved by Nash-Nathanson [20, Theorem 1]. Again, Nash-Nathanson’s proof is very specific
to N (it uses Schnirelmann density and Schnirelmann’s theorem). Our proof is different from
theirs and works for any translatable semigroup. In fact, we use Lemma 13 to prove Lemma
21, while Nash and Nathanson proceeded the other way round.

Proof. The fact that T ∩H is a translatable semigroup of Grothendieck group H is Lemma
11 part (5). For h large enough, and by translatability, we have

T ∼ T − hb ⊂∼ h(A− b) =

h
⋃

i=0

(i(F − b) + (h− i)(B − b))

⊂
h
⋃

i=0

(i(F − b) + h(B − b)) since 0 ∈ B − b.

In particular,

T ∩H ⊂∼

h
⋃

i=0

(i(F − b) + h(B − b)) .

Since F is finite, this means that there are finitely many translates a1 + h(B − b), . . . , ak +
h(B − b) of h(B − b) such that

T ∩H ⊂∼

k
⋃

i=1

(ai + h(B − b)) .

A priori a1, . . . , ak ∈ G. But a translate ai+h(B− b) can have nonempty intersection with H
only if ai ∈ H. Thus we may assume that a1, . . . , ak ∈ H. Let A′ = h(B−b)∪{a1, . . . , ak} ⊂ H,
then the equation above shows that T ∩H ⊂∼ 2A′. Clearly 〈hB − hB〉 = H. We now invoke
Lemma 13 with the set A′ and the translatable semigroup T ∩H (whose Grothendieck group
is H), and conclude that for some k > 1, T ∩H ⊂∼ kh(B − b), as desired. �

Next we need the following lemma of independent interest, which is reminiscent of Hegarty’s
reduction [16] of the study of EN(h, k) to the postage stamp problem.
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Lemma 22. Let T be a translatable semigroup of Grothendieck group G. Let H be a subgroup
of G of finite index. Let B be a subset of G satisfying 〈B − B〉 = H and b be an arbitrary
element of B. Let F be a finite subset of G disjoint from B and A = F ∪B. Then the following
are equivalent:

(1) A is a G-basis of T .
(2) (a) B − b is an H-basis of T ∩H, and

(b) 〈F − b+H〉 = G (i.e. F − b generates G/H).

Further, if h1 is minimal such that h1((F − b) ∪ {0}) + H = G, h2 = ord∗T∩H(B − b), and
h = ord∗T (A), then we have h1 + 1 6 h 6 h1 + h2.

Proof. If (1) holds, then (2a) follows from Lemma 21 and (2b) follows from Lemma 14.
Now suppose (2) holds. Let h1 be minimal such that h1((F − b) ∪ {0}) + H = G and

h2 = ord∗T∩H(B − b). If T ⊂∼ hA, then by Lemma 14 we have (h− 1)((F − b) ∪ {0}) +H = G
and therefore h > h1 + 1. We will now prove that T ⊂∼ (h1 + h2)A. We have

(h1 + h2)(A− b) =

h1+h2
⋃

i=0

(i(F − b) + (h1 + h2 − i)(B − b))

⊃
h1
⋃

i=0

(i(F − b) + h2(B − b)) since 0 ∈ B − b

= h2(B − b) + h1((F − b) ∪ {0}).

Since h2(B− b) misses only finitely many elements of T ∩H and h1((F − b)∪{0}) meets every
coset of H, by Lemma 11 part (6) we know that T ⊂∼ (h1 + h2)(A − b), and T ⊂∼ (h1 + h2)A
by translatability. �

We are now ready to prove Theorem 8.

Proof of Theorem 8. In order to show that ET (h, k) = EG(h, k), we will show that ET (h, k) 6
EG(h, k) and EG(h, k) 6 ET (h, k).

Let us first prove that ET (h, k) 6 EG(h, k). Let A be a basis of T of order at most h. Our
aim is to prove that A has at most EG(h, k) essential subsets of cardinality k.

By Theorem 1, we already know that A has finitely many essential subsets. Let F be the
union of all essential subsets of A. From now on, and since the desired inequality readily
holds true otherwise, we assume that F is nonempty. Let B = A \ F and H = 〈B − B〉. By
definition, A = F ∪B and taking an arbitrary element b ∈ B, we have B ⊂ H + b.

By Lemma 14, H is a subgroup of finite index of G so that Lemma 22 applies to the partition
A = F ∪ B. It follows that, since A is a G-basis of T , the condition (2a) of Lemma 14 is
satisfied, that is to say B − b is an H-basis of T ∩H.

Also, let us prove that F ∩ (H + b) = ∅. Assume to the contrary that x ∈ F ∩ (H + b).
Then, there exists an essential subset E′ of A such that x ∈ E′. Since E′ ⊂ F , we obtain
b ∈ A\F ⊂ A\E′. Letting HE′ = 〈A\E′−A\E′〉, we have H ⊂ HE′ , that is H+b ⊂ HE′+b.
By Corollary 15, G is generated by HE′ ∪ {x− b}. Yet x− b ∈ HE′ which yields G = HE′, a
contradiction.

By Lemma 14, (h− 1)(F ∪ {b}) +H = G. Let A′ = F ∪ (H + b) ⊂ G. Then A′ is a basis of
G of order at most h. Also, 〈A′ \ F − A′ \ F 〉 = H is a subgroup of finite index of G so that
Lemma 22 applies to the partition A′ = F ∪ (H + b). Finally, the condition (2a) of Lemma 14
is trivially satisfied in this case.

Now let E ⊂ F be any subset. We know that B ⊂ H + b and E ∩ (H + b) = ∅. Since H is a
subgroup of finite index of G, it follows that A\E = (F \E)∪B and A′ \E = (F \E)∪(H+b)



ON ADDITIVE BASES IN INFINITE ABELIAN SEMIGROUPS 17

are two partitions to which Lemma 22 applies. Note also that the condition (2a) of that lemma
has already been proved to hold in both cases. This gives

A \ E is a G-basis of T ⇐⇒ 〈F \E − b+H〉 = G ⇐⇒ A′ \ E is a basis of G.

Consequently, each essential subset of A (all of which are subsets of F ) is an essential subset
of A′. Now A′ has at most EG(h, k) essential subsets of cardinality k by definition, whence
ET (h, k) 6 EG(h, k).

To prove that EG 6 ET , we argue similarly; thus let A be a basis of G of order at most h
and let F be the union of its essential subsets. From now on, and since the desired inequality
readily holds true otherwise, we assume that F is nonempty. Using Lemma 11 part (3), by
translating A by some t ∈ T , and since translations preserve bases and the number of essential
subsets, we may assume that F ⊂ T . By Lemma 13, the subgroup H = 〈A \ F − A \ F 〉 of
G is proper and of finite index, and A = F ∪ B where B = A \ F ⊂ x +H for some x ∈ G.
We may assume x ∈ T by Lemma 11 part (4). We have again (h − 1)(F ∪ {x}) +H = G by
Lemma 14. Let A′ = F ∪ (x + T ∩H) ⊂ T . Then hA′ ⊃ (h − 1)(F ∪ {x}) + T ∩H ∼ T by
Lemma 11 part (6). Using Lemma 22 in the same way as before, we see that if E ⊂ F then

A \ E is a basis of G ⇐⇒ 〈F \ E − x+H〉 = G ⇐⇒ A′ \ E is a basis of T.

This shows that all essential subsets of A are essential subsets of A′, so A has at most ET (h, k)
essential subsets of size k, and finally EG(h, k) 6 ET (h, k). This concludes the proof. �

3.4. Discussion of finite quotients and lower bounds. In this section we exhibit a con-
nection between the function EG(h, k) and finite quotients of G, which we use to prove parts
(ii) and (iii) of Theorem 3.

Let G be a (possibly finite) abelian group. We say that A ⊂ G is a nice basis of G if hA = G

and a nice weak basis if
⋃h

i=0 iA = G for some h ∈ N. Also if G is finite, note that A ⊂ G is
a nice basis if and only if 〈A−A〉 = G, and a nice weak basis if and only if 〈A〉 = G.

A finite subset F of a nice basis A is said to be nicely exceptional if A \ F is no longer a
nice basis, and nicely essential if it is minimal for this property. Similarly, a finite subset F of
a nice weak basis A is called nice-weakly exceptional if A \ F is no longer a nice weak basis,
and nice-weakly essential if it is additionally minimal for this property.

We define E∗
G(h, k) (resp. E

∗
G(h,6 k)) as the maximal number of nice-weakly essential sets

of cardinality k (resp. at most k) a nice weak basis A of order at most h of G may have.

Proposition 23. Let G be an infinite abelian group and h > 2, k > 1 integers. Then
EG(h, k) > max

[G:H]<∞
E∗

G/H(h− 1, k) and EG(h,6 k) = max
[G:H]<∞

E∗
G/H(h− 1,6 k).

Note that by Theorem 3(i), we already know that if G does not have subgroups of finite
index, then EG(h, k) = EG(h,6 k) = 0.

Proof. Let H be a finite index subgroup of G. Let A ⊂ G/H be a nice-weak basis of order at
most h− 1 which has E∗

G/H(h− 1, k) essential subsets of cardinality k. We may suppose that

0 /∈ A. Let Ã ⊂ G be a set of representatives of A; in particular Ã ∩H = ∅. Let B = Ã ∪H.
It is a basis of order at most h of G. For any subset F ⊂ A of cardinality k, let F̃ ⊂ Ã
be the set of representatives of the elements of F inside Ã. Applying Lemma 22 (with the

roles of B,F,A in that lemma played by H, Ã \ F̃ , (Ã \ F̃ )∪H respectively), we see that F is

nice-weakly exceptional in A ⇔ 〈A \ F 〉 6= G/H ⇔ F̃ is exceptional in B. In particular F is

nice-weakly essential in A if and only if F̃ is essential in B. Thus EG(h, k) > E∗
G/H(h− 1, k).

The proof of EG(h,6 k) > E∗
G/H(h− 1,6 k) runs along the same lines.
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We will now prove that EG(h,6 k) 6 E∗
G/H(h−1,6 k) for some subgroup H of finite index

of G. Suppose A ⊂ G is a basis of order at most h which has EG(h,6 k) essential subsets of
cardinality at most k. Let F be the union of these essential subsets and H = 〈A \F −A \F 〉,
a subgroup of finite index by Lemma 14. Thus A ⊂ F ∪ (x + H) for some x ∈ G. Upon
translating, we may assume that x = 0. For any subset X ⊂ A let X ⊂ G/H denote the
projection of X on H. Then the projection A = F ⊂ G/H is a nice weak basis of order at
most h− 1 of G/H. Let E be any essential subset of A.

Claim 1: A \ E ∩E = ∅. Equivalently, (A \ E) ∩ (E +H) = ∅.
We have A ⊂ E∪HE, where HE = 〈A\E−A\E〉 is a proper subgroup of G containing H.

Thus E ⊃ A \HE and by minimality E = A \HE . Consequently, E+HE = (A \HE)+HE ⊂
G \HE. Thus

(A \E) ∩ (E +H) ⊂ (A \ E) ∩ (E +HE) ⊂ HE ∩ (G \HE) = ∅

and Claim 1 is proved.
Claim 2: E is a nice-weakly essential subset of A.

Observe that by Claim 1, A\E = A \ E ⊂ HE/H so 〈A\E〉 6= G/H and E is a nice-weakly
exceptional subset of A. Let us now show that for any x ∈ E, the subset E \ {x} of A is not
nice-weakly exceptional, i.e. 〈(A \ E) ∪ {x}〉 = G/H. But this follows from the facts that

〈A \E〉 = HE/H, and the projection of x on HE generates G/HE by Corollary 15. Thus
Claim 2 is proved.

Further, if E1 6= E2 are two distinct essential subsets of A, then E1 and E2 are distinct
since A ∩ (E1 + H) = E1 and A ∩ (E2 + H) = E2 by Claim 1. Since the cardinality of E
does not exceed that of E, Claim 2 implies that EG(h,6 k) 6 E∗

G/H(h − 1,6 k), and we are

done. �

Remark 3. • Note that the cardinality of an essential subset may decrease upon projec-
tion, which is why this argument requires the variant with 6 k.

• This proposition reveals that for each h and k, the invariant EG(h,6 k) of G is
entirely determined by the set of finite quotients of G; thus for instance EF2[t](h,6
k) = E

F
N

2
(h,6 k).

We now exhibit a simple way of lower bounding E∗
G/H(h−1, k). Let M(G, k) (resp. M(G,6

k)) be the number of maximal subgroups of cocardinality k (resp. at most k) of a finite group
G.

Proposition 24. Let G be a finite abelian group which admits a decomposition G =
⊕h

i=1 Gi

as a direct sum of h > 1 subgroups. Then E∗
G(h, k) >

∑h
i=1 M(Gi, k) and E∗

G(h,6 k) >
∑h

i=1M(Gi,6 k). Both inequalities are equalities when h = 1.

It would be interesting to know whether equality always holds for some decomposition

G =
⊕h

i=1Gi of G.

Proof. The hypothesis implies that A =
⋃h

i=1 Gi is a basis of order h. We claim that its
nice-weakly essential subsets are precisely the sets of the form Gi \ K where i ∈ [h] and K
is a maximal proper subgroup of Gi. First, let i ∈ [h] and K a proper subgroup of Gi. Let
F = Gi \ K. Then 〈A \ F 〉 =

⊕

j 6=iGj ⊕ K 6= G so F is nice-weakly exceptional. If F is
additionally maximal, then F is essential. Conversely, let F ⊂ A be nice-weakly exceptional,

and let Fi = F ∩Gi so F =
⋃h

i=1 Fi. Then A \F =
⋃h

i=1 Gi \Fi and 〈A \F 〉 =
⊕h

i=1〈Gi \Fi〉.
Therefore at least one i ∈ [h] must satisfy 〈Gi \ Fi〉 6= Gi. Now suppose F is nice-weakly
essential, so by minimality exactly one i ∈ [h] must satisfy 〈Gi\Fi〉 6= Gi, and finally F = Gi\K
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for some i and some maximal subgroup K of Gi. Therefore A has
∑h

i=1M(Gi, k) essential

subsets of cardinality k and
∑h

i=1 M(Gi,6 k) essential subsets of cardinality at most k. This
proves both inequalities.

Since a nice weak basis of order 1 of G is precisely G or G \ {0}, we obtain the equality
when h = 1. �

The two propositions above imply that EG(2,6 k) = max
[G:H]<∞

M(G/H,6 k). So there

remains to understand M(G,6 k) for finite abelian groups.

Proposition 25. For any finite abelian group and integer k > 1, we have M(G,6 k) 6 2k−1
and equality holds if, and only if, G = Fd

2 and k = 2d−1 for some d > 1, in which case we
even have M(G, k) = 2k − 1.

Proof. The basic theory of finite abelian groups indicates that a subgroup is maximal if, and
only if, it has cardinality |G| /p for some prime p dividing |G|, thus |G| /p > |G| − k. In
particular M(G, k) = 0 unless |G| 6 2k, which we henceforth suppose. Further, the number
of subgroups of index p equals the number of subgroups of cardinality p. For each prime

p 6
|G|

|G|−k , let Gp = {x ∈ G : px = 0}; the number of subgroups of order p of G is
|Gp|−1
p−1 .

Therefore,

M(G,6 k) =
∑

p6 |G|
|G|−k

|Gp| − 1

p− 1
6

∑

p6 |G|
|G|−k

(|Gp| − 1).

Now we invoke the simple inequality
∑n

i=1(ai − 1) 6
∏n

i=1 ai − 1, valid for any n-tuple of real
numbers satisfying ai > 1, where equality holds if and only if ai = 1 for all but at most one
i ∈ [n]. Finally we apply the fact that

∏

p |Gp| 6 |G|, which follows from the fact that the

subgroups Gp of G are in direct sum, the already derived condition |G| 6 2k, and conclude
that M(G,6 k) 6 2k − 1. The equality case follows readily from the conjunction of all four
inequalities used in the proof. �

The proof also reveals that if G has no nontrivial element of order less than p, we have
M(G,6 k) 6 kp/(p− 1)− 1 where equality holds if, and only if, |G| = Fd

p and k = pd − pd−1.
We now prove parts (ii) and (iii) of Theorem 3.

Proof of Theorem 3 (ii) and (iii). For part (ii), we consider k = 2r−1 for some r > 1. By

hypothesis, there is a subgroup H of G such that G/H ∼= F
(h−1)r
2 . By Proposition 23,

EG(h, k) > E∗
G/H(h− 1, k). We write F

(h−1)r
2 =

⊕h−1
i=1 Gi where Gi

∼= Fr
2. By Propositions 24

and 25, we have E∗
G/H(h− 1, k) > (h− 1)M(Fr

2, 2
r−1) = (h− 1)(2k − 1).

For part (iii), Propositions 23 and 24 imply that

E(2,6 k) = max
[G:H]<∞

E∗
G/H(1,6 k) = max

[G:H]<∞
M(G/H,6 k).

The last quantity is 6 2k − 1 by Proposition 25. �

4. The function XT (h, k)

4.1. Upper bounds. We fix a translatable semigroup T of Grothendieck group G = GT and
an invariant mean Λ on T . By Lemma 18, we extend it to an invariant mean on G by letting
Λ(f) = Λ(f |T ) for any f ∈ ℓ∞(G), where f |T is the restriction of f to T . For a set A ⊂ G,
we refer to d(A) = Λ(1A) as the “density” of A. Note that d(T ) = 1. We first prove some
lemmas on the densities of certain sumsets.
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Lemma 26. Let B,C ⊂ G. Then either d(B + C) > 2d(C) or B −B ⊂ C −C.

Proof. Suppose there are two distinct elements b, b′ of B such that b+C and b′+C are disjoint.
Then d(B + C) > d((b + C) ∪ (b′ + C)) = 2d(C). Otherwise, for any b 6= b′ of B we have
(b+ C) ∩ (b′ + C) 6= ∅, which implies that b− b′ ∈ C − C, so that B −B ⊂ C − C. �

We shall deduce by iteration the following corollary.

Corollary 27. Let A ⊂ G. Let r > 1 be an integer. For any i > 0, let si = 2ir+2i−1. Then
either d(siA) > 2id(rA) or i > 1 and si−1(A−A) = 〈A−A〉.

Proof. We argue by induction. For i = 0 the claim is trivial.
Fix some i > 0 and let us show that either d(si+1A) > 2i+1d(rA) or si(A− A) = 〈A−A〉.

We apply Lemma 26, to C = siA and B = (si+1)A. Then B+C = si+1A. If B−B ⊂ C−C,
we have for any s > si the inclusion s(A−A) ⊂ si(A− A). Since 〈A −A〉 =

⋃∞
j=1 j(A −A),

this implies that si(A−A) = 〈A−A〉.
Otherwise, we must have d(si+1A) = d(B + C) > 2d(siA). Further, note that si(A−A) 6=

〈A−A〉, and therefore for any s 6 si we know that s(A−A) 6= 〈A−A〉. If i = 0 we are done.
Otherwise, applying the induction hypothesis, we see that d(sj) > 2d(sj−1A) for any j 6 i.
By a straightforward induction, we conclude that d(si+1A) > 2id(rA). �

We now show that if d(hA) > 0, then A−A must be a basis of bounded order of the group
it generates.

Lemma 28. Suppose A ⊂ G, h > 1 and d(hA) = α > 0. Then there exists s 6 1
α(h+ 1)− 1

such that sA− sA = 〈A−A〉.

Proof. We apply Corollary 27 to the set hA, the integer r = h and i = i0 the smallest integer
such that 2i0α > 1. Since the density cannot exceed 1, we have si(A − A) = 〈A − A〉 where
si = 2i0−1h+2i0−1−1 6 1

α(h+1)−1 (since 1
α > 2i0−1). This yields the desired conclusion. �

The following lemma can be regarded as an analogue of [20, Lemma 3].

Lemma 29. Let B ⊂ G satisfy 〈B−B〉 = G. Suppose there exist h,m > 1 and x1, . . . , xm in
T such that T ⊂∼

⋃m
i=1(xi+hB). Then B is a G-basis of T of order at most h+m2(h+1)−m.

The term m2 (whereas one could hope for m instead) is what is ultimately causing our
bounds for XG(h, k) to be large; we do not know whether it is optimal.

Proof. The hypothesis and axioms of a density imply d(hB) > 1/m. By Lemma 28, we infer
that there exists s 6 m(h+1)−1 such that sB−sB = 〈B−B〉 = G. Thus, for each 1 6 i 6 m
we may write xi = ai − bi where ai ∈ sB and bi ∈ sB. Hence

T ⊂∼

m
⋃

i=1

(hB + ai − bi).

By adding
∑m

i=1 bi to both sides and using translatability, we have

T ⊂∼

m
⋃

i=1

(hB + ai +
∑

j 6=i

bj)

which shows that all except finitely many elements of T can be expressed as a sum of h+ms
elements of B. Since h+ms 6 h+m2(h+ 1)−m, we are done. �

We may now deal with the effect of removing a regular subset from a basis.
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Proof of Theorem 4. Let A be a G-basis of order at most h and F ⊂ A be a regular subset of
cardinality k. Let B = A \ F . Since F is regular, by Lemma 13, we have 〈B − B〉 = G. We
observe that

T ⊂∼ hB ∪ ((h− 1)B + F ) ∪ · · · ∪ (B + (h− 1)F ). (14)

Let b ∈ B. Since iB ⊂ hB − (h− i)b, we have iB + hb ⊂ hB + ib and by translatability

T ⊂∼ (hB + hb) ∪ (hB + F + (h− 1)b) ∪ · · · ∪ (hB + (h− 1)F + b).

Therefore we may apply Lemma 29 with

m =

∣

∣

∣

∣

∣

∣

h−1
⋃

j=1

(jF + (h− j)b)

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

{

(t1, . . . , tk) ∈ Nk :

k
∑

i=1

ti 6 h− 1

}
∣

∣

∣

∣

∣

=

(

h+ k − 1

k

)

. (15)

We infer that B is a G-basis of order at most

(h+ 1)

(

h+ k − 1

k

)2

−

(

h+ k − 1

k

)

+ h =
h2k+1

k!2
(1 + ok(1)),

which is the desired result. �

Remark 4. In the case k = 1, the proof gives the bound XT (h) 6 (h + 1)h2. By bounding
d(iB) in terms of d(hB) using Corollary 27 for each i 6 h, one can prove a better bound
XT (h) 6

(

2
3 + o(1)

)

h3.

Remark 5. For fixed k and h → ∞, we do not know if the estimate ord∗T (B) = Ok(h
2k+1) is

best possible. On the other hand, we see that ord∗G(B −B) 6 (h+1)
(h+k−1

k

)

− 1 = Ok(h
k+1)

(by Lemma 28 and the fact d(B) > 1/
(h+k−1

k

)

). This estimate is best possible in terms of h,

as shown by the following example. Let A = {0, 1, b, . . . , bk} ∪ bk+1N. Then A is a basis of
order h = (b − 1)(k + 1) of N. Let F = {b, . . . , bk}, then B = A \ F = {0, 1} ∪ bk+1N and

B − B = {0,±1} ∪ bk+1Z. Then B − B is a basis of Z of order 6 bk+1

2 = Ok(h
k+1). We will

use this idea again to prove Theorem 7.

In the case of σ-finite groups, we can do better.

Proof of Theorem 5. Let T be a σ-finite infinite abelian group. Let (Gn)n>0 be a nondecreasing

sequence of subgroups such that T =
⋃

n>0Gn. For C ⊂ T , let d(C) = lim supn→∞
|C∩Gn|
|Gn|

be its upper asymptotic density. Let A be a basis of G of order at most h > 2. Let F be
a regular subset of A of cardinality k and B = A \ F . Upon translating we may assume
that 0 ∈ B. Note that 〈B〉 = 〈B − B〉 = T by Lemma 13. By equation (14), we have

d(hB +
⋃h−1

j=0 jF ) = d(T ) = 1. Note that for any two subsets X,Y of T , for any ǫ > 0, we
have

|(X ∪ Y ) ∩Gn|

|Gn|
6

|X ∩Gn|+ |Y ∩Gn|

|Gn|
6 d(X) + d(Y ) + ǫ.

Taking the upper limit, we find that d(X ∪ Y ) 6 d(X) + d(Y ) + ǫ. Finally, letting ǫ tend to
0, we see that d(X ∪ Y ) 6 d(X) + d(Y ).

Because of the translation-invariance of the density, the just obtained inequality and equa-
tion (15), we infer that d(hB)

(h+k−1
k

)

> 1. We are now in position to apply [14, Theorem 1],

which yields that hB is a basis of 〈hB〉 = G of order at most 1 + 2/d(hB) 6 1 + 2
(

h+k−1
k

)

=
hk

k! +O(hk−1). Therefore, B itself is a basis of order at most h ord∗G(hB) 6 2hk+1

k! +O(hk). �
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Remark 6. Instead of appealing to [14, Theorem 1], we could have used Kneser’s theorem for
the lower asymptotic density [1] and the fact that any set A of lower asymptotic density larger
than 1/2 satisfies A+A ∼ G and argued like Nash and Nathanson in the integers.

Note that a Kneser-type theorem is available in any countable abelian group G for the upper
Banach density [13]. However, that density has the drawback that a set A ⊂ G satisfying
d∗(A) > 1/2, even d∗(A) = 1, may not be a basis of any order of the group it generates. For
instance, take B =

⋃

i>1[2
i, 2i + i) ⊂ Z and A = A∪ (−A); it generates Z but is far too sparse

to be a basis of Z, of any order. Yet its upper Banach density is 1.

We conclude the section with the case of infinite abelian groups of finite exponent.

Proof of Theorem 6. Let G be an infinite abelian group of exponent ℓ. For part (1), we proceed
identically to the proof of Theorem 4 with the group G in the place of T . The difference is
that, since G has exponent ℓ,

m =

∣

∣

∣

∣

∣

∣

h−1
⋃

j=1

jF

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

{

(t1, . . . , tk) ∈ Nk : ti 6 ℓ− 1,

k
∑

i=1

ti 6 h− 1

}
∣

∣

∣

∣

∣

6 ℓk.

Thus by Lemma 29, B is a basis of order at most (h+ 1)ℓ2k − ℓk + h as desired.
As for part (2), we will generalize the argument in [19, Theorem 5]. Suppose F = {a}. By

translating A by −a if necessary, we may assume that a = 0. Since G has exponent ℓ, we have
sB ⊂ (s+ ℓ)B for any s. Therefore,

G ∼
h
⋃

i=1

iB ∼
h
⋃

i=h−ℓ+1

iB. (16)

For any x ∈ G, since B is infinite, (x−B) ∩
⋃h

i=h−ℓ+1 iB is nonempty and therefore

G =
h+1
⋃

i=h−ℓ+2

iB.

We now claim that there are u, v such that h+2 6 u < u+v 6 h+ ℓ+1, uB∩ (u+v)B 6= ∅
and gcd(v, ℓ) = 1. Suppose for a contradiction that this is not true. Then we have disjoint
unions

G =
⋃

i∈I1+ℓ

iB ⊔
⋃

i∈I2+ℓ

iB

and

G =
⋃

i∈I1

iB ⊔
⋃

i∈I2

iB,

where

I1 := {j ∈ [h− ℓ+ 2, h + 1] : p | j}

and

I2 := {j ∈ [h− ℓ+ 2, h+ 1] : p ∤ j},

where p is the unique prime divisor of ℓ. It follows that
⋃

i∈I1
iB =

⋃

i∈I1+ℓ iB. By repeatedly
adding ℓB to both sides, we have

⋃

i∈I1
iB =

⋃

i∈I1+sℓ iB for any s > 1. For s sufficiently
large, this implies that

⋃

i∈I1
iB = G (since we already know that B is a basis). This is a

contradiction and the claim is proved.
We now proceed similarly to the proof of Lemma 12. If c ∈ uB ∩ (u+ v)B, then

(ℓ− 1)c ∈ (ℓ− 1)uB ∩ ((ℓ− 1)u+ v)B ∩ · · · ∩ (ℓ− 1)(u+ v)B.
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Let yi = (ℓ−1)u+iv. For each i ∈ [0, ℓ−1], there exists xi ∈ [(ℓ−1)(u+v−1), (ℓ−1)(u+v)]
satisfying xi ≡ yi mod ℓ and xi > yi. Further, since gcd(v, ℓ) = 1, we have {x0, . . . , xℓ−1} =
[(ℓ− 1)(u + v − 1), (ℓ − 1)(u+ v)]. Therefore,

(ℓ− 1)c ∈

(ℓ−1)(u+v)
⋂

i=(ℓ−1)(u+v−1)

iB. (17)

For all but finitely many x ∈ G, from (16) and (17), we have

x = (x− (ℓ− 1)c) + (ℓ− 1)c ∈ ((ℓ− 1)(u + v) + h− ℓ+ 1)B.

Therefore, B is a basis of order at most (ℓ−1)(u+v)+h−ℓ+1 6 (ℓ−1)(h+ℓ+1)+h−ℓ+1 =
hℓ+ ℓ2 − ℓ. �

Remark 7. What we need about ℓ in the proof is that whenever gcd(a, ℓ) = 1 and gcd(b, ℓ) 6= 1,
then gcd(a− b, ℓ) = 1. Obviously, prime powers are the only integers having this property.

4.2. Lower bounds. We will again lift constructions from quotients, but in a different way
from Section 3.4. Let X∗

G(h, k) be the maximal order of a nice basis which is included and has
cocardinality k in a nice basis of order at most h.

Proposition 30. Let G be an infinite abelian group and H an infinite subgroup of G. Then
XG(h, k) > X∗

G/H(h, k).

Proof. Let A be a nice basis of order (at most) h of G/H which contains a subset F of
cardinality k such that A \ F is a nice basis of order X∗

G/H(h, k) of G/H.

Let π be the projection G → G/H and let F̃ be a set of representatives of F in G. Then

let B = F̃ ∪ π−1(A \ F ). Note that A \ F is not empty since it is a basis. Then B is a
basis of order (at most) h of G and for any h′ > 1, we have h′π−1(A \ F ) ∼ G if and only if

h′(A \ F ) = G/H, which by hypothesis is equivalent to h′ > X∗
G/H(h, k). So B \ F̃ is a basis

of order X∗
G/H(h, k) of G, which concludes. �

Now we prove Theorem 7.

Proof of Theorem 7. In view of Proposition 30, it suffices to lower bound X∗
Z/NZ

(h, k). Fix

some integer k, and let the large integers N and b satisfy (b − 1)k+1 < N 6 bk+1. Note that
for N large enough in terms of k, we have bk < (b − 1)k+1 < N . Consider the nice basis
A = {0, 1, b, . . . , bk} of order at most h = (b − 1)(k + 1) of Z/NZ. Then F = {b, . . . , bk} has
the property that A \ F is a nice basis of order N − 1 > (b− 1)k+1 ≫k hk+1. Combined with
Proposition 30, this means that if an infinite abelian group G admits Z/NZ as quotient for
infinitely many N we have XG(h, k) ≫k hk+1 for any k and infinitely many h.

In the regime where h is fixed and k tends to infinity, we use the following fact: there exists
a constant ch > 0 such that for any large x, there exists a set A ⊂ [0, x) of integers such that

[0, x) ⊂ hA and |A| 6 chx
1/h. Such a set is referred to as a thin basis in the literature and

was first constructed by Cassels [3]. In particular 0 and 1 lie in A. Now consider A as a nice

basis of Z/xZ of order h. Consider F = A \ {0, 1} of cardinality k 6 chx
1/h, so A \ F is a

nice basis of order x ≫h kh. One last appeal to Proposition 30 concludes then the proof of
Theorem 7. �
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5. The function ST (h, k)

Again, in this section we fix a translatable semigroup T and an invariant mean Λ on T .
Recall that Λ extends to an invariant mean on G = GT by setting Λ(f) = Λ(f |T ) for all
f ∈ ℓ∞(G), where f |T is the restriction of f to T . For A ⊂ G, we write d(A) = Λ(1A).

We first prove the following observation already used in [19, Section 6].

Lemma 31. Suppose A ⊂ G, a ∈ A satisfy T ⊂∼ hA and d(T \ h(A \ {a})) < 1
h . Then

T ⊂∼ 2h(A \ {a}).

Proof. Let a0 be an element in A \ {a}. Let B = T \ h(A \ {a}), then d(B) < 1/h. Since d is
translation-invariant, we have

h−1
∑

i=0

d(B + (h− i)a+ ia0) < 1

and consequently there are infinitely many x ∈ T such that x+ h(a+ a0) 6∈ B+(h− i)a+ ia0
for all i = 0, 1, . . . , h− 1. In other words, x+ ia+ (h− i)a0 ∈ h(A \ {a}) and x+ i(a− a0) ∈
h(A \ {a} − a0) for all i = 0, 1, . . . , h− 1.

Now for all but finitely many t ∈ T , we have t− x ∈ h(A− a0) and t− x 6= h(a − a0). If i
is the number of occurrences of a− a0 in some representation of t− x as a sum of h elements
of A− a0, then 0 6 i 6 h− 1 and t− x− i(a− a0) ∈ (h− i)(A \ {a} − a0). Thus

t = (t− x− i(a− a0)) + (x+ i(a− a0)) ∈ (2h − i)(A \ {a} − a0) ⊂ 2h(A \ {a} − a0),

and the lemma is proved. �

Proof of Theorem 9. We first strengthen slightly an observation already used in [19, Section
6].
Claim 1. For any finite subset I ⊂ A, for all but finitely many x ∈ T , there are at most h− 1
elements a ∈ I such that x ∈ T \ h(A \ {a}).

Since T \ hA is finite, we may assume x ∈ hA. Fix a representation

x = a1 + · · ·+ ah,

where ai ∈ A for i = 1, . . . , h. If x ∈ T \ h(A \ {a}), then a must be one of a1, . . . , ah.
This already implies that there are at most h elements a ∈ I such that x ∈ T \ h(A \ {a}).
Furthermore, if x ∈ T \ h(A \ {a}) for h elements a ∈ I, then necessarily x ∈ hI. Since hI is
finite, this proves the claim.

Let I be an arbitrary finite subset of A. Let f(x) =
∑

a∈I 1T\h(A\{a})(x). Then for all but
finitely many x, we have f(x) 6 h − 1. By evaluating Λ(f) and the fact that finite sets have
density 0, we have the following
Claim 2. For any finite set I ⊂ A, we have

∑

a∈I d
(

T \ h(A \ {a})
)

6 h− 1.
Suppose now T is a group. We may assume that Λ satisfies the property (A4) in Section

2.4. We have
Claim 3. If B ⊂ T and d(B) > 1/2, then 2B = T .

This immediately follows from Lemma 17.
Let J be the set of all a ∈ A such that ord∗T (A \ {a}) > 2h. For all a ∈ J , we have

d(h(A\{a})) 6 1/2 (if not, we will have 2h(A\{a}) = T ) and therefore d
(

T \h(A\{a})
)

> 1/2.

Since
∑

a∈I d
(

T \ h(A \ {a})
)

6 h − 1 for any finite subset I of J , this shows that J is finite
and |J | 6 2(h − 1), and the second part of Theorem 9 is proved.

For general translatable semigroups, we use Lemma 31 instead of Claim 3. For all a ∈ J ,
we have d(h(A \ {a})) 6 1/h and therefore |J | 6 h(h− 1). �
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We now generalize these ideas to prove Theorem 10.

Proof of Theorem 10. Let R be the set of all regular pairs {a, b} ⊂ A such that ord∗T (A \
{a, b}) > 2XT (h). Also, let U be the set of all regular elements a ∈ A such that ord∗T (A\{a}) >
ST (h). By Theorem 9 we know that |U | = O(h2).
Claim 1. For all but finitely many x ∈ T , there are at most hXT (h)(XT (h) − 1) pairs
F ∈ R such that x ∈ T \ h(A \ F ). If T is a group then the number of such pairs is at most
2h(XT (h) − 1).

Since T \ hA is finite, we may assume x ∈ hA. Fix a representation

x = a1 + · · ·+ ah,

where ai ∈ A for i = 1, . . . , h. If x ∈ T \ h(A \ F ), then ai ∈ F for some i. Let F = {ai, b},
then b is a regular element of the basis A \ {ai} (note that ai has to be regular in the first
place). By the definition of XT (h), we have

ord∗T (A \ {ai, b}) > 2XT (h) > 2ord∗T (A \ {ai}).

By Theorem 9, there are at most XT (h)(XT (h) − 1) choices for b, and this number can be
replaced by 2(XT (h)− 1) if T is a group. Thus Claim 1 is proved.

Let I be a finite subset of R. Let f(x) =
∑

F∈I 1T\h(A\F )(x). Again evaluating Λ(f) yields
the following bound.
Claim 2. For any finite subset I ⊂ R, we have

∑

F∈I

d
(

T \ h(A \ F )
)

6

{

hXT (h)(XT (h) − 1) for any T ,

2h(XT (h)− 1) when T is a group.

We are now able to conclude the proof when T is a group. For all F ∈ R, we have
d
(

T \ h(A \ F )
)

> 1/2. If not, we will have ord∗T (h(A \ F )) 6 2 and ord∗T (A \ F ) 6 2h 6

2XT (h), which contradicts the definition of R. This implies that R is finite and furthermore,
|R| 6 4h(XG(h)− 1).

If T is an arbitrary translatable semigroup, then we apply Lemma 31 to the basis A \ {a}
and get
Claim 3. If F = {a, b} is regular, ord∗T (A\{a}) = k, d(T \k(A\F )) < 1

k , then ord∗T (A\F ) 6

2k. Consequently, if F ∈ R and a 6∈ U , then d(T \ h(A \ F )) > d(T \ 2h(A \ F )) > 1
2h .

From Claims 2 and 3, the number of pairs F ∈ R, at least one of whose elements is not in
U , is at most hXT (h)(XT (h) − 1) · 2h = O(h2XT (h)

2). Clearly the number of pairs F ∈ R,
both of whose elements are in U , is O(h4). This concludes the proof of Theorem 10. �

We point out that the argument used in the proof of Theorem 10 may be applied to bound
ST (h, k) for k > 3, but it seems to yield bounds which are worse than trivial.

Theorem 9 prompts the following question.

Question. If T ⊂∼ hA, then we know that there are at most h − 1 elements a ∈ A such
that ord∗T (A \ {a}) = ∞, and these are characterized by the Erdős-Graham criterion, i.e.
〈A \ {a} − A \ {a}〉 6= G. Can one find a nice algebraic characterization for elements a for
which ord∗T (A \ {a}) > 2h?
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and financial support. The third author was supported by National Science Foundation Grant
DMS-1702296 and a summer research grant of the College of Liberal Arts of the University of
Mississippi. Part of this research was carried out at the Institut de Mathématiques de Jussieu
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Appendix. The structure of translatable semigroups

In this appendix we prove the structure result for translatable semigroups.

Proposition 32. Let T be a translatable semigroup. Then either T is a group (i.e. T equals
its Grothendieck group GT ), or there exists x ∈ T and T ∼ C ⊕ xN, where C is a finite
subgroup of GT .

Proof. Suppose that T is not a group. Let G = GT be its Grothendieck group. Since T 6= G,
we have T 6⊂ −T . Let x ∈ T \ (−T ). Then the order of x in T is necessarily infinite, since if
kx = mx for some k > m then −x = (k−m−1)x ∈ T , a contradiction. Therefore x generates
an infinite subgroup xZ of G and also a subsemigroup xN∗ (isomorphic to N∗) of T .

Let R = T \ (x+ T ), a finite set. Let u ∈ T be arbitrary. If u− kx ∈ T for infinitely many
positive integers k, then since T ∼ u + T , we have u − kx ∈ u + T and −kx ∈ T for some
positive integer k. Therefore −x = −kx+ (k − 1)x ∈ T , which contradicts our hypothesis on
x. So we let u′ = u − kx where k is the maximum nonnegative integer so that u − kx ∈ T ;
then u′ /∈ x + T . As a result, every element of T may be uniquely decomposed as a sum of
an element of R and an element of xN, so T = R + xN and G = T − T = R − R + xZ.
Consequently, xZ has finite index in G.

By the classification theorem of finitely generated abelian groups, there exists a finite sub-
group C of G such that G = C ⊕ xZ. By Lemma 11 part (4), T ∩ (c+ xZ) 6= ∅ for any c ∈ C.
On the other hand, we have T ∩ (c+ xZ−) = ∅. If not, then since c has finite order, we have
−ℓx ∈ T for some ℓ ∈ Z+, so −x = (−ℓx) + (ℓ − 1)x ∈ T , a contradiction. Thus for every
c ∈ C, there exists a minimal k ∈ N such that c+kx ∈ T . We conclude that T ∼ C⊕xN. �

As a consequence, this structure result implies that any translatable semigroup T admits a
basis of any order h > 2.

Proposition 33. For every translatable semigroup T and every integer h > 2, there exists a
basis of T of order h.

When T is a group, this was proved by Lambert, Plagne and the third author [19, Theorem
1]. Our proof makes use of their result.

Proof. We may assume that T has a neutral element 0. Indeed, supposing that T does not
have a neutral element, there exists x ∈ T \ (−T ); then A is a basis of T ∪ {0} if and only
if A + x ⊂ T is a basis of T , and ord∗T (A + x) = ord∗T∪{0}(A). We shall construct an infinite

sequence Λ = (Λi)i>0 of subsets of T such that {0} ( Λi for every i > 0 and for any x ∈ T , there
exists a unique sequence λ(x) = (λi(x))i>0 of finite support such that x =

∑∞
i=0 λi(x) where

λi(x) ∈ Λi. (The support supp(s) of a sequence s = (si)i>0 ∈ TN is the set {j ∈ N : sj 6= 0}.)
As shown in [19, Proposition 1] (the arguments there do not use the group structure, only the
semigroup structure), such a sequence Λ gives rise to a basis of order exactly h.

Either T is a group, in which case we can use [19, Theorem 1]; or there is a finite subset
{0} ⊂ R ⊂ T and x ∈ T such that any t ∈ T may be uniquely written as t = r + kx for
some (r, k) ∈ R×N. Let n =

∑∞
i=0 ai(n)2

i be the unique binary decomposition of any integer
n ∈ N, where ai(n) ∈ {0, 1}; then we set Λi = {0, 2i−1x} for any i > 1, and Λ0 = R if R 6= {0},
and Λi = {0, 2ix} for any i > 0 otherwise. The sequence Λ has then the desired property. �
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[6] P. Erdős and R. L. Graham, On bases with an exact order, Acta Arith. 37 (1980), 201–207.
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1987–1988), Exp. No. 31, 13 pp.
[12] G. Grekos, Extremal problems about asymptotic bases: a survey, Combinatorial number theory, 237–

242, de Gruyter, Berlin, 2007.
[13] J. Griesmer, Small-sum pairs for upper Banach density in countable abelian groups, Adv. Math. 246 (2013),

220–264.
[14] Y. O. Hamidoune and Ø. J. Rødseth, On bases for σ-finite groups, Math. Scand. 78 (1996), no. 2, 246–254.
[15] P. Hegarty, Essentialities in additive bases, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1657–1661.
[16] P. Hegarty, The postage stamp problem and essential subsets in integer bases, in: David and Gregory

Chudnovsky (eds.), Additive Number Theory : Festschrift in Honor of the Sixtieth Birthday
of Melvyn B. Nathanson, pp. 153–170, Springer-Verlag, New York 2010.

[17] Groupprops, Subgroup lattice and quotient lattice of finite abelian group are isomorphic,
https://groupprops.subwiki.org/wiki/Subgroup_lattice_and_quotient_lattice_of_finite_abelian_group_are_isomorph

[18] X. Jia, On the exact order of asymptotic bases and bases for finite cyclic groups, in: David and Gregory
Chudnovsky (eds.), Additive Number Theory : Festschrift in Honor of the Sixtieth Birthday
of Melvyn B. Nathanson, pp. 179–193, Springer-Verlag, New York, 2010.
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