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Heuristic Homogenization of Euler 
and Pantographic Beams

Luca Placidi, Francesco dell’Isola and Emilio Barchiesi

Abstract In the present contribution, we address the following problem: is it pos-
sible to find a microstructure producing, at the macro-level and under loads of the
same order ofmagnitude, a beamwhich can be both extensible and flexible? Using an
asymptotic expansion and rescaling suitably the involved stiffnesses, we prove that
a pantographic microstructure does induce, at the macro-level, the aforementioned
desired mechanical behavior. Thus, in an analogous fashion to that of variational
asymptotic methods, and following a mathematical approach resembling that used
by Piola, we have employed asymptotic expansions of kinematic descriptors directly
into the postulated energy functional and a heuristic homogenization procedure is
presented and applied to the cases of Euler and pantographic beams.

Introduction

While in the standard finite deformation Euler beam theory the energy functional
depends only on the material curvature, i.e., the normalized projection of the second
gradient of the placement on the normal vector to the current configuration, the energy
functional for the nearly inextensible pantographic beam model depends also on the
projection of the second gradient of the placement on the tangent vector to the current
configuration. Thus, the full decomposition of the second gradient of the placement
is present in the latter model. In order to analyze this fact, a heuristic homogenization
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procedure is presented and applied to the cases of Euler (in section“Euler Beams”)
and pantographic (in section“Pantographic Beams”) beams.

Pantographic structures belong to the class of metamaterials that have to be
treated as non-standard (or generalized) continua. Generalized continua (Alibert
et al. 2003; Carcaterra et al. 2015; Abali et al. 2017; Pietraszkiewicz and Eremeyev
2009; Altenbach and Eremeyev 2009), and in particular higher gradient theories, see
dell’Isola et al. (2016b) or dell Isola et al. (2015) for a comprehensive review, are
able to describe behaviors which cannot be accounted for in classical Cauchy theories
(dell’Isola et al. 2015b, 2016a, e; Reiher et al. 2016; Boutin et al. 2017; Seppecher
et al. 2011; Cuomo et al. 2016; Placidi et al. 2016c). In the literature, several examples
can be found motivating the importance of generalized continua: electromechanical
(Enakoutsa et al. 2015) and biomechanical (Placidi et al. 2016a; Giorgio et al. 2015;
Andreaus et al. 2013, 2014) applications, elasticity theory (Andreaus et al. 2010;
Giorgio et al. 2017; Turco et al. 2017; Placidi et al. 2015; dell’Isola et al. 2015a;
Abali et al. 2015), capillary fluids analysis (Auffray et al. 2015), granular microme-
chanics (Yang and Misra 2012; Misra and Poorsolhjouy 2015; Misra and Singh
2015), robotic systems analysis (Della Corte et al. 2016; Del Vescovo and Giorgio
2014), damage theory (Rinaldi and Placidi 2014; Placidi 2015; Madeo et al. 2014c;
Misra 2002; Misra and Singh 2013; Yang and Misra 2010), and wave propagation
analysis (Madeo et al. 2014a; Bersani et al. 2016; Placidi et al. 2008; Madeo et al.
2014b, 2016). Furthermore, second gradient continuummodels always appear when
the considered micro-system is a pantographic structure (Giorgio 2016; dell’Isola
et al. 2016c, d; Scerrato et al. 2016; Giorgio et al. 2016; Rahali et al. 2015; Alib-
ert and Della Corte 2015; Eremeyev et al. 2017). A comprehensive review of the
modeling of pantographic structures can be found in Placidi et al. (2016b), Barchiesi
and Placidi (2017). Several results of numerical investigations can be found in Turco
et al. (2016a, b, c, d), Spagnuolo et al. (2017), Andreaus et al. (2010), Battista et al.
(2015, 2016), Greco et al. (2016), and Turco and Rizzi (2016), while for an outline
of recent experimental results we refer to dell’Isola et al. (2015c) and Ganzosch et al.
(2016).

Euler Beams

Introduction

Customarily, the theory of nonlinear beams is either postulated bymeans of a suitable
least action principle in the so-called “direct way” or is deduced, by means of a more
or less rigorous procedure, starting from a three-dimensional elasticity theory. The
first example of direct model can be found in the original paper by Euler (Euler and
Carathéodory 1952). Many epigones of Euler used this approach: a comprehensive
account for this procedure can be found inAntmanAntman (1995).On the other hand,
by following the procedure described by De Saint-Venant, one can try to identify
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the constitutive equation of a Euler type (1D) model in terms of the geometrical and
mechanical properties, at microlevel, of the considered mechanical systems. This is
done, in more modern textbooks, using a more or less standard asymptotic micro–
macro identification procedure, which generalizes the one used by De Saint-Venant
for bodies with cylindrical shape (see, for instance, Placidi et al. 2017). It can be
rigorously proven, under a series of well-precised assumptions, that only flexible
and inextensible beams can be obtained (Murat and Sili 1999; Mora and Müller
2004; Jamal and Sanchez-Palencia 1996; Pideri and Seppecher 2006; Allaire 1992;
Bensoussan et al. 1978).

Long fibers are often modeled as Euler beams. Here, we will define a Euler
beam from a continuum point of view for the extensible and for the inextensible
cases. A discrete model for the same beam will be also introduced and a heuristic
homogenization procedure, see, e.g., dell’Isola et al. (2016d), applied. A rescaling
law will be derived for the extensible and for the inextensible cases.

Continuous Euler Beams

Kinematics

At each point S of C0, see Fig. 3.1, is associated a copy of the rigid sectionR through
O such that C0 andR are orthogonal. B0 is the reference configuration of a beam. B
is the present configuration, which is defined as

(i) A vector function χ (S) that gives the present position of q0 (S).
(ii) An orthogonal tensor field R (S) that gives the rotation of R from the reference

to the present configuration.

The kinematics is therefore defined by the following fields (Fig. 3.2):

χ (S) ,R (S) . (3.1)

The admissible motion is, e.g., for a cantilever, those kinematic fields such that

χ (0) = 0, R (0) = 0.

Fig. 3.1 Reference configuration B0. q0 (S) is the position of the origin O of the section R
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Fig. 3.2 Definition of the
fundamental kinematical
fields, where the rotation ϕ
defines the rotation matrix R,
in the two-dimensional case
via Eq. (3.7)

Action

Physical intuition and definition of the action functional

A =
[∫ L

0
W

(
χ,R,χ′,R′) − Wext (χ,R)

]
− Wext

S

∣∣
S=0,S=L ,

where W is the strain energy that is assumed to depend upon the fundamental kine-
matical fields and their derivative. Wext is the energy of the distributed forces and
Wext

S that of the concentrated ones.

Objectivity and Representation of the Invariants

Let us assume that the fundamental kinematical fields in one frame of reference are
represented in (3.1). In another frame of reference they are as

χ̃ = U + Qχ, R̃ = QR, (3.2)

where U and Q are the translation and the rotation of the second frame of reference
with respect to the first one. The derivative of (3.2) yields

χ̃′ = Qχ′, R̃′ = QR′. (3.3)

Let us define the following two fields in the first frame of reference

E = RTR′ (3.4)

e = RTχ′ − q′
0 (S) . (3.5)

In the second frame of reference, they are from (3.2) to (3.5)

Ẽ = R̃T R̃′ = RTQTQR′ = RTR′ = E

ẽ = R̃T χ̃′ − q′
0 (S) = RTQTQχ′ − q′

0 (S) = RTχ′ − q′
0 (S) = e,

which means that they are invariant. In order to represent E and e, we assume a
Cartesian frame of reference. The origin of such a frame of reference is q0 (0)with
basis
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D1 = q′
0, D2 D3.

If S is a curvilinear abscissa of straight frame of reference

q0 = S D1

that yields

q′
0 = D1 =

⎛
⎝ 1
0
0

⎞
⎠ .

The 2D assumption is
χ ∈ span {D1,D2} .

We define the displacement vector field

u = χ − q0,

and therefore its derivative

u′ = χ′ − D1 ⇒ u′ =
(
u′
1

u′
2

)
=

(
χ′
1 − 1
χ′
2

)
,

so that the derivative of the placement is

χ′ =
(

χ′
1

χ′
2

)
=

(
1 + u′

1
u′
2

)

and its squared modulus, ∥∥χ′∥∥2 = (
1 + u′

1

)2 + u′2
2 .

A representation of R is given in terms of the rotation angle ϕ,

R = cosϕD1 ⊗ D1 − sinϕD1 ⊗ D2 + sinϕD2 ⊗ D1 + cosϕD2 ⊗ D2 (3.6)

=
(
cosϕ − sinϕ
sinϕ cosϕ

)
. (3.7)

Thus, the two invariants are represented as follows:

E = RTR′ =
(

cosϕ sinϕ
− sinϕ cosϕ

)(− sinϕ − cosϕ
cosϕ − sinϕ

)
ϕ′ (3.8)

=
(

0 −ϕ′
ϕ′ 0

)
=

(
0 −κ
κ 0

)



128 L. Placidi et al.

e =
(

ε
γ

)
= RTχ′ − q′

0 (S) = (3.9)

=
(

cosϕ sinϕ
− sinϕ cosϕ

)(
1 + u′

1
u′
2

)
−

(
1
0

)

=
((

1 + u′
1

)
cosϕ + u′

2 sinϕ − 1
− (

1 + u′
1

)
sinϕ + u′

2 cosϕ

)
,

which means in terms of κ, ε, and γ. A representation of the internal energy W that
is compatible with the indifference frame principle is given by the function g

W
(
χ,R,χ′,R′) = g (κ, ε, γ) .

Let us give a representation for κ andε whether the beam is assumed to be shear
un-deformable, i.e., with γ = 0. Thus, from the second equation of (3.9) we have

(
1 + u′

1

)
sinϕ = u′

2 cosϕ, ⇒ tanϕ = u′
2

1 + u′
1

, (3.10)

that means

ϕ = arctan
u′
2

1 + u′
1

= arctan
χ′
2

χ′
1

. (3.11)

Besides from the first equation of (3.9), we have

ε = −1 + (
1 + u′

1

)
cosϕ + u′

2 sinϕ (3.12)

Keeping in mind that

tan2 ϕ = sin2 ϕ

cos2 ϕ
= 1 − cos2 ϕ

cos2 ϕ
= 1

cos2 ϕ
− 1

that yields

1 + tan2 ϕ = 1

cos2 ϕ
,

we have from (3.10)

cos2 ϕ = 1

1 + tan2 ϕ
= 1

1 +
(

u′
2

1+u′
1

)2 =
(
1 + u′

1

)2
(
1 + u′

1

)2 + u′2
2

,

that yields

cosϕ = 1 + u′
1√(

1 + u′
1

)2 + u′2
2

(3.13)
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and

sinϕ = tanϕ cosϕ = u′
2

1 + u′
1

1 + u′
1√(

1 + u′
1

)2 + u′2
2

= u′
2√(

1 + u′
1

)2 + u′2
2

. (3.14)

Therefore, from (3.12), (3.13), and (3.14)

1 + ε = (
1 + u′

1

) 1 + u′
1√(

1 + u′
1

)2 + u′2
2

+ u′
2

u′
2√(

1 + u′
1

)2 + u′2
2

= (3.15)

=
(
1 + u′

1

)2 + u′2
2√(

1 + u′
1

)2 + u′2
2

=
√(

1 + u′
1

)2 + u′2
2 = ∥∥.χ′∥∥ (3.16)

Besides, the derivative of (3.11) is

κ = ϕ′ = 1

1 +
(

χ′
2

χ′
1

)2 χ′′
2χ

′
1 − χ′

2χ
′′
1

χ′2
1

= χ′′ · (∗χ′)
‖χ′‖2 , (3.17)

where the 90◦ rotation matrix is defined as follows:

∗ =
(
0 −1
1 0

)
,

so that

χ′′ · (∗χ′) = (
χ′′
1 χ′′

2

) (0 −1
1 0

)(
χ′
1

χ′
2

)
(3.18)

= (
χ′′
1 χ′′

2

) (−χ′
2

χ′
1

)
= −χ′

2χ
′′
1 + χ′′

2χ
′
1. (3.19)

Let us call

ê = χ′

‖χ′‖ , c̃ = χ′′

‖χ′‖ . (3.20)

Thus, the curvature (3.17) is
κ = ϕ′ = (∗ê) · c̃. (3.21)

Macroscopic Strain Energy for the General Case

A quadratic form of the strain energy in terms of the two invariants κ, from (3.21),
and ε, from (3.16), is
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Umacro =
∫ l

0

[
1

2
Kbκ

2 + 1

2
keε

2

]
dS (3.22)

=
∫ l

0

⎡
⎣1

2
Kb

(
χ′′ · (∗χ′)

‖χ′‖2
)2

+ 1

2
Ke

(∥∥χ′∥∥ − 1
)
2

⎤
⎦ dS. (3.23)

It is worth to be noted that the strain energy is of second gradient type only for
the normal component

(∗ê) · χ′′. The tangential component ê · χ′′ do not have any
contribution in the strain energy. In pantographic structures, we will see that also this
tangential contribution is able to accumulate strain energy.

Macroscopic Strain Energy for the Inextensible Case

For inextensible beams, χ′ is the unit vector ê,

∥∥χ′∥∥2 = 1 = χ′ · χ′ (3.24)

that means
χ′′ · χ′ + χ′ · χ′′ = 0 =⇒ χ′ · χ′′ = 0,

and

∥∥χ′′∥∥2 = χ′′ · χ′′ = χ′′ · [((∗χ′) · χ′′) ∗ χ′ + ((
χ′) · χ′′)χ′] =

= χ′′ · [((∗χ′) · χ′′) ∗ χ′] = [
χ′′ · (∗χ′)]2 . (3.25)

Thus, from (3.24) and (3.25), the strain energy (3.23) for the inextensible case is

Umacro =
∫ l

0

⎡
⎣1

2
Kb

(
χ′′ · (∗χ′)

‖χ′‖2
)2

⎤
⎦ dS =

∫ l

0

1

2
Kb

∥∥χ′′∥∥2 dS. (3.26)

Discrete Henky-Type Beam

Microscopic models for the inextensible Euler beams in the reference configuration
are plotted in Fig. 3.3 (bottom). The bars are rigid and of length ε

Piola’s Ansatz
pi = χ (Pi) , (3.27)

Thus, the position of the other points is
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Fig. 3.3 Microscopic models for the inextensible Euler beams in (bottom) the reference configu-
ration. Definition (top) of the angle θi

pi+1 = χ (Pi+1) = χ (Pi) + εχ′ (Pi) + 1

2
ε2χ′′ (Pi) . (3.28)

pi−1 = χ (Pi) − εχ′ (Pi) + 1

2
ε2χ′′ (Pi) , (3.29)

so that the cosine of the angle θi is defined, in the inextensible case (3.24), by

cos θi = (pi+1 − pi) · (pi−1 − pi)

‖pi+1 − pi‖ ‖pi−1 − pi‖ (3.30)

=
[
εχ′ (Pi) + 1

2ε
2χ′′ (Pi)

] · [−εχ′ (Pi) + 1
2ε

2χ′′ (Pi)
]

ε2
, (3.31)

= −ε2
∥∥χ′∥∥2 + 1

2ε
3χ′ · χ′′ − 1

2ε
3χ′ · χ′′ + 1

4ε
4χ′′ · χ′′

ε2
(3.32)

= −1 + 1

4
ε2χ′′ · χ′′. (3.33)

Discrete energy in the inextensible case is defined as

Umicro =
N∑
i=1

kb (1 + cos θi) =
N∑
i=1

1

4
kbε

2
∥∥χ′′∥∥2 .

With the homogenization formula,

N∑
i=1

ε (·) −→
∫ l

0
(·) dS, (3.34)

we have

Umicro =
∫ l

0

1

4
kbε

∥∥χ′′∥∥2 dS. (3.35)
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An identification of (3.26) and (3.35) implies

kbε = 2Kb. (3.36)

Thus, in order to have a finite macro-energy, even in the limit ε → 0, we need to
impose the scaling law (3.36). This means that, if one wants a finite macro-energy,
then the lower the size of the cell, the higher is the rigidity of the rotational spring.
Besides, in the limit of ε → 0, kb should be infinite, i.e., kb → ∞.

For extensible beams, the distance between internal hinges is not fixed to be equal
to ε. The extensible bar at the right-hand side of Pi has the following length:

‖pi+1 − pi‖ =
√[

εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]
·
[
εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]
(3.37)

=
√

ε2 ‖χ′‖2 + 1

2
ε3χ′ · χ′′ + 1

2
ε3χ′ · χ′′ + 1

4
ε4χ′′ · χ′′ (3.38)

= ε

√
‖χ′‖2 + εχ′ · χ′′ + 1

4
ε2χ′′ · χ′′ = ε

∥∥χ′∥∥ + ε2
χ′ · χ′′

2 ‖χ′‖ . (3.39)

The extensible bar on the left-hand side of Pi has the following length:

‖pi−1 − pi‖ =
√[

−εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]
·
[
−εχ′ (Pi) + 1

2
ε2χ′′ (Pi)

]

=
√

ε2 ‖χ′‖2 − 1

2
ε3χ′ · χ′′ − 1

2
ε3χ′ · χ′′ + 1

4
ε4χ′′ · χ′′

= ε

√
‖χ′‖2 − εχ′ · χ′′ + 1

4
ε2χ′′ · χ′′ = ε

∥∥χ′∥∥ − ε2
χ′ · χ′′

2 ‖χ′‖ .

The representation of the cosine of the angle θi in the extensible case, from (3.31) to
(3.33), is

cos θi = (pi+1 − pi) · (pi−1 − pi)

‖pi+1 − pi‖ ‖pi−1 − pi‖ (3.40)

=
[
εχ′ (Pi) + 1

2ε
2χ′′ (Pi)

] · [−εχ′ (Pi) + 1
2ε

2χ′′ (Pi)
]

(
ε ‖χ′‖ + ε2 χ′ ·χ′′

2‖χ′‖
) (

ε ‖χ′‖ − ε2 χ′ ·χ′′
2‖χ′‖

) (3.41)

= −ε2
∥∥χ′∥∥2 + 1

4ε
4χ′′ · χ′′

ε2 ‖χ′‖2 − 1
4ε

4
(

χ′ ·χ′′
‖χ′‖

)2 = − ∥∥χ′∥∥2 + 1
4ε

2χ′′ · χ′′

‖χ′‖2 − 1
4ε

2
(

χ′ ·χ′′
‖χ′‖

)2 . (3.42)

The Taylor series expansion of the function f (x) around x = 0
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f (x) = −a + bx

a − cx
= −1 + f ′ (0) x, (3.43)

f ′ (x) = b (a − cx) − (−a + bx) (−c)

(a − cx)2
, (3.44)

f ′ (0) = ba − ac

a2
= b − c

a
(3.45)

that imply

cos θi = −1 +
χ′′ · χ′′ −

(
χ′ ·χ′′
‖χ′‖

)2
4 ‖χ′‖2 ε2. (3.46)

Discrete energy for the extensible case is therefore

Umicro =
N∑
i=1

ke
2

(‖pi+1 − pi‖ − ε)2 + kb (1 + cos θi) ,

that, because of (3.39) and (3.46)

Umicro =
N∑
i=1

ke
2

(‖pi+1 − pi‖ − ε)2 + kb (1 + cos θi) (3.47)

=
N∑
i=1

ke
2

ε2
(∥∥χ′∥∥ − 1

)2 + kb
χ′′ · χ′′ −

(
χ′·χ′′
‖χ′‖

)2
4 ‖χ′‖2 ε2. (3.48)

The last addend, because of the definitions (3.20), is rearranged as

χ′′ · χ′′ −
(

χ′·χ′′
‖χ′‖

)2
‖χ′‖2 = c̃ · c̃ − (

c̃ · ê)2 (3.49)

= c̃ · (c̃ − ê
(
c̃ · ê)) = c̃ · c̃⊥ = c̃⊥ · c̃⊥ = [

c̃ · (∗ê)]2 , (3.50)

which imply another form of the discrete strain energy

Umicro =
N∑
i=1

ke
2

ε2
(∥∥χ′∥∥ − 1

)2 + 1

4
kb

[
χ′′ · (∗χ′)

‖χ′‖2
]2

ε2. (3.51)

With the homogenization formula (3.34), the equation (3.51) yields

Umicro =
∫ l

0

1

2
εke

(∥∥χ′∥∥ − 1
)2 + 1

4
kbε

[
χ′′ · (∗χ′)

‖χ′‖2
]2

dS.
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Thus, in order to have a finite macro-energy, we need to impose the following rescal-
ing law:

kbε = 2Kb, εke = Ke. (3.52)

Thus, in order to have a finite macro-energy, even in the limit ε → 0, we need to
impose the scaling laws (3.52). This means that, if one wants a finite macro-energy,
then the lower the size of the cell, the higher is the rigidity of the tensional and of the
rotational springs. Besides, in the limit of ε → 0, kb should be infinite, i.e., kb → ∞.

Pantographic Beams

Introduction

In this section, we discuss the discrete micro-mechanical model which is employed
throughout this paper. We begin giving a geometrical description and then we give a
mechanical characterization, by choosing a deformation energy. It is a Hencky-type
spring model with the geometrical arrangement of a pantographic strip. Once the
energy of the micro-model is chosen in its general form, we assume a particular
asymptotic behavior for some relevant kinematic quantities, i.e., the elongation of
oblique springs, as will be clear in the sequel. We consider the quasi-inextensibility
case, i.e., the relative elongation of the oblique springs is small. As a further spe-
cialization, the inextensibility case is considered. Finally, after having defined a
micro–macro identification, we express the energy of the micro-system in terms of
macroscopic kinematic descriptors to prepare the field to the homogenization pro-
cedure which will be discussed in details in the next section.

Discrete Micro-model

Geometry

In the spirit of dell’Isola et al. (2016d), Alibert and Della Corte (2015), and Alibert
et al. (2017), in this section, we introduce a discrete-spring model (also referred to
as the micro-model, since it resembles the features of a specific microstructure). The
topology and features of the undeformed and deformed discrete-spring system are
summarized in Figs. 3.4 and 3.5, respectively. In the undeformed configuration, N +
1material particles are arranged upon a straight line at positionsPi’s, i ∈ [0;N ], with
a uniform spacing ε. The basic ith unit cell centered in Pi is formed by four springs
joined together by a hinge placed at Pi. Between two oblique springs, belonging to
the same cell and lying on the same diagonal, a rotational spring opposing to their
relative rotation is placed. Rotational springs are colored in Fig. 3.4 in blue and red.
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Fig. 3.4 Undeformed spring system resembling the microstructure

Fig. 3.5 Deformed spring system resembling the microstructure

We denote with pi the position in the deformed configuration corresponding to posi-
tion Pi in the reference one. In order to completely describe the kinematics of the
micro-model, we have to introduce other descriptors. At this end, the length of the
oblique deformed springs, indicated with lαβ

i , is introduced, the indices α and β
belonging, respectively, to the sets {1, 2} and {D, S} and referring to the first and
second diagonal and left and right, respectively. Referring to Fig. 3.5, we consider
the ith node, notwithstanding that the same quantities can be defined for each node.
We define αi as the angle between the vectors pi − pi−1 and pi − pi+1, respectively.
We define as ϑα

i the angle measuring the deviation of two opposite oblique springs
from being collinear. In order to illustrate the definition of ϕ

αβ
i , we consider the case

α = 1 and β = D. The quantityϕ1D
i is the angle between the vector pi+1 − pi and the

upper oblique spring hinged at pi.Bymeans of elementary geometric considerations,
we have that
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ϑ1
i = αi + ϕ1D

i − ϕ1S
i

ϑ2
i = αi + ϕ2S

i − ϕ2D
i , i ∈ [0;N ] . (3.53)

In the undeformed configuration, see Fig. 3.4, we have

lαβ
i =

√
2

2
ε, α = 1, 2 β = D, S i ∈ [0;N ]

ϑ1
i = ϑ2

i = 0

‖pi − pi−1‖ = ε, i ∈ [0;N ] . (3.54)

Considering that ϕαD
i ,ϕαS

i ∈ [0,π], by means of the law of cosines, we get

ϕ1D
i = cos−1

(
‖pi+1 − pi‖2 + (

l1Di
)2 − (

l2Si+1

)2
2l1Di ‖pi+1 − pi‖

)

ϕ2D
i = cos−1

(
‖pi+1 − pi‖2 + (

l2Di
)2 − (

l1Si+1

)2
2l2Di ‖pi+1 − pi‖

)

ϕ1S
i = cos−1

(
‖pi − pi−1‖2 + (

l1Si
)2 − (

l2Di−1

)2
2l1Si ‖pi − pi−1‖

)

ϕ2S
i = cos−1

(
‖pi − pi−1‖2 + (

l2Si
)2 − (

l1Di−1

)2
2l2Si ‖pi − pi−1‖

)
. (3.55)

Mechanical Model

Themicro-model energy, written as a combination of the elastic energy contributions
of the springs, is defined as

M =
∑
i

∑
α,β

keαβ,i

2

(
lαβ
i −

√
2

2
ε

)2

+
∑
i

∑
α

kfα,i

2

(
ϑα
i

)2 +

+
∑
i

kmi
2

(‖pi+1 − pi‖ − ε)2 . (3.56)

Reminding that ϑα
i = αi + (−1)α

(
ϕαS
i − ϕαD

i

)
, then (3.56) recasts as

M =
∑
i

∑
α,β

keαβ,i

2

(
lαβ
i −

√
2

2
ε

)2

(3.57)
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+
∑
i

∑
α

kfα,i

2

[
αi + (−1)α

(
ϕαS
i − ϕαD

i

)]2 +

+
∑
i

kmi
2

(‖pi+1 − pi‖ − ε)2 .

In the next subsections, we will specialize this form of the energy by means of
assumptions on the properties of the micro-system. In particular, we will discuss in
detail the representation of the micro-energy for the quasi-inextensibility assumption
that will be made clear next and, subsequently, for the (complete) inextensibility
cases.

Toward the Continuum Model

Asymptotic Expansion and Quasi-inextensibility Assumption

We postulate that the following asymptotic expansion holds for lαβ
i :

lαβ
i = εl̃αβ

i1 + ε2 l̃αβ
i2 + o

(
ε2
)
, (3.58)

where the constant (with respect to ε) term is not present. We now turn to what
we refer to as the quasi-inextensibility case. It consists in fixing the value of the
first-order term in (3.58) as l̃αβ

i1 =
√
2
2 . Moreover, to lighten the notation, we drop the

subscript “2” of l̃αβ
i2 , i.e., l̃αβ

i = l̃αβ
i2 . Hence, (3.58) reads as

lαβ
i =

√
2

2
ε + ε2 l̃αβ

i + o
(
ε2
)
. (3.59)

Piola’s Ansatz

The reference shape of the macro-model is a one-dimensional straight segment S
and we introduce on it an abscissa s ∈ [0,B] – where B = Nε is the length of S
which labels each position in S. Proceeding as in the pioneering works of Gabrio
Piola, an Italian mathematician and physicist who lived in the 1800s (see Dell’Isola
et al. 2015 for a historical review), we introduce the so-called kinematical maps, i.e.,
some fields in the macro-model that uniquely determine pi and l̃αβ

i :

χ : [0,B] → E
l̃αβ : [0,B] → R

+, (3.60)
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with E the Euclidean space on V ≡ R
2. We choose χ to be the placement function

of the 1D continuum and, hence, it has to be injective. The current shape can be
regarded as the image of the (sufficiently smooth) curve χ : [0,B] → E and, unlike
the reference shape, it is not parameterized by its arc length and it is not a straight line
in general. In order for these fields to uniquely determine the kinematical descriptors
of the micro-model (i.e., pi and l̃αβ

i ), we use the Piola’s Ansatz and impose

χ (si) = pi

l̃αβ (si) = l̃αβ
i , ∀i ∈ [0;N ] . (3.61)

Micro-model Energy as a Function of Macro-model Descriptors

In this subsection, we obtain the micro-model energy for the quasi-inextensibility
case in terms of the macroscopic kinematical maps. Assuming that χ is at least twice
continuously differentiable with respect to the space variable in si’s, we have

χ (si+1) = χ (si) + εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)

χ (si−1) = χ (si) − εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)
. (3.62)

Plugging (3.61) in (3.59) and (3.62), we get the following expressions:

lαβ
i =

√
2

2
ε + ε2 l̃αβ (si) + o

(
ε2
)

pi+1 − pi = εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)

pi−1 − pi = −εχ′ (si) + ε2

2
χ′′ (si) + o

(
ε2
)
. (3.63)

Substituting (3.63) into (3.55) and expandingϕαS
i − ϕαD

i up to first orderwith respect
to ε, we get

ϕαS
i − ϕαD

i =
√
2
4

[‖χ′ (si) ‖2]′ + [
l̃(3−α)D (si−1) − l̃(3−α)S (si+1)

]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

ε +

+
[‖χ′ (si) ‖2 − 1

] [
l̃αS (si) − l̃αD (si)

]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

ε + o (ε) . (3.64)
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Finally, substituting (3.64) in (3.57) yields the micro-model energyM as a function
of the kinematical descriptors χ and l̃αβ of the macro-model

M =
∑
i

∑
α,β

keαβ,iε
4

2

(
l̃αβ
i

)2 +
∑
i

kmi ε2

2

(‖χ′
i‖ − 1

)2
(3.65)

+
∑
i

∑
α

kfα,iε
2

2

{
ϑ′ (si)

+ (−1)α

√
2
4

[‖χ′ (si) ‖2]′ + [
l̃(3−α)D
i (si−1) − l̃i

(3−α)S
(si+1)

]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

+

+ (−1)α

[‖χ′ (si) ‖2 − 1
] [

l̃αSi (si) − l̃i
αD

(si)
]

‖χ′ (si) ‖
√
1 − ‖χ′(si)‖2

2

}2

,

where αi = εϑ′ (si) has been used and

ϑ′ = χ′
⊥ · χ′′

‖χ′‖2 ,

with χ′
⊥ the 90◦ anticlockwise rotation of χ′, is the material curvature, i.e., rate

of change with respect to the reference abscissa of the orientation of the tangent
χ′ (s) = ρ (s) [cosϑ (s) e1 + sin ϑ (s) e2] to the deformed centerline. We remark that
the micro-model energy, when written in terms of macroscopic fields, contains
already a contribution from the second gradient of χ(s). Finally, it is worth to
be noticed that, for a fixed ε, Eq. (3.65) provides an upper bound for ||χ′||, i.e.,
‖χ′‖ <

√
2, even if no kinematic restrictions directly affect ||χ′||.

The Case of Inextensible Fibers

We consider now the case of inextensible oblique springs. This translates in con-
sidering l̃αβ

i = 0 and it is referred as the inextensibility case. Moreover, for the
sake of simplicity, we consider the elastic constants of the rotational springs to
satisfy k1F,i = k2F,i := kF,i, ∀i ∈ [1;N ]. We remark that l̃αβ

i = 0 implies, through a
purely geometric argument, that ϕS1

i+1 = ϕS2
i+1 = ϕD1

i = ϕD2
i := ϕi. Once the kine-

matic restrictions implied by the inextensibility assumption have been presented, we
are ready to define the micro-model energy (3.57) as

I =
∑
i

kfi
∑

α

[
αi + (−1)α (ϕi − ϕi−1)

]2
2

(3.66)
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+
∑
i

kmi
2

(‖pi+1 − pi‖ − ε)2 .

Proceeding in analogy with the previous construction, we introduce the kinematical
map

ϕ : [0,B] →
[
0,

π

2

]

and, then, we perform the Piola’s Ansatz by imposing

ϕ (si) = ϕi, ∀i ∈ [0;N ] . (3.67)

Assuming both χ and ϕ to be at least one time continuously differentiable with
respect to the space variable in si and taking into account the Piola’s Ansatz (3.67),
we have

pi+1 − pi = εχ′ (si) + o(ε)

ϕi−1 − ϕi = −εϕ′ (si) + o(ε). (3.68)

Substituting (3.68) into (3.66) yields the micro-model energy for the inextensibility
case in terms of the kinematical quantities of the macro-model

I =∑
i

kfi ε
2 [ϑ′2 (si) + ϕ′

i
2 (si)

] +
∑
i

kmi ε2

2

(‖χ′
i‖ − 1

)2
. (3.69)

We now impose the so-called internal connection constraint:

√
2ε cosϕ (si) = ‖χ (si+1) − χ (si) ‖, (3.70)

which, up to ε-terms of order higher than one, reads

√
2 cosϕ = ‖χ′‖. (3.71)

This constraint ensures that, in the deformed configuration, the upper-left spring of
the ith cell is hinge joint with the upper-right spring of the (i − 1)th cell, and the
lower-left spring of the ith cell is hinge joint with lower-right spring of the (i − 1)th
cell. Due to this constraint, the maps ϕ and χ are not independent and it is possible
to rewrite the expression of the micro-model energy in terms of the placement field
χ(s) only. Indeed, deriving (3.71) with respect to the space variable yields

− √
2ϕ′ (si) sinϕ (si) = ‖χ′ (si) ‖′, (3.72)
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which, in turn, implies

ϕ′ (si) = − ‖χ′ (si) ‖′
√
2 sinϕ (si)

.

Reminding ϕ ∈ [0,π] and taking into account (3.71), we get

ϕ′
i = − ‖χ′

i‖′
√
2
√
1 − cos2ϕ (si)

=

= − ‖χ′
i‖′√

2 − ‖χ′
i‖2

.

Hence, in the inextensibility case, the micro-model energy (3.69) can be recast, as a
function of the macro-model descriptor χ only, as

I = (3.73)

∑
i

kfi ε
2

⎡
⎣[

ϑ′ (si)
]2 +

(
‖χ′ (si) ‖′√

2 − ‖χ′ (si) ‖2
)2

⎤
⎦ +

∑
i

kmi ε2

2

(‖χ′ (si) ‖ − 1
)2

.

Clearly, since the inextensibility case is just a special case of the quasi-inextensibility
case, it is possible to show that this expression can be also obtained in a more direct
way from (3.65) by setting l̃αS (si) = 0 and k1F,i = k2F,i := kF,i.

Continuum-Limit Macro-model

In this section, by performing the final steps of the heuristic homogenization proce-
dure presented throughout this paper, we derive a 1D continuummodel, also referred
to as themacro-model, associated to the aforementioned microstructure. Besides, we
analyze the quasi-inextensibility and inextensibility cases and we obtain the corre-
sponding macro-model energies in terms of the displacement field χ.

Rescaling of Stiffnesses and Heuristic Homogenization

The preliminary step to perform the homogenization procedure consists of the def-
inition of the quantities Ke

αβ,i, K
f
α,i, and K

m
i . These quantities are scale-invariant,

meaning that they do not depend on ε. Their role is to keep track of the asymptotic
behavior of the stiffnesses keα,β,i, k

f
α,i, and kmi of the micro-model springs. More

explicitly, we assume

keαβ,i(ε) = K
e
αβ,i

ε3
; kfα,i(ε) = K

f
α,i

ε
; kmi (ε) = K

m
i

ε
. (3.74)
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We remark that in this rescaling, as ε approaches zero, the ratio between the stiffness
keαβ,i of the oblique springs and the stiffness kfα,i will approach infinity with a rate

of divergence in ε equal to two, i.e.,
keαβ,i

keα,i
∼ ε2. Now, we are ready to perform the

homogenization procedure. First, we consider the more general quasi-inextensibility
case. For simplicity, let us set

K
e
1D,i = K

e
1S,i = K

e
2D,i = K

e
2S,i := K

e
i ; K

f
1,i = K

f
2,i := K

f
i . (3.75)

Let us introduce the kinematical maps

K
e : [0,B] → R

+; K
f : [0,B] → R

+; K
m : [0,B] → R

+

such that they satisfy the following Piola’s Ansatz:

K
e (si) = K

e
i ; K

f (si) = K
f
i ; K

m (si) = K
m
i . (3.76)

Substituting (3.74) in (3.65), taking into account (3.75) and (3.76), and letting ε → 0
yield

E =∫
S

K
e

2

(
l̃1S

)2
ds +

∫
S

K
e

2

(
l̃1D

)2
ds

+
∫
S

K
e

2

(
l̃2S

)2
ds +

∫
S

K
e

2

(
l̃2D

)2
ds +

+
∫
S

K
f

2

{
ϑ′

+
−√

2
(‖χ′‖2)′ − 4

[(
l̃2D − l̃2S

)
− (‖χ′‖2 − 1

) (
l̃1D − l̃1S

)]

‖χ′‖√2 − ‖χ′‖2

⎫⎬
⎭

2

ds +

+
∫
S

K
f

2

{
ϑ′

+
√
2
(‖χ′‖2)′ + 4

[(
l̃1D − l̃1S

)
+ (‖χ′‖2 − 1

) (
l̃2S − l̃2D

)]

‖χ′‖√2 − ‖χ′‖2

⎫⎬
⎭

2

ds +

+
∫
S

K
m

2

(‖χ′‖ − 1
)2
ds, (3.77)

which is the continuum-limit macro-model energy for a 1D pantographic beam under
the hypothesis of quasi-inextensible oblique micro-springs. It is worth to remark
that, when K

m = 0, l̃αβ = 0 and χ (s) = Cse1, with C ∈ R, the beam undergoes a
floppymode, i.e., (3.77) vanishes. Thus, under the above conditions, the configuration
χ (s) = Cse1 is isoenergetic to the undeformed configuration for any C. For a fixed
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ε, considering kmi = 0 and l̃i
αβ = 0 in the micro-model energy (3.65), we have that

χ(si) = Csie1 is a floppy mode for the micro-model as well. This means that the
homogenization procedure that we have carried out has preserved a key feature of
the micro-model. Up to now, the expression of the continuum-limit homogenized
energy depends both on the kinematical maps χ and l̃. In the next section, we show
that, at equilibrium, it is possible to write the macro-energy in terms of the placement
field only.

Macro-model Energy as a Function of the Placement Field

We now equate to zero the first variations of (3.77) with respect to l̃αβ’s, i.e., we look
for stationary points, with respect to l̃αβ , of (3.77). This is a necessary first-order
condition for optimality. In the continuum limit homogenized energy, no spatial
derivatives of l̃αβ appear. Such energy depends only by linear and quadratic con-
tributions in l̃αβ . Hence, this process yields four algebraic linear equations in l̃αβ .
Solving these equations gives l̃αβ at equilibrium

l̃1D =
√
2

2
K

f
(
χ′′ · C + ϑ′D

)

l̃2D =
√
2

2
K

f
(
χ′′ · C − ϑ′D

)

l̃1S =
√
2

2
K

f
(−χ′′ · C − ϑ′D

)

l̃2S =
√
2

2
K

f
(−χ′′ · C + ϑ′D

)
(3.78)

with

C = χ′

2Kf ‖χ′‖2 − 1
2

(
Ke‖χ′‖2 + 8Kf

)

D = ‖χ′‖
√
4L̃2 − ‖χ′‖2

KeL̃2
(‖χ′‖2 − 2

) − 2Kf ‖χ′‖2 .

From (3.78), we can get, in some particular cases, interesting information about
the properties of the pantographic beam. First, let us notice that l̃1D = −l̃1S and
l̃2D = −l̃2S . Moreover, we also notice that when χ′ = ρe1, with ρ independent of
the abscissa s, then, as χ′′ vanishes, l̃αβ = 0, i.e., the fibers undergo no elongation.
Instead, when χ′ (s) = ρ (s) e1, with ρ depending on s, then l̃1D = l̃2D = −l̃1S =
−l̃2S . This remarkable and counterintuitive feature can be used as a possible bench-
mark test to validate, as ε approaches zero, a numerical scheme based on the discrete
micro-model. Let us consider the case of nonzero bending curvature, i.e., ϑ′ �= 0,
when χ′′ · C << ϑ′D, which implies that l̃1D = −l̃2D = −l̃1S = l̃2S . If ϑ′ > 0 then
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l̃1D, l̃2S > 0 and l̃2D, l̃1S < 0 while, if ϑ′ < 0 then l̃1D, l̃2S < 0 and l̃2D, l̃1S > 0. We
are now ready to express themacro-model energyE (χ) as a function of the placement
χ only, by substituting (3.78) in (3.77):

E (χ (·)) = min
l̃αβ(·)

E = (3.79)

∫
S
K

e
K

f

{ (
ρ2 − 2

)
ρ2

(
Ke − 4Kf

) − 2Ke
ϑ′2

+ ρ2(
2 − ρ2

) [
ρ2

(
Ke − 4Kf

) + 8Kf
]ρ′2

}
ds +

+
∫
S

K
m

2
(ρ − 1)2 ds =

=
∫
S

K
e
K

f
(‖χ′‖2 − 2

)
‖χ′‖4 [‖χ′‖2 (Ke − 4Kf

) − 2Ke
] (χ′

⊥ · χ′′)2 ds +

+
∫
S

K
e
K

f(
2 − ‖χ′‖2) [‖χ′‖2 (Ke − 4Kf

) + 8Kf
] (χ′ · χ′′)2 ds +

+
∫
S

K
m

2

(‖χ′‖ − 1
)2
ds.

Weobserve that, for 0 < ρ <
√
2 and for any choice of the positivemacro-stiffnesses

K
e, Kf , and K

m, (3.79) is positive definite. Moreover, not only we can classify this
homogenized model as a second gradient theory, but we notice that the full second
gradient χ′′ of χ contributes to the strain energy. Indeed, beyond the usual term(
χ′

⊥ · χ′′) related to the Lagrangian curvature, also the term (
χ′ · χ′′), deriving from

the presence of the oblique springs, appears. There is a remarkable feature in this
model which deserves to be discussed. From (3.79), it is clear that in the limit
||χ′|| → √

2 the model exhibits a so-called phase transition: it locally degenerates
into the model of an uniformly extensible cable, notwithstanding that

√
2 is an upper

bound for ρ. Indeed,

(
ρ2 − 2

)
ρ2

(
Ke − 4Kf

) − 2Ke
→ 0

ρ2(
2 − ρ2

) [
ρ2

(
Ke − 4Kf

) + 8Kf
] → +∞,

so that no deformation energy is stored for finite bending curvature and, in order
for the energy to be bounded for bounded deformations, ρ′ must approach zero,
meaning that the elongation must be locally uniform. Further developments of this
model could consist in contemplating a phase transition to a model that, for finite
bending curvature, entails a nonzero stored deformation energy.
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Nondimensionalization

In order to handle more easily the model in the numerical implementation and in
the interpretation of the corresponding results, we turn to the use of nondimensional
quantities. Therefore, we introduce the following nondimensional fields:

s = Bs; χ = Bχ; K
e = KK

e; K
f = KK

f ; K
m = Km

K
m
.

In terms of these new quantities, we can recast (3.79) as

K

B

∫ 1

0

K
e
K

f
(
‖χ′‖2 − 2

)

‖χ′‖4
[
‖χ′‖2

(
K

e − 4K
f
)

− 2K
e
] (

χ′
⊥ · χ′′

)2
ds +

+K

B

∫ 1

0

K
e
K

f
(
χ′ · χ′′

)2
(
2 − ‖χ′‖2

) [
‖χ′‖2

(
K

e − 4K
f
)

+ 8K
f
]ds +

+KmB
∫ 1

0

K
m

2

(
‖χ′‖ − 1

)2
ds, (3.80)

where the symbol ′ denotes differentiation with respect to the dimensionless abscissa
s.

The Inextensibility Case

Let us focus now on the inextensibility case. The homogenization procedure follows
the same lines of the previous case. Indeed, keeping in mind (3.75) and (3.76), letting
ε → 0 in (3.73) yields the continuum-limit macro-model energy for the inextensi-
bility case

∫
S

{
K

f

[
ϑ′2 + ρ′2

2 − ρ2

]
+ K

m

2
(ρ − 1)2

}
ds =

=
∫
S

{
K

f

[(
χ⊥ · χ′′)2
‖χ′‖4 +

(
χ · χ′′)2

‖χ′‖2 (2 − ‖χ′‖2)
]

+ K
m

2

(‖χ′‖ − 1
)2}

ds.

(3.81)

This result is consistent with the quasi-inextensibility case. Indeed, we could have
found (3.81) also by letting K

e → +∞ in (3.79). Let us remark that, also in this
case, the homogenized continuum model, due to the richness of the microstructure,
gives rise to a full second gradient theory.
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Linearization

An interesting connection can be tracedwith the existing literature on the formulation
of 1D continuum homogenized model for microstructured media and, in particular,
for pantographic ones. Indeed, this connection is traced by considering a linearization
of the pantographic beamenergy in the (complete) inextensibility case.We setχ (s) =(
s
0

)
+ ηũ, with ũ independent of η, i.e., we linearizewith respect to the displacement

u = χ (s) −
(
s
0

)
, and K

m = 0. By means of simple algebra manipulations, it is

possible to derive the deformation energy in Eq. (5) (withK+ = K−) of Alibert et al.
(2003) (see also Seppecher et al. 2011):

∫
S
K

f ‖u′′‖2 ds. (3.82)

We remark that in the linearized energy (3.82) the transverse displacement and the
axial one decouple.

Numerical Simulations of the Continuous Model

Preliminaries

Using the so-obtained 1D continuum model, we show some equilibrium shapes
exhibiting highly non-standard features, essentially related to the complete depen-
dence of the homogenized continuum energy density functional on the second gra-
dient of the placement field.

In the sequel,Km = 0 will be considered, whichmeans that the standard quadratic
additive elongation/shortening contribution to the deformation energy will be turned
off. This is made in order to better highlight some non-standard features of the
nearly inextensible pantographic beam model. In this section, we show numerical
results for the quasi-inextensible and inextensible pantographic beam model and
for the geometrically nonlinear Euler model. We remind that these cases stand for
K

e < +∞ andKe → +∞, respectively. Two benchmark tests are exploited in order
to illustrate peculiar and non-standard features of the pantographic beam model.
Convergence of the quasi-inextensible pantographic beam model to the completely
inextensible one is shown, by means of a numerical example, as the macro-stiffness
K

e related to elongation of the oblique springs approaches +∞. This is due to the
fact that, as it is clear from Eq. (3.77), if Ke → +∞, then l̃αβ → 0. Of course, the
same discussion and simulations can be made for the micro-model and this could be
the subject of a further investigation. For the sake of self-consistence, we recall that
the deformation energy of the geometrically nonlinear Euler model employed in the
following simulations is the following:
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∫
S

{
Ke

2

(‖χ′‖ − 1
)2 + Kb

2

[
χ′′ · χ′′

‖χ′‖2 −
(

χ′ · χ′′

‖χ′‖2
)2

]}
ds =

=
∫
S

{
Ke

2
(ρ − 1)2 + Kb

2
ϑ′2

}
ds,

and we notice that, while in the nearly inextensible pantographic beam model both ρ
and ϑ can be enforced at the boundary, for the nonlinear Euler model it can be done
for ϑ only, as no spatial derivative of ρ appears in the energy.

Semi-circle Test

We consider for both the nearly inextensible pantographic beam model and the geo-
metrically nonlinearEuler beammodel the referencedomain tobe the interval [0, 2π].
We enforce the following boundary conditions for both models

1. χ (0) = 0; 2. χ (2π) = 2e1; 3. ϑ (0) = −π

2
; 4. ϑ (2π) = π

2

and, for the nearly inextensible pantographic beammodel, we also have the following
two additional constraints:

5. ρ (0) = ρ0; 6. ρ (2π) = ρ0.

In Fig. 3.6 (up), the deformed shapes for the nearly inextensible pantographic beam
model and for the geometrically nonlinear Euler beam model (GNEM) are shown
for different values of ρ0 reported in the legend. In Fig. 3.6 (down), the elongation
ρ − 1 for the nearly inextensible pantographic beammodel and for the geometrically
nonlinear Euler beam model (GNEM) is shown for different values of ρ0 reported
in the legend. It is remarkable that passing from ρ0 > 1 to ρ < 1, there is a change

Fig. 3.6 Semi-circle test. Deformed shapes for the nearly inextensible pantographic beam model
and for the geometrically nonlinear Euler beam model (GNEM). (left) Elongation ρ − 1 versus
the reference abscissa for the nearly inextensible pantographic beam model and for the geomet-
rically nonlinear Euler beam model (GNEM) (right). Numbers in the legends stand for different
dimensionless values of ρ0
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Fig. 3.7 Semi-circle test. Deformed shapes for the nearly inextensible pantographic beam model
(blue) and for the inextensible pantographic beam model (green) with ρ0 = 1.4 (left). Energy of
the nearly inextensible pantographic beam model (ordinate) asymptotically tends to the energy of
the inextensible pantographic beam model (asymptote) as Ke (abscissa) → +∞ (right)

of concavity in the elongation for the pantographic beam model. In Fig. 3.7 (up), the
deformed shapes for the nearly inextensible pantographic beammodel (blue) and for
the inextensible pantographic beam model (green) with ρ0 = 1.4 are compared. Of
course, the area spanned by the quasi-inextensible pantographic beam includes that of
the (completely) inextensible one. In Fig. 3.7 (down), it is numerically shown that the
energy of the nearly inextensible pantographic beammodel (ordinate) asymptotically
tends to the energy of the inextensible pantographic beam model (asymptote) as
K

e (abscissa) → +∞.

Three-Point Test

We consider for both the quasi-inextensible pantographic beam model and the geo-
metrically nonlinear Euler beammodel the reference domain to be the interval [0, 2].
We enforce the following boundary conditions for both models:

1. χ (0) = 0; 2. χ (1) · e2 = u; 3. χ (2) = 0;
4. ϑ (0) = 0; 5. ϑ (2) = 0.

In Fig. 3.8, the deformed shapes for the nearly inextensible pantographic beammodel
(red, light blue) and for the geometrically nonlinear Euler beam model (blue, green)
are shown for different values of u in the legend. Figure3.9 shows, for different values
of the parameter u, the elongation ρ − 1 versus the reference abscissa for the nearly
inextensible pantographic beammodel. The parameter u is increasing from bottom to
top. We observe that, as u increases, at some point, there is a concavity change in the
elongation plot and, increasing further the parameter u, curves start to intersect. This
means that, for some points of the beam, an increase of the prescribed displacement
u implies a decrease in the elongation. Figure3.10 shows the pulling force, i.e.,
Lagrange multiplier associated to the weak constraint χ (1) · e2 = u, changed of
sign, applied at the midpoint in order to vertically displace it of an amount u. In the
nearly inextensible pantographic beam model (blue) negative stiffness property, also
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Fig. 3.8 Three-point test. Deformed shapes for the nearly inextensible pantographic beam model
(red, light blue) and for the geometrically nonlinear Euler beam model (blue, green) for different
values of u in the legend

Fig. 3.9 Three-point test. Elongation ρ − 1 versus the reference abscissa for the nearly inextensible
pantographic beammodel. The parameter u is increasing from bottom to top.We observe that, while
increasing u, there is a concavity change at some point. Increasing further the parameter u, curves
start to intersect

known as elastic softening, is observed, while in the geometrically nonlinear Euler
beam model (green) elastic softening is not observed. Figure3.11 shows the plot of
l̃1D versus reference abscissa for different values of u in the legend. Analogous plots
hold for l̃2D, l̃1S , and l̃2S .
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Fig. 3.10 Three-point test. Pulling force (i.e., Lagrangemultiplier associated to the weak constraint
χ (1) · e2 = u), changed of sign, applied at themidpoint in order to vertically displace it of an amount
u (abscissa). In the nearly inextensible pantographic beammodel (blue) elastic softening is observed,
while in the geometrically nonlinear beam model (green) elastic softening is not observed

Fig. 3.11 Three-point test. Plot of l̃1D versus reference abscissa for different values of u in the
legend. Analogous plots hold for l̃2D, l̃1S and l̃2S

Modified Three-Point Test

We consider for both the quasi-inextensible pantographic beam model and the geo-
metrically nonlinear Euler beammodel the reference domain to be the interval [0, 2].
We enforce the three-point test boundary conditions for both models

1. χ (0) = 0; 2. χ (1) · e2 = u; 3. χ (2) = 0;
4. ϑ (0) = 0; 5. ϑ (2) = 0
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Fig. 3.12 Modified three-point test. Deformed configuration for the nearly inextensible panto-
graphic beam model

Fig. 3.13 Modified three-point test. Elongation ρ − 1 versus reference abscissa for the nearly
inextensible pantographic beam model

with the additional condition, at the midpoint s = 1,

6. ρ (1) � √
2.

Figure3.12 shows the deformed configuration for the nearly inextensible panto-
graphic beam model, while in Fig. 3.13 the elongation ρ − 1 versus the reference
abscissa for the nearly inextensible pantographic beam model is shown.
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