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1. INTRODUCTION

Switched systems are one of the most important classes of
Hybrid Dynamical Systems (HDS). They consist of contin-
uous or discrete-time subsystems where only one subsys-
tem is active at each time. A switching rule orchestrating
among them. Several works treated switched systems such
as (Djemai and Defoort (2015); Liberzon (2012); Branicky
(1998)). Among these studies, control and state estimation
were crucial and fundamental problems.

In order to study the stability of switched systems, specific
results have been developed. For example, in (Hu et al.
(2002)) a common Lyapunov function yields sufficient
conditions for the global asymptotic stability. However, it
may not always be possible to get this common function.
Therefore, multiple Lyapunov functions were proposed
for instance in (Liberzon and Morse (1999)). Approaches
based on average dwell time have also been studied to
ensure the stability of switched systems (see Hetel (2007);
Serres et al. (2011) and the references therein).

As far as the stability problem is widely concerned, it is
worth pointing out that the state is not always directly
measured but may be estimated from the input and
the output of the process. State estimation for switched
systems remains a challenging problem by reason of the
combined discrete and continuous states (see Hocine et al.
(2005); Tian et al. (2009); Birouche et al. (2006); Arichi
et al. (2015)).

In practice, measurements are usually subject to noises. To
compute robust estimates, interval observers assume that
noises and disturbances are bounded without any stochas-

tic assumptions. This approach assumes that the measure-
ment and process errors are unknown but bounded.

In the last decade, several works have investigated es-
timation problems in an unknown but bounded error
(UBBE) framework for different classes of continuous sys-
tems such as Linear Time-Invariant (LTI), Linear Time-
Varying (LTV) and Linear Parameter-Varying (LPV) sys-
tems (see Räıssi et al. (2012); Mazenc and Bernard (2011);
Videau et al.; Räıssi et al. (2010); Mazenc and Bernard
(2010); Gouzé et al. (2000); Lamouchi et al. (2016); Yousfi
et al. (2016b,a) and the references therein).

The main restriction of interval observer theory is the co-
operativity feature. Considering that most of systems are
not cooperative, it has been shown in the literature that
any linear invariant-time system could be changed into
a cooperative form. The technique proposed in (Mazenc
and Bernard (2011)) considers that it is possible to design
an interval observer via a time-varying change of coordi-
nates based on the Jordan representation. In (Räıssi et al.
(2012)) an invariant change of coordinates is used to ensure
the cooperativity property.

The extension of interval observers to switched systems
has not been fully considered in the literature. To the
best of the authors knowledge, only a preliminary work
has been developed in (He and Xie (2016, 2015)) with
the strong assumption that there exist gains Lq such

that (Aq − LqCq), q ∈ 1, N , are Metzler (the off-diagonal
elements are nonnegative). Unfortunately, this assumption
is rarely verified.

In this paper, the main contribution is to design an
interval observer for switched linear systems subject to
disturbances. The measurement noise and the state dis-
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turbance are unknown but bounded with known bounds.
State estimation conditions are given in terms of Linear
Matrix Inequalities (LMIs). The suggested methodology
allows one to overcome the strong limitations in (He and
Xie (2016, 2015)). It will be shown that the constructive
methodology can be applied for a large class of linear
switched systems.

This paper is structured as follows. Some preliminaries
are described in Section 2. Interval state estimation for
switched linear systems is stated in Section 3. Section 4 is
dedicated to show efficiency of the proposed method via a
numerical example. Section 5 concludes the paper.

2. PRELIMINARIES

The sets of real and natural numbers are denoted by R

and N respectively. |x| is the elementwise absolute value
of a vector x ∈ R

n. The sequence of integers 1, ..., N is
denoted by 1, N . Ep is a (p× 1) vector whose elements are
equal to 1. I is the identity matrix of proper dimension.
For a matrix P = PT , P ≺ 0 (P ≻ 0) means that the
matrix P ∈ R

n is negative (positive) definite. Lower and
upper bounds x and x of x satisfy x ≤ x ≤ x, where
the relation ≤ is interpreted elementwise for vectors and
matrices. For a matrix A ∈ R

m×n, let A+ = max {0, A}
and A− = A+ −A.

Lemma 1. (Chebotarev et al. (2015)) Let x ∈ R
n be a

vector satisfying x ≤ x ≤ x and A ∈ R
m×n be a constant

matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (1)

A matrix A = {aij} ∈ R
n×n is called Metzler if all its off-

diagonal elements are nonnegative, i.e. aij ≥ 0, ∀i �= j.

Lemma 2. (Gouzé et al. (2000)) Let

ẋ (t) = Ax+ u, x (0) = x0

where A is a Metzler matrix and u ≥ 0. If x0 ≥ 0, then

x (t) ≥ 0, ∀ t ≥ 0. (2)

A continuous-time linear system ẋ (t) = Ax is said to be
cooperative if A is a Metzler matrix.

Lemma 3. (Jiang et al. (2002)) Let δ > 0 be a scalar and
P ∈ R

n be a symmetric positive definite matrix, then

2xT y ≤
1

δ
xTPx+ δyTP−1y x, y ∈ R

n. (3)

Consider the system described by:
{

ẋ = Ax+ φ (t)
y = Cx

(4)

where φ is a continuous function and assume that there
exist two known functions φ and φ : R → R

n Lipschitz

continuous such that φ (t) ≤ φ (t) ≤ φ (t) for all t ≥ 0.

Theorem 1. (Gouzé et al. (2000)) If there exists a gain K
such that (A−KC) is Metzler and if x0 ≤ x0 ≤ x0, then
the system

{

ẋ = Ax+ φ+K (y − Cx)
ẋ = Ax+ φ+K (y − Cx)

(5)

is a framer for the system (4) such that

x (t) ≤ x (t) ≤ x (t) , ∀t ≥ 0

Theorem 2. (Gouzé et al. (2000)) The system (5) is called
an interval observer for system (4) if the lower (x− x) and
upper (x− x) estimation errors are asymptotically stable.

3. INTERVAL STATE ESTIMATION FOR
SWITCHED LINEAR SYSTEMS

Consider a Switched Linear System (SLS) described by:
{

ẋ (t) = Aqx (t) +Bqu (t) + w (t)
ym (t) = Cqx (t) + v (t)

, q ∈ 1, N, N ∈ N (6)

where x ∈ R
n, u ∈ R

m, ym ∈ R
p, w ∈ R

n, v ∈ R
p are

respectively the state vector, the input, the output, the
disturbance and the measurement noise. Aq, Bq and Cq are
constant matrices of proper dimensions. q is the index of
the active subsystem and N is the number of subsystems.
The measurement noise and the state disturbance are
assumed to be unknown but bounded with a priori known
bounds such that

|w (t)| ≤ w, |v (t)| ≤ V Ep, ∀t ≥ 0 (7)

where w ∈ R
n and V is a scalar.

The aim is to derive two trajectories x (t) and x (t) where
x (t) ≤ x (t) ≤ x (t) , ∀t ≥ 0, despite the disturbances,
starting from the initial condition x0 which is assumed to
be bounded by two known bounds x0 ≤ x0 ≤ x0.

To design an interval observer for (6), a necessary condi-
tion is given in the following assumption.

Assumption 1. There exist gains Lq such that the matrices

(Aq − LqCq) are Metzler for q ∈ 1, N .

The matrices Lq (q ∈ 1, N) denote the observer gains
associated with each subsystem q.

A candidate interval observer structure for the estimation
of x, x is described by:

{

ẋ = (Aq − LqCq)x+Bqu+ w + Lqym + |Lq|V Ep

ẋ = (Aq − LqCq)x+Bqu− w + Lqym − |Lq|V Ep

(8)
Similarly to Theorem 1, the following theorem gives the
conditions for achieving partially the desired design goal.

Theorem 3. Consider the system described by (6). Let
Assumption 1 be satisfied. For any initial condition x0 ≤
x0 ≤ x0, if there exist observer gains Lq such that

(Aq − LqCq) are Metzler , ∀q ∈ 1, N (9)

then the system (8) is a framer for the system (6) with

x (t) ≤ x (t) ≤ x (t) , ∀t ≥ 0. (10)

Proof. Let e (t) = x− x be the upper observation error

and e (t) = x − x be the lower observation error. Let us
show that e and e are positive.

From (6) and (8) the dynamics of the interval estimation
errors are given by:

ė (t) = ẋ− ẋ = (Aq − LqCq) e (t) + Γq (11)

and ė (t) = ẋ− ẋ = (Aq − LqCq) e (t) + Γq (12)

where
Γq = w − w + Lqv + |Lq|V Ep (13)

Γq = w + w − Lqv + |Lq|V Ep (14)
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As |v (t)| ≤ V Ep, ∀t ≥ 0 and by construction (w − w) and

(w + w) are positive then Γq and Γq are positive for all

q ∈ 1, N . In addition, since Lq are computed to verify (9)
and x0 and x0 are chosen such that

�

e (0) = x0 − x0 ≥ 0
e (0) = x0 − x0 ≥ 0

then, according to Lemma 2, e (t) and e (t) are positive
∀t ≥ 0. Thus, x (t) ≤ x (t) ≤ x (t) for all t ≥ 0.

�

Remark 1. The framer (8) is initialized with the initial
conditions x0 and x0 for the active subsystem (q = 1).
At the switching time instant, the output of the previous
active subsystem (q = i) is used to initialize (8) with the
subsystem (q = i+ 1).
In addition, Theorem 3 ensures only the inclusion relation
x (t) ≤ x (t) ≤ x (t). However, the errors (x− x) and
(x− x) are not guaranteed to be bounded.

For the stability analysis of (11) and (12), let us introduce
the following lemma.

Lemma 4. (Liberzon and Morse (1999)) Let

ẋ (t) = Aqx (t) , q ∈ 1, N (15)

The switched system (15) is globally asymptotically stable
if there exists a matrix S = ST > 0 such that

V̇ (x) = xT
�

Aq
TS + SAq

�

x < 0, q ∈ 1, N (16)

where V (x) is the common Lyapunov function given by:

V (x) = xTSx. (17)

Theorem 4. Let Assumption 1 be satisfied. Given scalars
δq > 0, if there exists a symmetric positive definite matrix

S ∈ R
n for all q ∈ 1, N such that

Aq
TS + SAq − Cq

TWq
T −WqCq + αqS ≺ 0 (18)

where αq = 2

δq
and Wq = SLq, then the framer (8) is an

asymptotically stable interval observer for (6).

Proof. As mentioned in Theorem 2, the global asymp-
totic stability of the interval observer is guaranteed by
applying a common Lyapunov function to the estimation
errors. Consider the following Lyapunov function:

V (e) = e(t)TSe (t) , S ≻ 0. (19)

V̇ (e) = ė
T
Se+ eTSė

= eT
�

(Aq − LqCq)
T
S + S(Aq − LqCq)

�

e− 2eTSw

+2eTSLqv + 2eTSw + 2eTS |Lq|V Ep (20)

From Lemma 3, it is clear that

V̇ (e)≤ eTB1e+ C1 (21)

where

B1 =Aq
TS + SAq − Cq

TWq
T −WqCq +

2

δq
S (22)

C1 =wT [−δqS]w + wT [δqS]w + vT
�

δqL
T
q SLq

�

v

+Ep
T
�

δqV LT
q SLqV

�

Ep (23)

From (18), it is assumed that B1 ≺ 0. In addition, the
noises and disturbances are bounded it follows that C1

is bounded. Therefore the error e is bounded. The same
arguments show that the error e is also bounded.

�

The methodology described above, although simple, is not
always constructive. Indeed, it is not always possible to
find gains Lq such that Assumption 1 is satisfied. Hence,
the key point of the idea is to find a change of coordinates
that transforms the observation errors into cooperative
forms. The changes of coordinates proposed for instance
in (Räıssi et al. (2012); Mazenc and Bernard (2011)) for
continuous systems can be used to transform the matrices
(Aq − LqCq) into a Metzler form.

Let us assume that there exists a non singular transforma-
tion matrix P such that, with the new coordinates z = Px,
the system (6) is transformed into the form

�

ż = PAqP
−1z + PBqu+ Pw

y = CqP
−1z + v

(24)

A Luenberger based candidate observer for the system (24)
can be written in the new coordinates z as:























ż = P (Aq − LqCq)P
−1z + PBqu+ P+w − P−w

+PLqym + |PLq|V Ep

ż = P (Aq − LqCq)P
−1z + PBqu+ P+w − P−w

+PLqym − |PLq|V Ep

(25)

∀q ∈ 1, N

where
z (0) = P+x0 − P−x0 (26)

z (0) = P+x0 − P−x0 (27)

P is the solution of the Sylvester equation given by

PAq −RqP = QqCq, Qq = PLq (28)

and
Rq = P (Aq − LqCq)P

−1

Let ez (t) = z − z be the upper observation error and
ez (t) = z − z be the lower one.

From systems (24) and (25), the dynamics of the interval
estimation errors are given by:

ėz (t) = ż − ż =
��

P+w − P−w
�

− Pw
�

+ |PLq|V Ep

+ P (Aq − LqCq)P
−1ez + PLqv = Rqez +Υq(29)

ėz (t) = ż − ż =
�

Pw −
�

P+w − P−w
��

+ |PLq|V Ep

+ P (Aq − LqCq)P
−1ez − PLqv = Rqez +Υq(30)

where

Υq =
��

P+w − P−w
�

− Pw
�

+ |PLq|V Ep + PLqv (31)

Υq =
�

Pw −
�

P+w − P−w
��

+ |PLq|V Ep − PLqv (32)

Similarly to the proof of Theorem 4, the asymptotic stabil-
ity of the observer (25) is ensured by applying a common
Lyapunov function to the observation errors as follows:

V (ez) = ez
TMez, V (ez) = ez

TMez (33)

In the following, only the dynamics of the upper observa-
tion error are considered. The derivative of V (ez) is:
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As |v (t)| ≤ V Ep, ∀t ≥ 0 and by construction (w − w) and

(w + w) are positive then Γq and Γq are positive for all

q ∈ 1, N . In addition, since Lq are computed to verify (9)
and x0 and x0 are chosen such that

�

e (0) = x0 − x0 ≥ 0
e (0) = x0 − x0 ≥ 0

then, according to Lemma 2, e (t) and e (t) are positive
∀t ≥ 0. Thus, x (t) ≤ x (t) ≤ x (t) for all t ≥ 0.

�

Remark 1. The framer (8) is initialized with the initial
conditions x0 and x0 for the active subsystem (q = 1).
At the switching time instant, the output of the previous
active subsystem (q = i) is used to initialize (8) with the
subsystem (q = i+ 1).
In addition, Theorem 3 ensures only the inclusion relation
x (t) ≤ x (t) ≤ x (t). However, the errors (x− x) and
(x− x) are not guaranteed to be bounded.

For the stability analysis of (11) and (12), let us introduce
the following lemma.

Lemma 4. (Liberzon and Morse (1999)) Let

ẋ (t) = Aqx (t) , q ∈ 1, N (15)

The switched system (15) is globally asymptotically stable
if there exists a matrix S = ST > 0 such that

V̇ (x) = xT
�

Aq
TS + SAq

�

x < 0, q ∈ 1, N (16)

where V (x) is the common Lyapunov function given by:

V (x) = xTSx. (17)

Theorem 4. Let Assumption 1 be satisfied. Given scalars
δq > 0, if there exists a symmetric positive definite matrix

S ∈ R
n for all q ∈ 1, N such that

Aq
TS + SAq − Cq

TWq
T −WqCq + αqS ≺ 0 (18)

where αq = 2

δq
and Wq = SLq, then the framer (8) is an

asymptotically stable interval observer for (6).

Proof. As mentioned in Theorem 2, the global asymp-
totic stability of the interval observer is guaranteed by
applying a common Lyapunov function to the estimation
errors. Consider the following Lyapunov function:

V (e) = e(t)TSe (t) , S ≻ 0. (19)

V̇ (e) = ė
T
Se+ eTSė

= eT
�

(Aq − LqCq)
T
S + S(Aq − LqCq)

�

e− 2eTSw

+2eTSLqv + 2eTSw + 2eTS |Lq|V Ep (20)

From Lemma 3, it is clear that

V̇ (e)≤ eTB1e+ C1 (21)

where

B1 =Aq
TS + SAq − Cq

TWq
T −WqCq +

2

δq
S (22)

C1 =wT [−δqS]w + wT [δqS]w + vT
�

δqL
T
q SLq

�

v

+Ep
T
�

δqV LT
q SLqV

�

Ep (23)

From (18), it is assumed that B1 ≺ 0. In addition, the
noises and disturbances are bounded it follows that C1

is bounded. Therefore the error e is bounded. The same
arguments show that the error e is also bounded.

�

The methodology described above, although simple, is not
always constructive. Indeed, it is not always possible to
find gains Lq such that Assumption 1 is satisfied. Hence,
the key point of the idea is to find a change of coordinates
that transforms the observation errors into cooperative
forms. The changes of coordinates proposed for instance
in (Räıssi et al. (2012); Mazenc and Bernard (2011)) for
continuous systems can be used to transform the matrices
(Aq − LqCq) into a Metzler form.

Let us assume that there exists a non singular transforma-
tion matrix P such that, with the new coordinates z = Px,
the system (6) is transformed into the form

�

ż = PAqP
−1z + PBqu+ Pw

y = CqP
−1z + v

(24)

A Luenberger based candidate observer for the system (24)
can be written in the new coordinates z as:























ż = P (Aq − LqCq)P
−1z + PBqu+ P+w − P−w

+PLqym + |PLq|V Ep

ż = P (Aq − LqCq)P
−1z + PBqu+ P+w − P−w

+PLqym − |PLq|V Ep

(25)

∀q ∈ 1, N

where
z (0) = P+x0 − P−x0 (26)

z (0) = P+x0 − P−x0 (27)

P is the solution of the Sylvester equation given by

PAq −RqP = QqCq, Qq = PLq (28)

and
Rq = P (Aq − LqCq)P

−1

Let ez (t) = z − z be the upper observation error and
ez (t) = z − z be the lower one.

From systems (24) and (25), the dynamics of the interval
estimation errors are given by:

ėz (t) = ż − ż =
��

P+w − P−w
�

− Pw
�

+ |PLq|V Ep

+ P (Aq − LqCq)P
−1ez + PLqv = Rqez +Υq(29)

ėz (t) = ż − ż =
�

Pw −
�

P+w − P−w
��

+ |PLq|V Ep

+ P (Aq − LqCq)P
−1ez − PLqv = Rqez +Υq(30)

where

Υq =
��

P+w − P−w
�

− Pw
�

+ |PLq|V Ep + PLqv (31)

Υq =
�

Pw −
�

P+w − P−w
��

+ |PLq|V Ep − PLqv (32)

Similarly to the proof of Theorem 4, the asymptotic stabil-
ity of the observer (25) is ensured by applying a common
Lyapunov function to the observation errors as follows:

V (ez) = ez
TMez, V (ez) = ez

TMez (33)

In the following, only the dynamics of the upper observa-
tion error are considered. The derivative of V (ez) is:
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V̇ (ez) = ė
T

z Mez + ez
TMėz ≤ ez

TB2ez + C3 (34)

where

C3 =wT
�

δqP
+

T

MP+

�

w − wT
�

δqP
−

T

MP−

�

w

−wT
�

δqP
TMP

�

w + vT
�

δqL
T
q P

TMPLq

�

v

+Ep
T
�

δqV |PLq|
T
M |PLq|V

�

Ep (35)

and

B2 = P (Aq − LqCq)P
−1TM +M

�

P (Aq − LqCq)P
−1

�T

+
1

δq
M = P−1T Aq

TPTM +MPAqP
−1 +

1

δq
M

−P−1T Cq
TLq

TPTM −MPLqCqP
−1 ≺ 0 (36)

The existence of a common transformation matrix P such
that P (Aq − LqCq)P

−1 for all q ∈ 1, N are Metzler is
difficult since (36) is a nonlinear inequality. Therefore, the
stability of the observer (25) can not be easily ensured.

However, it is rare, even impossible, to determine a non
singular transformation matrix P to transform the system
(6) into a cooperative form such that P (Aq − LqCq)P

−1

(q ∈ 1, N) are Metzler. As a solution to this problem,
a second method is proposed. The main idea consists in
redesigning two conventional observers in the original base
”x”. Then, stability conditions will be given in terms of
LMIs by applying a common Lyapunov function to the
estimation errors. Consider the SLS (6) and two point
observers described by






















˙̂x
+

= (Aq − LqCq) x̂
+ +Bqu+ P−1

q

�

P+
q w + P−

q w
�

+Lqym + P−1
q |PqLq|V Ep

˙̂x
−

= (Aq − LqCq) x̂
− +Bqu+ P−1

q

�

−P+
q w − P−

q w
�

+Lqym − P−1
q |PqLq|V Ep

(37)
with Pq, q ∈ I, are chosen as in the following theorem and

�

x̂+

0
= Qq

�

P+
q x0 − P−

q x0

�

x̂−

0 = Qq

�

P+
q x0 − P−

q x0

� (38)

with
Qq = Pq

−1

The observer (37) is not an interval observer for (6) and
its structure is similar to the one proposed in Dinh et al.
(2014) for the case of non switched systems. However, the
estimates computed by (37) are used in Theorem 5 to
deduce an interval estimation.

Theorem 5. Consider matrices Pq (q ∈ I) such that Fq =
Pq (Aq − LqCq)P

−1
q are Metzler. If the initial condition x0

verifies x0 (t) ≤ x0 (t) ≤ x0 (t), then an interval estimation
for (6) is given by:







x = Qq
+Pqx̂

− −Qq
−Pqx̂

+

x = Qq
+Pqx̂

+ −Qq
−Pqx̂

−

(39)

satisfying
x (t) ≤ x (t) ≤ x (t) (40)

In addition, if there exists a symmetric definite positive
matrix M such that

Aq
TM +MAq − Cq

TWq
T −WqCq + σqM ≺ 0 (41)

where

σq =
3

δq
andWq = MLq

then (37) is asymptotically stable and x, x are bounded.

Proof. Consider the errors E+
q = Pqx̂

+ − Pqx and E−

q =

Pqx− Pqx̂
−.

Let us show that x− x ≥ 0 and x− x ≥ 0 where x and x
are computed by (39).

From (6) and (37) the dynamics of the errors E+
q and E−

q

are given by:

Ė+
q = Pq

˙̂x
+

− Pqẋ = Pq (Aq − LqCq) x̂
+ + |PqLq|V Ep

− Pq (Aq − LqCq) x+
��

P+
q w + P−

q w
�

− Pqw
�

+ PqLqv

= Pq (Aq − LqCq)P
−1
q

�

Pqx̂
+ − Pqx

�

+ γ+
q

= FqE
+
q + γ+

q (42)

where

γ+
q =

��

P+
q w + P−

q w
�

− Pqw
�

+ PqLqv + |PqLq|V Ep

Similarly to E+
q , the dynamics of E−

q are given by:

Ė−

q = Pqẋ− Pq
˙̂x− = RqE

−

q + γ−

q (43)

where

γ−

q =
�

Pqw −
�

−P+
q w − P−

q w
��

+ |PqLq|V Ep − PqLqv

According to Lemma 1 we have

−P+
q w − P−

q w ≤ Pqw ≤ P+
q w + P−

q w

Since Pq (Aq − LqCq)P
−1
q are assumed to be Metzler, and

by construction γ+
q and γ−

q are positive for all t ≥ 0. Then,

if x0 and x0 are chosen such that E+
q (0) and E−

q (0) are

positive, then the errors E+
q (t) and E−

q (t) stay positive
∀t ≥ 0 such that

Pqx̂
− ≤ Pqx ≤ Pqx̂

+

As Qq = Pq
−1, then x ≤ x ≤ x where






x = Qq
+Pqx̂

− −Qq
−Pqx̂

+

x = Qq
+Pqx̂

+ −Qq
−Pqx̂

−

For the stability analysis, Let us now show that E+
q and

E−

q are asymptotically stable or simply show that (x̂+ − x)

and (x− x̂−) are asymptotically stable.

Let e+ = (x̂+ − x) and e− = (x− x̂−) be the observation
errors and consider the following Lyapunov function:

V
�

e+
�

= e+
T
Me+ (44)

where M is a symmetric positive definite matrix. As
in proof of Theorem 4, the derivative of the Lyapunov
function can be given as follows:

V̇
�

e+
�

= ė+
T
Me+ + e+

T
Mė+

= e+
T
�

(Aq − LqCq)
T
M +M (Aq − LqCq)

�

e+

+2e+
T
MPq

−1
�

P+
q w + P−

q w
�

− 2e+
T
Mw

+2e+
T
MLqv + 2e+

T
M |Lq|V Ep (45)

According to Lemma 3, we have

V̇
�

e+
�

≤ e+
T
B3e

+ + C5
where
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B3 = (Aq − LqCq)
T
M +M (Aq − LqCq) +

3

δq
M

=Aq
TM +MAq − Cq

TWq
T −WqCq +

3

δq
M (46)

C5 =wT
[

δq P
+
q

T
P−1
q

T
MP−1

q P+
q

]

w + vT
[

δqLq
TMLq

]

v

+wT
[

δq P
−

q

T
P−1
q

T
MP−1

q P−

q

]

w − wT [δqM ]w

+Ep
T
[

δqV |Lq|
T
M |Lq|V

]

Ep (47)

The noise v and disturbance w are bounded, it follows that
C5 is bounded. Therefore, if B3 ≺ 0, the observation error
e+ is bounded. The same arguments allow one to show
that the observation error e− is also bounded. In addition,
since Pq and Qq are bounded for all (q ∈ 1, N) then E+

q

and E−

q are bounded.

�

In the next section, the performance of the suggested
method is shown through a numerical example.

4. NUMERICAL EXAMPLE

Consider the linear switched system subject to distur-
bances described by:

{

ẋ (t) = Aqx (t) +Bqu (t) + w (t)
y (t) = Cqx (t) + v (t)

, ∀q ∈ 1, 3 (48)

where

A1 =

[

−1.5 0.262
0 −1

]

, A2 =

[

−0.5 2
0 −1

]

A3 =

[

−0.6 1.5
0 −1

]

B1 =

[

0
1

]

, B2 =

[

1
0

]

, B3 =

[

1
1

]

C1 = [ 1 0 ] , C2 = [ 1 1 ] , C3 = [ 1 1.5 ]

w (t) and v (t) are uniformly distributed bounded signals

such that −w ≤ w (t) ≤ w with w = [0.03 0.03]
T

and
−V Ep ≤ v (t) ≤ V Ep with V = 0.3.

To verify the cooperativity property, a transformation of
coordinates must be used such that P (Aq − LqCq)P

−1

are Metzler. However, it is not possible to compute this
common transformation matrix P . Hence, non singular
transformation matrices Pq are calculated. Consequently,
a conventional observer (37) is constructed for the system
(48).

Now, using the Matlab LMI toolbox, one can solve the
LMI defined by (41). One feasible solution is given by:

L1 =

[

−0.6555
−0.1011

]

, L2 =

[

0.9397
−0.2497

]

, L3 =

[

0.5734
−0.2512

]

M =

[

81.6804 21.7133
21.7133 55.5904

]

, δq = 84.5569, ∀q ∈ 1, 3

Note that Pq are computed to verify that Pq (Aq − LqCq)Pq
−1

are Metzler for all q ∈ 1, 3 and given by:

P1 =

[

0.2845 −0.7262
0.4770 0.4841

]

, P2 =

[

0.7776 −0.8577
0.1483 0.5718

]

P3 =

[

0.7829 −0.6580
0.2171 0.6580

]

All conditions of Theorem 5 are satisfied; it follows that
the system (37) is asymptotically stable verifying

x (t) ≤ x (t) ≤ x (t) ∀ t ≥ 0, ∀q ∈ 1, 3.

with
x = Qq

+Pqx̂
− −Qq

−Pqx̂
+

and
x = Qq

+Pqx̂
+ −Qq

−Pqx̂
−

where Qq = P−1
q are given by:

Q1 =

[

1.0000 1.5000
−0.9853 0.5876

]

, Q2 =

[

1.0000 1.5000
−0.2593 1.3599

]

Q3 =

[

1.0000 1.0000
−0.3299 1.1899

]

The results of simulation of the obtained observer are
depicted in Fig. 1(a) for both coordinates where solid lines
present the state and dashed lines present the estimated
bounds.

The switching between the three subsystems is governed
by the switching signal plotted in Fig. 1(b).

The initial state x0 is assumed to be bounded such that

x0 ≤ x0 ≤ x0

where x0 = [ 1.5 1.5 ]
T
, x0 = [−1.5 −1.5 ]

T

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

2
upper bound x

max

lower bound x
min

state x

0 5 10 15 20 25 30 35 40
-2

-1

0

1

2

T ime (s)

x
2

x
1

(a) State and estimated bounds

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

switching signal

T ime (s)

(b) Switching signal

Fig. 1. Interval state estimation for the switched system
with disturbances.

The results show that, despite the disturbances, the state
is always inside the upper and the lower trajectories.
The interval observer has exhibited approved stability
properties. The inclusion

x (t) ≤ x (t) ≤ x (t) , for all t ≥ t0

is always verified.

As shown in Fig. 1(a), the interval is quite large at
the beginning, although its width decreases despite the
uncertainties on the measurements. Finally, the interval
observer remains stable despite the switching instants.
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B3 = (Aq − LqCq)
T
M +M (Aq − LqCq) +

3

δq
M

=Aq
TM +MAq − Cq

TWq
T −WqCq +

3

δq
M (46)

C5 =wT
[

δq P
+
q

T
P−1
q

T
MP−1

q P+
q

]

w + vT
[

δqLq
TMLq

]

v

+wT
[

δq P
−

q

T
P−1
q

T
MP−1

q P−

q

]

w − wT [δqM ]w

+Ep
T
[

δqV |Lq|
T
M |Lq|V

]

Ep (47)

The noise v and disturbance w are bounded, it follows that
C5 is bounded. Therefore, if B3 ≺ 0, the observation error
e+ is bounded. The same arguments allow one to show
that the observation error e− is also bounded. In addition,
since Pq and Qq are bounded for all (q ∈ 1, N) then E+

q

and E−

q are bounded.

�

In the next section, the performance of the suggested
method is shown through a numerical example.

4. NUMERICAL EXAMPLE

Consider the linear switched system subject to distur-
bances described by:

{

ẋ (t) = Aqx (t) +Bqu (t) + w (t)
y (t) = Cqx (t) + v (t)

, ∀q ∈ 1, 3 (48)

where

A1 =

[

−1.5 0.262
0 −1

]

, A2 =

[

−0.5 2
0 −1

]

A3 =

[

−0.6 1.5
0 −1

]

B1 =

[

0
1

]

, B2 =

[

1
0

]

, B3 =

[

1
1

]

C1 = [ 1 0 ] , C2 = [ 1 1 ] , C3 = [ 1 1.5 ]

w (t) and v (t) are uniformly distributed bounded signals

such that −w ≤ w (t) ≤ w with w = [0.03 0.03]
T

and
−V Ep ≤ v (t) ≤ V Ep with V = 0.3.

To verify the cooperativity property, a transformation of
coordinates must be used such that P (Aq − LqCq)P

−1

are Metzler. However, it is not possible to compute this
common transformation matrix P . Hence, non singular
transformation matrices Pq are calculated. Consequently,
a conventional observer (37) is constructed for the system
(48).

Now, using the Matlab LMI toolbox, one can solve the
LMI defined by (41). One feasible solution is given by:

L1 =

[

−0.6555
−0.1011

]

, L2 =

[

0.9397
−0.2497

]

, L3 =

[

0.5734
−0.2512

]

M =

[

81.6804 21.7133
21.7133 55.5904

]

, δq = 84.5569, ∀q ∈ 1, 3

Note that Pq are computed to verify that Pq (Aq − LqCq)Pq
−1

are Metzler for all q ∈ 1, 3 and given by:

P1 =

[

0.2845 −0.7262
0.4770 0.4841

]

, P2 =

[

0.7776 −0.8577
0.1483 0.5718

]

P3 =

[

0.7829 −0.6580
0.2171 0.6580

]

All conditions of Theorem 5 are satisfied; it follows that
the system (37) is asymptotically stable verifying

x (t) ≤ x (t) ≤ x (t) ∀ t ≥ 0, ∀q ∈ 1, 3.

with
x = Qq

+Pqx̂
− −Qq

−Pqx̂
+

and
x = Qq

+Pqx̂
+ −Qq

−Pqx̂
−

where Qq = P−1
q are given by:

Q1 =

[

1.0000 1.5000
−0.9853 0.5876

]

, Q2 =

[

1.0000 1.5000
−0.2593 1.3599

]

Q3 =

[

1.0000 1.0000
−0.3299 1.1899

]

The results of simulation of the obtained observer are
depicted in Fig. 1(a) for both coordinates where solid lines
present the state and dashed lines present the estimated
bounds.

The switching between the three subsystems is governed
by the switching signal plotted in Fig. 1(b).

The initial state x0 is assumed to be bounded such that

x0 ≤ x0 ≤ x0

where x0 = [ 1.5 1.5 ]
T
, x0 = [−1.5 −1.5 ]

T
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Fig. 1. Interval state estimation for the switched system
with disturbances.

The results show that, despite the disturbances, the state
is always inside the upper and the lower trajectories.
The interval observer has exhibited approved stability
properties. The inclusion

x (t) ≤ x (t) ≤ x (t) , for all t ≥ t0

is always verified.

As shown in Fig. 1(a), the interval is quite large at
the beginning, although its width decreases despite the
uncertainties on the measurements. Finally, the interval
observer remains stable despite the switching instants.
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5. CONCLUSION

This paper investigates state estimation for switched linear
systems subject to disturbances. An interval observer is de-
signed under some transformations where two conventional
observers are reformulated in the base “x”. The stability
and the cooperativity conditions are represented in terms
of LMIs. Effectiveness of the proposed methodology is
illustrated through a numerical example. In this work, the
switching instants are assumed to be known nonetheless
it is not the case for the most of switched systems. This
concern will be the subject of further contributions.
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