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Abstract

Representation of dynamic textures (DTs), well-known as a sequence
of moving textures, is a challenging problem in video analysis due to
disorientation of motion features. Analyzing DTs to make them “under-
standable” plays an important role in different applications of computer
vision. In this paper, an efficient approach for DT description is proposed
by addressing the following novel concepts. First, beneficial properties of
dense trajectories are exploited for the first time to efficiently describe
DTs instead of the whole video. Second, two substantial extensions of
Local Vector Pattern operator are introduced to form a completed model
which is based on complemented components to enhance its performance
in encoding directional features of motion points in a trajectory. Finally,
we present a new framework, called Directional Dense Trajectory Pat-
terns, which takes advantage of directional beams of dense trajectories
along with spatio-temporal features of their motion points in order to
construct dense-trajectory-based descriptors with more robustness. Eval-
uations of DT recognition on different benchmark datasets (i.e., UCLA,
DynTex, and DynTex++) have verified the interest of our proposal.

1 Introduction

Dynamic textures (DTs) are repetition of image textures along a temporal
domain [1], such as blowing flag, trees, fire, clouds, waves, foliage, fountain, etc.
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Analyzing DTs to make them “understandable” is one of crucial principles for
computer vision tasks (e.g., segmentation, classification, synthesis) in order to
implement applications in real life: fire and smoke detection [2], tracking ob-
jects [3, 4, 5, 6, 7], facial expressions [8, 9], action recognition [10, 11]. Different
methods have been introduced for video representation to address the major
challenges in processing DTs, such as the large region of appearances, illumina-
tion, noise, and chaotic motions. In general, it is possible to provisionally group
them into six categories as follows.

Optical-flow-based methods: Due to efficiently computing and robustly de-
scribing videos in natural way, optical-flow-based approaches are widely utilized
not only for DT recognition but also for other problems of computer vision.
Peh et al. [12] took advantage of magnitude and direction information of the
Normal Flow (NF) to deal with spatio-temporal texture depiction while NF
and filtering regularity are combined together in [13] to extract six features
from a sequence for DT representation. Fazekas et al. [14] concentrated on
rotation-invariant distortions of local texture images to capture temporal pe-
riodicity of moving features. Their experiments verify that complete flow for
these distortions outperforms compared to NF in recognition on a large number
of classes of datasets with high resolution [15]. According to [8], optical-flow-
based techniques in consideration of brightness constancy and local smoothness
are not in accordance with capturing chaotic motions in practice. Furthermore,
only motion textures are encoded while their apparent characteristics have not
been addressed. To mitigate those drawbacks, our previous work utilized dense
trajectories extracted from a video to structure directional patterns of motion
points using a local-feature-based operator LVPfull-TOP in full directions [16].

Model-based methods: Saisan et al. [1] proposed Linear Dynamical System
(LDS), a foundation of the model-based approaches. Utilizing Gaussian noise
conception based on the Hidden Markov Model (HMM), LDS is widely exploited
to describe videos for evaluating recognition tasks in computer vision. Chan et
al. [17] stated a mixture of DT models as an extension of LDS in order to
seize motions of objects in sequences. Shortcomings of Principal-Component-
Analysis-based (PCA-based) methods, which apply a linear observation function
to encode dynamic features of complex motions, are fixed in [18] by exploiting
a non-linear observation function with kernel-PCA to structure complication of
chaotic motions (e.g., turbulent water) and those captured by camera moving
(e.g., panning, zooming, and rotations). Based on the similar characteristics of
DT mixtures (DTMs) extracted in [17], Mumtaz et al. [19] used the hierarchical
expectation-maximization algorithm to categorize DTMs into k clusters. The
advantages of LDS and a bag of words are taken into account in [20, 21] to
depict DTs for classification. Recently, Qiao et al. [22] have encoded adjacent
spatial voxels using Multivariate Hidden Markov Model and revealed that this
model outperforms in comparison with high-order HMM for classifying DTs.
Although various efforts have been made for DT recognition, performances of
model-based methods are in general less efficient than others’. One of the main
reasons is their concentration on spatial-appearance-based features rather than
dynamic clues [1] Moreover, the models become more complicated in case of

2



taking them into account for the dynamical properties [20].
Filter-based methods: In these approaches, filter bank operations are uti-

lized to diminish noise in DT sequences. Arashloo et al. [23] addressed Bina-
rized Statistical Image Features on Three Orthogonal Planes (BSIF-TOP) and
its multi-scale scheme to encode dynamic patterns in which binary codes are
obtained by filtering performances on varied spatio-temporal regions in videos
and by binarizing reactions of the filters. In [8], the authors introduced a robust
technique, named Directional Number Transitional Graph (DNG), to figure out
spatial and temporal directional numbers on the frames of a sequence for the
purpose of grouping the video into a 3D grid. Experiments on DT recognition
verify that filter-based methods have outperformed on simple motion features
(e.g., DTs in UCLA dataset [1]). For more complex DTs, as in DynTex [24]
and DynTex++ [25], they are less efficient while learning filters in BSIF-TOP
or considering DTs of 3D sub-sequences in DNG takes a long time to process
with high computational complexity.

Geometry-based methods: DT features of videos are estimated by fractal
analysis techniques in which the information of self-similarities in geometry
theory is taken into account video representation to be able to tolerate the
environmental changes of sequences. Xu et al. [26] proposed a technique of
Dynamic Fractal Spectrum (DFS) with two parts integrated into as follows:
volumetric DFS considers DT sequences as 3D volumes to seize their statisti-
cal self-similarities. The other, called multi-slice DFS, captures fractal patterns
repeated on the frames of volumes. Multi-Fractal Spectrum [27] is also intro-
duced in order that SIFT-like features are employed for the fractal processes
of DT representation. Then Ji et al. [28] used low-pass and high-pass wavelet
coefficients along with wavelet leaders to form a wavelet-based MFS descriptor
with robust power of discrimination while strongly suffering from the changes
of environment. Recently, Spatio-Temporal Lacunarity Spectrum [29] depicts a
video based on lacunarity analysis on its DT slices to structure lacunarity-based
features. Another work [30] addressed Non-Linear Stationary Subspace Analy-
sis to encode the stationary parts of DT sequences for decreasing the dimension
of description. Regarding efficiency on DT classification, geometry-based meth-
ods outperform on simple DT datasets (e.g., UCLA) rather than on complex
dynamic features in DynTex and DynTex++. Furthermore, some of them are
lack of temporal information in the video analysis.

Learning-based methods: Owing to outperforming results of DT recognition,
learning-based approaches have recently attracted researchers with promising
techniques. Qi et al. [31] formed TCoF patterns based on a Convolutional
Neural Network (CNN) transfer learning from deep structures in still images
for characterizing features in DT recognition. Andrearczyk et al. [32] also ad-
dressed using two popular CNN architectures (i.e., AlexNet and GoogleNet)
to train DT-CNN features based on spatial-temporal frames of three orthog-
onal planes while Arashloo et al. [33] utilized a PCA convolutional network
(PCANet) to learn filters on these planes in order to establish a multi-layer
convolutional structure, named PCANet-TOP, for DT representation and clas-
sification. In the meanwhile, methods of Dictionary Learning have also become
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more attractive in which local DT features are figured out by kernel sparse
coding to enhance the discriminative power of descriptors. Quan et al. [34]
introduced a method of sparse coding to learn a dictionary from atoms, known
as patches taken from DT sequences, for capturing local DT characteristics.
However, because a compulsory requirement is that atoms are in the identical
dimension, it is inconvenient to implement in multi-scale resolutions for im-
provement of the performance. Another effort has been addressed equiangular
kernel to advance the effect of learning dictionary process as well as to remedy
its high-dimensional problem [35]. Despite achieving significant results in DT
recognition, the learning-based methods generally take a long time to capture
DT features because of learning algorithms with high computational complexity.
Our proposal in this work can obtain competitive classification rates by exploit-
ing dense trajectories of videos along with an efficient operator for encoding
local directional features in simple computation.

Local-feature-based methods: In this perception, DT features of videos are
mostly captured by Local Binary Pattern (LBP) operator [36] and its LBP-based
variants due to their simple and efficient computation. For DT representation,
Zhao et al. [9] presented two LBP-based operators: Volume LBP (VLBP) for en-
coding dynamic patterns based on spatio-temporal relations of features on three
consecutive frames; LBP on three orthogonal planes (LBP-TOP) for capturing
motion and shape cues from these planes. Then, many efforts have been made
to advance the discrimination of DT descriptors based on diverse extensions of
two above typical operators. Ren et al. [37] tried to reduce feature vectors in a
reasonable dimension using a technique of learning data-driven LBP structures
optimized by a scheme of maximal joint mutual information. The information
of local structures and image moments is addressed for the completed scheme
[38] on three orthogonal planes to form respectively CLSP-TOP [39] and CSAP-
TOP [40] patterns. In the meanwhile, an other combination of Completed Local
Binary Count [41] (CLBC) and the concept of VLBP is also exploited to form
CVLBC descriptor [42] with more robustness for DT recognition. Tiwari et al.
[43] introduced Helix Local Binary Patterns (HLBPs) to take the advantages
of characteristics in both LBP-TOP and VLBP patterns. Other LBP-based
variants for DT representation have been also proposed in recent works, such
as WLBPC [44] using Weber’s law to enhance the role of center pixel, EWLSP
[45] encoding the information of edge-weighted local structure patterns.

Even though the local-feature-based methods achieve promising DT recog-
nition results, they survive several inherent problems, such as sensitivity to
noise, near uniform regions [43, 39], and large dimension [9, 37, 46]. In the
meanwhile, our prior effort [16] has attempted to partly deal with restrictions
of optical-flow-based methods by taking into account a directional LBP-based
operator LVPfull-TOP to structure characteristics of dense trajectories in con-
sideration of full directions. However, the important temporal information of
motion points in these trajectories has not been exploited as well as directional
relationships have not been considered in a completed context of larger local
regions. Addressing those obstacles, we indicate the following crucial improve-
ments to enhance the performance compared to our previous work [16]:
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• A completed model of Local Vector Pattern (LVP) is introduced to ef-
ficiently encode trajectories in a slighter dimension compared to using
LVPfull-TOP in [16]. In addition, adaptive directional vector thresholds
(DVMα,d(I) and DVCα,d(I)) have been introduced to address two other
components of the completed model (see Fig. 1).

• Exploiting temporal information of motion points in trajectories.

• Directional local relationships are conducted in larger supporting regions.
This allows to capture more spatio-temporal information in order to boost
the discrimination power.

• A thorough framework for taking beneficial properties of dense trajectories
into account DT representation is presented.

 
Extract trajectories using dense 
trajectory tool

Encode motion points and 
their neighbors using 
LVP_full-TOP operator

Compute histogram of DBT for all 
trajectories to form FDT descriptor

Adaptive directional 
vector thresholds DVM 
and DVC are introduced

Based on DVM and DVC, 
a completed model of LVP 
is proposed, named xLVP

Encode motion points and their neighbors using
completed operator xLVP

 
Structuring directional 
beam trajectory (DBT) 
patterns of a trjectory

Directional structures of 
temporal motion points 
(TMP) patterns of a trjectory

 
Structuring directional 
beam trajectory (DBT) 
patterns of a trjectory

Concatenate DBT and TMP to form 
DDTP patterns of a trajectory

Compute histogram of DDTP for all 
trajectories to form DDTP descriptor

Input 
video

Figure 1: (Best viewed in color) Highlight of this proposal that are presented in
blue background (the extension is in the dashed box) compared to our previous
work [16], presented in dark background, for encoding a video based on its dense
trajectories.

In general, the proposed framework in this work consists of three stages as
follows. First, motion points and their paths in a video extracted by using an
extracting tool [4]. Second, crucial extensions of LVP [47] operator are proposed
by taking advantage of the information of magnitudes and center contrast levels
in order to form a completed operator, named xLVP, with outperformance com-
pared to the basic LVP [47]. Third, two important beneficial properties of dense
trajectories are exploited: Directional features of beam trajectories, and spatio-
temporal features of motion points along with their paths in which their direc-
tional relationships are captured by using the robust operator xLVP. Finally,
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the obtained histograms are concatenated and normalized to effectively con-
struct DT descriptors, named Directional Dense Trajectory Patterns (DDTP),
with more robustness. Consequently, it could be realized that the advantages of
both optical-flow-based and local-feature-based methods are consolidated into
our approach to improve DT representation. In short, the major contributions
of this work can be listed as follows.

• Dense trajectories, extracted from a video, are involved with DT repre-
sentation for the first time instead of the whole video.

• Profitable characteristics of optical-flow-based and local-feature-based meth-
ods are exploited thanks to using a discriminative operator proposed for
encoding these dense trajectories.

• A novel operator xLVP is presented to efficiently capture directional in-
formation in consideration of an incorporation between beams of dense
trajectories and their motion points.

• Two adaptive directional vector thresholds, introduced to make the com-
pleted model xLVP, agree with complemented components of magnitudes
and center contrast levels.

• An effective framework for DT description has been proposed to form
robust DDTP descriptors by taking advantage of properties of dense tra-
jectories.

2 Related work

Taking LBP into account encoding local relationships is one of the most
interested approaches in image representation due to its outperformance with
simple computation. In this portion, we take a brief review of LBP and its
variants for structuring DTs in recognition task. Furthermore, a model of direc-
tional LBP-based patterns is recalled in short as well as a technique of extracting
dense trajectories from a DT video is also involved with in a summary.

2.1 A brief review of LBP

Ojala et al. [36] introduced LBP, a well-known operator of effective compu-
tation in still images, to encode a local textural feature as a binary chain code.
Specifically, given a center pixel qc of a 2D texture image I, binary codes of
LBP for qc are defined as follows.

LBPP,R(qc) =

P−1∑
i=0

s
(
I(pi)− I(qc)

)
2i (1)

where pi is the ith surrounding neighbor of qc, P is a number of neighbors
interpolated on a circle of radius R centered at qc, and function s(.) is defined
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as

s(x) =

{
1, if x ≥ 0

0, otherwise.
(2)

As the result of that, a texture image is formed by a histogram of 2P distinct
values. Because of the large dimension of the basic LBP, in practice, two most
popular mappings are usually taken into account to turn it down into a reason-
able size as follows. Uniform patterns (LBPu2) [36] with P (P − 1) + 3 bins are
derived from the typical LBP codes conditioned by number of bit-transitions
(1-0 or 0-1) of their binary chains at most 2. The other important mapping to
deal with rotation invariant (LBPri) [36] is stated as

LBPriP,R(qc) = min
0≤i<P

{ROR(LBPP,R(qc), i)} (3)

where ROR(LBP, i) calculates the distribution of LBPri by shifting i times of
the P -bit basic LBP. In real applications, ri and u2 mappings are often com-
bined to form patterns of riu2 mapping (LBPriu2). This leads to reduction of
dimensional representation from 2P of the basic LBP to P + 2 distinct values,
in which P is the number of considered neighbors. Inspirited by the effective-
ness of above mappings, other crucial mappings are suggested to refine these
mappings for encoding more textural information. Zhao et al. [41] advanced
Local Binary Count (LBC), an alternative of uniform patterns, by considering
differences of the higher gray levels between P neighbors and center pixel. On
the other hand, Fathi et al. [48] extended the basic uniform mapping based on
advantages of some non-uniform patterns. Nguyen et al. [49] then embedded
the underlying mappings and LBC into a general mapping, named TAPA, to
capture topological attribute patterns.

2.2 LBP-based variants for dynamic textures

Taking advantage of LBP operator in still image processing, various LBP-
based variants have been proposed for video representation. At first, an exten-
sion of the typical LBP to DT description, VLBP [9] encodes a voxel based on
three center points corresponding to P neighbors on three consecutive frames
which are located at the same spatial coordinate of the centers. Accordingly,
these 3P + 2 neighbors are thresholded by the second center pixel to form a
(3P + 2)-bit binary code which figures out local features and motion cues sur-
rounding this voxel. Because this encoding shapes a descriptor with a very
large dimension of 23P+2 bins, it is restricted for implementation in reality. To
overcome this problem, Zhao et al. [9] introduced LBP-TOP in which the basic
LBP is considered on three orthogonal planes of a video. The final DT represen-
tation is constructed by concatenating the sub-descriptors computed on these
planes. Thereafter, other approaches based on the perceptions of two above en-
coding models to enhance the discrimination power of descriptors. CVLBC [42]
is combined by CLBC [41] and VLBP while Tiwari et al. [46] proposed CVLBP
operator by taking advantage of the ideas of CLBP [38] and VLBP. CLSP-TOP
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[39] addresses local/global information, while CSAP-TOP [40] captures DT fea-
tures on moment images. Both advanced features of LBP-TOP and VLBP are
utilized in [43] to structured HLBP patterns.

2.3 Local Vector Patterns

Fan et al. [47] proposed Local Vector Pattern (LVP) operator for image
description by regarding a pairwise of directional vectors in order to remedy
the remaining shortcomings of local pattern representation. Let I denote a 2D
image. The first-order derivative of a center pixel qc conducted by a direction
α is computed as

I ′α,d(qc) = I(qα,d)− I(qc) (4)

in which qα,d is an adjacent neighbor sampled by direction α and a distance d
from the considered pixel qc, I(.) returns the gray-scale image value of a pixel.
The first-order LVP of qc is defined as a P -bit binary chain by concerning it
with P local directional relations in a couple of directions (α, α + 45◦) and
formed as follows.

LVPP,R,α,d(qc) =
{
f
(
I ′α,d(qc), I ′α+45◦,d(qc),

I ′α,d(pi), I ′α+45◦,d(pi)
)}P−1

i=0

(5)

where {pi} denotes P neighbors of qc, d ∈ {1, 2, 3} presents the distance of the
considered pixel with its contiguous points, and f(.), a function of Comparative
Space Transform (CST), is defined as

f(x, y, z, t) =

{
1, if t− y ∗ z

x
≥ 0

0, otherwise.
(6)

Other formulations of LVP along with samples of encoding LVP-based patterns
for texture images are clearly discussed in [47]. In practice, four possible direc-
tions are often employed in real applications, i.e., α = {0◦, 45◦, 90◦, 135◦}, to
enrich discriminative information of descriptors [47, 50, 51].

2.4 Dense trajectories

Wang et al. [4] introduced an efficient technique for extracting dense trajec-
tories in videos based on a dense optical flow field to locate and track the paths
of motion points. In particular, let qf = (xf , yf ) denote a motion point at the
f th frame with corresponding coordinates of xf and yf . Its displacement at the
(f+1)th frame is interpolated by addressing the polynomial expansion algorithm
for two-frame motion estimation [52] along with an optical flow ωf = (uf , vf ),
which is known as a median filter. Therein, uf and vf mean the horizontal and
vertical optical flow components. The inferred position of qf in the posterior
frame, i.e., qf+1 = (xf+1, yf+1), is tracked as

qf+1 = qf + (M ∗ ωf )|(xf ,yf ) (7)
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in which (xf , yf ) refers to the rounded position value of qf , M is a median filter
kernel of 3 × 3 pixels. According to that, a dense trajectory with length of L
can be structured by a concatenation of the motion point qf and its displace-
ments inferred through L consecutive frames, i.e., {qf ,qf+1, ...,qf+L−1}. In
our framework, we use the version 1.2 of dense trajectories as a tool to extract
motion paths of dynamic features for DT description.

3 Important extensions of local vector patterns

The basic LVP operator [47] has been originally introduced to exploit the
directional information of texture image patterns in high-order derivative spaces
for face recognition. It is then interested in utilizing for other applications in
computer vision, such as action recognition [51], image retrieval [50]. For DT
description, we get involved with this operator for the first time in order to en-
code directional vector structures of motion points along their dense trajectories
which are extracted from a DT sequence. Due to being a derivation of the LBP
concept in textural image representation, the basic LVP operator has existed
the internal limitations of LBP, such as sensitivity to noise, illumination, and
near uniform images. To mitigate those problems, we hereafter propose two fol-
lowing important extensions of LVP in order to enhance its discrimination for
DT recognition task: adaptive directional vector thresholds and a completed
model of LVP.

3.1 Adaptive directional vector thresholds

Motivated by the first-order concept of LVP, we define hereunder two adap-
tive vector thresholds to apply for two corresponding components that are de-
fined in below section to capture magnitude information and directional centered
contrast patterns. First, to exploit the information of Directional Vector Mag-
nitudes (DVM) for each direction α, we calculate the mean of absolute CST on
the whole image as follows.

DVMα,d(I) =

∑
q∈I

P−1∑
i=0

∣∣I ′β,d(pi)− I ′β,d(q)

I ′α,d(q)
∗ I ′α,d(pi)

∣∣
N ∗ P

(8)

in which I ′α,d(.) is the first-order derivative of a pixel in concerned direction α

and distance d; β = α+ 45◦; pi denotes the ith neighbor of the current pixel q
in an image I; P is the number of considered neighbors; N = (W− 2) ∗ (H− 2)
whereW andH are the width and height dimensions of 2D image I respectively.

Second, a Directional Vector Center (DVC) threshold is defined as absolute
multiplication of directional differences which are averaged on the whole image
as follows.

DVCα,d(I) =
1

N
∑
q∈I

∣∣I ′α,d(q) ∗ I ′β,d(q)
∣∣ (9)
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where each pixel q ∈ I is addressed in a pair of concerned directions (α, β) to
form first-order derivatives correspondingly.

3.2 A completed model of LVP

Guo et al. [38] indicated that the integration of complementary components:
local variations of magnitudes, centered contrast levels, and along with the
typical LBP, leads to structuring effectively a descriptor with more robust and
discriminative power. Inspired by this concept, we propose in this section, a
completed model of the first-order LVP using the adaptive thresholds which are
defined in Section 3.1. In essence, it is an integration of three following parts:

The first component is proposed to compute local vector patterns in each
direction of α ∈ Φ for a motion point qc as follows.

LVP-DP,R,α,d(qc) =

P−1∑
i=0

h
(
I ′α,d(qc), I ′β,d(qc),

I ′α,d(pi), I ′β,d(pi)
)
2i

(10)

in which P is the number of considered neighbors sampled on a circle of radius
R centered at qc, β = α+ 45◦, and function h(.) is defined as

h(x, y, u, v) =

{
1, if v ≥ u ∗ y

x
0, otherwise.

(11)

The fact that each LVP-D pattern is similar to the basic LVP [47], except that
it is separately encoded in a binary string for each concerned direction instead
of the combination of all into one long pattern for the whole directions as the
typical LVP (see Fig. 2 for an example of this computation). Indeed, it is
possible to utilize popular mappings (e.g., u2, riu2) for dimensional reduction.

The second, called LVP-M, captures magnitude variations of a motion point
qc according to directions of Φ as follows:

LVP-MP,R,α,d(qc) =

P−1∑
i=0

ψ
(
I ′α,d(qc), I ′β,d(qc), I ′α,d(pi),

I ′β,d(pi),DVMα,d(I)
)
2i

(12)

where function ψ(.) is defined as

ψ(x, y, u, v, t) =

{
1, if |v − u ∗ y

x
| ≥ t

0, otherwise.
(13)

Third, LVP-C regards to the contrast level of qc in a direction α against the
mean of directional differences on the whole image.

LVP-Cα,d(qc) = s
(
I ′α,d(qc)−DVCα,d(I)

)
(14)
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Figure 2: (Best viewed in color) Computing the first-order LVP-D binary
pattern for a dynamic point I(qc) = 3 (in red) with α = 0◦, d = 1, and
(P,R) = (8, 1).

in which s(.) is defined by Equation (2).
These components (respectively abbreviated to LVPD, LVPM , and LVPC)

are supplementary to enrich more discriminative information. Therefore, they
should be integrated together into different ways to enhance the discrimina-
tion power. Each integration makes a corresponding extended LVP operator,
named xLVP in general. For example, xLVP = LVPD M/C means that prob-
ability distributions structured by LVPD, LVPM , and LVPC are respectively
concatenated and jointed corresponding to the signals of “ ” and “/” in style
“D M/C”. It should be noted that our xLVP operator can be also inferred to

nth-order derivative (n > 1) to capture high-order directional patterns (xLVPn),
as similarly as generated in [47].

Our xLVP operator takes into account several following properties to improve
the performance in comparison with the basic LVP [47]:

• Based on complementary components, the xLVP operator is able to force-
fully capture directional relationships in various contexts of local regions.
In the meanwhile, LVP just considers one scale for computing local fea-
tures.

• For each concerned direction, a directional pattern of the components is
encoded in a separative binary string of 8 bits. In contrast to the basic
LVP, its binary outputs are concatenated to form a long chain for all
considered directions, e.g., a 32-bit string for the first-order LVP in four
directions.
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Figure 3: (Best viewed in color) A general model for encoding DBT patterns
in which dense trajectory t with length of L is structured by L+ 1 blue motion
points located in consecutive frames along with their neighbors in different colors
situated in a vicinity B = {8, 1}.

• Due to encoding directional features in separative chains of binary codes,
it is possible to take advantage of two popular mappings of riu2 and u2 in
order to enhance the discriminative power of descriptor with a reasonable
dimension. In contrast, the conventional LVPs are calculated on sub-
regions of a texture image and the obtained spatial histograms are adopted
into equal interval by using a method of uniform quantization [47].

4 Beneficial properties of dense trajectories

Dense trajectories, introduced in [4], are traces of dense motion points which
are tracked through in a certain number of frames based on the information of
their displacements in a video. Exploiting robust properties of these complex
motions, dense-trajectory-based methods are interested in analyzing videos for
action recognition [4, 53], object segmentation [54], etc. In our framework, we
take this approach for the first time into account DT representation by con-
cerning motion of dynamic textures in consideration of different local directions
to address two important properties: directional beams of dense trajectories
and spatio-temporal characteristics of motion points along their paths. Here-
under, we present in detail a novel concept for embedding dense trajectories in
accordance with the completed model xLVP to figure out directional trajectory-
based patterns with more discrimination. In the other hand, the advantages of
both optical-flow-based and local-feature-based techniques are wedged into our
proposed framework for DT representation.
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4.1 Directional features of a beam trajectory

Let t = {q1,q2, ...,qL,qL+1} be a dense trajectory with length of L which is
structured by motion point q1 and its inferred derivations (i.e., {q2, ...,qL,qL+1})
through L + 1 consecutive frames {f1, f2, ..., fL, fL+1}. We address directional
movements of each motion point qi ∈ t and its local neighbors sampled by a
vicinity of B (see Fig. 3 for a graphical illustration) to estimate dynamic fea-
tures for chaotic motions as well as their spatial characteristics along trajectory t
using the completed operator xLVP in directions of Φ. The obtained histograms
are then concatenated to form directional beam trajectory (DBT) patterns of t,
efficiently describing the directional moving cues of beams of dynamic points.

DBTL,Φ,d(t) =

[
L+1∑
i=1

Hqi

(
xLVPP,R,Φ,d(qi,fi)

)
,

⊎
pj∈B

[ L+1∑
i=1

Hpj

(
xLVPP,R,Φ,d(pj,fi)

)]] (15)

in which xLVP(.) means completed local vector pattern of a pixel at a frame in
consideration of its local neighbors P sampled by a circle of radius R with a given
distance d and concerned directions Φ; pj refers to the jth neighbor of motion
point qi in supporting region B at frame fi; Hqi(.) and Hpj (.) are probability
distributions of qi and its neighbors respectively;

⊎
denotes a concatenating

function for the obtained histograms Hpj
(.).

4.2 Spatio-temporal features of motion points

The spatio-temporal information of a voxel in a DT video is crucial in anal-
ysis to make it more “understandable” as exploited in [9, 39, 43], in which
the authors determined the shape and motion cues based on three orthogonal
planes. In this section, we take this concept into account motion points of dense
trajectory t to boost the performance of DT descriptor. Because of the fact that
the spatial information of those along t has been involved in the DBT model,
we just address the temporal features in consideration of those on XT and YT
planes using the completed operator xLVP. To be in accordance with encoding
of DBT features of t with length of L, the obtained probability distributions
should be concatenated through their trajectory t, as graphically demonstrated
in Fig. 4, in order to form directional structures of temporal motion points
(TMP) as

TMPL,Φ,d(t) =
[
HXT

(
xLVPP,R,Φ,d(qi)

)
,

HY T

(
xLVPP,R,Φ,d(qi)

)]L+1

i=1

(16)

where xLVP(.) denotes completed local vector pattern of a pixel computed by
considering its local neighbors P interpolated by a circle of radius R with a
given distance d in concerned directions Φ; HXT (.) and HY T (.) are histograms
of motion point qi calculated for the corresponding planes.
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Trajectory t with length of L

 

Figure 4: (Best viewed in color) A typical TMP model in which directional tem-
poral information of motion points (in blue) are encoded along their trajectory
t with length of L by exploiting directional relations of those with their local
neighbors P = 8 (in red) sampled by a circle of radius R = 1 on XT and YT
planes.

5 Directional dense trajectory patterns for DT
representation

In this section, we introduce an efficient framework for DT representation,
called Directional Dense Trajectory Patterns (DDTP), in which DT features of
a video are effectively encoded just using dense trajectories instead of the whole
video. On the other hand, our perception is to take advantage of two important
properties of directional dense trajectories for constructing robust descriptors
for DT recognition, as graphically illustrated in Fig. 5. According to that, dense
trajectories are extracted at first using the tool introduced in [4]. We then ap-
ply our extended operator xLVP on those to capture their directional motion
cues through encoding patterns of directional beam trajectories, as proposed in
Section 4.1. This completed operator is also implemented for capturing spatio-
temporal structures of motion points along their trajectories based on analysis of
the planes, as presented in Section 4.2. Lastly, the obtained probability distri-
butions of two above components calculated for the whole dense trajectories are
concatenated and normalized to enhance the performance. Also in this section,
the computational complexity of DDTP is discussed thoroughly for potential
applications in practice. Those above processes are detailed hereafter.

5.1 Proposed DDTP descriptor

Let T = {t1, t2, ..., tm} denote a set of dense trajectories with the same length
of L which are extracted from a video V. DBT patterns of each ti ∈ T are then
encoded in consideration of its motion points along the path in directions Φ
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Figure 5: (Best viewed in color) An effective framework for DT representation
based on dense trajectories extracted from a video V.

using the completed model xLVP. Parallel to this encoding, TMP patterns are
also structured by addressing xLVP with the directions for the corresponding
motion points of trajectory ti based on analysis of those on the temporal planes
of V (i.e., XT, YT). To form a robust and discriminative descriptor for DT
recognition, we concatenate and normalize DBT and TMP features that are
computed for all of trajectories in T as

DDTPL,Φ,d(V) =
1

|T |
∑
ti∈T

[
DBTL,Φ,d(ti),TMPL,Φ,d(ti)

]
(17)

in which |T | denotes the total of dense trajectories. From now on, we imply a
specific DDTP descriptor in agreement with an integration way of completed
operator xLVP. For instance, DDTPD M/C indicates that it is structured by
xLVP = LVPD M/C (see Section 3.2 for a detail of this integration).

In order to verify the prominent contribution of our completed operator
xLVP, a basic descriptor DDTP-B which is based on the first-order LVP (i.e.,
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LVPD), is concerned by addressing the same implementation above.

DDTP-BL,Φ,d(V) =
1

|T |
∑
ti∈T

[
DBT-BL,Φ,d(ti),TMP-BL,Φ,d(ti)

]
(18)

where DBT-B and TMP-B are respectively computed as similarly as in Equa-
tions (15) and (16) but only LVPD is used instead of xLVP.

To evaluate the expected effectiveness of exploiting beneficial properties of
dense trajectories for DT description in contrast to using the whole video, xLVP
is taken into account structuring dynamic features on three orthogonal planes
{XY,XT, Y T} to form another DT descriptor, named xLVP-TOP as follows.

xLVP-TOPΦ,d(V) =
[
xLVPP,R,Φ,d(VXY ),

xLVPP,R,Φ,d(VXT ),

xLVPP,R,Φ,d(VY T )
] (19)

On the other hand, for assessing our crucial extended model of LVP, we have
also experimented on DT recognition using LVP-TOP descriptor formed by the
basic LVP operator [47] on planes of {XY,XT, Y T} as

LVP-TOPΦ,d(V) =
[
LVPP,R,Φ,d(VXY ),

LVPP,R,Φ,d(VXT ),

LVPP,R,Φ,d(VY T )
] (20)

where LVPP,R,Φ,d(.) is a probability distribution. It is actually dealt with as
similarly as LVP-D’s (see Section 3.2) to take advantage of the popular mappings
in dimensional reduction.

In order to reduce the size of DDTP descriptors, two popular mappings are
utilized: riu2 giving lriu2 = (P + 2) and u2 giving lu2 =

(
P (P − 1) + 3

)
distinct

bins for each pattern of a pixel, where P is a number of local neighbors taken
into account. Particularly, dimension of DDTP descriptors directly relies on
the integration of complementary components in specific ways to form xLVP for
computing DBT and TMP features. For example, DDTPD M/C has the total
bins of two following components: DBTD M/C and TMPD M/C with 3k(|B|+1)
and 6k(L + 1) dimensions respectively, in which |B| means the cardinality of
local neighbors sampled around a motion point for encoding directional beams
of trajectories with the same length of L, k = lriu2/u2 × |Φ| is the dimension of
a pattern encoded by the completed operator xLVP = LVPD M/C with riu2/u2
mappings in consideration of a number of concerning directions |Φ|. As the
result of those, the final size of DDTPD M/C is 3k(|B|+ 2L+ 3) bins. Similarly,
dimension of xLVP-TOPD M/C descriptor is 9k bins; of the original LVP-TOP
is 3k; and of DDTP-B is the one-third of DDTPD M/C ’s in this case since only
LVPD is involved with.

In order to effectively form DDTP descriptor, Algorithm 1 presents our idea
for its construction based on a mechanism of shared features, in which xLVP
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features of each frame are calculated for only one time and are used effectively
for constructing DDTP description of all trajectories passing through this frame.
It is proposed by addressing three main following steps:

1. Labeling all motion points of trajectories with mapping volume vMP.

2. Constructing xLVP features of the considered video.

3. Calculating DDTP of each trajectory from the labels of its motion points
(vMP) and xLVP features.

Moreover, we also take advantage of multi-scale analysis [55] to improve the
discriminative power of DDTB descriptors, in which our xLVP is exploited for
many of different {(P,R)} situations in order to forcefully capture directional
relationships in further local regions. The obtained histograms are then con-
catenated and normalized to structure multi-scale DT representation.

Our proposed DDTP descriptor has more robust and discriminative power
based on the following prominent properties:

• Incorporation between DBT and TMP features makes DDTP descriptors
more discriminative for DT recognition (see Table 4 for contributions of
each of them).

• The advantages of both optical-flow-based and local-feature-based meth-
ods are embedded into DDTP descriptors thanks to utilizing xLVP for
encoding dense trajectories.

• Using dense trajectories extracted from a video allows to efficiently analyze
chaotic motions of moving DTs in the sequence, an interested alternative
for DT representation.

5.2 Computational complexity of DDTP descriptor

In order to estimate the computational complexity of our DDTP descriptor,
we present a simple algorithm to encode DDTP patterns, as generally shown in
Algorithm 1. Accordingly, it takes five steps to handle a video V of H×W ×F
dimension as follows.

• Step 1: Dense trajectories T with length of L are extracted by exploiting
a tool introduced in [4]. The computational cost of this extraction QT
can be referred to [4] for more detail.

• Step 2: A mapping volume vMP is used to signed which motion points
belong to which trajectory t ∈ T . The complexity is estimated as QvMP =
O(L× |T |).

• Step 3: xLVP features are calculated from collection of slices of V in three
orthogonal planes XY , XT , and Y T . Let us consider plane XY con-
cerning component xLVPXY (the two other components have the same
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Algorithm 1: Encoding DDTP patterns

1 Input: A video V of H×W × F dimension, length of trajectory L,
number of neighbors P , directions Φ.

2 Output: DDTP descriptor.
3 %%%% Step 1: Extraction of trajectories. %%%%
4 Extracting dense trajectories T from video V subject to L.
5 %%%% Step 2: Labeling of motion points. %%%%
6 Initialize vMP of size H×W × F , vMP(q) = 0 ∀q.
7 for t=1:|T | do
8 for i=1:L+1 do
9 qi = ith motion point of trajectory T (t);

10 vMP(qi) = t;

11 end for

12 end for
13 %%%% Step 3: Extraction of xLVP features. %%%%
14 for f=1:F do
15 If : slice of V at frame f in plane XY ;
16 xLVPXY (f) = {LVP-D(If ), LVP-M(If ), LVP-C(If )};
17 end for
18 for y=1:H do
19 Iy: slice of V at ordinate y in plane XT ;
20 xLVPXT (y) = {LVP-D(Iy), LVP-M(Iy), LVP-C(Iy)};
21 end for
22 for x=1:W do
23 Ix: slice of V at abscissa x in plane Y T ;
24 xLVPY T (x) = {LVP-D(Ix), LVP-M(Ix), LVP-C(Ix)};
25 end for
26 %%%% Step 4: Construction of DBT and TMP %%%%
27 for each q ∈ vMP do
28 %%%% Check q is motion point.%%%%
29 if vMP(q) > 0 then
30 Structuring DBT and TMP features based on xLVPXY ,

xLVPXT , xLVPY T for motion points q in the trajectory
t = vMP(q).

31 end if

32 end for
33 %%%% Step 5: Construction of DDTP. %%%%
34 Concatenate to form DDTP = [DBT, TMP];
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complexity by using similar arguments). We consider now the complexity
to calculate xLVP features for each input plane-image If of H×W dimen-
sion, it can be deduced from Equations (8) and (9) in Section 3.1 that our
proposed directional thresholds DVM and DVC have computational costs
of QDVM = O(P ×H×W) and QDVC = O(H×W) respectively, where P
is the number of considered neighbors for encoding xLVP. As mentioned
in Section 3.2, our xLVP consists of three complementary components:
LVPD, LVPM , and LVPC . Based on Equations (10), (12), and (14), their
computation costs are respectively estimated as QLVPD

= O(P ×H×W),
QLVPM

= O(P × H × W) + QDVM, and QLVPC
= O(H × W) + QDVC.

Since these components are computed independently, the complexity of
xLVP(I) can be approximately estimated as the maximum of QLVPD

,
QLVPM

, and QLVPC
, i.e., O(P × H ×W). Therefore, the complexity for

extraction of xLVPXY component on XY plane is O(P × H × W × F )
because there are F considered slices. By applying similar arguments on
two other components calculated on planes Y T and XT , we deduce that
the complexity of this step is QxLVP = O(P ×H×W × F ).

• Step 4: Based on the mapping volume vMP, DBT and TMP features
are structured by using xLVP patterns for motion points in the same
trajectory. The complexities of these processes are estimated as QDBT =
O(P × L × |Φ| × H × W × F ) for encoding DBT features and QTMP =
O(L× |Φ| ×H×W ×F ) for TMP, in which |Φ| denotes the cardinality of
directions Φ.

• Step 5: Finally, DDTP descriptor is formed by concatenating DBT and
TMP features. The complexity of this concatenation is O(1).

Therefore, the complexity of our proposed descriptor can be generally
estimated as follows.

QDDTP = QT +QvMP +QxLVP +QDBT +QTMP (21)

In order to concentrate on the computational cost of our proposed DDTP
descriptor based on a given collection of dense trajectories, we disregard
QT . In addition, since parameters L and |Φ| (e.g., L ∈ {2, 3} and |Φ| = 4
as valued in Section 6.1) are much smaller than the others, they can be
also ignored. Consequently, QDDTP could be approximated by Equation
(22), which shows that the construction of DDTP descriptor from dense
trajectories has linear complexity with respect to the number of voxels of
an input video since P can be considered as a constant, i.e., P = 8 or
P = 16.

QDDTP ≈ max(QvMP, QxLVP, QDBT, QTMP)

≈ O(P ×H×W × F )
(22)

In terms of processing time, the consumption mainly depends on the turbu-
lent level of DTs in a video, i.e., the more turbulence the video has, the larger
motion points are signed in mapping volume vMP (see lines 4-12 of Algorithm
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1), and then the heavier computation of DBT and TMP is (see lines 27-31 of
Algorithm 1). However, it can be verified from Equation (22) that our proposal
principally depends on the dimension of a given video, not on the number of
its trajectories. Indeed, in consideration of videos with the same dimension
but levels of turbulence in high difference, we address two particular videos of
UCLA in both original and cropped versions for an instance of runtime estima-
tion. Table 1 illustrates the consumption of encoding DDTPD M/C descriptors
with settings of L = 3, P = 8, and |Φ| = 4. It can be seen from Table 1
that the higher turbulent video needs more processing time. In addition, using
the cropped version can save the runtime, but it negatively impacts the perfor-
mances for DT recognition (see Table 7 for instances). It is worth noting that a
raw MATLAB code of our algorithm is run on a 64-bit Linux desktop of CPU
Core i7 3.4GHz, 16G RAM.

Table 1: Comparing processing time of encoding two videos in UCLA.

Sample video Resolution L Level of turbulence #Traj. Runtime

110× 160× 75 (orig.) 3 A single candle flame 3674 ≈8.7s

48× 48× 75 (crop) 3 A single candle flame 1507 ≈2.6s

110× 160× 75 (orig.) 3 All leaf vibrations 25562 ≈35.3s

48× 48× 75 (crop) 3 All leaf vibrations 2134 ≈3.1s

6 Experiments

In this section, comprehensive evaluations of the proposed framework on the
benchmark DT datasets (i.e., UCLA [1], DynTex [24], and DynTex++ [25])
are specifically expressed by following experimental protocols and parameter
settings for implementation. In order to classify DTs, we addressed two following
popular classifiers: i) Support Vector Machines (SVM) - We use a linear SVM
with the default parameters implemented in library LIBLINEAR [56]. ii) k-
nearest neighbors (k-NN) - To be comparable with performances of existing
approaches [57, 58, 39, 43], we also employ k-nearest neighbors in simplicity with
k = 1 (i.e., 1-NN), in which chi-square (χ2) is used for dissimilarity measure.
The obtained recognition rates are then evaluated in comparison with those of
the state-of-the-art methods.

6.1 Experimental settings

Settings for extracting dense trajectories: Due to the short “living” time of
most of turbulent dynamic points in DT videos, lengths of dense trajectories
L ∈ {2, 3} should be addressed in our experiments. We utilize a tool, introduced
in [4], for extracting these trajectories from a DT sequence. Since the default
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settings of this tool are set for mainly achieving motions of human actions, to
be in accordance with the particular DT characteristics, we make a change of
rejecting trajectory parameter min var = 5 × 10−5 in order to acquire “weak”
trajectories of chaotic motion points. Figure 6 graphically illustrates several
samples of dense trajectories extracted from the corresponding sequences using
the customized settings. Empirically, for datasets (like Dyntex++) which are
built by splitting from other original videos, some of cropped sequences point out
a number of trajectories that are not sufficient for DT representation (see Figure
6(c)). In this case, a few tracking parameters should be addressed in lower levels
to boost the quantity of trajectories in our framework as quality = 10−8 and
min distance = 1.

(a) (b) (c)

Figure 6: (Best viewed in color) Samples (a), (b), (c) of dense trajectories
extracted from the corresponding videos in UCLA, DynTex, and DynTex++
datasets respectively in which green lines show paths of motion points through
the consecutive frames.

Parameter settings for structuring descriptors: The first-order xLVP opera-
tor (i.e., d = 1) is used to structure local vector patterns of dynamic features in
four directions of Φ = {0◦, 45◦, 90◦, 135◦}, i.e., |Φ| = 4. To be compliant with
the LBP-based concept, it is possible to conduct different supporting regions
Ω = {Bi} for encoding directional beams of dense trajectories DBT, where
each Bi = {PBi , RBi} denotes PBi neighbors circled by radius RBi . In our
experiments, we address Ω = {{8, 1}, {16, 2}} (see Fig. 3 for an instance of
Bi = {8, 1}, i.e., |Bi| = 8, which is taken into account.) To be in accordance
with the DBT calculation, locating local neighbors {(P,R)} for computing TMP
on the temporal planes should be agreed with the way of addressing Ω. For
different types of DDTP descriptor, structured subject to integrating comple-
mented components in xLVP operator, we address three descriptors for exper-
iments on DT classification, i.e., DDTPD M , DDTPD M/C , and DDTPD M C

(hereafter generally named DDTP descriptors). Their dimensions are respec-
tively 8ηlriu2/u2, 12ηlriu2/u2, and 8η(lriu2/u2 +1) with riu2/u2 mappings, where
η = |Bi| + 2L + 3. Similarly, we have various xLVP-TOP descriptors as fol-
lows: xLVP-TOPD M of 24lriu2/u2 bins, xLVP-TOPD M/C of 36lriu2/u2, and
xLVP-TOPD M C of 24(lriu2/u2 + 1). In terms of DDTP-B, and LVP-TOP
descriptors, they are structured by 4ηlriu2/u2 and 12lriu2/u2 distinct values in
this case. Table 2 details some specific dimensions of these descriptors of riu2
mapping. It is verified from this table that multi-scale analysis is able to be
regarded for our completed operator xLVP to capture more robust directional
relationships in larger supporting regions while the dimension is still moderate
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compared to other LBP-based methods.

6.2 Datasets and experimental protocols

In this section, we firstly detail features and protocols of benchmark DT
datasets for verifying our framework in recognition issue. Their main properties
are then summarized in Table 3 at a glance.

6.2.1 UCLA dataset

It consists of 50 categories with 200 different DT videos [1], corresponding
to four sequences per class, which capture chaotic motions, such as fire, boiling
water, fountain, etc. Each original sequence is recorded in 75 frames with di-
mension of 110 × 160. Several samples of this dataset are shown in above row
of Fig. 7. The categories are arranged in various ways to compose challenging
subsets as follows.

• 50-class: Usually, 50 categories are addressed for DT recognition in two
experimental protocols as follows.

Leave-one-out (LOO) [23, 44, 20]: Only one sequence of a class is taken
out for testing. The training set is addressed by taking the remain of this
class along with all videos of other classes. The final rate is averaged by
repeating this trial for all samples of the dataset.

4-fold cross validation [39, 43, 18]: Three videos of each class are picked
out for learning and the remaining one for testing. This process is re-
peated four times with different testing samples. Then the average of
these repetitions forms the final result.

• 9-class: Original 50 categories are rearranged to form 9 classes with more
challenge for DT recognition: “boiling water”(8), “fire”(8), “flowers”(12),
“fountains”(20), “plants”(108), “sea”(12), “smoke”(4), “water”(12), and
“waterfall”(16), where numbers in parentheses indicate quantities of se-
quences in the corresponding group [20, 26]. Following protocols in [39,
25], a half of sequences in each category is randomly selected for training,
the rest for testing. The average rate of 20 runtimes reports the final
result.

• 8-class: Due to the dominant quantity of sequences in “plants” group, it
is eliminated to form 8-class scheme with more challenges for recognition
task. Similarity to [20, 39], a half of sequences in each category is randomly
selected for training and the remaining for testing. The final evaluation
of recognition is estimated by the mean of rates in 20 runtimes.

6.2.2 DynTex dataset

It is a collection of more than 650 high-quality DT sequences in AVI format
which are recorded in various conditions of environment [24]. Following the
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fire sea water waterfall fountain plant

foliage grass escalator traffic flag fountain

Figure 7: Samples of UCLA (above row) and DynTex (bottom row).

works in [23, 43, 9], the version of 352 × 288 × 250 videos is addressed in our
experiments with LOO protocol for evaluating the performance of our proposal.
(see Fig. 7 for some DT samples). There are 4 challenging subsets which are
composed from the original sequences for DT recognition task as follows.

• DynTex35 is arranged from 35 videos in order to form corresponding 35
categories as follows. Each of sequence is randomly split into 8 non-
overlapping sub-videos so that cutting points are not in half of the X,
Y, and T axes. In addition, two more sub-sequences are also pointed out
by cutting along the temporal axis of the original sequence. Consequently,
there are 10 sub-DTs with different spatial-temporal dimension for each
sequence [23, 43, 9].

• Alpha includes 60 videos equally divided into three categories: “sea”,
“grass”, and “trees”, with 20 sequences in each of them.

• Beta contains 162 sequences grouped into 10 classes with different num-
bers of sequences: “sea”, “vegetation”, “trees”, “flags”, “calm water”,
“fountains”, “smoke”, “escalator”, “traffic”, and “rotation”.

• Gamma comprises 10 categories with 264 videos in total: “flowers”, “sea”,
“naked trees”, “foliage”, “escalator”, “calm water”, “flags”, “grass”, “traf-
fic”, and “fountains”. Each of which includes a sample of diverse se-
quences.

6.2.3 DynTex++ dataset

From more than 650 sequences of the original DynTex, Ghanem et al. [25]
filtered 345 raw videos to build DynTex++ so that the filtered videos only con-
tain the main DTs, not consist of other DT features such as panning, zooming,
and dynamic background. After applying some techniques of preprocessing to
the selected videos, they are divided into 36 categories where each of which has
100 sequences with fixed dimension of 50 × 50 × 50, i.e., 3600 videos in total.
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As the settings in [23, 25], the training set is formed by randomly selecting a
half of samples from each group and the rest for testing. The final evaluation is
taken by the average of 10 repetitions of this trial.

6.3 Experimental results

Evaluations of our framework for DT recognition on various benchmark
datasets (UCLA, DynTex, and DynTex++) are specifically expressed in Ta-
bles 5, 6, and 10 respectively, in which descriptors DDTP and DDTP-B are
formed by corresponding operators xLVP and LVPD using riu2 mapping for
dense trajectories with length L = {2, 3}. It can be verified from those tables
that addressing dense trajectories for DT description is a significant alternative
beside considering DT appearances in temporal aspects of a video as in the ex-
isting methods. Based on the experimental results, several critical assessments
could be derived from as follows.

• It can be verified from Tables 5, 6, and 10 that our proposed descriptors
have much better results in classifying DTs when using SVM classifier
compared to 1-NN. Therefore, SVM should be recommended for our below
evaluations as well as for applications in practice. From now on, if no
classifier is explicitly indicated for the DT recognition issue, the mentioned
rates are based on SVM.

• As expected in Section 5.1, the incorporation between spatio-temporal of
motion points (TMP) and directional features of beam trajectories (DBT)
has boosted the performance in comparison with FDT [16], in which mo-
tion points of dense trajectories along with their local neighbors are en-
coded to form directional beams of features (see Tables 8 and 9). Table
4 expresses contributions of these components making DDTP descriptors
more discriminative. Furthermore, our descriptors have dimension at least
a half slighter than FDT’s (see Table 2).

• As mentioned in Section 3.2, the integration of complemented components
additionally produces more informative discrimination for encoding dense
trajectories. In fact, most of DDTP descriptors outperform significantly
in comparison with DDTP-B, just utilizing one complemented factor (see
Tables 5, 9, and 10). It has verified the contributions of our important
extensions to form the completed xLVP operator compared to the basic
LVP [47].

• Taking directional vector center contrast, i.e., LVP-C, into account struc-
turing DDTP descriptors is frequently more robust than others. Therein,
the jointing with this component seems to point out descriptors with more
“stable” performance (see Tables 5, 6, and 10).

• It is in accordance with our analysis in Section 5.1 that capturing direc-
tional features of dense trajectories in multi-scale local regions of their
motion points is more effective than single-scale. Therein, the 2-scale
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D M C descriptor of riu2 mapping with length of trajectories L = 3 ,
i.e., {(8, 1), (16, 2)}riu2

L=3, obtains more “stable” on most of the benchmark
datasets (see Tables 5, 6, and 10). Therefore, it should be suggested for
applications in practice, and also be the setting selected for comparing
with performances of state of the art.

• In most of circumstances, the performance of DDTP-B based on the typi-
cal LVP [47] (see Section 5.1) is not better than DDTP’s computed by the
extended operator xLVP. Moreover, xLVP-TOP also outperforms com-
pared to LVP-TOP in consideration of each voxel on three orthogonal
plans of a video instead of its dense trajectories (see Table 11). These
facts prove the interest of our proposed components: completed operator
xLVP with two adaptative directional vector thresholds (i.e., DVM, DVC)
and dense-trajectory-based features for DT representation.

In terms of comparison with the state-of-the-art methods, our proposed
framework for encoding dense trajectories using completed model xLVP pro-
duces discriminative descriptors for DT recognition task compared to LBP-based
variants and others in several circumstances. Furthermore, their performances
are nearly the same those of deep-learning-based approaches on UCLA dataset
(see Table 8). Hereinafter, comprehensive estimations of our proposal on various
benchmark datasets are presented in detail, in which if DDTP descriptors are
not explicit in their implemented settings, the default configuration is indicated
for them, i.e., {(8, 1), (16, 2)}riu2.

6.3.1 Recognition on UCLA dataset

It can be observed from Tables 5 and 8 that our proposed descriptors have
significant performances of DT recognition on UCLA compared to those of state-
of-the-art methods, including deep learning techniques in several circumstances,
which are expressed in detail as follows.

In scenario of DT classification on 50-class, by addressing trajectories of

L = {2, 3}, DDTP
L={2,3}
D M and DDTP

L={2,3}
D M C have reported rates of 100% on

both 50-LOO and 50-4fold schemes, the best performances compared to all ex-
isting methods, including deep-learning approaches. In the meanwhile, with the
setting for comparison, DDTPL=3

D M/C descriptor gains 99% and 99.5% respec-
tively, the highest compared to all LBP-based variants (see Table 8). Those
performances are the same FDT’s [16], but in a half smaller dimension, i.e.,
6768 versus over 13000 bins (see Table 2). On the other hand, DDTP-B using
the setting of {(8, 1), (16, 2)}riu2

L=3 also obtains competitive results with rates of
99.5% and 98.5% in comparison with those of the local-feature-based methods.
Above facts have validated that utilizing dense trajectories along with the com-
pleted model of LVP for encoding directional features of motion points figures
out discriminative descriptors in DT recognition task.

In terms of evaluations on 9-class and 8-class, our descriptor DDTPL=3
D M/C

has critical performances with 98.75% and 98.04% respectively, the highest in
comparison with the LBP-based variants (see Table 8), except CVLBC [42] with
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rates of 99.20% and 99.02%. However, it is not better than ours on DynTex35
and DynTex++ datasets as well as not been verified on the challenging sub-
sets of DynTex, i.e., Alpha, Beta, and Gamma (see Table 9). In our previous
work, FDT [16] encoding motions of DTs along their trajectory is just better
than DDTPL=3

D M/C on 8-class with rate of 99.57%, but in about twice larger
dimension. Furthermore, it should be noted that DT-CNN [32] only outper-
forms ours on 8-class with rates of 98.48% for framework AlexNet and 99.02%
for GoogleNet. For improvement in further contexts, we concentrate on which
videos have been confused with others. On scheme 9-class, it can be observed
from Fig. 8, DDTPL=3

D M/C has mainly confused the motions of DTs in “Fire”
sequences with those in “Smoke”; and the properties of trajectories in “Flowers”
with those in “Plants”. The confusion on scheme 8-class principally falls in the
turbulent properties of “Fire” videos with those of “Fountains” and “Waterfall”
(see Fig. 9).

In addition, it should be noted that several existing methods [43, 45, 58, 40]
have experimented DT classification on the short version of UCLA with videos
of 48× 48× 75 dimension. Addressing those for our proposal, we achieved some
results for DDTPL=3

D M/C descriptor, as indicated in Table 7. Accordingly, its per-
formance is noticeably reduced in comparison with those done on 110×160×75
videos (see Tables 5 and 7). It could be lack of spatio-temporal information due
to less dense trajectories that are extracted from the cropped version. However,
the speed of encoding is much faster thanks to a sharp reduction of turbulence
in the cropped version (see Table 1 for a comparison of time consumption).
Therefore, a trade-off between the high rates and the processing time should be
discreetly considered for real implementations.

6.3.2 Recognition on DynTex dataset

It can be verified from Tables 6 and 9 that the proposed framework outper-
forms significantly compared to most of the state-of-the-art methods. In general,
DDTP descriptors with at least a half smaller dimension are more robust than
our previous work FDT [16]. It is thanks to exploiting spatio-temporal features
of motion points along their trajectories which are encoded by the completed
LVP model rather the typical LVP [47]. Hereafter, we detail evaluations on each
subset.

For DT recognition on DynTex35, DDTPL=3
D M/C descriptor with 6768 bins

achieves 99.71%, a little lower than CSAP-TOP’s [40] (100%) with 13200 bins.
It is due to the very similar motions of DTs in videos as shown in Fig. 11(a)
and Fig. 11(b). Figure 10 expresses specific rates of each category. In the
meanwhile, FD-MAP and FDT descriptors in our previous work [16] just obtain
rate of 98.86%. It is because only appearances of trajectories are involved with.
The LBP-based method MEWLSP [45] also has the same our ability. However,
it has not been verified on other challenging subsets, i.e., Alpha, Beta, and
Gamma (see Table 9).

In respect of DT classification on other challenging subsets, DDTPL={2,3}

descriptors obtain 98.33% on Alpha using {(P,R)} = {(8, 1)} of riu2 mapping
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Figure 8: Confusion matrix of DDTPL=3
D M/C on 9-class.

for both length of trajectories L = {2, 3} (see Table 6), but not outperform
on Beta and Gamma in comparison with other parameters. For the setting
of comparison, DDTPL=3

D M/C achieves a little lower rate of 96.67% on Alpha
due to the mutual confusion between turbulent motions of DTs in “Trees” and
those in “Grass” sequences (see Fig. 12). In the meantime, its performances
on Beta and Gamma are 93.83% and 91.29%. Its modest results are caused
by cases of confusion shown in Fig 13 and 14 respectively, where motions in
“Escalator” and “Rotation” are confused with others in DT recognition on Beta
while those in “Calm water” and “Fountains” on Gamma. In general, our
performance is nearly the best results on these challenges compared to most of
the existing approaches, except deep learning methods. Moreover, the execution
of DDTPL=3

D M/C is the same those of CSAP-TOP [40], FD-MAP [16], and FDT
[16] (see Table 9), but in much smaller dimension, i.e., 6768 versus over 13000
bins of them (see Table 2). In the scenarios, DDTP-B with the setting of
{(8, 1), (16, 2)}riu2

L=3 also gains significant rate of 98.33% on Alpha, but faulting
on the remains since just directional features of the typical LVP are exploited.
The deep learning methods, i.e., st-TCoF [31], D3 [60], DT-CNN [32], obtain the
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Figure 9: Confusion matrix of DDTPL=3
D M/C on 8-class.

best performances (see Table 9). However, they take a huge cost of computation
as well as different parameters for learning DT features on each benchmark
dataset.

6.3.3 Recognition on DynTex++ dataset

Recognition results of our proposed framework with different settings are
presented in Table 10. It can be observed from the table that DDTP-BL={2,3}

descriptors with the setting of {(8, 1), (16, 2)}riu2 just obtain 91% for length of
dense trajectories L = 2 and 90.98% for L = 3, about 4% lower than those of
DDTP descriptors with the same parameters. This has proved the importance
of the completed model xLVP for encoding directional characteristics of dense
trajectories compared to the basic LVP [47]. In terms of the settings chosen for
comparison, the proposed descriptor DDTPL=3

D M/C achieves rate of 95.09%, the
competitive performance compared to most of the existing methods (see Table
9). More specifically, only LBP-based approach MEWLSP [45] gains 98.48%,
but as mentioned above, it is not better than ours on UCLA (see Table 8) as well
as has not been validated on the challenging subsets of DynTex, i.e., Alpha, Beta,
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Figure 11: Video (a) is confused with (b) in recognition on DynTex35.
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and Gamma. In the meanwhile, FDT [16] and FD-MAP [16], which are based
on directional beams of dense trajectories for DT representation, obtain rates
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Data counts, RR = 152/162 = 93.8272%
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Figure 13: Confusion matrix of DDTPL=3

D M/C on Beta.

of 95.31% and 95.69% respectively, just a little higher than ours. Nevertheless,
their dimensions are about twofold (see Table 2). DT-CNN [32] obtains 98.18%
for the AlexNet framework, 98.58% for the GoogleNet framework (see Table 9).
However, it takes a long time to learn features for deep layers along with a huge
complicated computation, which may be especially limited in implementations
for mobile devices.

6.4 Global discussion

Beside particular evaluations on different benchmark DT datasets in Section
6.3, several general findings can be derived as follows.

• For DT representation, it can be validated from experimental results in
Tables 5, 6, and 11 that encoding DTs based on dense trajectories of a
video has structured descriptors with more robustness compared to that
based on three orthogonal planes of the sequence. That means our xLVP
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D M/C on Gamma.

operator could be suitable for capturing directional features of dense tra-
jectories instead of for investigating the whole video. It should be noted
that in case of focusing on the entire properties of a sequence, xLVP-
TOP also significantly outperforms the basic LVP [47] applied on three
orthogonal planes (see Table 11).

• xLVP-TOP can be also considered as an alternative solution for encoding
DT videos in practice since its performance is reasonable with tiny dimen-
sion as well as more outstanding in comparison with the basic LVP-TOP
(see Tables 2 and 11).

• Expanding supporting regions for encoding dense trajectories is not a
strong recommendation due to lack of concerned spatio-temporal infor-
mation of directional beams. Indeed, with Ω = {24, 3} and single-scale
settings of {(24, 3)}riu2

L={2,3}, the performances of corresponding DDTP de-

scriptors dramatically drop on UCLA (50-LOO) and DynTex35 datasets
compared to those of others (see Tables 5, 6, and 12). In the meantime,
DDTP descriptors with 3-scale setting of {(8, 1), (16, 2), (24, 3)}riu2

L={2,3} are
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just nearly the same performance as those of 2-scale, i.e., {(8, 1), (16, 2)}riu2
L={2,3},

but in much larger dimension (see Table 2).

• Addressing u2 mapping (e.g., {(8, 1)}u2
L={2,3}) for structuring DDTP fea-

tures points out much larger dimension (see Section 6.1) while its perfor-
mance is not improved as expected (see Table 12).

• In addition, taking into account motion points in longer dense trajectories
enlarges the dimension of proposed descriptors while their performances
are not enhanced (see Table 13 for that). This may be due to the short
“living” time of turbulent motions in a video.

7 Conclusions

In this paper, an efficient framework for DT description has been proposed
by incorporating advantages of optical-flow-based and local-feature-based tech-
niques in order to figure out robust descriptors for DT recognition task. Specif-
ically, beams of dense trajectories, extracted from a DT video, are completely
investigated in both spatial and temporal changes of motion points. Directional
features of them are encoded by xLVP, the crucial extensions of LVP, allowing to
capture more forceful local vector relationships. Experiments have validated two
following important contributions. First, taking dense trajectories into account
DT representation is an interested alternative beside investigating the entire
properties of a DT video. Second, based on motion points along their dense
trajectories, the completed model xLVP could point out directional patterns
with more discriminative power rather than the basic LVP [47] do. In addition,
evaluations have also verified that xLVP operator is preferred to encode dense
trajectories rather than to consider each voxel on three orthogonal planes of a
sequence.

For the further future works, the high-order xLVP can be utilized to contem-
plate the potential properties of larger local vector structures on movement of
these motion points. In order to deal with the curse of large dimension, xLVP
can be considered in full directions to seize the entire local directional rela-
tions. In addition, exploiting filtering techniques e.g., moment models [62, 63],
Gaussian-based kernels [64, 65], can mitigate the negative impacts of illumina-
tion and noise on encoding dense trajectories.
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Table 2: A comparison of various dimensions of LBP-based descriptors.

Method Dimensions P = 8 P = 16 P = 24

LBP-TOPu2 [9] 3(P (P − 1) + 3) 177 729 1665

VLBP [9] 23P+2 - - -

CVLBP [46] 3× 23P+2 - - -

HLBP [43] 6× 2P 1536 - -

CLSP-TOPriu2 [39] 6(P + 2)2 600 1944 4,056

WLBPC [44] 6× 2P 1536 - -

MEWLSP [45] 6× 2P 1536 - -

CVLBC [42] 2(3P + 3)2 1458 5202 11125

CSAP-TOPriu2[40] 12(P + 2)2 1200 3888 8112

FDTu2 [16] 216P ((P − 1) + 3) 12744 - -

FD-MAPu2
L=2 [16] 216P ((P − 1) + 3) + 16 12760 - -

DDTPriu2
D M 8(P + 7)(P + 2) 1200 3312 6448

DDTPriu2
D M C 8(P + 7)(P + 3) 1320 3496 6696

DDTPriu2
D M/C 12(P + 7)(P + 2) 1800 4968 9672

DDTP-Briu2 4(P + 7)(P + 2) 600 1656 3224

xLVP-TOPriu2
D M 24(P + 2) 240 432 624

xLVP-TOPriu2
D M C 24(P + 3) 264 456 648

xLVP-TOPriu2
D M/C 36(P + 2) 360 648 936

LVP-TOPriu2 12(P + 2) 120 216 312

Note: P is the concerned neighbors. DDTP, and DDTP-B encode dense trajec-
tories with the length of L = 2. All our descriptors are computed by completed
operator xLVP in 4 directions with riu2 mapping (also the settings for comparison
their performance with the existing methods).
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Table 3: A summary of main properties of DT datasets and protocols.

Dataset Sub-dataset #Videos Resolution #Classes Protocol

UCLA

50-class 200 110× 160× 75 50 LOO and 4fold

9-class 200 110× 160× 75 9 50%/50%

8-class 92 110× 160× 75 8 50%/50%

DynTex

DynTex35 350 different dimensions 10 LOO

Alpha 60 352× 288× 250 3 LOO

Beta 162 352× 288× 250 10 LOO

Gamma 264 352× 288× 250 10 LOO

DynTex++ 3600 50× 50× 50 36 50%/50%

Note: LOO and 4fold are leave-one-out and four cross-fold validation. 50%/50% denotes a protocol
of taking randomly 50% samples for training and the remain (50%) for testing.

Table 4: Contributions (%) of DBT and TMP of DDTPD M C descriptor.

Dataset UCLA (50-LOO) DynTex35

{(P,R)}riu2
L=2 DBT TMP DDTP DBT TMP DDTP

{(8, 1)}riu2
L=2 99.00 90.50 97.50 98.57 96.57 98.00{

(16, 2)}riu2
L=2 99.00 97.50 100 98.86 99.14 99.43

{(8, 1), (16, 2)}riu2
L=2 99.50 97.50 100 98.57 98.29 99.43

Table 5: Results (%) on UCLA exploiting DDTP and DDTP-B descriptors.
Scheme 50-LOO 50-4fold 9-class 8-class

Classifier {(P,R)}riu2
L D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B

SVM

{(8, 1)}riu2
L=2 97.00 97.50 99.00 98.50 94.00 96.00 99.00 98.00 98.60 98.10 98.10 97.90 96.20 96.85 97.28 94.24

{(16, 2)}riu2
L=2 99.50 100 99.50 95.00 100 100 99.50 94.50 97.40 96.60 97.90 95.80 96.09 95.76 96.43 95.33

{(8, 1), (16, 2)}riu2
L=2 100 100 99.00 99.50 100 100 100 99.00 98.35 98.25 98.50 97.85 97.28 96.96 97.50 97.61

{(8, 1)}riu2
L=3 94.00 94.00 99.00 98.50 95.50 95.50 99.00 98.50 98.10 98.55 98.30 97.45 96.52 97.17 95.33 95.22

{(16, 2)}riu2
L=3 100 100 99.50 96.50 100 100 99.50 98.50 97.50 97.60 96.65 95.90 97.07 98.15 96.74 93.15

{(8, 1), (16, 2)}riu2
L=3 100 100 99.00 99.50 100 100 99.50 98.50 98.60 97.95 98.75 96.15 97.72 98.04 98.04 96.30

1-NN

{(8, 1)}riu2
L=2 98.50 98.50 98.50 98.00 99.00 99.00 98.50 98.00 96.20 96.75 95.15 96.90 94.67 93.70 97.07 95.54

{(16, 2)}riu2
L=2 99.00 99.00 98.50 99.00 99.00 99.00 98.50 99.00 93.55 97.45 95.15 94.80 94.13 96.20 95.87 96.30

{(8, 1), (16, 2)}riu2
L=2 99.00 98.50 98.50 99.00 99.00 99.00 98.50 99.00 96.10 95.40 96.30 96.20 95.54 96.52 93.70 95.22

{(8, 1)}riu2
L=3 98.00 98.00 98.50 98.00 98.50 98.50 98.50 98.00 96.55 95.75 96.35 96.95 95.76 97.07 95.87 96.74

{(16, 2)}riu2
L=3 99.00 99.00 98.50 99.00 99.00 99.00 98.50 99.00 96.00 96.45 95.60 96.20 94.89 96.52 93.37 94.02

{(8, 1), (16, 2)}riu2
L=3 99.00 99.00 98.50 99.00 99.00 99.00 98.50 99.00 96.30 95.15 93.85 95.75 96.30 96.73 96.09 97.39

Note: 50-LOO and 50-4fold mean recognition rates on 50-class scenario using leave-one-out and four cross-fold validation respectively. D M , D M C , and D M/C are different
instances of DDTP descriptors formed by integrating the corresponding components of completed operator xLVP. ∼B means the DDTP-B descriptor.
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Table 6: Rates (%) on DynTex using DDTP and DDTP-B descriptors.
Scheme DynTex35 Alpha Beta Gamma

Classifier {(P,R)}riu2
L D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B

SVM

{(8, 1)}riu2
L=2 98.57 98.29 98.00 98.00 98.33 98.33 98.33 98.33 90.12 91.36 93.21 87.04 88.64 87.88 90.53 88.64

{(16, 2)}riu2
L=2 99.43 99.43 99.43 100 96.67 96.67 96.67 93.33 91.36 90.74 91.98 87.65 90.53 91.67 89.77 87.88

{(8, 1), (16, 2)}riu2
L=2 99.43 98.86 99.14 99.14 96.67 96.67 96.67 98.33 91.36 91.98 92.59 88.27 92.80 91.67 91.29 87.88

{(8, 1)}riu2
L=3 98.00 98.00 98.57 98.29 98.33 98.33 98.33 98.33 89.51 91.36 94.44 88.89 88.26 89.02 90.15 89.77

{(16, 2)}riu2
L=3 99.43 99.43 99.71 100 96.67 96.67 96.67 93.33 91.36 91.98 93.21 88.89 90.53 90.53 89.77 85.98

{(8, 1), (16, 2)}riu2
L=3 99.43 99.43 99.71 98.86 96.67 96.67 96.67 98.33 91.98 91.98 93.83 88.27 92.42 90.91 91.29 88.60

1-NN

{(8, 1)}riu2
L=2 96.29 96.57 96.29 96.29 88.33 88.33 91.67 86.67 79.63 79.63 80.25 81.48 76.14 77.65 78.41 74.62

{(16, 2)}riu2
L=2 96.86 96.29 96.57 96.29 91.67 91.67 91.67 90.00 82.72 82.72 83.95 79.01 79.92 79.17 82.58 75.38

{(8, 1), (16, 2)}riu2
L=2 96.29 96.29 96.57 96.00 93.33 91.67 91.67 91.67 83.33 88.33 88.33 80.25 79.54 79.54 81.82 76.52

{(8, 1)}riu2
L=3 96.57 96.57 96.29 96.00 90.00 90.00 91.67 85.00 80.86 80.25 79.63 80.86 76.14 77.65 78.03 74.24

{(16, 2)}riu2
L=3 96.86 96.57 96.86 96.29 91.67 91.67 91.67 90.00 84.57 84.57 83.33 79.63 79.54 79.54 82.95 75.00

{(8, 1), (16, 2)}riu2
L=3 96.86 96.86 96.86 96.57 93.33 91.67 91.67 90.67 82.72 83.33 83.33 80.86 79.17 79.54 82.20 75.52

Note: D M , D M C , and D M/C are different ways of integrating components of xLVP operator to compute the corresponding DDTP descriptors. ∼B means the DDTP-B
descriptor.

Table 7: Results (%) on the cropped version of UCLA.
DDTPL=3

D M/C 50-LOO 50-4fold 9-class 8-class

{(P,R)}riu2
L D M D M C D M/C D M D M C D M/C D M D M C D M/C D M D M C D M/C

{(8, 1)}riu2
L=3 95.50 96.00 96.00 97.00 97.00 97.00 95.00 95.40 96.45 93.37 95.87 94.89

{(16, 2)}riu2
L=3 93.50 96.00 94.00 97.00 97.50 96.00 92.50 92.80 94.95 92.72 91.41 92.72

{(8, 1), (16, 2)}riu2
L=3 96.50 96.50 96.00 96.50 97.00 96.50 94.15 95.05 95.75 94.46 94.13 93.80

Note: 50-LOO and 50-4fold mean recognition rates on 50-class scenario using leave-one-out and four cross-fold validation respec-
tively. D M , D M C , and D M/C are different instances of DDTPL=3

D M/C formed by integrating the corresponding components of

xLVP.
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Table 8: Comparison of recognition rates (%) on UCLA.

Group Encoding method 50-LOO 50-4fold 9-class 8-class

A

FDT [16] 98.50 99.00 97.70 99.35

FD-MAP [16] 99.50 99.00 99.35 99.57

DDTPD M{(8, 1), (16, 2)}riu2
L=3 100 100 98.60 97.72

DDTPD M C{(8, 1), (16, 2)}riu2
L=3 100 100 97.95 98.04

DDTPD M/C{(8, 1), (16, 2)}riu2
L=3 99.00 99.50 98.75 98.04

DDTP-B{(8, 1), (16, 2)}riu2
L=3 99.50 98.50 96.15 96.30

B

AR-LDS [1] 89.90N - - -

Chaotic vector [21] - - 85.10N 85.00N

Diffusion-based model [57] - 98.50N 97.80N 96.22N

C

3D-OTF [27] - 87.10 97.23 99.50

DFS [26] - 100 97.50 99.20

STLS [29] - 99.50 97.40 99.50

D
MBSIF-TOP [23] 99.50N - - -

DNGP [8] - - 99.60 99.40

E

VLBP [9] - 89.50N 96.30N 91.96N

LBP-TOP [9] - 94.50N 96.00N 93.67N

CVLBP [46] - 93.00N 96.90N 95.65N

HLBP [43] 95.00N 95.00N 98.35N 97.50N

CLSP-TOP [39] 99.00N 99.00N 98.60N 97.72N

MEWLSP [45] 96.50N 96.50N 98.55N 98.04N

WLBPC [44] - 96.50N 97.17N 97.61N

CVLBC [42] 98.50N 99.00N 99.20N 99.02N

CSAP-TOP [40] 99.50 99.50 96.80 95.98

F

DL-PEGASOS [25] - 97.50 95.60 -

PI-LBP+super hist [59] - 100N 98.20N -

Orthogonal Tensor DL [34] - 99.80 98.20 99.50

Randomized neural network [58] - 97.05N 98.54N 97.74N

PCANet-TOP [33] 99.50* - - -

DT-CNN-AlexNet [32] - 99.50* 98.05* 98.48*

DT-CNN-GoogleNet [32] - 99.50* 98.35* 99.02*

Note: “-” means “not available”. “*” indicates result using deep learning algorithms. “N”
is rate with 1-NN classifier. 50-Loo and 50-4fold denote results on 50-class breakdown using
leave-one-out and four cross-fold validation respectively. Group A denotes optical-flow-based
methods, B: model-based, C: geometry-based, D: filter-based, E: local-feature-based, F: learning-
based.
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Table 9: Comparison of rates (%) on DynTex and DynTex++.
Group Encoding method Dyn35 Alpha Beta Gamma Dyn++

A

FDT [16] 98.86 98.33 93.21 91.67 95.31

FD-MAP [16] 98.86 98.33 92.59 91.67 95.69

DDTPD M{(8, 1), (16, 2)}riu2
L=3 99.43 96.67 91.98 92.42 94.62

DDTPD M C{(8, 1), (16, 2)}riu2
L=3 99.43 96.67 91.98 90.91 94.69

DDTPD M/C{(8, 1), (16, 2)}riu2
L=3 99.71 96.67 93.83 91.29 95.09

DDTP-B{(8, 1), (16, 2)}riu2
L=3 98.86 98.33 88.27 88.60 90.98

B Diffusion-based model [57] - - - - 93.80N

C

3D-OTF [27] 96.70 83.61 73.22 72.53 89.17

DFS [26] 97.16 85.24 76.93 74.82 91.70

2D+T [61] - 85.00 67.00 63.00 -

STLS [29] 98.20 89.40 80.80 79.80 94.50

D
MBSIF-TOP [23] 98.61N 90.00N 90.70N 91.30N 97.12N

DNGP [8] - - - - 93.80

E

VLBP [9] 81.14N - - - 94.98N

LBP-TOP [9] 92.45N 98.33 88.89 84.85N 94.05N

DDLBP with MJMI [37] - - - - 95.80

CVLBP [46] 85.14N - - - -

HLBP [43] 98.57N - - - 96.28N

CLSP-TOP [39] 98.29N 95.00N 91.98N 91.29N 95.50N

MEWLSP [45] 99.71N - - - 98.48N

WLBPC [44] - - - - 95.01N

CVLBC [42] 98.86N - - - 91.31N

CSAP-TOP [40] 100 96.67 92.59 90.53 -

F

DL-PEGASOS [25] - - - - 63.70

PCA-cLBP/PI/PD-LBP [59] - - - - 92.40

Orthogonal Tensor DL [34] - 87.80 76.70 74.80 94.70

Equiangular Kernel DL [35] - 88.80 77.40 75.60 93.40

Randomized neural network [58] - - - - 96.51N

st-TCoF [31] - 100* 100* 98.11* -

PCANet-TOP [33] - 96.67* 90.74* 89.39* -

D3 [60] - 100* 100* 98.11* -

DT-CNN-AlexNet [32] - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [32] - 100* 100* 99.62* 98.58*

Note: “-” means “not available”. Superscript “*” indicates result using deep learning algorithms. “N”
is rate with 1-NN classifier. Dyn35 and Dyn++ are stood for DynTex35 and DynTex++ sub-datasets.
Group A denotes optical-flow-based methods, B: model-based, C: geometry-based, D: filter-based, E: local-
feature-based, F: learning-based.
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Table 10: Rates (%) of DDTP and DDTP-B descriptors on DynTex++.

Classifier {(P,R)}riu2
L D M D M C D M/C DDTP-B

SVM

{(8, 1)}riu2
L=2 93.85 94.01 94.14 87.10

{(16, 2)}riu2
L=2 93.53 94.92 94.16 86.65

{(8, 1), (16, 2)}riu2
L=2 94.75 94.92 95.04 91.00

{(8, 1)}riu2
L=3 93.28 93.92 94.27 87.69

{(16, 2)}riu2
L=3 93.32 94.69 93.76 87.28

{(8, 1), (16, 2)}riu2
L=3 94.62 94.69 95.09 90.98

1-NN

{(8, 1)}riu2
L=2 91.14 91.47 89.63 89.49

{(16, 2)}riu2
L=2 90.64 90.72 88.45 88.12

{(8, 1), (16, 2)}riu2
L=2 91.63 91.73 89.47 89.33

{(8, 1)}riu2
L=3 90.91 91.33 90.08 89.12

{(16, 2)}riu2
L=3 90.71 90.89 88.12 87.23

{(8, 1), (16, 2)}riu2
L=3 91.43 91.35 89.24 89.33

Note: D M , D M C , and D M/C are different instances of DDTP descrip-
tors formed by integrating the corresponding components of xLVP operator.

Table 11: Performances (%) on the entire video instead of its dense trajectories.

Dataset UCLA (50-LOO) DynTex35

{(P,R)}riu2
D M D M C D M/C LVP-TOP D M D M C D M/C LVP-TOP

{(8, 1)}riu2 98.00 99.00 99.50 94.00 97.71 97.14 94.29 97.71

{(16, 2)}riu2 97.00 98.50 99.50 95.00 98.86 98.57 97.71 98.86

{(8, 1), (16, 2)}riu2 96.50 94.00 98.00 97.00 97.71 98.29 97.14 99.14

Note: D M , D M C , and D M/C are different instances of xLVP-TOP descriptors subject to the way of
integrating complementary components of xLVP operator.

Table 12: Rates (%) of using larger supporting regions and u2 mapping.

Dataset UCLA (50-LOO) DynTex35

{(P,R)}riu2/u2
L D M D M C D M/C ∼B D M D M C D M/C ∼B

{(24, 3)}riu2
L=2 95.50 97.50 97.00 79.00 98.86 99.14 99.71 96.86

{(24, 3)}riu2
L=3 93.00 97.00 98.50 83.00 99.14 99.43 99.71 96.86

{(8, 1), (16, 2), (24, 3)}riu2
L=2 100 99.50 99.50 97.50 99.14 99.43 99.43 100

{(8, 1), (16, 2), (24, 3)}riu2
L=3 99.50 100 99.50 99.50 99.14 99.14 99.71 99.43

{(8, 1)}u2
L=2 99.50 99.50 99.50 99.00 98.00 97.71 98.00 95.43

{(8, 1)}u2
L=3 99.50 99.50 99.50 99.00 98.29 98.57 98.00 97.14

Note: D M , D M C , and D M/C are different instances of DDTP descriptors subject to the way of
integrating complementary components of xLVP operator. ∼B means the DDTP-B descriptor.
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Table 13: Performances (%) on longer dense trajectories on UCLA (50-LOO).

Dataset L = 5 L = 7

{(P,R)}riu2
D M D M C D M/C ∼B D M D M C D M/C ∼B

{(8, 1)}riu2 96.50 95.50 99.00 97.50 95.00 93.50 98.00 96.50

{(16, 2)}riu2 100 100 99.50 95.00 99.50 100 99.00 96.00

{(8, 1), (16, 2)}riu2 99.50 99.50 99.50 98.50 99.50 99.50 98.50 98.50

Note: D M , D M C , and D M/C are different instances of DDTP descriptors subject to the
way of integrating complementary components of xLVP operator. ∼B means the DDTP-B
descriptor.
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