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Directional Dense-Trajectory-based Patterns for Dynamic Texture Recognition

Representation of dynamic textures (DTs), well-known as a sequence of moving textures, is a challenging problem in video analysis due to disorientation of motion features. Analyzing DTs to make them "understandable" plays an important role in different applications of computer vision. In this paper, an efficient approach for DT description is proposed by addressing the following novel concepts. First, beneficial properties of dense trajectories are exploited for the first time to efficiently describe DTs instead of the whole video. Second, two substantial extensions of Local Vector Pattern operator are introduced to form a completed model which is based on complemented components to enhance its performance in encoding directional features of motion points in a trajectory. Finally, we present a new framework, called Directional Dense Trajectory Patterns, which takes advantage of directional beams of dense trajectories along with spatio-temporal features of their motion points in order to construct dense-trajectory-based descriptors with more robustness. Evaluations of DT recognition on different benchmark datasets (i.e., UCLA, DynTex, and DynTex++) have verified the interest of our proposal.

Introduction

Dynamic textures (DTs) are repetition of image textures along a temporal domain [START_REF] Saisan | Dynamic texture recognition[END_REF], such as blowing flag, trees, fire, clouds, waves, foliage, fountain, etc. taking them into account for the dynamical properties [START_REF] Ravichandran | View-invariant dynamic texture recognition using a bag of dynamical systems[END_REF].

Filter-based methods: In these approaches, filter bank operations are utilized to diminish noise in DT sequences. Arashloo et al. [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF] addressed Binarized Statistical Image Features on Three Orthogonal Planes (BSIF-TOP) and its multi-scale scheme to encode dynamic patterns in which binary codes are obtained by filtering performances on varied spatio-temporal regions in videos and by binarizing reactions of the filters. In [START_REF] Rivera | Spatiotemporal directional number transitional graph for dynamic texture recognition[END_REF], the authors introduced a robust technique, named Directional Number Transitional Graph (DNG), to figure out spatial and temporal directional numbers on the frames of a sequence for the purpose of grouping the video into a 3D grid. Experiments on DT recognition verify that filter-based methods have outperformed on simple motion features (e.g., DTs in UCLA dataset [START_REF] Saisan | Dynamic texture recognition[END_REF]). For more complex DTs, as in DynTex [START_REF] Péteri | Dyntex: A comprehensive database of dynamic textures[END_REF] and DynTex++ [START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF], they are less efficient while learning filters in BSIF-TOP or considering DTs of 3D sub-sequences in DNG takes a long time to process with high computational complexity.

Geometry-based methods: DT features of videos are estimated by fractal analysis techniques in which the information of self-similarities in geometry theory is taken into account video representation to be able to tolerate the environmental changes of sequences. Xu et al. [START_REF] Xu | Classifying dynamic textures via spatiotemporal fractal analysis[END_REF] proposed a technique of Dynamic Fractal Spectrum (DFS) with two parts integrated into as follows: volumetric DFS considers DT sequences as 3D volumes to seize their statistical self-similarities. The other, called multi-slice DFS, captures fractal patterns repeated on the frames of volumes. Multi-Fractal Spectrum [START_REF] Xu | Scale-space texture description on sift-like textons[END_REF] is also introduced in order that SIFT-like features are employed for the fractal processes of DT representation. Then Ji et al. [START_REF] Ji | Wavelet domain multifractal analysis for static and dynamic texture classification[END_REF] used low-pass and high-pass wavelet coefficients along with wavelet leaders to form a wavelet-based MFS descriptor with robust power of discrimination while strongly suffering from the changes of environment. Recently, Spatio-Temporal Lacunarity Spectrum [START_REF] Quan | Spatiotemporal lacunarity spectrum for dynamic texture classification[END_REF] depicts a video based on lacunarity analysis on its DT slices to structure lacunarity-based features. Another work [START_REF] Baktashmotlagh | Discriminative non-linear stationary subspace analysis for video classification[END_REF] addressed Non-Linear Stationary Subspace Analysis to encode the stationary parts of DT sequences for decreasing the dimension of description. Regarding efficiency on DT classification, geometry-based methods outperform on simple DT datasets (e.g., UCLA) rather than on complex dynamic features in DynTex and DynTex++. Furthermore, some of them are lack of temporal information in the video analysis.

Learning-based methods: Owing to outperforming results of DT recognition, learning-based approaches have recently attracted researchers with promising techniques. Qi et al. [START_REF] Qi | Dynamic texture and scene classification by transferring deep image features[END_REF] formed TCoF patterns based on a Convolutional Neural Network (CNN) transfer learning from deep structures in still images for characterizing features in DT recognition. Andrearczyk et al. [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF] also addressed using two popular CNN architectures (i.e., AlexNet and GoogleNet) to train DT-CNN features based on spatial-temporal frames of three orthogonal planes while Arashloo et al. [START_REF] Arashloo | Dynamic texture representation using a deep multi-scale convolutional network[END_REF] utilized a PCA convolutional network (PCANet) to learn filters on these planes in order to establish a multi-layer convolutional structure, named PCANet-TOP, for DT representation and classification. In the meanwhile, methods of Dictionary Learning have also become more attractive in which local DT features are figured out by kernel sparse coding to enhance the discriminative power of descriptors. Quan et al. [START_REF] Quan | Dynamic texture recognition via orthogonal tensor dictionary learning[END_REF] introduced a method of sparse coding to learn a dictionary from atoms, known as patches taken from DT sequences, for capturing local DT characteristics. However, because a compulsory requirement is that atoms are in the identical dimension, it is inconvenient to implement in multi-scale resolutions for improvement of the performance. Another effort has been addressed equiangular kernel to advance the effect of learning dictionary process as well as to remedy its high-dimensional problem [START_REF] Quan | Equiangular kernel dictionary learning with applications to dynamic texture analysis[END_REF]. Despite achieving significant results in DT recognition, the learning-based methods generally take a long time to capture DT features because of learning algorithms with high computational complexity. Our proposal in this work can obtain competitive classification rates by exploiting dense trajectories of videos along with an efficient operator for encoding local directional features in simple computation.

Local-feature-based methods: In this perception, DT features of videos are mostly captured by Local Binary Pattern (LBP) operator [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] and its LBP-based variants due to their simple and efficient computation. For DT representation, Zhao et al. [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] presented two LBP-based operators: Volume LBP (VLBP) for encoding dynamic patterns based on spatio-temporal relations of features on three consecutive frames; LBP on three orthogonal planes (LBP-TOP) for capturing motion and shape cues from these planes. Then, many efforts have been made to advance the discrimination of DT descriptors based on diverse extensions of two above typical operators. Ren et al. [START_REF] Ren | Optimizing LBP structure for visual recognition using binary quadratic programming[END_REF] tried to reduce feature vectors in a reasonable dimension using a technique of learning data-driven LBP structures optimized by a scheme of maximal joint mutual information. The information of local structures and image moments is addressed for the completed scheme [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] on three orthogonal planes to form respectively CLSP-TOP [START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF] and CSAP-TOP [START_REF] Nguyen | Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes[END_REF] patterns. In the meanwhile, an other combination of Completed Local Binary Count [START_REF] Zhao | Completed Local Binary Count for Rotation Invariant Texture Classification[END_REF] (CLBC) and the concept of VLBP is also exploited to form CVLBC descriptor [START_REF] Zhao | Dynamic texture recognition using volume local binary count patterns with an application to 2d face spoofing detection[END_REF] with more robustness for DT recognition. Tiwari et al. [START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF] introduced Helix Local Binary Patterns (HLBPs) to take the advantages of characteristics in both LBP-TOP and VLBP patterns. Other LBP-based variants for DT representation have been also proposed in recent works, such as WLBPC [START_REF] Tiwari | Improved weber's law based local binary pattern for dynamic texture recognition[END_REF] using Weber's law to enhance the role of center pixel, EWLSP [START_REF] Tiwari | Dynamic texture recognition using multiresolution edge-weighted local structure pattern[END_REF] encoding the information of edge-weighted local structure patterns.

Even though the local-feature-based methods achieve promising DT recognition results, they survive several inherent problems, such as sensitivity to noise, near uniform regions [START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF][START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF], and large dimension [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF][START_REF] Ren | Optimizing LBP structure for visual recognition using binary quadratic programming[END_REF][START_REF] Tiwari | Dynamic texture recognition based on completed volume local binary pattern[END_REF]. In the meanwhile, our prior effort [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF] has attempted to partly deal with restrictions of optical-flow-based methods by taking into account a directional LBP-based operator LVP f ull -TOP to structure characteristics of dense trajectories in consideration of full directions. However, the important temporal information of motion points in these trajectories has not been exploited as well as directional relationships have not been considered in a completed context of larger local regions. Addressing those obstacles, we indicate the following crucial improvements to enhance the performance compared to our previous work [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF]:

• A completed model of Local Vector Pattern (LVP) is introduced to efficiently encode trajectories in a slighter dimension compared to using LVP f ull -TOP in [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF]. In addition, adaptive directional vector thresholds (DVM α,d (I) and DVC α,d (I)) have been introduced to address two other components of the completed model (see Fig. 1).

• Exploiting temporal information of motion points in trajectories.

• Directional local relationships are conducted in larger supporting regions. This allows to capture more spatio-temporal information in order to boost the discrimination power.

• A thorough framework for taking beneficial properties of dense trajectories into account DT representation is presented. Figure 1: (Best viewed in color) Highlight of this proposal that are presented in blue background (the extension is in the dashed box) compared to our previous work [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF], presented in dark background, for encoding a video based on its dense trajectories.

In general, the proposed framework in this work consists of three stages as follows. First, motion points and their paths in a video extracted by using an extracting tool [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF]. Second, crucial extensions of LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF] operator are proposed by taking advantage of the information of magnitudes and center contrast levels in order to form a completed operator, named xLVP, with outperformance compared to the basic LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF]. Third, two important beneficial properties of dense trajectories are exploited: Directional features of beam trajectories, and spatiotemporal features of motion points along with their paths in which their directional relationships are captured by using the robust operator xLVP. Finally, the obtained histograms are concatenated and normalized to effectively construct DT descriptors, named Directional Dense Trajectory Patterns (DDTP), with more robustness. Consequently, it could be realized that the advantages of both optical-flow-based and local-feature-based methods are consolidated into our approach to improve DT representation. In short, the major contributions of this work can be listed as follows.

• Dense trajectories, extracted from a video, are involved with DT representation for the first time instead of the whole video.

• Profitable characteristics of optical-flow-based and local-feature-based methods are exploited thanks to using a discriminative operator proposed for encoding these dense trajectories.

• A novel operator xLVP is presented to efficiently capture directional information in consideration of an incorporation between beams of dense trajectories and their motion points.

• Two adaptive directional vector thresholds, introduced to make the completed model xLVP, agree with complemented components of magnitudes and center contrast levels.

• An effective framework for DT description has been proposed to form robust DDTP descriptors by taking advantage of properties of dense trajectories.

Related work

Taking LBP into account encoding local relationships is one of the most interested approaches in image representation due to its outperformance with simple computation. In this portion, we take a brief review of LBP and its variants for structuring DTs in recognition task. Furthermore, a model of directional LBP-based patterns is recalled in short as well as a technique of extracting dense trajectories from a DT video is also involved with in a summary.

A brief review of LBP

Ojala et al. [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] introduced LBP, a well-known operator of effective computation in still images, to encode a local textural feature as a binary chain code. Specifically, given a center pixel q c of a 2D texture image I, binary codes of LBP for q c are defined as follows.

LBP P,R (q c ) = P -1 i=0 s I(p i ) -I(q c ) 2 i (1)
where p i is the i th surrounding neighbor of q c , P is a number of neighbors interpolated on a circle of radius R centered at q c , and function s(.) is defined as

s(x) = 1, if x ≥ 0 0, otherwise. (2) 
As the result of that, a texture image is formed by a histogram of 2 P distinct values. Because of the large dimension of the basic LBP, in practice, two most popular mappings are usually taken into account to turn it down into a reasonable size as follows. Uniform patterns (LBP u2 ) [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] with P (P -1) + 3 bins are derived from the typical LBP codes conditioned by number of bit-transitions (1-0 or 0-1) of their binary chains at most 2. The other important mapping to deal with rotation invariant (LBP ri ) [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] is stated as

LBP ri P,R (q c ) = min 0≤i<P {ROR(LBP P,R (q c ), i)} (3) 
where ROR(LBP, i) calculates the distribution of LBP ri by shifting i times of the P -bit basic LBP. In real applications, ri and u2 mappings are often combined to form patterns of riu2 mapping (LBP riu2 ). This leads to reduction of dimensional representation from 2 P of the basic LBP to P + 2 distinct values, in which P is the number of considered neighbors. Inspirited by the effectiveness of above mappings, other crucial mappings are suggested to refine these mappings for encoding more textural information. Zhao et al. [START_REF] Zhao | Completed Local Binary Count for Rotation Invariant Texture Classification[END_REF] advanced Local Binary Count (LBC), an alternative of uniform patterns, by considering differences of the higher gray levels between P neighbors and center pixel. On the other hand, Fathi et al. [START_REF] Fathi | Noise Tolerant Local Binary Pattern Operator for Efficient Texture Analysis[END_REF] extended the basic uniform mapping based on advantages of some non-uniform patterns. Nguyen et al. [START_REF] Nguyen | Topological attribute patterns for texture recognition[END_REF] then embedded the underlying mappings and LBC into a general mapping, named T AP A , to capture topological attribute patterns.

LBP-based variants for dynamic textures

Taking advantage of LBP operator in still image processing, various LBPbased variants have been proposed for video representation. At first, an extension of the typical LBP to DT description, VLBP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] encodes a voxel based on three center points corresponding to P neighbors on three consecutive frames which are located at the same spatial coordinate of the centers. Accordingly, these 3P + 2 neighbors are thresholded by the second center pixel to form a (3P + 2)-bit binary code which figures out local features and motion cues surrounding this voxel. Because this encoding shapes a descriptor with a very large dimension of 2 3P +2 bins, it is restricted for implementation in reality. To overcome this problem, Zhao et al. [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] introduced LBP-TOP in which the basic LBP is considered on three orthogonal planes of a video. The final DT representation is constructed by concatenating the sub-descriptors computed on these planes. Thereafter, other approaches based on the perceptions of two above encoding models to enhance the discrimination power of descriptors. CVLBC [START_REF] Zhao | Dynamic texture recognition using volume local binary count patterns with an application to 2d face spoofing detection[END_REF] is combined by CLBC [START_REF] Zhao | Completed Local Binary Count for Rotation Invariant Texture Classification[END_REF] and VLBP while Tiwari et al. [START_REF] Tiwari | Dynamic texture recognition based on completed volume local binary pattern[END_REF] proposed CVLBP operator by taking advantage of the ideas of CLBP [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] and VLBP. CLSP-TOP [START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF] addresses local/global information, while CSAP-TOP [START_REF] Nguyen | Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes[END_REF] captures DT features on moment images. Both advanced features of LBP-TOP and VLBP are utilized in [START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF] to structured HLBP patterns.

Local Vector Patterns

Fan et al. [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF] proposed Local Vector Pattern (LVP) operator for image description by regarding a pairwise of directional vectors in order to remedy the remaining shortcomings of local pattern representation. Let I denote a 2D image. The first-order derivative of a center pixel q c conducted by a direction α is computed as

I α,d (q c ) = I(q α,d ) -I(q c ) (4) 
in which q α,d is an adjacent neighbor sampled by direction α and a distance d from the considered pixel q c , I(.) returns the gray-scale image value of a pixel. The first-order LVP of q c is defined as a P -bit binary chain by concerning it with P local directional relations in a couple of directions (α, α + 45 • ) and formed as follows.

LVP P,R,α,d (q c ) = f I α,d (q c ), I α+45 • ,d (q c ), I α,d (p i ), I α+45 • ,d (p i ) P -1 i=0 (5) 
where {p i } denotes P neighbors of q c , d ∈ {1, 2, 3} presents the distance of the considered pixel with its contiguous points, and f (.), a function of Comparative Space Transform (CST), is defined as

f (x, y, z, t) = 1, if t - y * z x ≥ 0 0, otherwise. (6) 
Other formulations of LVP along with samples of encoding LVP-based patterns for texture images are clearly discussed in [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF]. In practice, four possible directions are often employed in real applications, i.e., α = {0 • , 45 

Dense trajectories

Wang et al. [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF] introduced an efficient technique for extracting dense trajectories in videos based on a dense optical flow field to locate and track the paths of motion points. In particular, let q f = (x f , y f ) denote a motion point at the f th frame with corresponding coordinates of x f and y f . Its displacement at the (f +1) th frame is interpolated by addressing the polynomial expansion algorithm for two-frame motion estimation [START_REF] Farnebäck | Two-frame motion estimation based on polynomial expansion[END_REF] along with an optical flow ω f = (u f , v f ), which is known as a median filter. Therein, u f and v f mean the horizontal and vertical optical flow components. The inferred position of q f in the posterior frame, i.e., q f +1 = (x f +1 , y f +1 ), is tracked as

q f +1 = q f + (M * ω f )| (x f ,y f ) (7) 
in which (x f , y f ) refers to the rounded position value of q f , M is a median filter kernel of 3 × 3 pixels. According to that, a dense trajectory with length of L can be structured by a concatenation of the motion point q f and its displacements inferred through L consecutive frames, i.e., {q f , q f +1 , ..., q f +L-1 }. In our framework, we use the version 1.2 of dense trajectories as a tool to extract motion paths of dynamic features for DT description.

Important extensions of local vector patterns

The basic LVP operator [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF] has been originally introduced to exploit the directional information of texture image patterns in high-order derivative spaces for face recognition. It is then interested in utilizing for other applications in computer vision, such as action recognition [START_REF] Nguyen | Action recognition in depth videos using hierarchical gaussian descriptor[END_REF], image retrieval [START_REF] Naik | Local vector pattern with global index angles for a content-based image retrieval system[END_REF]. For DT description, we get involved with this operator for the first time in order to encode directional vector structures of motion points along their dense trajectories which are extracted from a DT sequence. Due to being a derivation of the LBP concept in textural image representation, the basic LVP operator has existed the internal limitations of LBP, such as sensitivity to noise, illumination, and near uniform images. To mitigate those problems, we hereafter propose two following important extensions of LVP in order to enhance its discrimination for DT recognition task: adaptive directional vector thresholds and a completed model of LVP.

Adaptive directional vector thresholds

Motivated by the first-order concept of LVP, we define hereunder two adaptive vector thresholds to apply for two corresponding components that are defined in below section to capture magnitude information and directional centered contrast patterns. First, to exploit the information of Directional Vector Magnitudes (DVM) for each direction α, we calculate the mean of absolute CST on the whole image as follows.

DVM α,d (I) = q∈I P -1 i=0 I β,d (p i ) - I β,d (q) I α,d (q) * I α,d (p i ) N * P (8) 
in which I α,d (.) is the first-order derivative of a pixel in concerned direction α and distance d; β = α + 45 • ; p i denotes the i th neighbor of the current pixel q in an image I; P is the number of considered neighbors;

N = (W -2) * (H -2)
where W and H are the width and height dimensions of 2D image I respectively. Second, a Directional Vector Center (DVC) threshold is defined as absolute multiplication of directional differences which are averaged on the whole image as follows.

DVC α,d (I) = 1

N q∈I I α,d (q) * I β,d (q) (9) 
where each pixel q ∈ I is addressed in a pair of concerned directions (α, β) to form first-order derivatives correspondingly.

A completed model of LVP

Guo et al. [START_REF] Guo | A completed modeling of local binary pattern operator for texture classification[END_REF] indicated that the integration of complementary components: local variations of magnitudes, centered contrast levels, and along with the typical LBP, leads to structuring effectively a descriptor with more robust and discriminative power. Inspired by this concept, we propose in this section, a completed model of the first-order LVP using the adaptive thresholds which are defined in Section 3.1. In essence, it is an integration of three following parts:

The first component is proposed to compute local vector patterns in each direction of α ∈ Φ for a motion point q c as follows.

LVP-D

P,R,α,d (q c ) = P -1 i=0 h I α,d (q c ), I β,d (q c ), I α,d (p i ), I β,d (p i ) 2 i (10)
in which P is the number of considered neighbors sampled on a circle of radius R centered at q c , β = α + 45 • , and function h(.) is defined as

h(x, y, u, v) = 1, if v ≥ u * y x 0, otherwise. (11) 
The fact that each LVP-D pattern is similar to the basic LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF], except that it is separately encoded in a binary string for each concerned direction instead of the combination of all into one long pattern for the whole directions as the typical LVP (see Fig. 2 for an example of this computation). Indeed, it is possible to utilize popular mappings (e.g., u2, riu2) for dimensional reduction.

The second, called LVP-M, captures magnitude variations of a motion point q c according to directions of Φ as follows:

LVP-M P,R,α,d (q c ) = P -1 i=0 ψ I α,d (q c ), I β,d (q c ), I α,d (p i ), I β,d (p i ), DVM α,d (I) 2 i (12)
where function ψ(.) is defined as

ψ(x, y, u, v, t) = 1, if |v -u * y x | ≥ t 0, otherwise. (13) 
Third, LVP-C regards to the contrast level of q c in a direction α against the mean of directional differences on the whole image. in which s(.) is defined by Equation ( 2). These components (respectively abbreviated to LVP D , LVP M , and LVP C ) are supplementary to enrich more discriminative information. Therefore, they should be integrated together into different ways to enhance the discrimination power. Each integration makes a corresponding extended LVP operator, named xLVP in general. For example, xLVP = LVP D M/C means that probability distributions structured by LVP D , LVP M , and LVP C are respectively concatenated and jointed corresponding to the signals of " " and " / " in style " D M/C ". It should be noted that our xLVP operator can be also inferred to n th -order derivative (n > 1) to capture high-order directional patterns (xLVP n ), as similarly as generated in [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF].

LVP-C α,d (q c ) = s I α,d (q c ) -DVC α,d (I) (14) 
Our xLVP operator takes into account several following properties to improve the performance in comparison with the basic LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF]:

• Based on complementary components, the xLVP operator is able to forcefully capture directional relationships in various contexts of local regions.

In the meanwhile, LVP just considers one scale for computing local features.

• For each concerned direction, a directional pattern of the components is encoded in a separative binary string of 8 bits. In contrast to the basic LVP, its binary outputs are concatenated to form a long chain for all considered directions, e.g., a 32-bit string for the first-order LVP in four directions. • Due to encoding directional features in separative chains of binary codes, it is possible to take advantage of two popular mappings of riu2 and u2 in order to enhance the discriminative power of descriptor with a reasonable dimension. In contrast, the conventional LVPs are calculated on subregions of a texture image and the obtained spatial histograms are adopted into equal interval by using a method of uniform quantization [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF].

Beneficial properties of dense trajectories

Dense trajectories, introduced in [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF], are traces of dense motion points which are tracked through in a certain number of frames based on the information of their displacements in a video. Exploiting robust properties of these complex motions, dense-trajectory-based methods are interested in analyzing videos for action recognition [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF][START_REF] Mukherjee | Human action and event recognition using a novel descriptor based on improved dense trajectories[END_REF], object segmentation [START_REF] Chen | Video object segmentation via dense trajectories[END_REF], etc. In our framework, we take this approach for the first time into account DT representation by concerning motion of dynamic textures in consideration of different local directions to address two important properties: directional beams of dense trajectories and spatio-temporal characteristics of motion points along their paths. Hereunder, we present in detail a novel concept for embedding dense trajectories in accordance with the completed model xLVP to figure out directional trajectorybased patterns with more discrimination. In the other hand, the advantages of both optical-flow-based and local-feature-based techniques are wedged into our proposed framework for DT representation.

Directional features of a beam trajectory

Let t = {q 1 , q 2 , ..., q L , q L+1 } be a dense trajectory with length of L which is structured by motion point q 1 and its inferred derivations (i.e., {q 2 , ..., q L , q L+1 }) through L + 1 consecutive frames {f 1 , f 2 , ..., f L , f L+1 }. We address directional movements of each motion point q i ∈ t and its local neighbors sampled by a vicinity of B (see Fig. 3 for a graphical illustration) to estimate dynamic features for chaotic motions as well as their spatial characteristics along trajectory t using the completed operator xLVP in directions of Φ. The obtained histograms are then concatenated to form directional beam trajectory (DBT) patterns of t, efficiently describing the directional moving cues of beams of dynamic points.

DBT L,Φ,d (t) = L+1 i=1 H qi xLVP P,R,Φ,d (q i,fi ) , p j∈B L+1 i=1 H pj xLVP P,R,Φ,d (p j,fi ) (15)
in which xLVP(.) means completed local vector pattern of a pixel at a frame in consideration of its local neighbors P sampled by a circle of radius R with a given distance d and concerned directions Φ; p j refers to the j th neighbor of motion point q i in supporting region B at frame f i ; H qi (.) and H pj (.) are probability distributions of q i and its neighbors respectively; denotes a concatenating function for the obtained histograms H pj (.).

Spatio-temporal features of motion points

The spatio-temporal information of a voxel in a DT video is crucial in analysis to make it more "understandable" as exploited in [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF][START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF], in which the authors determined the shape and motion cues based on three orthogonal planes. In this section, we take this concept into account motion points of dense trajectory t to boost the performance of DT descriptor. Because of the fact that the spatial information of those along t has been involved in the DBT model, we just address the temporal features in consideration of those on XT and YT planes using the completed operator xLVP. To be in accordance with encoding of DBT features of t with length of L, the obtained probability distributions should be concatenated through their trajectory t, as graphically demonstrated in Fig. 4, in order to form directional structures of temporal motion points (TMP) as [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF] where xLVP(.) denotes completed local vector pattern of a pixel computed by considering its local neighbors P interpolated by a circle of radius R with a given distance d in concerned directions Φ; H XT (.) and H Y T (.) are histograms of motion point q i calculated for the corresponding planes. 

TMP L,Φ,d (t) = H XT xLVP P,R,Φ,d (q i ) , H Y T xLVP P,R,Φ,d (q i ) L+1 i=1

Directional dense trajectory patterns for DT representation

In this section, we introduce an efficient framework for DT representation, called Directional Dense Trajectory Patterns (DDTP), in which DT features of a video are effectively encoded just using dense trajectories instead of the whole video. On the other hand, our perception is to take advantage of two important properties of directional dense trajectories for constructing robust descriptors for DT recognition, as graphically illustrated in Fig. 5. According to that, dense trajectories are extracted at first using the tool introduced in [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF]. We then apply our extended operator xLVP on those to capture their directional motion cues through encoding patterns of directional beam trajectories, as proposed in Section 4.1. This completed operator is also implemented for capturing spatiotemporal structures of motion points along their trajectories based on analysis of the planes, as presented in Section 4.2. Lastly, the obtained probability distributions of two above components calculated for the whole dense trajectories are concatenated and normalized to enhance the performance. Also in this section, the computational complexity of DDTP is discussed thoroughly for potential applications in practice. Those above processes are detailed hereafter.

Proposed DDTP descriptor

Let T = {t 1 , t 2 , ..., t m } denote a set of dense trajectories with the same length of L which are extracted from a video V. DBT patterns of each t i ∈ T are then encoded in consideration of its motion points along the path in directions Φ using the completed model xLVP. Parallel to this encoding, TMP patterns are also structured by addressing xLVP with the directions for the corresponding motion points of trajectory t i based on analysis of those on the temporal planes of V (i.e., XT, YT). To form a robust and discriminative descriptor for DT recognition, we concatenate and normalize DBT and TMP features that are computed for all of trajectories in T as

DDTP L,Φ,d (V) = 1 |T | ti∈T DBT L,Φ,d (t i ), TMP L,Φ,d (t i ) ( 17 
)
in which |T | denotes the total of dense trajectories. From now on, we imply a specific DDTP descriptor in agreement with an integration way of completed operator xLVP. For instance, DDTP D M/C indicates that it is structured by xLVP = LVP D M/C (see Section 3.2 for a detail of this integration).

In order to verify the prominent contribution of our completed operator xLVP, a basic descriptor DDTP-B which is based on the first-order LVP (i.e., LVP D ), is concerned by addressing the same implementation above.

DDTP-B

L,Φ,d (V) = 1 |T | t i ∈T DBT-B L,Φ,d (t i ), TMP-B L,Φ,d (t i ) (18)
where DBT-B and TMP-B are respectively computed as similarly as in Equations [START_REF] Fazekas | Analysis and performance evaluation of optical flow features for dynamic texture recognition[END_REF] and ( 16) but only LVP D is used instead of xLVP.

To evaluate the expected effectiveness of exploiting beneficial properties of dense trajectories for DT description in contrast to using the whole video, xLVP is taken into account structuring dynamic features on three orthogonal planes {XY, XT, Y T } to form another DT descriptor, named xLVP-TOP as follows.

xLVP-TOP Φ,d (V) = xLVP P,R,Φ,d (V XY ), xLVP P,R,Φ,d (V XT ), xLVP P,R,Φ,d (V Y T ) (19)
On the other hand, for assessing our crucial extended model of LVP, we have also experimented on DT recognition using LVP-TOP descriptor formed by the basic LVP operator [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF] 

on planes of {XY, XT, Y T } as LVP-TOP Φ,d (V) = LVP P,R,Φ,d (V XY ), LVP P,R,Φ,d (V XT ), LVP P,R,Φ,d (V Y T ) (20) 
where LVP P,R,Φ,d (.) is a probability distribution. It is actually dealt with as similarly as LVP-D's (see Section 3.2) to take advantage of the popular mappings in dimensional reduction.

In order to reduce the size of DDTP descriptors, two popular mappings are utilized: riu2 giving l riu2 = (P + 2) and u2 giving l u2 = P (P -1) + 3 distinct bins for each pattern of a pixel, where P is a number of local neighbors taken into account. Particularly, dimension of DDTP descriptors directly relies on the integration of complementary components in specific ways to form xLVP for computing DBT and TMP features. In order to effectively form DDTP descriptor, Algorithm 1 presents our idea for its construction based on a mechanism of shared features, in which xLVP features of each frame are calculated for only one time and are used effectively for constructing DDTP description of all trajectories passing through this frame. It is proposed by addressing three main following steps:

1. Labeling all motion points of trajectories with mapping volume vMP.

2. Constructing xLVP features of the considered video.

3. Calculating DDTP of each trajectory from the labels of its motion points (vMP) and xLVP features.

Moreover, we also take advantage of multi-scale analysis [START_REF] Mäenpää | Multi-scale binary patterns for texture analysis[END_REF] to improve the discriminative power of DDTB descriptors, in which our xLVP is exploited for many of different {(P, R)} situations in order to forcefully capture directional relationships in further local regions. The obtained histograms are then concatenated and normalized to structure multi-scale DT representation.

Our proposed DDTP descriptor has more robust and discriminative power based on the following prominent properties:

• Incorporation between DBT and TMP features makes DDTP descriptors more discriminative for DT recognition (see Table 4 for contributions of each of them).

• The advantages of both optical-flow-based and local-feature-based methods are embedded into DDTP descriptors thanks to utilizing xLVP for encoding dense trajectories.

• Using dense trajectories extracted from a video allows to efficiently analyze chaotic motions of moving DTs in the sequence, an interested alternative for DT representation.

Computational complexity of DDTP descriptor

In order to estimate the computational complexity of our DDTP descriptor, we present a simple algorithm to encode DDTP patterns, as generally shown in Algorithm 1. Accordingly, it takes five steps to handle a video V of H × W × F dimension as follows.

• Step 1: Dense trajectories T with length of L are extracted by exploiting a tool introduced in [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF]. The computational cost of this extraction Q T can be referred to [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF] for more detail.

• Step 2: A mapping volume vMP is used to signed which motion points belong to which trajectory t ∈ T . The complexity is estimated as

Q vMP = O(L × |T |).
• 10), [START_REF] Peh | Synergizing spatial and temporal texture[END_REF], and ( 14), their computation costs are respectively estimated as

Q LVP D = O(P × H × W), Q LVP M = O(P × H × W) + Q DVM , and 
Q LVP C = O(H × W) + Q DVC .
Since these components are computed independently, the complexity of xLVP(I) can be approximately estimated as the maximum of 

Q LVP D , Q LVP M ,
Q xLVP = O(P × H × W × F ).
• Therefore, the complexity of our proposed descriptor can be generally estimated as follows.

Q DDTP = Q T + Q vMP + Q xLVP + Q DBT + Q TMP (21) 
In order to concentrate on the computational cost of our proposed DDTP descriptor based on a given collection of dense trajectories, we disregard Q T . In addition, since parameters L and |Φ| (e.g., L ∈ {2, 3} and |Φ| = 4 as valued in Section 6.1) are much smaller than the others, they can be also ignored. Consequently, Q DDTP could be approximated by Equation [START_REF] Qiao | Dynamic texture classification using multivariate hidden markov model[END_REF], which shows that the construction of DDTP descriptor from dense trajectories has linear complexity with respect to the number of voxels of an input video since P can be considered as a constant, i.e., P = 8 or

P = 16. Q DDTP ≈ max(Q vMP , Q xLVP , Q DBT , Q TMP ) ≈ O(P × H × W × F ) (22) 
In terms of processing time, the consumption mainly depends on the turbulent level of DTs in a video, i.e., the more turbulence the video has, the larger motion points are signed in mapping volume vMP (see lines 4-12 of Algorithm 1), and then the heavier computation of DBT and TMP is (see lines 27-31 of Algorithm 1). However, it can be verified from Equation ( 22) that our proposal principally depends on the dimension of a given video, not on the number of its trajectories. Indeed, in consideration of videos with the same dimension but levels of turbulence in high difference, we address two particular videos of UCLA in both original and cropped versions for an instance of runtime estimation. Table 1 illustrates the consumption of encoding DDTP D M/C descriptors with settings of L = 3, P = 8, and |Φ| = 4. It can be seen from Table 1 that the higher turbulent video needs more processing time. In addition, using the cropped version can save the runtime, but it negatively impacts the performances for DT recognition (see Table 7 for instances). It is worth noting that a raw MATLAB code of our algorithm is run on a 64-bit Linux desktop of CPU Core i7 3.4GHz, 16G RAM. 

Experiments

In this section, comprehensive evaluations of the proposed framework on the benchmark DT datasets (i.e., UCLA [START_REF] Saisan | Dynamic texture recognition[END_REF], DynTex [START_REF] Péteri | Dyntex: A comprehensive database of dynamic textures[END_REF], and DynTex++ [START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF]) are specifically expressed by following experimental protocols and parameter settings for implementation. In order to classify DTs, we addressed two following popular classifiers: i) Support Vector Machines (SVM) -We use a linear SVM with the default parameters implemented in library LIBLINEAR [START_REF] Fan | LIBLINEAR: A library for large linear classification[END_REF]. ii) knearest neighbors (k-NN) -To be comparable with performances of existing approaches [START_REF] Ribas | Dynamic texture analysis with diffusion in networks[END_REF][START_REF] De Mesquita | Randomized neural network based signature for dynamic texture classification[END_REF][START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF], we also employ k-nearest neighbors in simplicity with k = 1 (i.e., 1-NN), in which chi-square (χ 2 ) is used for dissimilarity measure. The obtained recognition rates are then evaluated in comparison with those of the state-of-the-art methods.

Experimental settings

Settings for extracting dense trajectories: Due to the short "living" time of most of turbulent dynamic points in DT videos, lengths of dense trajectories L ∈ {2, 3} should be addressed in our experiments. We utilize a tool, introduced in [START_REF] Wang | Dense trajectories and motion boundary descriptors for action recognition[END_REF], for extracting these trajectories from a DT sequence. Since the default settings of this tool are set for mainly achieving motions of human actions, to be in accordance with the particular DT characteristics, we make a change of rejecting trajectory parameter min var = 5 × 10 -5 in order to acquire "weak" trajectories of chaotic motion points. Figure 6 graphically illustrates several samples of dense trajectories extracted from the corresponding sequences using the customized settings. Empirically, for datasets (like Dyntex++) which are built by splitting from other original videos, some of cropped sequences point out a number of trajectories that are not sufficient for DT representation (see Figure 6(c)). In this case, a few tracking parameters should be addressed in lower levels to boost the quantity of trajectories in our framework as quality = 10 2 details some specific dimensions of these descriptors of riu2 mapping. It is verified from this table that multi-scale analysis is able to be regarded for our completed operator xLVP to capture more robust directional relationships in larger supporting regions while the dimension is still moderate compared to other LBP-based methods.

Datasets and experimental protocols

In this section, we firstly detail features and protocols of benchmark DT datasets for verifying our framework in recognition issue. Their main properties are then summarized in Table 3 at a glance.

UCLA dataset

It consists of 50 categories with 200 different DT videos [START_REF] Saisan | Dynamic texture recognition[END_REF], corresponding to four sequences per class, which capture chaotic motions, such as fire, boiling water, fountain, etc. Each original sequence is recorded in 75 frames with dimension of 110 × 160. Several samples of this dataset are shown in above row of Fig. 7. The categories are arranged in various ways to compose challenging subsets as follows.

• 50-class: Usually, 50 categories are addressed for DT recognition in two experimental protocols as follows.

Leave-one-out (LOO) [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Tiwari | Improved weber's law based local binary pattern for dynamic texture recognition[END_REF][START_REF] Ravichandran | View-invariant dynamic texture recognition using a bag of dynamical systems[END_REF]: Only one sequence of a class is taken out for testing. The training set is addressed by taking the remain of this class along with all videos of other classes. The final rate is averaged by repeating this trial for all samples of the dataset. [START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF][START_REF] Chan | Classifying video with kernel dynamic textures[END_REF]: Three videos of each class are picked out for learning and the remaining one for testing. This process is repeated four times with different testing samples. Then the average of these repetitions forms the final result.

4-fold cross validation

• 9-class: Original 50 categories are rearranged to form 9 classes with more challenge for DT recognition: "boiling water"(8), "fire"(8), "flowers" [START_REF] Peh | Synergizing spatial and temporal texture[END_REF], "fountains" [START_REF] Ravichandran | View-invariant dynamic texture recognition using a bag of dynamical systems[END_REF], "plants"(108), "sea" [START_REF] Peh | Synergizing spatial and temporal texture[END_REF], "smoke"(4), "water" [START_REF] Peh | Synergizing spatial and temporal texture[END_REF], and "waterfall" [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF], where numbers in parentheses indicate quantities of sequences in the corresponding group [START_REF] Ravichandran | View-invariant dynamic texture recognition using a bag of dynamical systems[END_REF][START_REF] Xu | Classifying dynamic textures via spatiotemporal fractal analysis[END_REF]. Following protocols in [START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF][START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF], a half of sequences in each category is randomly selected for training, the rest for testing. The average rate of 20 runtimes reports the final result.

• 8-class: Due to the dominant quantity of sequences in "plants" group, it is eliminated to form 8-class scheme with more challenges for recognition task. Similarity to [START_REF] Ravichandran | View-invariant dynamic texture recognition using a bag of dynamical systems[END_REF][START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF], a half of sequences in each category is randomly selected for training and the remaining for testing. The final evaluation of recognition is estimated by the mean of rates in 20 runtimes.

DynTex dataset

It is a collection of more than 650 high-quality DT sequences in AVI format which are recorded in various conditions of environment [START_REF] Péteri | Dyntex: A comprehensive database of dynamic textures[END_REF]. Following the works in [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF][START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF], the version of 352 × 288 × 250 videos is addressed in our experiments with LOO protocol for evaluating the performance of our proposal.

(see Fig. 7 for some DT samples). There are 4 challenging subsets which are composed from the original sequences for DT recognition task as follows.

• DynTex35 is arranged from 35 videos in order to form corresponding 35 categories as follows. Each of sequence is randomly split into 8 nonoverlapping sub-videos so that cutting points are not in half of the X, Y, and T axes. In addition, two more sub-sequences are also pointed out by cutting along the temporal axis of the original sequence. Consequently, there are 10 sub-DTs with different spatial-temporal dimension for each sequence [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF][START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF].

• Alpha includes 60 videos equally divided into three categories: "sea", "grass", and "trees", with 20 sequences in each of them.

• Beta contains 162 sequences grouped into 10 classes with different numbers of sequences: "sea", "vegetation", "trees", "flags", "calm water", "fountains", "smoke", "escalator", "traffic", and "rotation".

• Gamma comprises 10 categories with 264 videos in total: "flowers", "sea", "naked trees", "foliage", "escalator", "calm water", "flags", "grass", "traffic", and "fountains". Each of which includes a sample of diverse sequences.

DynTex++ dataset

From more than 650 sequences of the original DynTex, Ghanem et al. [START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF] filtered 345 raw videos to build DynTex++ so that the filtered videos only contain the main DTs, not consist of other DT features such as panning, zooming, and dynamic background. After applying some techniques of preprocessing to the selected videos, they are divided into 36 categories where each of which has 100 sequences with fixed dimension of 50 × 50 × 50, i.e., 3600 videos in total.

As the settings in [START_REF] Arashloo | Dynamic texture recognition using multiscale binarized statistical image features[END_REF][START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF], the training set is formed by randomly selecting a half of samples from each group and the rest for testing. The final evaluation is taken by the average of 10 repetitions of this trial.

Experimental results

Evaluations of our framework for DT recognition on various benchmark datasets (UCLA, DynTex, and DynTex++) are specifically expressed in Tables 5, 6, and 10 respectively, in which descriptors DDTP and DDTP-B are formed by corresponding operators xLVP and LVP D using riu2 mapping for dense trajectories with length L = {2, 3}. It can be verified from those tables that addressing dense trajectories for DT description is a significant alternative beside considering DT appearances in temporal aspects of a video as in the existing methods. Based on the experimental results, several critical assessments could be derived from as follows.

• It can be verified from Tables 5,6, and 10 that our proposed descriptors have much better results in classifying DTs when using SVM classifier compared to 1-NN. Therefore, SVM should be recommended for our below evaluations as well as for applications in practice. From now on, if no classifier is explicitly indicated for the DT recognition issue, the mentioned rates are based on SVM.

• As expected in Section 5.1, the incorporation between spatio-temporal of motion points (TMP) and directional features of beam trajectories (DBT) has boosted the performance in comparison with FDT [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF], in which motion points of dense trajectories along with their local neighbors are encoded to form directional beams of features (see Tables 8 and9). Table 4 expresses contributions of these components making DDTP descriptors more discriminative. Furthermore, our descriptors have dimension at least a half slighter than FDT's (see Table 2).

• As mentioned in Section 3.2, the integration of complemented components additionally produces more informative discrimination for encoding dense trajectories. In fact, most of DDTP descriptors outperform significantly in comparison with DDTP-B, just utilizing one complemented factor (see Tables 5,9, and 10). It has verified the contributions of our important extensions to form the completed xLVP operator compared to the basic LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF].

• Taking directional vector center contrast, i.e., LVP-C, into account structuring DDTP descriptors is frequently more robust than others. Therein, the jointing with this component seems to point out descriptors with more "stable" performance (see Tables 5,6, and 10).

• It is in accordance with our analysis in Section 5.1 that capturing directional features of dense trajectories in multi-scale local regions of their motion points is more effective than single-scale. Therein, the 2-scale D M C descriptor of riu2 mapping with length of trajectories L = 3 , i.e., {(8, 1), (16, 2)} riu2 L=3 , obtains more "stable" on most of the benchmark datasets (see Tables 5, 6, and10). Therefore, it should be suggested for applications in practice, and also be the setting selected for comparing with performances of state of the art.

• In most of circumstances, the performance of DDTP-B based on the typical LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF] (see Section 5.1) is not better than DDTP's computed by the extended operator xLVP. Moreover, xLVP-TOP also outperforms compared to LVP-TOP in consideration of each voxel on three orthogonal plans of a video instead of its dense trajectories (see Table 11). These facts prove the interest of our proposed components: completed operator xLVP with two adaptative directional vector thresholds (i.e., DVM, DVC) and dense-trajectory-based features for DT representation.

In terms of comparison with the state-of-the-art methods, our proposed framework for encoding dense trajectories using completed model xLVP produces discriminative descriptors for DT recognition task compared to LBP-based variants and others in several circumstances. Furthermore, their performances are nearly the same those of deep-learning-based approaches on UCLA dataset (see Table 8). Hereinafter, comprehensive estimations of our proposal on various benchmark datasets are presented in detail, in which if DDTP descriptors are not explicit in their implemented settings, the default configuration is indicated for them, i.e., {(8, 1), (16, 2)} riu2 .

Recognition on UCLA dataset

It can be observed from Tables 5 and8 that our proposed descriptors have significant performances of DT recognition on UCLA compared to those of stateof-the-art methods, including deep learning techniques in several circumstances, which are expressed in detail as follows.

In scenario of DT classification on 50-class, by addressing trajectories of L = {2, 3}, DDTP L={2,3} D M and DDTP L={2,3} D M C have reported rates of 100% on both 50-LOO and 50-4fold schemes, the best performances compared to all existing methods, including deep-learning approaches. In the meanwhile, with the setting for comparison, DDTP L=3 D M/C descriptor gains 99% and 99.5% respectively, the highest compared to all LBP-based variants (see Table 8). Those performances are the same FDT's [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF], but in a half smaller dimension, i.e., 6768 versus over 13000 bins (see Table 2). On the other hand, DDTP-B using the setting of {(8, 1), (16, 2)} riu2 L=3 also obtains competitive results with rates of 99.5% and 98.5% in comparison with those of the local-feature-based methods. Above facts have validated that utilizing dense trajectories along with the completed model of LVP for encoding directional features of motion points figures out discriminative descriptors in DT recognition task.

In terms of evaluations on 9-class and 8-class, our descriptor DDTP L=3 D M/C has critical performances with 98.75% and 98.04% respectively, the highest in comparison with the LBP-based variants (see Table 8), except CVLBC [START_REF] Zhao | Dynamic texture recognition using volume local binary count patterns with an application to 2d face spoofing detection[END_REF] with rates of 99.20% and 99.02%. However, it is not better than ours on DynTex35 and DynTex++ datasets as well as not been verified on the challenging subsets of DynTex, i.e., Alpha, Beta, and Gamma (see Table 9). In our previous work, FDT [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF] encoding motions of DTs along their trajectory is just better than DDTP L=3 D M/C on 8-class with rate of 99.57%, but in about twice larger dimension. Furthermore, it should be noted that DT-CNN [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF] only outperforms ours on 8-class with rates of 98.48% for framework AlexNet and 99.02% for GoogleNet. For improvement in further contexts, we concentrate on which videos have been confused with others. On scheme 9-class, it can be observed from Fig. 8, DDTP L=3 D M/C has mainly confused the motions of DTs in "Fire" sequences with those in "Smoke"; and the properties of trajectories in "Flowers" with those in "Plants". The confusion on scheme 8-class principally falls in the turbulent properties of "Fire" videos with those of "Fountains" and "Waterfall" (see Fig. 9).

In addition, it should be noted that several existing methods [START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF][START_REF] Tiwari | Dynamic texture recognition using multiresolution edge-weighted local structure pattern[END_REF][START_REF] De Mesquita | Randomized neural network based signature for dynamic texture classification[END_REF][START_REF] Nguyen | Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes[END_REF]] have experimented DT classification on the short version of UCLA with videos of 48 × 48 × 75 dimension. Addressing those for our proposal, we achieved some results for DDTP L=3 D M/C descriptor, as indicated in Table 7. Accordingly, its performance is noticeably reduced in comparison with those done on 110 × 160 × 75 videos (see Tables 5 and7). It could be lack of spatio-temporal information due to less dense trajectories that are extracted from the cropped version. However, the speed of encoding is much faster thanks to a sharp reduction of turbulence in the cropped version (see Table 1 for a comparison of time consumption). Therefore, a trade-off between the high rates and the processing time should be discreetly considered for real implementations.

Recognition on DynTex dataset

It can be verified from Tables 6 and9 that the proposed framework outperforms significantly compared to most of the state-of-the-art methods. In general, DDTP descriptors with at least a half smaller dimension are more robust than our previous work FDT [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF]. It is thanks to exploiting spatio-temporal features of motion points along their trajectories which are encoded by the completed LVP model rather the typical LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF]. Hereafter, we detail evaluations on each subset.

For DT recognition on DynTex35, DDTP L=3 D M/C descriptor with 6768 bins achieves 99.71%, a little lower than CSAP-TOP's [START_REF] Nguyen | Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes[END_REF] (100%) with 13200 bins. It is due to the very similar motions of DTs in videos as shown in Fig. 11(a) and Fig. 11(b). Figure 10 expresses specific rates of each category. In the meanwhile, FD-MAP and FDT descriptors in our previous work [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF] just obtain rate of 98.86%. It is because only appearances of trajectories are involved with. The LBP-based method MEWLSP [START_REF] Tiwari | Dynamic texture recognition using multiresolution edge-weighted local structure pattern[END_REF] also has the same our ability. However, it has not been verified on other challenging subsets, i.e., Alpha, Beta, and Gamma (see Table 9).

In respect of DT classification on other challenging subsets, DDTP L={2,3} descriptors obtain 98.33% on Alpha using {(P, R)} = {(8, 1)} of riu2 mapping for both length of trajectories L = {2, 3} (see Table 6), but not outperform on Beta and Gamma in comparison with other parameters. For the setting of comparison, DDTP L=3 D M/C achieves a little lower rate of 96.67% on Alpha due to the mutual confusion between turbulent motions of DTs in "Trees" and those in "Grass" sequences (see Fig. 12). In the meantime, its performances on Beta and Gamma are 93.83% and 91.29%. Its modest results are caused by cases of confusion shown in Fig 13 and 14 respectively, where motions in "Escalator" and "Rotation" are confused with others in DT recognition on Beta while those in "Calm water" and "Fountains" on Gamma. In general, our performance is nearly the best results on these challenges compared to most of the existing approaches, except deep learning methods. Moreover, the execution of DDTP L=3 D M/C is the same those of CSAP-TOP [START_REF] Nguyen | Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes[END_REF], FD-MAP [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF], and FDT [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF] (see Table 9), but in much smaller dimension, i.e., 6768 versus over 13000 bins of them (see Table 2). In the scenarios, DDTP-B with the setting of {(8, 1), (16, 2)} riu2 L=3 also gains significant rate of 98.33% on Alpha, but faulting on the remains since just directional features of the typical LVP are exploited. The deep learning methods, i.e., st-TCoF [START_REF] Qi | Dynamic texture and scene classification by transferring deep image features[END_REF], D3 [START_REF] Hong | D3: recognizing dynamic scenes with deep dual descriptor based on key frames and key segments[END_REF], DT-CNN [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF], obtain the 27 best performances (see Table 9). However, they take a huge cost of computation as well as different parameters for learning DT features on each benchmark dataset.

Recognition on DynTex++ dataset

Recognition results of our proposed framework with different settings are presented in Table 10. It can be observed from the table that DDTP-B L={2,3} descriptors with the setting of {(8, 1), (16, 2)} riu2 just obtain 91% for length of dense trajectories L = 2 and 90.98% for L = 3, about 4% lower than those of DDTP descriptors with the same parameters. This has proved the importance of the completed model xLVP for encoding directional characteristics of dense trajectories compared to the basic LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF]. In terms of the settings chosen for comparison, the proposed descriptor DDTP L=3 D M/C achieves rate of 95.09%, the competitive performance compared to most of the existing methods (see Table 9). More specifically, only LBP-based approach MEWLSP [START_REF] Tiwari | Dynamic texture recognition using multiresolution edge-weighted local structure pattern[END_REF] gains 98.48%, but as mentioned above, it is not better than ours on UCLA (see Table 8) as well as has not been validated on the challenging subsets of DynTex, i.e., Alpha, Beta, and Gamma. In the meanwhile, FDT [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF] and FD-MAP [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF], which are based on directional beams of dense trajectories for DT representation, obtain rates of 95.31% and 95.69% respectively, just a little higher than ours. Nevertheless, their dimensions are about twofold (see Table 2). DT-CNN [START_REF] Andrearczyk | Convolutional neural network on three orthogonal planes for dynamic texture classification[END_REF] obtains 98.18% for the AlexNet framework, 98.58% for the GoogleNet framework (see Table 9). However, it takes a long time to learn features for deep layers along with a huge complicated computation, which may be especially limited in implementations for mobile devices.

Global discussion

Beside particular evaluations on different benchmark DT datasets in Section 6.3, several general findings can be derived as follows.

• For DT representation, it can be validated from experimental results in Tables 5,6, and 11 that encoding DTs based on dense trajectories of a video has structured descriptors with more robustness compared to that based on three orthogonal planes of the sequence. That means our xLVP operator could be suitable for capturing directional features of dense trajectories instead of for investigating the whole video. It should be noted that in case of focusing on the entire properties of a sequence, xLVP-TOP also significantly outperforms the basic LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF] applied on three orthogonal planes (see Table 11).

• xLVP-TOP can be also considered as an alternative solution for encoding DT videos in practice since its performance is reasonable with tiny dimension as well as more outstanding in comparison with the basic LVP-TOP (see Tables 2 and11).

• Expanding supporting regions for encoding dense trajectories is not a strong recommendation due to lack of concerned spatio-temporal information of directional beams. Indeed, with Ω = {24, 3} and single-scale settings of {(24, 3)} riu2 L={2,3} , the performances of corresponding DDTP descriptors dramatically drop on UCLA (50-LOO) and DynTex35 datasets compared to those of others (see Tables 5,6, and 12). In the meantime, DDTP descriptors with 3-scale setting of {(8, 1), [START_REF] Nguyen | Directional beams of dense trajectories for dynamic texture recognition[END_REF][START_REF] Barmpoutis | Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition[END_REF], (24, 3)} riu2 L={2,3} are just nearly the same performance as those of 2-scale, i.e., {(8, 1), (16, 2)} riu2 L={2,3} , but in much larger dimension (see Table 2).

• Addressing u2 mapping (e.g., {(8, 1)} u2 L={2,3} ) for structuring DDTP features points out much larger dimension (see Section 6.1) while its performance is not improved as expected (see Table 12).

• In addition, taking into account motion points in longer dense trajectories enlarges the dimension of proposed descriptors while their performances are not enhanced (see Table 13 for that). This may be due to the short "living" time of turbulent motions in a video.

Conclusions

In this paper, an efficient framework for DT description has been proposed by incorporating advantages of optical-flow-based and local-feature-based techniques in order to figure out robust descriptors for DT recognition task. Specifically, beams of dense trajectories, extracted from a DT video, are completely investigated in both spatial and temporal changes of motion points. Directional features of them are encoded by xLVP, the crucial extensions of LVP, allowing to capture more forceful local vector relationships. Experiments have validated two following important contributions. First, taking dense trajectories into account DT representation is an interested alternative beside investigating the entire properties of a DT video. Second, based on motion points along their dense trajectories, the completed model xLVP could point out directional patterns with more discriminative power rather than the basic LVP [START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF] do. In addition, evaluations have also verified that xLVP operator is preferred to encode dense trajectories rather than to consider each voxel on three orthogonal planes of a sequence.

For the further future works, the high-order xLVP can be utilized to contemplate the potential properties of larger local vector structures on movement of these motion points. In order to deal with the curse of large dimension, xLVP can be considered in full directions to seize the entire local directional relations. In addition, exploiting filtering techniques e.g., moment models [START_REF] Nguyen | Statistical binary patterns for rotational invariant texture classification[END_REF][START_REF] Nguyen | Momental directional patterns for dynamic texture recognition[END_REF], Gaussian-based kernels [START_REF] Nguyen | Volumes of blurredinvariant gaussians for dynamic texture classification[END_REF][START_REF] Nguyen | Smooth-invariant gaussian features for dynamic texture recognition[END_REF], can mitigate the negative impacts of illumination and noise on encoding dense trajectories. 

Method

Dimensions P = P = 16 P = 24 LBP-TOP u2 [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] 3(P (P -1) + 3) 729 1665 VLBP [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] 2 3P +2 ---CVLBP [START_REF] Tiwari | Dynamic texture recognition based on completed volume local binary pattern[END_REF] 3 × 2 [START_REF] Tiwari | Dynamic texture recognition based on completed volume local binary pattern[END_REF] 85.14 N ----HLBP [START_REF] Tiwari | A novel scheme based on local binary pattern for dynamic texture recognition[END_REF] 98.57 N ---96.28 N CLSP-TOP [START_REF] Nguyen | Completed local structure patterns on three orthogonal planes for dynamic texture recognition[END_REF] 98. 
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Figure 2 :

 2 Figure 2: (Best viewed in color) Computing the first-order LVP-D binary pattern for a dynamic point I(q c ) = 3 (in red) with α = 0 • , d = 1, and (P, R) = (8, 1).

Figure 3 :

 3 Figure 3: (Best viewed in color) A general model for encoding DBT patterns in which dense trajectory t with length of L is structured by L + 1 blue motion points located in consecutive frames along with their neighbors in different colors situated in a vicinity B = {8, 1}.

  Figure 4: (Best viewed in color) A typical TMP model in which directional temporal information of motion points (in blue) are encoded along their trajectory t with length of L by exploiting directional relations of those with their local neighbors P = 8 (in red) sampled by a circle of radius R = 1 on XT and YT planes.

Figure 5 :

 5 Figure 5: (Best viewed in color) An effective framework for DT representation based on dense trajectories extracted from a video V.

  For example, DDTP D M/C has the total bins of two following components: DBT D M/C and TMP D M/C with 3k(|B| + 1) and 6k(L + 1) dimensions respectively, in which |B| means the cardinality of local neighbors sampled around a motion point for encoding directional beams of trajectories with the same length of L, k = l riu2/u2 × |Φ| is the dimension of a pattern encoded by the completed operator xLVP = LVP D M/C with riu2/u2 mappings in consideration of a number of concerning directions |Φ|. As the result of those, the final size of DDTP D M/C is 3k(|B| + 2L + 3) bins. Similarly, dimension of xLVP-TOP D M/C descriptor is 9k bins; of the original LVP-TOP is 3k; and of DDTP-B is the one-third of DDTP D M/C 's in this case since only LVP D is involved with.

Step 3 : 1 :

 31 xLVP features are calculated from collection of slices of V in three orthogonal planes XY , XT , and Y T . Let us consider plane XY concerning component xLVP XY (the two other components have the same Algorithm Encoding DDTP patterns Input: A video V of H × W × F dimension, length of trajectory L, number of neighbors P , directions Φ. Output: DDTP descriptor. %%%% Step 1: Extraction of trajectories. %%%% Extracting dense trajectories T from video V subject to L. %%%% Step 2: Labeling of motion points. %%%% Initialize vMP of size H × W × F , vMP(q) = 0 ∀q. for t=1:|T | do for i=1:L+1 do q i = i th motion point of trajectory T (t); vMP(q i ) = t; end for end for %%%% Step 3: Extraction of xLVP features. %%%% for f=1:F doI f : slice of V at frame f in plane XY ; xLVP XY (f ) = {LVP-D(I f ), LVP-M(I f ), LVP-C(I f )};end for for y=1:H do I y : slice of V at ordinate y in plane XT ; xLVP XT (y) = {LVP-D(I y ), LVP-M(I y ), LVP-C(I y )}; end for for x=1:W do I x : slice of V at abscissa x in plane Y T ; xLVP Y T (x) = {LVP-D(I x ), LVP-M(I x ), LVP-C(I x )}; end for %%%% Step 4: Construction of DBT and TMP %%%% for each q ∈ vMP do %%%% Check q is motion point.%%%% if vMP(q) > 0 then Structuring DBT and TMP features based on xLVP XY , xLVP XT , xLVP Y T for motion points q in the trajectory t = vMP(q). end if end for %%%% Step 5: Construction of DDTP. %%%% Concatenate to form DDTP = [DBT, TMP];complexity by using similar arguments). We consider now the complexity to calculate xLVP features for each input plane-image I f of H ×W dimension, it can be deduced from Equations (8) and (9) in Section 3.1 that our proposed directional thresholds DVM and DVC have computational costs of Q DVM = O(P × H × W) and Q DVC = O(H × W) respectively, where P is the number of considered neighbors for encoding xLVP. As mentioned in Section 3.2, our xLVP consists of three complementary components: LVP D , LVP M , and LVP C . Based on Equations (

Step 4 :• Step 5 :

 45 Based on the mapping volume vMP, DBT and TMP features are structured by using xLVP patterns for motion points in the same trajectory. The complexities of these processes are estimated as Q DBT = O(P × L × |Φ| × H × W × F ) for encoding DBT features and Q TMP = O(L × |Φ| × H × W × F ) for TMP, in which |Φ| denotes the cardinality of directions Φ. Finally, DDTP descriptor is formed by concatenating DBT and TMP features. The complexity of this concatenation is O(1).

Figure 6 :

 6 Figure 6: (Best viewed in color) Samples (a), (b), (c) of dense trajectories extracted from the corresponding videos in UCLA, DynTex, and DynTex++ datasets respectively in which green lines show paths of motion points through the consecutive frames.

Figure 7 :

 7 Figure 7: Samples of UCLA (above row) and DynTex (bottom row).

Figure 8 :

 8 Figure 8: Confusion matrix of DDTP L=3 D M/C on 9-class.

Figure 9 :

 9 Figure 9: Confusion matrix of DDTP L=3 D M/C on 8-class.

Figure 10 :Figure 11 :

 1011 Figure 10: Specific rate of DDTP L=3 D M/C on each class of DynTex35.

Figure 12 :

 12 Figure 12: Confusion matrix of DDTP L=3 D M/C on Alpha.

Figure 13 :

 13 Figure 13: Confusion matrix of DDTP L=3 D M/C on Beta.

Figure 14 :

 14 Figure 14: Confusion matrix of DDTP L=3 D M/C on Gamma.

  Note: D M , D M C , and D M/C are different ways of integrating components of xLVP operator to compute the corresponding DDTP descriptors. ∼B means the DDTP-B descriptor.

Note: 50 -

 50 LOO and 50-4fold mean recognition rates on 50-class scenario using leave-one-out and four cross-fold validation respectively. D M , D M C , and D M/C are different instances of DDTP L=3 D M/C formed by integrating the corresponding components of xLVP.

  Note: D M , D M C , and D M/C are different instances of DDTP descriptors formed by integrating the corresponding components of xLVP operator.

  Note: D M , D M C , and D M/C are different instances of DDTP descriptors subject to the way of integrating complementary components of xLVP operator. ∼B means the DDTP-B descriptor.

Table 13 :

 13 Performances (%) on longer dense trajectories on UCLA (50-LOO). Dataset L = 5 L = 7 {(P, R)} riu2 D M D M C D M/C ∼B D M D M C D M/C

  Note: D M , D M C , and D M/C are different instances of DDTP descriptors subject to the way of integrating complementary components of xLVP operator. ∼B means the DDTP-B descriptor.

  • , 90 • , 135 • }, to enrich discriminative information of descriptors[START_REF] Fan | A novel local pattern descriptor -local vector pattern in high-order derivative space for face recognition[END_REF][START_REF] Naik | Local vector pattern with global index angles for a content-based image retrieval system[END_REF][START_REF] Nguyen | Action recognition in depth videos using hierarchical gaussian descriptor[END_REF].

  and Q LVP C , i.e., O(P × H × W). Therefore, the complexity for extraction of xLVP XY component on XY plane is O(P × H × W × F ) because there are F considered slices. By applying similar arguments on two other components calculated on planes Y T and XT , we deduce that the complexity of this step is

Table 1 :

 1 Comparing processing time of encoding two videos in UCLA.

Sample video

Resolution L Level of turbulence #Traj. Runtime 110 × 160 × 75 (orig.) 3 A single candle flame 3674 ≈8.7s 48 × 48 × 75 (crop) 3 A single candle flame 1507 ≈2.6s 110 × 160 × 75 (orig.) 3 All leaf vibrations 25562 ≈35.3s 48 × 48 × 75 (crop) 3 All leaf vibrations 2134 ≈3.1s

Table 2 :

 2 A comparison of various dimensions of LBP-based descriptors.

  P is the concerned neighbors. DDTP, and DDTP-B encode dense trajectories with the length of L = 2. All our descriptors are computed by completed operator xLVP in 4 directions with riu2 mapping (also the settings for comparison their performance with the existing methods).

		3P +2	-	-	-
	HLBP [43]	6 × 2 P		-	-
	CLSP-TOP riu2 [39]	6(P + 2) 2		1944 4,056
	WLBPC [44]	6 × 2 P		-	-
	MEWLSP [45]	6 × 2 P		-	-
	CVLBC [42]	2(3P + 3) 2		5202 11125
	CSAP-TOP riu2 [40]	12(P + 2) 2		3888	8112
	FDT u2 [16]	216P ((P -1) + 3)		-	-
	FD-MAP u2 L=2 [16]	216P ((P -1) + 3) + 16		-	-
	DDTP riu2 D M	8(P + 7)(P + 2)		3312	6448
	DDTP riu2 D M C	8(P + 7)(P + 3)		3496	6696
	DDTP riu2 D M/C	12(P + 7)(P + 2)		4968	9672
	DDTP-B riu2	4(P + 7)(P + 2)		1656	3224
	xLVP-TOP riu2 D M	24(P + 2)		432	624
	xLVP-TOP riu2 D M C	24(P + 3)		456	648
	xLVP-TOP riu2 D M/C	36(P + 2)		648	936
	LVP-TOP riu2	12(P + 2)		216	312

Note:

Table 3 :

 3 A summary of main properties of DT datasets and protocols.

	Dataset	Sub-dataset #Videos	Resolution #Classes Protocol
		50-class	200	110 × 160 × 75	50 LOO and 4fold
	UCLA	9-class	200	110 × 160 × 75	9 50%/50%
		8-class	92	110 × 160 × 75	8 50%/50%
		DynTex35	350 different dimensions	10 LOO
	DynTex	Alpha Beta	60 162	352 × 288 × 250 352 × 288 × 250	3 LOO 10 LOO
		Gamma	264	352 × 288 × 250	10 LOO
	DynTex++		3600	50 × 50 × 50	36 50%/50%
	Note: LOO and 4fold are leave-one-out and four cross-fold validation. 50%/50% denotes a protocol
	of taking randomly 50% samples for training and the remain (50%) for testing.

Table 4 :

 4 Contributions (%) of DBT and TMP of DDTP D M C descriptor.

	Dataset	UCLA (50-LOO)	DynTex35
	{(P, R)} riu2 L=2	DBT TMP DDTP DBT TMP DDTP
	{(8, 1)} riu2 L=2	99.00 90.50 97.50 98.57 96.57 98.00
	(16, 2)} riu2 L=2	99.00 97.50	100 98.86 99.14 99.43
	{(8, 1), (16, 2)} riu2 L=2 99.50 97.50	100 98.57 98.29 99.43

Table 5 :

 5 Results (%) on UCLA exploiting DDTP and DDTP-B descriptors.

	Scheme	50-LOO	50-4fold	9-class	8-class
	Classifier {				

  Note: 50-LOO and 50-4fold mean recognition rates on 50-class scenario using leave-one-out and four cross-fold validation respectively. D M , D M C , and D M/C are different instances of DDTP descriptors formed by integrating the corresponding components of completed operator xLVP. ∼B means the DDTP-B descriptor.

		1)} riu2 L=2	97.00 97.50 99.00 98.50 94.00 96.00 99.00 98.00 98.60 98.10 98.10 97.90 96.20 96.85 97.28 94.24
		{(16, 2)} riu2 L=2	99.50	100 99.50 95.00 100	100 99.50 94.50 97.40 96.60 97.90 95.80 96.09 95.76 96.43 95.33
		{(8, 1), (16, 2)} riu2 L=2	100	100 99.00 99.50 100	100	100 99.00 98.35 98.25 98.50 97.85 97.28 96.96 97.50 97.61
		{(8, 1)} riu2 L=3	94.00 94.00 99.00 98.50 95.50 95.50 99.00 98.50 98.10 98.55 98.30 97.45 96.52 97.17 95.33 95.22
		{(16, 2)} riu2 L=3	100	100 99.50 96.50 100	100 99.50 98.50 97.50 97.60 96.65 95.90 97.07 98.15 96.74 93.15
		{(8, 1), (16, 2)} riu2 L=3	100	100 99.00 99.50 100	100 99.50 98.50 98.60 97.95 98.75 96.15 97.72 98.04 98.04 96.30
		{(8, 1)} riu2 L=2	98.50 98.50 98.50 98.00 99.00 99.00 98.50 98.00 96.20 96.75 95.15 96.90 94.67 93.70 97.07 95.54
		{(16, 2)} riu2 L=2	99.00 99.00 98.50 99.00 99.00 99.00 98.50 99.00 93.55 97.45 95.15 94.80 94.13 96.20 95.87 96.30
	1-NN	{(8, 1), (16, 2)} riu2 L=2 99.00 98.50 98.50 99.00 99.00 99.00 98.50 99.00 96.10 95.40 96.30 96.20 95.54 96.52 93.70 95.22 {(8, 1)} riu2 L=3 98.00 98.00 98.50 98.00 98.50 98.50 98.50 98.00 96.55 95.75 96.35 96.95 95.76 97.07 95.87 96.74
		{(16, 2)} riu2 L=3	99.00 99.00 98.50 99.00 99.00 99.00 98.50 99.00 96.00 96.45 95.60 96.20 94.89 96.52 93.37 94.02
		{(8, 1), (16, 2)} riu2 L=3 99.00 99.00 98.50 99.00 99.00 99.00 98.50 99.00 96.30 95.15 93.85 95.75 96.30 96.73 96.09 97.39

Table 6 :

 6 Rates (%) on DynTex using DDTP and DDTP-B descriptors.

	Scheme	DynTex35	Alpha	Beta	Gamma
	Classifier {				

  .00 98.57 98.29 98.33 98.33 98.33 98.33 89.51 91.36 94.44 88.89 88.26 89.02 90.15 89.77 {(16, 2)} riu2 L=3 99.43 99.43 99.71 100 96.67 96.67 96.67 93.33 91.36 91.98 93.21 88.89 90.53 90.53 89.77 85.98 {(8, 1), (16, 2)} riu2 L=3 99.43 99.43 99.71 98.86 96.67 96.67 96.67 98.33 91.98 91.98 93.83 88.27 92.42 90.91 91.29 88.60 .86 96.86 96.57 93.33 91.67 91.67 90.67 82.72 83.33 83.33 80.86 79.17 79.54 82.20 75.52

	1)} riu2 L=2	98.57 98.29 98.00 98.00 98.33 98.33 98.33 98.33 90.12 91.36 93.21 87.04 88.64 87.88 90.53 88.64
	{(16, 2)} riu2 L=2	99.43 99.43 99.43 100 96.67 96.67 96.67 93.33 91.36 90.74 91.98 87.65 90.53 91.67 89.77 87.88
	{(8, 1), (16, 2)} riu2 L=2 99.43 98.86 99.14 99.14 96.67 96.67 96.67 98.33 91.36 91.98 92.59 88.27 92.80 91.67 91.29 87.88
	{(8, 1)} riu2 L=3 {(8, 1)} riu2 L=2 {(16, 2)} riu2 L=2 {(8, 1), (16, 2)} riu2 L=2 98.00 981-NN 96.29 96.57 96.29 96.29 88.33 88.33 91.67 86.67 79.63 79.63 80.25 81.48 76.14 77.65 78.41 74.62 96.86 96.29 96.57 96.29 91.67 91.67 91.67 90.00 82.72 82.72 83.95 79.01 79.92 79.17 82.58 75.38 96.29 96.29 96.57 96.00 93.33 91.67 91.67 91.67 83.33 88.33 88.33 80.25 79.54 79.54 81.82 76.52 {(8, 1)} riu2 L=3 96.57 96.57 96.29 96.00 90.00 90.00 91.67 85.00 80.86 80.25 79.63 80.86 76.14 77.65 78.03 74.24
	{(16, 2)} riu2 L=3	96.86 96.57 96.86 96.29 91.67 91.67 91.67 90.00 84.57 84.57 83.33 79.63 79.54 79.54 82.95 75.00
	{(8, 1), (16, 2)} riu2 L=3	96.86 96

Table 7 :

 7 Results (%) on the cropped version of UCLA.

	DDTP L=3 D M/C	50-LOO	50-4fold	9-class	8-class
	{				

Table 8 :

 8 Comparison of recognition rates (%) on UCLA. 98.05 * 98.48 * DT-CNN-GoogleNet [32] -99.50 * 98.35 * 99.02 * Note: "-" means "not available". "*" indicates result using deep learning algorithms. "N" is rate with 1-NN classifier. 50-Loo and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation respectively. Group A denotes optical-flow-based methods, B: model-based, C: geometry-based, D: filter-based, E: local-feature-based, F: learningbased.

	Group Encoding method	50-LOO 50-4fold 9-class 8-class
		FDT [16]	98.50	99.00 97.70 99.35
		FD-MAP [16]	99.50	99.00 99.35 99.57
	A	DDTP D M {(8, 1), (16, 2)} riu2 L=3 DDTP D M C {(8, 1), (16, 2)} riu2 L=3	100 100	100 98.60 97.72 100 97.95 98.04
		DDTP D M/C {(8, 1), (16, 2)} riu2 L=3	99.00	99.50 98.75 98.04
		DDTP-B{(8, 1), (16, 2)} riu2 L=3	99.50	98.50 96.15 96.30
		AR-LDS [1]	89.90 N	-	-	-
	B	Chaotic vector [21]	-	-85.10 N 85.00 N
		Diffusion-based model [57]	-	98.50 N 97.80 N 96.22 N
		3D-OTF [27]	-	87.10 97.23 99.50
	C	DFS [26]	-	100 97.50 99.20
		STLS [29]	-	99.50 97.40 99.50
	D	MBSIF-TOP [23] DNGP [8]	99.50 N -	--99.60 99.40 --
		VLBP [9]	-	89.50 N 96.30 N 91.96 N
		LBP-TOP [9]	-	94.50 N 96.00 N 93.67 N
		CVLBP [46]	-	93.00 N 96.90 N 95.65 N
		HLBP [43]	95.00 N	95.00 N 98.35 N 97.50 N
	E	CLSP-TOP [39]	99.00 N	99.00 N 98.60 N 97.72 N
		MEWLSP [45]	96.50 N	96.50 N 98.55 N 98.04 N
		WLBPC [44]	-	96.50 N 97.17 N 97.61 N
		CVLBC [42]	98.50 N	99.00 N 99.20 N 99.02 N
		CSAP-TOP [40]	99.50	99.50 96.80 95.98
		DL-PEGASOS [25]	-	97.50 95.60	-
		PI-LBP+super hist [59]	-	100 N 98.20 N	-
		Orthogonal Tensor DL [34]	-	99.80 98.20 99.50
	F	Randomized neural network [58]	-	97.05 N 98.54 N 97.74 N
		PCANet-TOP [33]	99.50 *	-	-	-
		DT-CNN-AlexNet [32]	-	99.50	

* 

Table 9 :

 9 Comparison of rates (%) on DynTex and DynTex++.

	Group Encoding method	Dyn35 Alpha	Beta Gamma Dyn++
		FDT [16]	98.86 98.33 93.21	91.67	95.31
		FD-MAP [16]	98.86 98.33 92.59	91.67	95.69
	A	DDTP D M {(8, 1), (16, 2)} riu2 L=3 DDTP D M C {(8, 1), (16, 2)} riu2 L=3	99.43 96.67 91.98 99.43 96.67 91.98	92.42 90.91	94.62 94.69
		DDTP D M/C {(8, 1), (16, 2)} riu2 L=3	99.71 96.67 93.83	91.29	95.09
		DDTP-B{(8, 1), (16, 2)} riu2 L=3	98.86 98.33 88.27	88.60	90.98
	B	Diffusion-based model [57]	-	-	-	-	93.80 N
		3D-OTF [27]	96.70 83.61 73.22	72.53	89.17
	C	DFS [26] 2D+T [61]	97.16 85.24 76.93 -85.00 67.00	74.82 63.00	91.70 -
		STLS [29]	98.20 89.40 80.80	79.80	94.50
	D	MBSIF-TOP [23] DNGP [8]	98.61 N 90.00 N 90.70 N ---	91.30 N -	97.12 N 93.80
		VLBP [9]	81.14 N	-	-	-	94.98 N
		LBP-TOP [9]	92.45 N 98.33 88.89 84.85 N	94.05 N
		DDLBP with MJMI [37]	-	-	-	-	95.80
		CVLBP					
	E						

  29 N 95.00 N 91.98 N Note: "-" means "not available". Superscript "*" indicates result using deep learning algorithms. "N" is rate with 1-NN classifier. Dyn35 and Dyn++ are stood for DynTex35 and DynTex++ sub-datasets. Group A denotes optical-flow-based methods, B: model-based, C: geometry-based, D: filter-based, E: localfeature-based, F: learning-based.

						91.29 N	95.50 N
		MEWLSP [45]	99.71 N	-	-	-	98.48 N
		WLBPC [44]	-	-	-	-	95.01 N
		CVLBC [42]	98.86 N	-	-	-	91.31 N
		CSAP-TOP [40]	100 96.67 92.59	90.53	-
		DL-PEGASOS [25]	-	-	-	-	63.70
		PCA-cLBP/PI/PD-LBP [59]	-	-	-	-	92.40
		Orthogonal Tensor DL [34]	-87.80 76.70	74.80	94.70
		Equiangular Kernel DL [35]	-88.80 77.40	75.60	93.40
	F	Randomized neural network [58] st-TCoF [31]	--	-100 *	-100 *	-98.11 *	96.51 N -
		PCANet-TOP [33]	-96.67 * 90.74 *	89.39 *	-
		D3 [60]	-	100 *	100 *	98.11 *	-
		DT-CNN-AlexNet [32]	-	100 * 99.38 * 99.62 *	98.18 *
		DT-CNN-GoogleNet [32]	-	100 *	100		

* 99.62 * 98.58 *

Table 10 :

 10 Rates (%) of DDTP and DDTP-B descriptors on DynTex++.

	Classifier {(P, R)} riu2 L	D M D M C D M/C DDTP-B
		{(8, 1)} riu2 L=2	93.85 94.01 94.14	87.10
		{(16, 2)} riu2 L=2	93.53 94.92 94.16	86.65
	SVM	{(8, 1), (16, 2)} riu2 L=2 94.75 94.92 95.04 {(8, 1)} riu2 L=3 93.28 93.92 94.27	91.00 87.69
		{(16, 2)} riu2 L=3	93.32 94.69 93.76	87.28
		{(8, 1), (16, 2)} riu2 L=3	94.62 94.69 95.09	90.98
		{(8, 1)} riu2 L=2	91.14 91.47 89.63	89.49
		{(16, 2)} riu2 L=2	90.64 90.72 88.45	88.12
	1-NN	{(8, 1), (16, 2)} riu2 L=2 {(8, 1)} riu2 L=3	91.63 91.73 89.47 90.91 91.33 90.08	89.33 89.12
		{(16, 2)} riu2 L=3	90.71 90.89 88.12	87.23
		{(8, 1), (16, 2)} riu2 L=3	91.43 91.35 89.24	89.33

Table 11 :

 11 Performances (%) on the entire video instead of its dense trajectories. Note: D M , D M C , and D M/C are different instances of xLVP-TOP descriptors subject to the way of integrating complementary components of xLVP operator.

	Dataset	UCLA (50-LOO)	DynTex35	
	{(P, R)} riu2	D M D M C D M/C LVP-TOP D M D M C D M/C LVP-TOP
	{(8, 1)} riu2	98.00 99.00 99.50	94.00 97.71 97.14 94.29	97.71
	{(16, 2)} riu2	97.00 98.50 99.50	95.00 98.86 98.57 97.71	98.86
	{(8, 1), (16, 2)} riu2 96.50 94.00 98.00	97.00 97.71 98.29 97.14	99.14

Table 12 :

 12 Rates (%) of using larger supporting regions and u2 mapping. .[START_REF] Naik | Local vector pattern with global index angles for a content-based image retrieval system[END_REF] 97.00 79.00 98.86 99.14 99.71 96.86 {(24, 3)} riu2 L=3 93.00 97.00 98.50 83.00 99.14 99.43 99.71 96.86 {(8, 1), (16, 2), (24, 3)} riu2 L=2 100 99.50 99.50 97.50 99.14 99.43 99.43 100 {(8, 1), (16, 2), (24, 3)} riu2 L=3 99.50 100 99.50 99.50 99.14 99.14 99.71 99.43

	Dataset	UCLA (50-LOO)		DynTex35	
	{(P, R)} riu2/u2 L	D M D M C D M/C	∼B	D M D M C D M/C	∼B
	{(24, 3)} riu2 L=2 95.50 97{(8, 1)} u2 L=2 99.50 99.50 99.50 99.00 98.00 97.71 98.00 95.43
	{(8, 1)} u2 L=3	99.50 99.50 99.50 99.00 98.29 98.57 98.00 97.14

  ∼B {(8, 1)} riu2 96.50 95.50 99.00 97.50 95.00 93.50 98.00 96.50 {(16, 2)} riu2 100 100 99.50 95.00 99.50 100 99.00 96.00 {(8, 1), (16, 2)} riu2 99.50 99.50 99.50 98.50 99.50 99.50 98.50 98.50
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