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Abstract: In this paper, an analytical method issued from the field of reliability analysis is
used for prognosis. The inverse first-order reliability method (Inverse FORM) is an uncertainty
propagation method that can be adapted to remaining useful life (RUL) calculation. An
extended Kalman filter (EKF) is first applied to estimate the current degradation state of
the system, then the Inverse FORM allows to compute the probability density function (pdf)
of the RUL. In the proposed Inverse FORM methodology, an analytical or numerical solution
to the differential equation that describes the evolution of the system degradation is required
to calculate the RUL model. In this work, the method is applied to a Paris fatigue crack
growth model, and then compared to filter-based methods such as EKF and particle filter using
performance evaluation metrics (precision, accuracy and timeliness). The main advantage of the
Inverse FORM is its ability to compute the pdf of the RUL at a lower computational cost.
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1. INTRODUCTION

The failure of complex systems such as aircraft or space-
craft can lead to human and industrial disasters. To ad-
dress these safety and cost issues, a prognosis module
should be integrated to these systems in order to con-
tinuously assess their state of health and estimate their
remaining useful life (RUL). The prognosis methods are
usually classified into three categories (Liu et al., 2009).
In the knowledge-based approaches (Biagetti, 2004), his-
torical and empirical failure data have allowed experts to
deduce degradation rules. In data-driven approaches (Si
et al., 2011), features from operating data such as cur-
rent, temperature, or vibration signals are extracted, then
statistical and machine learning techniques are employed
to estimate and forecast the evolution of the degrada-
tion state. The third category gathers the model-based
prognosis approaches (Luo et al., 2003) where a dynamic
mathematical model of the system is used.
In this paper, emphasis is placed on the model-based
prognosis techniques. Although model-based prognosis ap-
proaches can be difficult to set up because an accurate
degradation model is seldom available, they can outper-
form knowledge-based and data-driven methods. Indeed,
the capacity of model-based techniques to adapt the model
to the evolution of the system degradation ensures an
accurate prognosis if more information on the degradation
becomes available.

Many model-based prognosis approaches have been devel-
oped in the literature (Byington et al., 2004), but they
do not always include a measure of the uncertainty as-

sociated to RUL prediction. However, it is fundamental
to associate a probability density function (pdf) to the
predicted RUL to enable risk-based decisions (Baraldi
et al., 2013; Sankararaman and Goebel, 2013a). Therefore,
greater attention has been paid to the integration of un-
certainty quantification, representation and management
in prognosis methods (Orchard et al., 2008). Uncertainty
quantification consists in finding the different sources of
uncertainty so they could be integrated in the models and
simulations. The main uncertainty sources are modeling
uncertainty, sensor measurement uncertainty and opera-
tional uncertainty. Once the various uncertainty sources
have been identified, a sensitivity analysis can be carried
out to quantify the influence of each uncertainty source
and then determine those that have the greatest impact on
the prognosis problem. After identifying the significant un-
certainty sources, a method for uncertainty representation
must be chosen. Usually, model-based prognosis methods
represent the uncertainty in a probabilistic framework
(Saha and Goebel, 2008). Finally, uncertainty manage-
ment performs a propagation step after incorporating the
relevant uncertainty sources to the models and the simu-
lations with the designated uncertainty representation.

The filter-based techniques are commonly used as prog-
nosis methods that take uncertainty into account (Saha
et al., 2009; Daigle and Goebel, 2010). Yet, the Monte-
Carlo simulation-based approaches require huge computa-
tional efforts and are time consuming. As an alternative
to sampling-based methods, an analytical method which is
the inverse first-order reliability method (Inverse FORM),
originally developed in the reliability analysis field, was
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craft can lead to human and industrial disasters. To ad-
dress these safety and cost issues, a prognosis module
should be integrated to these systems in order to con-
tinuously assess their state of health and estimate their
remaining useful life (RUL). The prognosis methods are
usually classified into three categories (Liu et al., 2009).
In the knowledge-based approaches (Biagetti, 2004), his-
torical and empirical failure data have allowed experts to
deduce degradation rules. In data-driven approaches (Si
et al., 2011), features from operating data such as cur-
rent, temperature, or vibration signals are extracted, then
statistical and machine learning techniques are employed
to estimate and forecast the evolution of the degrada-
tion state. The third category gathers the model-based
prognosis approaches (Luo et al., 2003) where a dynamic
mathematical model of the system is used.
In this paper, emphasis is placed on the model-based
prognosis techniques. Although model-based prognosis ap-
proaches can be difficult to set up because an accurate
degradation model is seldom available, they can outper-
form knowledge-based and data-driven methods. Indeed,
the capacity of model-based techniques to adapt the model
to the evolution of the system degradation ensures an
accurate prognosis if more information on the degradation
becomes available.

Many model-based prognosis approaches have been devel-
oped in the literature (Byington et al., 2004), but they
do not always include a measure of the uncertainty as-

sociated to RUL prediction. However, it is fundamental
to associate a probability density function (pdf) to the
predicted RUL to enable risk-based decisions (Baraldi
et al., 2013; Sankararaman and Goebel, 2013a). Therefore,
greater attention has been paid to the integration of un-
certainty quantification, representation and management
in prognosis methods (Orchard et al., 2008). Uncertainty
quantification consists in finding the different sources of
uncertainty so they could be integrated in the models and
simulations. The main uncertainty sources are modeling
uncertainty, sensor measurement uncertainty and opera-
tional uncertainty. Once the various uncertainty sources
have been identified, a sensitivity analysis can be carried
out to quantify the influence of each uncertainty source
and then determine those that have the greatest impact on
the prognosis problem. After identifying the significant un-
certainty sources, a method for uncertainty representation
must be chosen. Usually, model-based prognosis methods
represent the uncertainty in a probabilistic framework
(Saha and Goebel, 2008). Finally, uncertainty manage-
ment performs a propagation step after incorporating the
relevant uncertainty sources to the models and the simu-
lations with the designated uncertainty representation.

The filter-based techniques are commonly used as prog-
nosis methods that take uncertainty into account (Saha
et al., 2009; Daigle and Goebel, 2010). Yet, the Monte-
Carlo simulation-based approaches require huge computa-
tional efforts and are time consuming. As an alternative
to sampling-based methods, an analytical method which is
the inverse first-order reliability method (Inverse FORM),
originally developed in the reliability analysis field, was
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out to quantify the influence of each uncertainty source
and then determine those that have the greatest impact on
the prognosis problem. After identifying the significant un-
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must be chosen. Usually, model-based prognosis methods
represent the uncertainty in a probabilistic framework
(Saha and Goebel, 2008). Finally, uncertainty manage-
ment performs a propagation step after incorporating the
relevant uncertainty sources to the models and the simu-
lations with the designated uncertainty representation.

The filter-based techniques are commonly used as prog-
nosis methods that take uncertainty into account (Saha
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tional efforts and are time consuming. As an alternative
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in prognosis methods (Orchard et al., 2008). Uncertainty
quantification consists in finding the different sources of
uncertainty so they could be integrated in the models and
simulations. The main uncertainty sources are modeling
uncertainty, sensor measurement uncertainty and opera-
tional uncertainty. Once the various uncertainty sources
have been identified, a sensitivity analysis can be carried
out to quantify the influence of each uncertainty source
and then determine those that have the greatest impact on
the prognosis problem. After identifying the significant un-
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must be chosen. Usually, model-based prognosis methods
represent the uncertainty in a probabilistic framework
(Saha and Goebel, 2008). Finally, uncertainty manage-
ment performs a propagation step after incorporating the
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lations with the designated uncertainty representation.
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nosis methods that take uncertainty into account (Saha
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tional efforts and are time consuming. As an alternative
to sampling-based methods, an analytical method which is
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recently adapted for RUL prediction (Sankararaman and
Goebel, 2013b; Bressel et al., 2016). This method has the
particularity to compute only some points of the RUL pdf
and then reconstruct the entire pdf by interpolation if
needed. In the cases where only the mean of the RUL
pdf and the 95% probability bounds are required, the
Inverse FORM is very efficient. In Bressel et al. (2016),
the calculation of RUL with the Inverse FORM was ap-
plied in the specific case of a proton exchange membrane
fuel cell using a linear regression. In this paper, a more
general Inverse FORM methodology for RUL prediction is
explicitly provided. This methodology can be applied if an
expression of the RUL derived from the explicit dynamical
degradation model is available. As an example to illustrate
the proposed methodology, a fatigue crack growth problem
is chosen. Starting from the Paris’ law which is a dynamical
model of fatigue crack growth, an analytical expression of
the RUL is calculated. This analytical expression is then
used in the Inverse FORM algorithm to propagate the
uncertainty in the model parameters in order to compute
the RUL pdf. The proposed methodology has the advan-
tage that it can be applied to various problems as long
as an analytical model is available. The efficiency of the
method is investigated through a crack growth analysis,
and the performance metrics values obtained with the In-
verse FORM are compared to those obtained in a previous
work (Robinson et al., 2016) where a particle filter and
an extended Kalman filter (EKF) were applied for RUL
prognosis.

The paper is organized as follows. Section 2 presents the
different steps of model-based prognosis. In Section 3, the
Inverse FORM methodology is detailed. Section 4 provides
the numerical results obtained with a crack growth bench-
mark model. Finally, Section 5 concludes the paper and
presents some perspectives for future work.

2. RUL CALCULATION: AN UNCERTAINTY
PROPAGATION PROBLEM

This section presents the model-based prognosis process
which is conducted in three steps: (i) degradation state
estimation, (ii) future degradation state prediction and
(iii) RUL calculation. An illustration of the process is given
in Fig. 1.

Fig. 1. Scheme of the prognosis process

2.1 Degradation state estimation

Usually, a discrete-time state space representation is em-
ployed to relate the mathematical model of the degrada-

tion with the data from the different sensors to determine
the evolution of the degradation at any time instant:

xk = f(xk−1, θk−1, uk, wk) (1)

yk = h(xk, θk, uk, vk) (2)

where x ∈ Rn denotes the state, θ ∈ Rq represents the
unknown model parameter vector, y ∈ Rp is the measured
outputs, u ∈ Rm is the vector of system inputs and k ∈ N
is a discrete time step. The functions f and h describe
respectively evolution of the state and the measurements
over time. The variables w and v are respectively the pro-
cess and measurement noises which represent the model
and measurement uncertainty. The degradation state is
estimated at each time step using the measurements until
the prediction time kp. As the degradation model is often
nonlinear, appropriate state estimation techniques should
be adopted. Extended Kalman filters and particle filters
are commonly used for this purpose.

2.2 Future degradation state prediction

During the current state estimation, sensor data are avail-
able for a specific observation interval whose size depends
on the prediction time kp. Then, from this time instant, the
forecasting of the degradation state in the future is carried
out for time instants k > kp without new measurements.
The main challenge in this prediction step lies in the fact
that future operational conditions of the system are un-
known. Therefore, the forecasting of the degradation state
must be performed by taking uncertainties into account.

2.3 Remaining useful life calculation

The future state is predicted until the failure threshold
is reached, giving the predicted failure time kf . Finally,
the RUL at time kp which is denoted by R(kp) can be
calculated as:

R(kp) = kf − kp. (3)

For better readability, the dependency in kp will be omit-
ted in the following and the RUL simply denoted by R.
However, as the future state prediction is uncertain, the
predicted failure time kf is uncertain, making the RUL a
random variable that depends on:

• Present degradation state: xkp ;
• Future operating conditions: {ukp , ukp+1 , . . . , ukf

};
• Future parameter values: {θkp

, θkp+1
, . . . , θkf

};
• Future noises {wkp

, wkp+1
, . . . , wkf

} and disturbances
{vkp , vkp+1 , . . . , vkf

}.
If the vector X contains all of the uncertain quantities
mentioned earlier i.e X = [xkp

, ukp
, ukp+1, . . . ] ∈ Rs where

s is the number of uncertain parameters, and M is a
function M : Rs → R, X �→ M(X) that allows to
compute the RUL, then we have:

R = M(X). (4)

The model M can be a known function defined by a
mathematical expression of the RUL, or may be a black-
box function such as a complex computer code (e.g. a
finite element code) that takes input values and provides
a result. The main goal in prognosis is to quantify the
uncertainty in R and to compute its pdf fR(·), which is
equivalent to propagate the uncertainty in X through M.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

14808



14244 Elinirina I. Robinson  et al. / IFAC PapersOnLine 50-1 (2017) 14242–14247

There exist two main categories of probabilistic uncer-
tainty propagation methods: (i) sampling-based methods
and (ii) analytical methods. In sampling-based methods
such as basic Monte-Carlo simulations (MCS), a large
number of random realizations of X are generated, and
the corresponding realizations of R are calculated to fi-
nally construct its pdf. The most commonly used sam-
pling methods in model-based prognosis rely on particle
filters and Kalman filters. The ability of these methods
to manage uncertainty in RUL calculation have already
been proven (Orchard and Vachtsevanos, 2009; Daigle
et al., 2012), however they are computationally expensive
as the precision of the results depends on the number of
simulations. In order to overcome these time consuming
issues, analytical methods that are originally from the field
of reliability analysis have been used for RUL prediction
(Sankararaman et al., 2013). Indeed, with these methods
far fewer simulations are needed to quantify the uncer-
tainty in the predicted RUL value. There exists many
analytical methods of uncertainty propagation (Sudret,
2007), and the one that was commonly investigated for
prognosis is the Inverse FORM that is presented in the
next section.

3. INVERSE FIRST-ORDER RELIABILITY METHOD
FOR RUL CALCULATION

In this section, the general principle of reliability analysis
and classical FORM is presented briefly to introduce
the notations and definitions that will be used and to
illustrate the relationship between reliability analysis and
RUL calculation. Complete information about reliability
analysis can be found in Lemaire (2009).

3.1 Reliability analysis

Let us consider a general uncertainty propagation problem
with a model random response Y ∈ R defined by Y =
M(X). The goal is to compute the pdf of Y using
reliability analysis techniques. Reliability analysis aims
at calculating the failure probability Pf of a system,
regarding the uncertainty affecting the input vector X,
and with respect to a failure criterion. To characterize this
failure criterion, a so-called limit-state function G and a
threshold value yth of Y are introduced such that:

G(X) = yth −M(X). (5)

Using this definition, the system is considered to be in a
failure state if M(X) exceeds the prescribed threshold yth.
In this way, if x denotes the realizations of the uncertain
parameter vector X, this limit-state function G separates
the variable space in two domains:

• Ds = {x : G(x) > 0} defines the safety domain;
• Df = {x : G(x) ≤ 0} defines the failure domain;

Therefore, if fX(·) is the joint pdf of X, then computing
the failure probability of the system is equivalent to
evaluating the probability that the realizations x of the
input vector X are in the failure domain:

Pf = P (G(X) ≤ 0) =

∫

G(X)≤0

fX(x) dx. (6)

This integral can be calculated analytically only in some
simple academic cases, therefore numerical methods have
been developed to compute it.

Approximation methods such as FORM is one of the
the most commonly used methods. One needs first to
transform the uncertain parameters vector X into a vector
of standard normal variables U and to work in this new
standard normal space. Then, the idea is to proceed to the
linearization of the function G using a first-order Taylor
series approximation. This linearization is done around
the so-called Most Probable Point (MPP), which is the
point on the limit-state surface closest to the origin in
the standard normal space. The FORM algorithm aims
at identifying the MPP and then computing the reliability
index β which is equal to the distance from the origin of the
standard normal space to the MPP. The failure probability
is finally obtained using:

Pf,FORM = Φ(−β) (7)

where Φ(·) denotes the standard normal cumulative dis-
tribution function (CDF). If the true limit-state function
G is linear, then this equation is exact. In the case where
the true G function is nonlinear, the failure probability
obtained from the above formula is only an approximation.
Further details about the FORM algorithm can be found
in (Hohenbichler et al., 1987).

3.2 Inverse FORM for RUL calculation

An inverse reliability problem consists in finding the un-
certain parameter vector X such that a prescribed relia-
bility index βtarget is attained, in other words for which
parameter values the system falls into the failure state. In
this section, a general methodology to compute the RUL
with the Inverse FORM is presented. The Inverse FORM
was recently adapted for RUL calculation (Sankararaman
et al., 2013; Bressel et al., 2016) as an efficient alterna-
tive to computationally expensive MCS-based methods.
Indeed, when calculating the RUL at time instant kp with
sampling-based methods, many trajectories from time kp
to failure time kf of the uncertain parameters vector have
to be simulated to obtain the RUL pdf. Whereas with the
Inverse FORM, the most probable parameter vector X at
time kp associated to a chosen reliability index is computed
without simulating the system until failure.

In the problem of RUL prognosis, the Inverse FORM
allows to compute the RUL CDF FR(r) = P (r ≤ R) by
calculating the realization r of the random variable R such
that for a given βtarget:

P (r ≤ R) = Pf = Φ(−βtarget) (8)

Therefore, the limit-state function is defined as:

G(X) = rth −M(X) (9)

where rth ∈ R is a threshold value of R and M(X) is a
function that represents R. As it was said earlier, M can
be a black box function (this case is not treated in this
work) or an analytical expression of the RUL. Therefore,
the first step to perform RUL prediction with the Inverse
FORM is to find an explicit expression of the RUL.

In Bressel et al. (2016), the Inverse FORM for RUL
prediction has been applied in the particular case of
a proton exchange membrane fuel cell (PEMFC). The
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fX(x) dx. (6)

This integral can be calculated analytically only in some
simple academic cases, therefore numerical methods have
been developed to compute it.

Approximation methods such as FORM is one of the
the most commonly used methods. One needs first to
transform the uncertain parameters vector X into a vector
of standard normal variables U and to work in this new
standard normal space. Then, the idea is to proceed to the
linearization of the function G using a first-order Taylor
series approximation. This linearization is done around
the so-called Most Probable Point (MPP), which is the
point on the limit-state surface closest to the origin in
the standard normal space. The FORM algorithm aims
at identifying the MPP and then computing the reliability
index β which is equal to the distance from the origin of the
standard normal space to the MPP. The failure probability
is finally obtained using:

Pf,FORM = Φ(−β) (7)

where Φ(·) denotes the standard normal cumulative dis-
tribution function (CDF). If the true limit-state function
G is linear, then this equation is exact. In the case where
the true G function is nonlinear, the failure probability
obtained from the above formula is only an approximation.
Further details about the FORM algorithm can be found
in (Hohenbichler et al., 1987).

3.2 Inverse FORM for RUL calculation

An inverse reliability problem consists in finding the un-
certain parameter vector X such that a prescribed relia-
bility index βtarget is attained, in other words for which
parameter values the system falls into the failure state. In
this section, a general methodology to compute the RUL
with the Inverse FORM is presented. The Inverse FORM
was recently adapted for RUL calculation (Sankararaman
et al., 2013; Bressel et al., 2016) as an efficient alterna-
tive to computationally expensive MCS-based methods.
Indeed, when calculating the RUL at time instant kp with
sampling-based methods, many trajectories from time kp
to failure time kf of the uncertain parameters vector have
to be simulated to obtain the RUL pdf. Whereas with the
Inverse FORM, the most probable parameter vector X at
time kp associated to a chosen reliability index is computed
without simulating the system until failure.

In the problem of RUL prognosis, the Inverse FORM
allows to compute the RUL CDF FR(r) = P (r ≤ R) by
calculating the realization r of the random variable R such
that for a given βtarget:

P (r ≤ R) = Pf = Φ(−βtarget) (8)

Therefore, the limit-state function is defined as:

G(X) = rth −M(X) (9)

where rth ∈ R is a threshold value of R and M(X) is a
function that represents R. As it was said earlier, M can
be a black box function (this case is not treated in this
work) or an analytical expression of the RUL. Therefore,
the first step to perform RUL prediction with the Inverse
FORM is to find an explicit expression of the RUL.

In Bressel et al. (2016), the Inverse FORM for RUL
prediction has been applied in the particular case of
a proton exchange membrane fuel cell (PEMFC). The
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evolution of the parameters of the stack voltage model
of the PEMFC have been extracted using a Levenberg-
Marquardt algorithm, to be able to quantify the effect of
aging on these parameters. Then, the parameters whose
values are the most affected by aging are chosen to build
a degradation model with a linear equation. Finally, the
expression of the RUL is a function of the state of health
and the degradation speed. In this case, the results of the
prognosis with the Inverse FORM are satisfying, however
the methodology was only made for a PEMFC.

In this paper, the methodology is more general because
it can be applied if any type of solution to calculate the
RUL from the dynamical degradation model is found.
The solution may be analytical, and in the case where
no analytical expression is available, a numerical or an
approximate solution can be used.

The first step of the proposed methodology is to solve the
differential equation of the dynamical model of the degra-
dation. After obtaining the evolution of the degradation
state x as a function of time, the failure time instant kf
is deduced by solving the equation x(kp) = x(kf ). The
analytical expression of the RUL at time kp is obtained
with R(X) = kf − kp.

Then, the Inverse FORM algorithm is used to find the
parameter vector X at time kp that satisfies a reliability
index βtarget. For the numerical search of the uncertain
parameter vector X, the following constraints must be
satisfied:

C :




a : Pf = Φ(−βtarget)
b : ||u||= βtarget

c : u + ||u|| ∇uG(u)

||∇uG(u)||
= 0

(10)

where u is a realization of U which is the random vector
X expressed in the standard normal space and ||·|| is the
Euclidean norm. To find the optimum solution to (10.c),
a numerical search is required (see Der Kiureghian et al.
(1994) for more details). The steps that are followed for
each iteration j of the algorithm are:

(1) Setting j to 0 and initial guess of the realizations

of the uncertain parameter vector xj = [xj0, . . . , x
j
s]

where s is the number of uncertain parameters.
(2) Transformation into the standard normal space. In

the case of Gaussian variable we have:

uji =
xji − µi

σi
(11)

where µ and σ are respectively the mean and the
standard deviation of the uncertain variables. These
quantities can be derived from the estimation step,
as an output of the filtering algorithm (e.g. a Kalman
filter).

(3) Calculation of the gradient vector of G:

αi =
∂G

∂ui
=

∂G

∂xi
× ∂xi

∂ui
. (12)

(4) Calculation of the next point uj+1:

uj+1 = −βtarget
α

||α||
(13)

where βtarget = −Φ−1(Pf ).
(5) Transformation into original space to compute xj+1.

The steps from 3 to 5 are repeated until the following con-
vergence criteria within tolerances δ1 and δ2 are satisfied:

(i) The solution belongs to the limit-state surface:

|G(xj)− rth|≤ δ1. (14)

(ii) The solution is almost constant between two itera-
tions:

|xj+1 − xj |≤ δ2. (15)

The above procedure can be repeated for different values
of Pf . According to the needs of the user, the entire CDF
can be computed with Pf = {0.1, 0.2, . . . , 0.9}, or only the
95% probability bounds and the mean can be computed
with Pf = {0.05, 0.5, 0.95}.

4. NUMERICAL RESULTS

In this section, the Inverse FORM algorithm is applied to
a fatigue crack growth analysis. The results are compared
to those obtained in the previous work by Robinson et al.
(2016) where a particle filter and an extended Kalman
filter have been used for prognosis.

4.1 Degradation model and RUL expressions

First of all, the degradation model of the system is re-
quired. In this work, the Paris’ law is used (Paris and
Erdogan, 1963):

da

dN
= C(∆K)m , ∆K = ∆σ

√
πa (16)

where a is the crack size, N is the number of cycles, ∆K
is the range of stress intensity factor and ∆σ is the stress
range. C and m are the unknown model parameters to be
estimated.
This differential equation is solved to find the expression
of the crack length a with respect to the cycle number N :

1

(
√
a)m

da = C(∆σ
√
π)mdN

a−
m
2 da = C(∆σ

√
π)mdN∫ a

a0

a−
m
2 da =

∫ N

0

C(∆σ
√
π)mdN

[(
2

2−m

)
a(

2−m
2 )

]a
a0

= C(∆σ
√
π)m(N −N0).

This yields:

a(N) =

[
a
( 2−m

2 )
0 +

(
2−m

2

)
C(∆σ

√
π)m(N −N0)

]( 2
2−m )

.

(17)

Then, the expression of the failure timeNf is calculated by
solving a(N) = af where af is the crack length threshold:
[
a
( 2−m

2 )
0 +

(
2−m

2

)
C(∆σ

√
π)m(Nf −N0)

]( 2
2−m )

= af

⇔ Nf =

(
2

2−m

)
a

( 2−m
2 )

f − a
( 2−m

2 )
0

C(∆σ
√
π)m


+N0.

Finally, we obtain the following expression of the RUL
calculated at the prediction time Np:
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R(Np) = Nf (Np)−Np (18)

R(Np) =

(
2

2−mp

)
a

(
2−mp

2 )

f − a
(
2−mp

2 )
0p

Cp(∆σ
√
π)mp


 (19)

where a0p, Cp and mp are the values of the parameters at
Np.

The Inverse FORM algorithm is used to find for which
parameter values the system fails, with reference to a spec-
ified failure probability level. In this case, the uncertain
parameters vector is X = [a0p, Cp,mp].

4.2 Simulation results

The first step which consists in estimating the state of
health of the system is realized with an EKF, then from
the prediction time kp, the RUL is computed with the
Inverse FORM algorithm.

The real crack size data is generated using the values given
in Table 1 and measurements used for the estimation step
are obtained by adding a uniform noise distributed in the
interval [−0.002, 0.002]. In the simulation, log(C) is used
because C has a very small value.

Table 1. Simulation parameters

∆σ dN atrue log(Ctrue) mtrue

78 50 0.01 -22.33 3.5

During the estimation step with the EKF, 24 measure-
ments were generated every 50 cycles, from cycle 0 to the
prediction time kp at cycle 1200. The EKF that was used
has exactly the same parameters as the one applied in
Robinson et al. (2016). Then, from this time instant kp,
the Inverse FORM algorithm was applied to compute the
value of the RUL associated to Pf = 0.5.

A total of 100 experiments have been repeated to evaluate
the numerical performance of Inverse FORM for RUL
prognosis in terms of accuracy, precision and timeliness.
Accuracy measures the degree of closeness of the predicted
RUL to to the actual RUL, and its values are between 0
and 1 where 1 gives the best accuracy. Precision evaluates
the narrowness of the interval in which the RUL predic-
tions fall, and ranges between 0 and 1 which reflects the
highest precision. Finally, timeliness indicates the relative
position of the predicted RUL pdf along the time axis with
respect to the occurrence of the actual failure event. There
are three cases: (i) the failure occurs after the predicted
failure time tpf , (ii) the failure occurs at the same time
as the predicted failure time, and finally, (iii) the failure
occurs earlier than predicted. This last case must be abso-
lutely avoided, that is why the timeliness function allows
to penalize late predictions. Timeliness has positive values
and 0 is the best score.
The values of these metrics are compared to those obtained
in previous work with a particle filter and an EKF in
Table 2 and the RUL pdf obtained within 100 simulations
are shown in Fig. 2 and Fig. 3. More details about the PF
and the EKF algorithms for prognosis and the performance
metrics that were used can be found in Robinson et al.
(2016).

The results show that the Inverse FORM outperforms
the EKF for RUL computation in terms of accuracy

Fig. 2. RUL PDF obtained with the Inverse FORM for 100
experiments

Fig. 3. RUL PDF obtained with the EKF and the particle
filter (PF) for 100 experiments

Table 2. Performance evaluation results

Method Accuracy Precision Timeliness

IFORM 0.9759 0.5353 0.1390

EKF 0.8151 0.7501 1.8277

PF 0.9842 0.7283 0.0873

and timeliness. Moreover, the values of the performance
metrics obtained with the Inverse FORM are approaching
those obtained with the particle filter although the EKF
was used for the estimation of the current degradation
state. Even if the particle filter has the best results, its
main drawback is its complex implementation that is time
consuming as the entire pdf of the RUL must be computed.
Moreover, as it can be seen in Fig. 4, a large number
of the whole trajectories of the degradation state until
the threshold is reached have been generated to deduce
the failure time and then compute the RUL pdf. The
Inverse FORM only needs to compute a few values of
RUL associated to a reliability index βtarget. Usually,
three values of βtarget associated to Pf={0.05,0.5,0.95}
are chosen because it allows to obtain the mean value of
the RUL pdf with the 95% probability bounds. Therefore,
the computational time with the Inverse FORM is much
lower, and the performance metrics are satisfying and
comparable to the particle filter.

5. CONCLUSION

In this paper, a general methodology to compute the RUL
with the Inverse FORM was presented, then evaluated
and compared to filter-based methods through different
performance metrics. The results have highlighted that
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where a0p, Cp and mp are the values of the parameters at
Np.

The Inverse FORM algorithm is used to find for which
parameter values the system fails, with reference to a spec-
ified failure probability level. In this case, the uncertain
parameters vector is X = [a0p, Cp,mp].

4.2 Simulation results

The first step which consists in estimating the state of
health of the system is realized with an EKF, then from
the prediction time kp, the RUL is computed with the
Inverse FORM algorithm.

The real crack size data is generated using the values given
in Table 1 and measurements used for the estimation step
are obtained by adding a uniform noise distributed in the
interval [−0.002, 0.002]. In the simulation, log(C) is used
because C has a very small value.

Table 1. Simulation parameters

∆σ dN atrue log(Ctrue) mtrue

78 50 0.01 -22.33 3.5

During the estimation step with the EKF, 24 measure-
ments were generated every 50 cycles, from cycle 0 to the
prediction time kp at cycle 1200. The EKF that was used
has exactly the same parameters as the one applied in
Robinson et al. (2016). Then, from this time instant kp,
the Inverse FORM algorithm was applied to compute the
value of the RUL associated to Pf = 0.5.

A total of 100 experiments have been repeated to evaluate
the numerical performance of Inverse FORM for RUL
prognosis in terms of accuracy, precision and timeliness.
Accuracy measures the degree of closeness of the predicted
RUL to to the actual RUL, and its values are between 0
and 1 where 1 gives the best accuracy. Precision evaluates
the narrowness of the interval in which the RUL predic-
tions fall, and ranges between 0 and 1 which reflects the
highest precision. Finally, timeliness indicates the relative
position of the predicted RUL pdf along the time axis with
respect to the occurrence of the actual failure event. There
are three cases: (i) the failure occurs after the predicted
failure time tpf , (ii) the failure occurs at the same time
as the predicted failure time, and finally, (iii) the failure
occurs earlier than predicted. This last case must be abso-
lutely avoided, that is why the timeliness function allows
to penalize late predictions. Timeliness has positive values
and 0 is the best score.
The values of these metrics are compared to those obtained
in previous work with a particle filter and an EKF in
Table 2 and the RUL pdf obtained within 100 simulations
are shown in Fig. 2 and Fig. 3. More details about the PF
and the EKF algorithms for prognosis and the performance
metrics that were used can be found in Robinson et al.
(2016).

The results show that the Inverse FORM outperforms
the EKF for RUL computation in terms of accuracy

Fig. 2. RUL PDF obtained with the Inverse FORM for 100
experiments

Fig. 3. RUL PDF obtained with the EKF and the particle
filter (PF) for 100 experiments

Table 2. Performance evaluation results

Method Accuracy Precision Timeliness

IFORM 0.9759 0.5353 0.1390

EKF 0.8151 0.7501 1.8277

PF 0.9842 0.7283 0.0873

and timeliness. Moreover, the values of the performance
metrics obtained with the Inverse FORM are approaching
those obtained with the particle filter although the EKF
was used for the estimation of the current degradation
state. Even if the particle filter has the best results, its
main drawback is its complex implementation that is time
consuming as the entire pdf of the RUL must be computed.
Moreover, as it can be seen in Fig. 4, a large number
of the whole trajectories of the degradation state until
the threshold is reached have been generated to deduce
the failure time and then compute the RUL pdf. The
Inverse FORM only needs to compute a few values of
RUL associated to a reliability index βtarget. Usually,
three values of βtarget associated to Pf={0.05,0.5,0.95}
are chosen because it allows to obtain the mean value of
the RUL pdf with the 95% probability bounds. Therefore,
the computational time with the Inverse FORM is much
lower, and the performance metrics are satisfying and
comparable to the particle filter.

5. CONCLUSION

In this paper, a general methodology to compute the RUL
with the Inverse FORM was presented, then evaluated
and compared to filter-based methods through different
performance metrics. The results have highlighted that
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Fig. 4. Predicted trajectories of 100 experiments obtained
with the particle filter

in terms of accuracy and timeliness the Inverse FORM
gives better results than the EKF. Moreover, the accuracy,
precision and timeliness scores of the Inverse FORM are
very close to those of the particle filter. Therefore, the
Inverse FORM can be an alternative to particle filter-
based methods for RUL prognosis in the case where low
computational cost algorithms are needed. Indeed, the
Inverse FORM algorithm is less time consuming as the
computation of the entire pdf of the RUL is not required,
and there is no need to propagate the model equation step
by step until the threshold is reached. Future work will
include the application and validation of theses techniques
to real data.
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