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This study analyses the thermomechanical tensile behaviour of a cold drawn Ti-50.9at.%Ni wire submitted to heat treatment at 598 K for 30 min, which is below the recrystallization temperature (623 K). Such low temperature heat treatment induces a superelastic loop without a stress "plateau". However, the absence or weakness of peaks on its differential scanning calorimetry prevents the determination of specific latent heat. This is a common effect of nanostructured materials such as superelastic wires. A method using strain and temperature field measurements was developed and used to determine thermal power and thermal energy during superelastic tensile tests through a heat balance. From these results and using a thermodynamic approach, forward and reverse specific latent heat and the martensite fraction are estimated as a function of strain and stress.

Introduction

Superelastic NiTi wires are manufactured by a sequence of hot [START_REF] Ahadi | Effect of hot rolling on microstructure and transformation cycling behaviour of equiatomic NiTi shape memory alloy[END_REF] and cold drawing [START_REF] Delville | Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy[END_REF][START_REF] Mitwally | Effect of cold work and annealing on the structure and characteristics of NiTi alloy[END_REF] which jointly induces an amorphous phase and highly strained nanocrystals in the material.

Usual industrial NiTi wires are subjected to an additional high temperature heat treatment (straight annealing) of around 750-800 K. Such heat treatment promotes grain growth and crystallization of the microstructure [START_REF] Peterlechner | Study of relaxation and crystallization kinetics of NiTi made amorphous by repeated cold rolling[END_REF][START_REF] Shi | Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys[END_REF][START_REF] Sergueeva | Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing[END_REF][START_REF] Yu | Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing[END_REF]. During heating and cooling, a martensite to austenite and an austenite to martensite transformation occurs, respectively, and a significant amount of latent heat is released or absorbed. This latent heat is commonly quantified using the differential scanning calorimetry (DSC) technique, where heat release/absorption is identified by the presence of peaks in the DSC results. Furthermore, when these annealed wires are cyclically stretched they are capable of major reversible deformation associated with a reversible stress-induced phase transformation (SIPT). This effect is known as superelasticity, due to its reversible nature. Superelastic tensile deformation of straight annealed NiTi wires is accompanied by stress plateaus during loading (forward transformation) and unloading (reverse transformation) and exhibits high stress hysteresis. Besides, the deformation along the wire within these plateaus is not uniform at the scale of the wire dimension [START_REF] Favier | Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements[END_REF].

On the other hand, cold worked wires can be subjected to additional heat treatments at lower temperatures (473 K to 598 K). In this case, though, DSC tests generally show inconclusive results regarding the quantification of latent heat, since either a weak thermal peak, or even no thermal peak is observed [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF][START_REF] Li | Cold Rolling-Induced Multistage Transformation in Ni-Rich NiTi Shape Memory Alloys[END_REF][START_REF] Chang | Transformation sequence in severely coldrolled and annealed Ti50Ni50 alloy[END_REF][START_REF] Tsuchiya | Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation[END_REF][START_REF] Miller | Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi[END_REF]. This does not mean, however, that phase transformation has not taken place. Many authors showed that such wires exhibit the superelastic effect, although their stress-strain curve does not present a stress plateau and a smaller stress hysteresis is observed compared to straight annealed materials [START_REF] Kan | Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi 36 shape memory alloy[END_REF][START_REF] Tsuchiya | Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation[END_REF][START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF]. The absence of a stress plateau is associated with a homogeneous strain distribution during deformation.

Knowledge of the amount of latent heat of phase transformation is mandatory in many applications, such as those using the elastocaloric effect of NiTi alloys in cooling devices [START_REF] Tušek | Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling[END_REF][START_REF] Schmidt | Elastocaloric Cooling: from Fundamental Thermodynamics to Solid State Air Conditioning[END_REF]. These devices make use of the latent heat of SIPT to perform temperature changes in designed systems. Working as heat pumps, the phase transformation must be induced cyclically to maintain the cooling effect, and the need for cyclic loading/unloading means that the transforming material must have long fatigue life.

In this scenario, the mechanical behaviour of cold worked NiTi alloys heat treated at low temperature is quite suitable: the absence of stress plateaus, and therefore of localization phenomenon, is associated with a longer fatigue life, since localization induces locally high strain [START_REF] Favier | Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements[END_REF][START_REF] Qian | A review of elastocaloric cooling: Materials, cycles and system integrations[END_REF]. The drawback, however, is that alloys often show inconclusive DSC results, which is a barrier to determine the transformation latent heat, ultimately hindering the use of this material in the design of elastocaloric applications.

To overcome this issue, latent heat of phase transformation can be estimated through an analysis of temperature variation during a SIPT. Using a thermal approach, the involved heat sources can be determined. A method to estimate heat sources from temperature fields measured with an infrared thermal camera was presented by [START_REF] Chrysochoos | An infrared image processing to analyse the calorific effects accompanying strain localisation[END_REF]. The same method was used to investigate the heat source of phase transformation [START_REF] Schlosser | Image Processing to Estimate the Heat Sources Related to Phase Transformations during Tensile Tests of NiTi Tubes[END_REF] and the deformation mechanisms [START_REF] Favier | Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements[END_REF] of NiTi tubes.

This study aims to quantify the heat sources generated during a SIPT of a cold worked wire heat treated at 598 K for 30 min. For this purpose, temperature fields are acquired using an infrared thermal camera. This method for heat source quantification using infrared technique was validated by authors in [START_REF] Schlosser | Image Processing to Estimate the Heat Sources Related to Phase Transformations during Tensile Tests of NiTi Tubes[END_REF][START_REF] Delobelle | Heat Estimation from Infrared Measurement Compared to DSC for Austenite to R Phase Transformation in a NiTi Alloy[END_REF][START_REF] Delobelle | Determination of Local Thermophysical Properties and Heat of Transition from Thermal Fields Measurement During Drop Calorimetric Experiment[END_REF] in a NiTi tube and plate showing typical DSC results, i.e. well-defined transformation peaks. Strain fields are acquired using a visible camera and digital image correlation (DIC). Using a thermodynamic framework based on the Gibbs free energy, the specific latent heat of forward and reverse transformations are determined. The specific latent heat obtained are compared with values found in the literature for fully annealed NiTi alloys with similar composition when tested using purely thermal methods (i.e. DSC). Moreover, the martensite fraction is estimated and presented as a function of strain and stress.

Material and experimental procedure

Material

The material used in the experiments campaign is a cold drawn NiTi wire provided by Fort Wayne Metals (NiTi#1) with a composition Ti-50.9at.%Ni.

The manufacturer stated that these wires were cold-drawn to a cross section reduction of 47.5%. This cold drawn wire is similar to the wire of diameter 0.1 mm used by Delville et al. [START_REF] Delville | Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy[END_REF] and Malard et al. [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF][START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF] but with a diameter of 0.5 mm. This larger diameter was chosen to allow temperature and strain field measurements during the tensile tests, as described in Section 2.3. Malard et al. [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF][START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF] observed that this wire in the as-drawn state "possesses a heavily deformed microstructure consisting of a mixture of austenite, martensite and amorphous phases with defects and internal stress". Ahadi and Sun [START_REF] Ahadi | Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction[END_REF][START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF] studied a sheet with the same composition (Ti-50.9at.%Ni) than the wire used in this paper. The sheet was cold rolled to achieve 42% thickness reduction. In the cold rolled state, they measured a grain size of 10 nm. The papers of Malard et al. [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF][START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF] and Ahadi and Sun [START_REF] Ahadi | Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction[END_REF][START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF] are in agreement with the review paper of Prokoshin et al. [START_REF] Prokoshkin | 38 Nanostructured Ti-Ni Shape Memory Alloys Produced by Thermomechanical Processing[END_REF] who summarized that the structure is mainly nanosubgrained for low-to-moderate cold work (deformation intensity between 30 and 50%) and mixed (nanosubgrained + nanocrystalline) for moderate to high deformation intensity between 50% and 100%.

In order to improve the functional properties of cold worked structures, post deformation treatment are performed. Ahadi and Sun [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF] performed heat treatment of the cold rolled sheets in a furnace at temperatures between 480 • C and 520 • C for short times (2 to 6 minutes) or at lower temperature (250 • C) for 45 minutes [START_REF] Ahadi | Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction[END_REF]. Delville et al. [START_REF] Delville | Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy[END_REF] and Malard et al. [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF][START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF] used a nonconventional heat treatment by controlled electric pulse current to modify the functional properties of the studied 0.1 mm wire. Delobelle et al. [START_REF] Delobelle | Study of electropulse heat treatment of cold worked NiTi wire: From uniform to localised tensile behaviour[END_REF] performed similar electropulse heat treatment using the 0.5 mm wire studied in the present paper. In our study, a conventional furnace with a temperature controlled with an accuracy of ±1 • C was used, with temperature range between 523 K and 598 K and treatment time of 30 minutes.

Figure 1a shows cyclic tensile tests performed at room temperature (297 K) on wires heat treated at 523 K, 548 K, 573 K and 598 K for 30 min. The deformations of the four heat treated wires are fully recoverable. The stressstrain curves do not show any plateau and the hardening is decreasing with increasing heat treatment temperature. The mechanical behaviour of the heat treated wires is similar to the results obtained by [START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF] (Fig. 6) using heat treatment by pulsed DC electric current of pulse duration between 6 and 10 ms.

They are also in agreement with results obtained by Ahadi and Sun [START_REF] Ahadi | Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction[END_REF] and [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF] for Ti-50.9at.%Ni sheet heat treated at temperatures between 485 • C and 520 • C for short time (2 or 3 minutes) or at lower temperature (250 • C) for 45 minutes.

Ahadi and Sun [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF] and Malard et al. [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF][START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF] performed TEM observation and Xray diffraction measurements on their samples. They observed that isothermal stress-strain curves without stress plateau were obtained for grain sizes between 10 and 70 nm [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF] and between 10 and 40 nm [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF]. Malard et al. [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF] also observed that after treatments with pulse times of 6-10 ms, amorphous regions are no more observed and samples are in austenitic state at room temperature with polygonised microstructures. Figure 1b shows the DSC result of the heat treated wires. A Q200 DSC test-ing machine from TA Instruments was used and the tests were carried out with a temperature rate of ±10 K/min between 223 K and 363 K. Transformation behavior of wires heat treated at 523 K and 548 K are flat and do not exhibit any peak. This result is in agreement with Ahadi and Sun [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF] (Fig. 2) for grain size lower than 30 nm. Transformation peaks well spread over a large temperature range are observed for samples heat treated at 573 K and 598 K. A difference around 10 K between heating and cooling "peak temperatures" is the signature of the austenite to R phase transformation. However, the heat measured during cooling and heating are of the order of 1.0 J/g and 1.7 J/g for heat treatment temperature of 573 K during cooling and heating, respectively and of the order of 1.2 J/g for cooling and 1.6 J/g for heating, for heat treatment temperature of 598 K. Such low heat values obtained from DSC curves are even lower than normal values obtained for R-phase transformation, that are in the order of 6 J/g [START_REF] Schlosser | Influence of thermal and mechanical aspects on deformation behaviour of NiTi alloys[END_REF]. These results put in evidence the difficulty of obtaining the heat of phase transformation for these heat treatment temperature through DSC tests.

In the following, only the wire heat treated at 598 K will be studied to present the method to determine thermal power and energy, forward and reverse specific latent heat and martensite fraction. Isothermal stress-strain curves at room temperature (297 K) will be analyzed.

Superelastic tensile tests

The NiTi wire sample was mounted on a standard gripping system on a tensile testing machine (Gabo Qualimeter) equipped with a 500 N load cell.

The gauge length of the sample was L 0 = 20 mm. Before clamping, the wire was heated in boiling water and then cooled down to room temperature. This procedure was conducted to start the test with the highest possible austenite fraction. The heat measured during cooling in the DSC of Fig. 1b is 1.2 J/g for the whole peak and 0.5 J/g at 297 K, the tensile test temperature. This means that, in agreement with Mallard et al. [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF][START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF], the wire at the beginning of the tensile test is austenitic with polygonised microstructure having a small amount of R-phase, estimated to be less 10% considering a latent heat of 6 J/g for a full A-R-phase.

The tensile test was performed by loading and unloading the NiTi wire at a pre-set global strain of 6% with a strain rate of 10 -2 s -1 . During the loadunload cycle, two hold-times were performed: one at the end of loading and one at the end of unloading, for 50 s each. The purpose of the hold times was to allow the wire to achieve room temperature after forward and reverse phase transformations. In addition, the wire was submitted to a tensile test until rupture using the same strain rate.

Thermal and kinematic full field measurements during tensile tests

The temperature field was measured with a fast multi-detector infrared camera (FLIR SC6000 series), with a resolution of 640 x 512 pixels equipped with a medium wavelength infrared (MWIR) macro 1:3.0 objective lens. The spatial resolution (pixel size) was 16 µm × 16 µm. The surface of the wire observed by the IR camera was coated with a highly emissive black paint in order to obtain black body properties compatible with the infrared camera calibration.

The thermal field was measured in sections of length l 0 = 8.2 mm, shorter than L 0 (see Fig. 2). There were 31 pixels in the radial direction of the wire and the size of the IR zone of interest (ZOI) was then 512 x 31 pixels.

The displacement field was obtained using a visible-light digital camera (AL-LIED, 2048 x 2048 pixels) and VIC 2D Digital Image Correlation processing software. The visible camera recorded the side of the wire opposite the IR zone.

The surface on this side was covered with a random pattern of white paint speckles over a black paint coat to allow displacement and strain field measurements through image correlation. The resolution of the visible light camera ZOI was 2048 x 72 pixels. However, the ZOI used to perform the DIC analysis was 1181

x 72 pixels, which corresponds to the same length l 0 = 8.2 mm filmed by the thermal camera. In this ZOI, a subset of 25 pixels with a step of 17 pixels led to a spatial resolution of ∼ 0.17 mm in the axial direction and ∼ 0.12 mm in the circumferential direction. From that, the strain profiles obtained were calculated taking only the axial component ε yy of the true logarithmic strain tensor into account.

In the following, the true strain ε yy is named ε for simplification and the average value in the ZOI ε . The uniform temperature variation, computed as the difference between the average absolute temperature in the IR ZOI T and the room temperature T 0 , is named θ , i.e. θ = T -T 0 .

From the full field measurements it was possible to obtain the results in Fig. 3.

The loading stress-average strain ε behaviour of the superelastic NiTi wire is shown in Fig. 3a. Each colored marker represents the strain levels in which the strain profiles in Fig. 3b and the temperature variation profiles in Fig. 3c are plotted. The curves shown in Fig. 3b indicate a uniform strain behaviour of the NiTi wire, with no strain localization phenomenon [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF][START_REF] Leo | Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires[END_REF]. This behaviour is ratified by the results in Fig. 3c, where the temperature variation profiles over the wire length are also uniform. These observations justify working with average values θ and ε . Logarithmic strain profiles over the wire gauge length at different strain levels, as indicated by the colored markers in (a). c) Temperature variation profiles at different strain levels.

Heat sources and thermal energy estimation

In the present study, due to the uniform temperature variation along the tested wire, a time dependent thermal approach was chosen. The thermal framework used to estimate heat sources during a superelastic tensile test is presented hereafter.
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For a simple geometry (wire) with uniformly distributed heat sources, and also if the specimen is not too far from thermal equilibrium with the ambient medium at T 0 , the thermal model reads [START_REF] Chrysochoos | Energy balance of thermoelastic martensite transformation under stress[END_REF][START_REF] Chrysochoos | An infrared image processing to analyse the calorific effects accompanying strain localisation[END_REF][START_REF] Schlosser | Influence of thermal and mechanical aspects on deformation behaviour of NiTi alloys[END_REF]:

c ∂ θ ∂t + θ τ eq = q (1)
where q represents the uniform heat source or thermal power per mass unit, c the specific heat and τ eq a characteristic time.

As shown by [START_REF] Chrysochoos | Energy balance of thermoelastic martensite transformation under stress[END_REF][START_REF] Chrysochoos | An infrared image processing to analyse the calorific effects accompanying strain localisation[END_REF], the heat source in the right member of Eq.1 can be calculated from experimental data. It is obtained from estimations of the two terms of the left member after some filtering and numerical derivative operations.

The uniform heat sources are denoted q for simplification. The specific heat c is assumed to be uniform and constant. The parameter τ eq represents a characteristic time of heat loss by both convection and radiation through the specimen surface and by conduction towards the grip zone.

Thermal energy E th is calculated though time integration of the heat sources per unit of mass q:

E th (t) = t 0 qdt (2)

Determination of mechanical power and energy

Mechanical power P mech and mechanical energy E mech are both determined per unit of mass. P mech is defined as:

P mech = σ ε ρ (3) 
where σ is the uniaxial tensile true stress, ε is the uniaxial strain rate and ρ the mass density. True stress σ is calculated from σ = σ 0 (1 + ε n ), where σ 0 is the engineering stress and ε n is the nominal strain.

The mechanical energy per unit of mass E mech is calculated by time integration of the mechanical power:

E mech (t) = t 0 P mech dt (4) 
3. Results • Stage I: The temperature increases as the strain increases to 4.8%. Due to the fast release of the latent heat of phase transformation, the temperature increase was θ = 11.8 K.

Strain and temperature field variation

• Stage II: The first hold time allows the temperature to decrease to T 0 while ε ≈ 0 and ε remains almost constant.

• Stage III: The strain recovery promoted the absorption of latent heat due to reverse transformation, leading to a negative temperature variation of θ = -8.7 K. At the end of stage III (end of unloading), the temperature starts to increase again just before the strain reaches zero.

• Stage IV: The second hold time allows the temperature to increase to T 0 while ε = 0 and ε remains constant.

Estimation of thermal power

The average thermal power q was calculated using the average temperature θ shown in Fig. 4b and Eq. 1 with c = 500 J kg -1 K -1 [START_REF] Schlosser | Influence of thermal and mechanical aspects on deformation behaviour of NiTi alloys[END_REF].

Figure 5a shows the temperature variation θ and an example of the time evolution of the thermal power ( q) computed with a value of τ eq = 5 s. From this example of thermal power estimation, we observed that the best value of τ eq could be calculated on the hold-time of stage IV, where no thermal energy is being released or absorbed, since no phase transformation is taking place.

For imposed τ eq values and using Eq. 1, thermal power q was computed on the time interval ∆t. In Figure 5b, the thick blue line represents the mean value of q as a function of τ eq , and the black lines are the limits of the standard deviation. With this procedure, the τ eq = 7.9 s value was determined, which optimally leads to a thermal power close to zero during stage IV. The τ eq = 7.9 s value was used in the further calculations of thermal power and thermal energy.

Thermal and mechanical power and energy as a function of time

Figure 6 shows the thermal and mechanical power per unit of mass (W/g) and the thermal E th and mechanical E mech energy per unit of mass (J/g), both as a function of time. Similarly to Fig. 4b, four stages are outlined in Fig. 6.

From the power curves, the following observations are made:

• Stage I: The thermal power increases suddenly until it reaches a peak at approximately q = 2.1 W/g. The same qualitative behaviour is observed for the mechanical power, which simultaneously reaches a maximum at P mech = 1.0 W/g. After the thermal peak in stage I, the decrease in thermal power highlights the decrease of the phase transformation activity before the end of loading.

• Stage II: During the first hold time, the thermal power is close to zero, except at the beginning, where the thermal power is slightly negative.

• Stage III: Reverse martensite transformation takes place. The thermal power shows the same qualitative response as in stage I (loading) but with a peak at q = -1.7 W/g. Despite its lower amplitude compared to loading, it is around twice as large as the mechanical power, which reaches

P mech = -0.8 W/g.
• Stage IV: During the second hold time, the thermal power is zero.

From the energy curves, the following observations are made:

• Stage I: During loading there is a monotonic increase in thermal and mechanical energy, reaching a maximum of E th = 8.3 J/g and E mech = 4.3 J/g, respectively.

• Stage II: At the beginning of the first hold-time, there is a slight drop in the energy level for both thermal and mechanical energy. Then the energy tend to a constant level, once no power is generated during this stage.

• Stage III: During unloading, there is a decrease in thermal and mechanical energy. This is due to the endothermic reverse transformation and to the strain recovery.

• Stage IV: The energy levels at the end of stage III remain constant during the second hold-time. The mechanical energy, which is equivalent to the hysteresis area on the stress-strain curve, is E mech = 1.4 J/g. The thermal energy during this stage is close to the mechanical energy, i.e. around E th = 1.8 J/g. The minor difference between both energies, which is of the order of experimental error [START_REF] Ramos De Oliveira | Study of thermomechanical couplings in nanostructured superelastic nickel-titanium wires[END_REF], suggests that a thermodynamic cycle is performed. A similar result was obtained by [START_REF] Balandraud | Monotone strain-stress models for shape memory alloys hysteresis loop and pseudoelastic behaviorx[END_REF] for a CuZnAl alloy. a decrease in thermal activity, possibly due to a decrease in the phase transformation rate. The same trend is observed regarding the mechanical power.

Thermal power starts to decrease from the beginning of unloading. It reaches its minimum around 1.7% strain. Mechanical power, however, shows a monotonically decreasing response, starting at 4.5%. The recoverable nature of this phenomenon is qualitatively revealed as an almost symmetrical load-unload path.

As shown in Fig. 7, the strain rate was not constant during the test. This variation was most likely due to fact that the test was performed with a constant machine crosshead speed. Actual strain rate was measured locally by DIC. Hence, any sample slip and/or accommodation of grips set-up may have caused the observed variation in the strain rate. Thus, thermal and mechanical powers were normalized by the strain rate measured by DIC to avoid misleading interpretations due to strain rate variations.

The normalized powers are plotted in Figs. 8a and 8b as a function of strain and stress, respectively. The normalized thermal power in Fig. 8a shows the same qualitative response presented in Fig. 7. From this observation, the strong presence of phase transformation is noted from 0 to 3% strain, as well as its weakening from 3% strain until the end of loading. Analogously, in Fig. 8b the thermal power peak takes place around 700

MPa on loading, which is approximately the end of superelastic "plateau" (zone where the phase transformation is more pronounced) observed in Fig. 4a. Dur-315 ing unloading, the thermal peak appears at approximately 350 MPa, which is the end of the unloading "plateau" on the stress-strain curve shown in Fig. 4a. In Fig. 8d, at loading, thermal energy increases to 2 J/g in the range of 0 to 600 MPa. With further loading, from 600 MPa to 800 MPa, it increases from 2 J/g to 8.3 J/g. The same qualitative behaviour is observed for the mechanical energy, where most of the energy is released in the zone where the stress is more constant on the stress-strain curve.

Energy

Rupture test

Figure 9 shows the normalized power and energy as a function of true strain for the tensile test until rupture. The curves in Fig. 9a have the same qualitative behaviour as in the cyclic tensile test in Fig. 8a: an increasing monotonic thermal response reaching a maximum at approximately 3% strain, followed by a decrease. During the rupture tests, the decrease continues until approximately 10% strain. Then a slight increase in the normalized thermal power is observed before rupture.

In the same manner, Figure 9b shows the qualitative behaviour observed in Fig. 8c regarding thermal and mechanical energy. A maximum of 19.3 J/g is reached by thermal energy while the mechanical energy reaches 15.3 J/g at the end of the test. However, due to the presence of plastic deformation, the energy levels cannot be exclusively associated with phase transformation.

Discussion

Deformation mechanisms in SMA

Deformation mechanisms in NiTi alloys include elastic strain and martensitic transformation [START_REF] Šittner | R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals[END_REF]. Plastic deformation may be involved but is only effective at high strain [START_REF] Brinson | Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: Micro and macromechanical investigations via in situ optical microscopy[END_REF]. The additive decomposition of the total strain rate ( ε) is 350 thus assumed to be: ε = εel + εin = εel + εtr + εpl [START_REF] Shi | Grain size effect on the R-phase transformation of nanocrystalline NiTi shape memory alloys[END_REF] where εel = σ/E and εin are the elastic and inelastic strain rates, respectively, and E is the Young modulus. The inelastic strain rate ( εin ) includes the strain rate due to phase transformation ( εtr ) and to plasticity ( εpl ).

In this study, the Young modulus is E = 70 GPa. This value, measured by 355 dynamic mechanical analysis, is the same for austenite and oriented martensite [START_REF] Alonso | Characterizing transformation phenomena and elastic moduli of austenite and oriented martensite of superelastic thin NiTi wire through isothermal Dynamic Mechanical Analysis[END_REF].

Analogously, the thermal power is decomposed as in Eq. 6: q = qthel + qin = qthel + qtr + qpl [START_REF] Sergueeva | Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing[END_REF] where the thermoelastic heat source is qthel = -(αT 0 /ρ) σ, calculated with the coefficient of thermal expansion α = 1.1 × 10 -5 K -1 [27], T 0 is the test temperature, ρ = 6500 kg m -3 is the volumic mass and σ = dσ/dt is the true stress rate; qin is the inelastic thermal power, qtr is the heat source associated with phase transformation and qpl is associated with the dissipated power due to plasticity.

Lastly, the mechanical power per unit of mass can be decomposed as in Eq.

7:

P mech = P mech el + P mech in [START_REF] Yu | Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing[END_REF] where the elastic and inelastic mechanical power per unit of mass are: P mech el = 1 ρ σ εel and P mech in = 1 ρ σ εin , respectively. Furthermore, thermal and mechanical energy are also decomposed into elastic and inelastic portions, as described before. They are calculated through time integration of their respective power components.

Impact of thermoelasticity on thermal power and energy

An analysis of the cyclic test results described in section 3.4.1 is proposed in this section. Thermal power ( q/ ε) and inelastic thermal power ( qin / ε), both normalized by strain rate, are plotted on the left ordinate axis in Fig. 10.

Variations in the ratio between inelastic thermal power and mechanical power ( qin /P mech in ) are indicated in the right axes. These quantities are plotted in Fig. 10a and Fig. 10b, respectively. The normalized inelastic thermal power ( qin / ε) is slightly higher than the thermal power ( q/ ε). This difference is clearer at the beginning of loading, i.e. between 0 -2% in Fig. 10a and 0-600 MPa in Fig. 10b. These ranges represent the portion of the superelastic loop where the elasticity is the most important strain component.

The limits of these ranges also correspond to the change of slope on the stress-strain curve plotted in Fig. 3a. The thermal power at the beginning of loading (up to 0.1% strain or 50 MPa) is negative. Endothermic heat sources due to thermoelastic coupling could explain such negative thermal power. Thereafter, and before the end of the initial constant stress-strain slope, the thermal power is positive, revealing the presence of exothermic heat sources due to phase transformation. When the superelastic "plateau" is reached (between 2-4.8% in Fig. 10a and 600-800 MPa in Fig. 10b) qin and q are close.
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The ratio between inelastic thermal and mechanical power ( qin /P mech in ) quickly increases to a value close to 6 and then decreases until around 2. During unloading, this ratio changes monotonically from around 2 to 7 at the end of unloading. Such high values imply a significant thermal effect compared to the mechanical power. This ratio, commonly reported in the literature as the Taylor 395 20 and Quinney coefficient, is usually less than 1 for plastic deformation of metals or polymers [START_REF] Zaera | On the Taylor-Quinney coefficient in dynamically phase transforming materials. Application to 304 stainless steel[END_REF][START_REF] Zaera | A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates[END_REF][START_REF] Rittel | On the conversion of plastic work to heat during high strain rate deformation of glassy polymers[END_REF]. The thermal and mechanical power ratio greater than 1 could be explained by the presence of deformation mechanisms other than plasticity, i.e. phase transformation in the present case.

Analogously to Figure 10, Figures 10c and10d present the energy and energy ratio results as a function of strain and stress, respectively. The thermal energy (E th ) and the inelastic thermal energy (E in ) are on the left ordinate axes. Thermal energy was calculated using Eq. 2 and the data shown in Fig.

The evolution of the ratios between inelastic thermal energy and mechanical

energy (E in /E mech in ) are on the right axes.

A slight difference between thermal energy (E th ) and inelastic thermal energy (E in ) is observed and could be explained by the thermoelasticity occurring at the beginning of loading. However, no difference is observed at the end of unloading, highlighting the reversibility of the thermoelastic effect.

For the ratio between inelastic thermal and mechanical energy, a sudden rise from 0 to around 5.5 is observed during loading. Then a decreasing tendency to a ratio of 2.5 is observed. In a similar manner, [START_REF] Peyroux | THERMOMECHANI-CAL COUPLINGS AND PSEUDOELASTICITY OF SHAPE MEMORY ALLOYS[END_REF] and [START_REF] Balandraud | Monotone strain-stress models for shape memory alloys hysteresis loop and pseudoelastic behaviorx[END_REF], studying thermal and mechanical energy of a CuZnAl SMA, reported a ratio of 10.

Thermodynamics of martensitic transformation

Thermodynamic framework

Several thermodynamic frameworks have been proposed to describe the thermomechanical behaviour of shape memory alloys. This work is based on the approach developed by Ortin and Planes and Wollants et al. [START_REF] Ortín | Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations[END_REF][START_REF] Ortín | Thermodynamics of thermoelastic martensitic transformations[END_REF][START_REF] Ortín | THERMODYNAMICS AND HYSTERESIS BE-HAVIOUR OF THERMOELASTIC MARTENSITIC TRANSFORMA-TIONS[END_REF][START_REF] Wollants | Thermally-and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics[END_REF]. It expresses the martensitic transformation as a diffusionless first order reversible transformation at the scale of an elementary volume. The occurrence of a thermoelastic martensitic transformation is determined by the Gibbs free energy (G) balance at equilibrium, which is given by the condition dG = 0. For a thermoelastic martensitic transformation in a polycrystalline matrix, the free energy per unit mass changes over an infinitesimal step of martensite fraction df m of transformation is expressed as [START_REF] Ortín | Thermodynamics of thermoelastic martensitic transformations[END_REF][START_REF] Wollants | Thermally-and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics[END_REF]:

dG = (∆H c -T ∆S c )df m + δE st + δE f r -δW tr mech = 0 ( 8 
)
where:

• dG = (∂G/∂f m )df m = G df m ;
• ∆H c is the difference between the specific enthalpies of martensite and austenite;

• ∆S c is the difference between the specific entropies of martensite and austenite;

• f m is the mass fraction of martensite defined in the elementary volume.

It depends only on time and its time derivate dfm dt is denoted ḟm .

• T is the temperature; All terms in Eq. 8 are algebraic values expressed as energy per unit mass in J/g. The infinitesimal martensite mass fraction step (df m ) is positive during forward transformation and negative during reverse transformation. The term δE f r is the sum of all irreversible energies, such as the energy dissipated through dislocation and interface movement. Moreover, the term δE f r is always dissipated, thus is always positive. E f r is then positive during forward transformation and negative during reverse transformation. Equation 8 can be rewritten as:

• δE st = (∂E st /∂f m )df m = E st (f m )df m is
∆H c -T ∆S c + E st + E f r -W mech = 0 (9)

Transformation heat source

The transformation heat source qtr is defined as:

qtr = qtr chem + qtr diss = -T ∆S c ḟm + E f r (f m ) ḟm = ∆H tr (f m ) ḟm ( 10 
)
where ∆H tr is the specific latent heat and qtr chem and qtr diss are the chemical and dissipative parts of qtr . Assuming that E f r is totally converted into heat [START_REF] Wollants | Thermally-and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics[END_REF], ∆H tr can be written as:

∆H tr = -T ∆S c + E f r (11) 
or using Eq. 9

∆H tr = -∆H c -E st + W mech (12) 

Forward and reverse specific latent heat

Analyzing Eqs. 11 and 12 for a transformation cycle (forward and reverse transformations):

• On loading (A -M ), with ḟm > 0:

∆H A-M tr = -T A-M ∆S c + E A-M f r (13) 
and

∆H A-M tr = -∆H c -E A-M st + W A-M mech (14) 
• On unloading (M -A), with ḟm < 0:

∆H M -A tr = -T M -A ∆S c + E M -A f r (15) 
and

∆H M -A tr = -∆H c -E M -A st + W M -A mech (16) with 
• ∆S c < 0 and ∆H c < 0;

• E A-M f r > 0 and E M -A f r < 0; • E A-M st > 0 and E M -A st > 0; • W A-M mech > 0 and W M -A mech > 0.
Combining Eqs. 13 and 15:

∆H A-M tr -∆H M -A tr = -(T A-M -T M -A )∆S c + (E A-M f r -E M -A f r ) (17) 
With the terms

E A-M f r > 0 and E M -A f r
< 0, the second term on the right hand side of Eq. 17 is always positive. Moreover, as the component ∆S c is a negative constant, the first term on the right hand side is also positive. However, its magnitude is strongly dependent on the temperature variation.

On the other hand, combining Eqs. 14 and 16 results in:

∆H A-M tr -∆H M -A tr = -(E A-M st -E M -A st ) + (W A-M mech -W M -A mech ) (18) 
The difference in stored energy between loading and unloading (E

A-M st - E M -A st
) is very often assumed to be zero since the stored energy is considered to be reversible. From that, the difference in specific latent heat between loading (∆H A-M tr ) and unloading (∆H M -A tr ) can be written as the difference in mechanical work. Then, Eq. 18 is written as: 

∆H A-M tr -∆H M -A tr = W A-M mech -W M -A mech (19) a 

Characterisation of the martensitic transformation

Determination of transformation strain (∆ε tr )

To determine the transformation strain ∆ε tr several superelastic tensile tests were carried out at different strain levels between 7% and 11%. The tests were performed on a Gabo Qualimeter testing machine with displacement control and crosshead speed of 10 -5 s -1 . The tests consisted of loading the wire (at room temperature) until deformation ε a , unloading until zero stress, and then heating the wire at 373K. Figure 11a schematically presents a superelastic cycle with the decomposition of strain. At the end of loading, the total strain ε a is composed by an elastic strain ε el a , a plastic strain ε pl a and a transformation strain ε tr a . After unloading, a final strain ε b is achieved. Heating above the finishing temperature of reverse martensitic transformation triggers partial strain recovery, allowing the material to reach the final strain level ε c .

The strain ε a is written as:

ε a = ε el a + ε in a = ε el a + ε tr a + ε pl a ( 20 
)
with ε el a = σ a /E and ε in a being the inelastic strain.

Assuming ε pl a = ε c , Eq.20 can be rewrited as:

ε tr a = ε a -ε c - σ a E (21) 
All values on the right hand side of Eq. 21 can be measured experimentally.

Theoretically, the transformation strain ε tr a increases with increasing ε a until a maximum denoted ∆ε tr , when the phase transformation is complete, i.e. f m = 1. The evolution of ε tr a with ε in is then assumed to follow a curve similar to that in Fig. 11b.

Figure 11c shows the experimental results of tests carried out using the aforementioned method. In the present study, the tested wires reached rupture before the theoretical asymptotic value. From this figure, a default value of 8% was adopted for ∆ε tr . This value is in agreement with that used in two previous studies. The first one was the work published by [START_REF] Orgéas | Stress-induced martensitic transformation of a NiTi 41 alloy in isothermal shear, tension and compression[END_REF] in which they observed that the ∆ε tr of A-M transformation was around 8%. The second is from [START_REF] Miyazaki | The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals[END_REF], describing the orientation dependence of the transformation strain ∆ε tr in NiTi single crystals.

Transmission electron microscopy (TEM) performed in the cold worked and annealed NiTi wires showed a preferred crystallographic orientation along the 110 direction [START_REF] Ramos De Oliveira | Study of thermomechanical couplings in nanostructured superelastic nickel-titanium wires[END_REF]. From the work of [START_REF] Miyazaki | The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals[END_REF], ∆ε tr ranges from 8% to 9% in this direction.

Analyzing the thermomechanical coupling

The equations presented in Sections 4.1 and 4.3 are now used to further analyze thermomechanical coupling during the SIPT.

Strain rate analysis

In the following it is assumed that the deformation mechanism only consists of elasticity and phase transformation. The effects of plasticity are neglected. Thus, Eq. 5 is rewritten as follows: ε = εel + εin = εel + εtr [START_REF] Malard | In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires[END_REF] The transformation strain rate εtr is assumed to be proportional to the martensite fraction rate: εtr = ḟm ∆ε tr [START_REF] Malard | Microstructure and functional property changes in thin NiTi wires heat treated by electric current -High energy X-ray and tem investigations[END_REF] The proportionality described in Eq. 23 is assumed to be valid in a zone between the beginning and end of phase transformation, i.e. in the "plateau". This zone experiences more intensely the formation of favorably orientend martensite variants, which form before less favorably oriented ones. Far from this zone, the proportionality described by Eq. 23 may not be respected.

Thermal power assumptions

The total thermal power is assumed to consist only of thermoelasticity and phase transformation. The dissipation power induced by plasticity ( qpl ) is neglected. With that, Eq. 6 is rewritten as follows: q = qthel + qin = qthel + qtr [START_REF] Ahadi | Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction[END_REF] where the thermal power due to phase transformation ( qtr ) is:

qtr = ḟ ∆H tr (25) 
The proportionality described in Eq. 25 is assumed to be valid throughout the whole phase transformation.

Determining the ratio qtr εtr

The following expression is obtained from Eqs. 22 to 25:

qtr εtr = qin εin = q + αT0 σ ρ ε -σ E = ∆H f r (f m ) ∆ε tr (26) 
All terms in the third part of Eq. 26 are obtained experimentally. The analysis of the ratio qin / εin is performed separately for the cyclic and rupture tests.

Cyclic Test

Figure 12 shows the ratio qin / εin as a function of total true strain for a cyclic tensile test. This ratio is constant during loading for strains higher than 1.8% and during unloading for strains between 1.8% and 3.6%. The values in the middle zone are rather constant. This behaviour agrees with the assumptions made in section 5.2.1, about Eq. 23 which are valid in a zone away from beginning/end of phase transformation. 

Rupture test

Figure 13 presents the ratio qin / εin as a function of true strain (Fig. 13a) and nominal stress (Fig. 13b) for the tensile test until rupture. Similarly to the curve shown in Fig. 12, three distinct zones can be observed: two gray zones at the beginning and end of transformation, and a rather constant zone in the middle. This result again ratifies the hypothesis put forward in section 5.2.1 and the results shown in Fig. 12. The decrease in the ratio qin / εin after ∼ 7.5% and after ∼ 1200 MPa might be mostly associated with the plastic strain experienced before rupture.

Figure 14a shows the nominal stress and Fig. 14b shows the ratio dσ/dε as a function of true strain. Three zones can be observed in Fig. 14a: I -from 0% to ∼ 2%, II -from ∼ 2% to ∼ 7.5% and III -from ∼ 7.5% until rupture. Zone I Figure 14 shows the evolution of the slope dσ/dε with true strain. This slope is not constant, which indicates that no pure elastic zone is present in the rupture tensile test. At the beginning of a SIPT, with the material in the austenite phase, the slope decreases during loading, reaching a minimum at about the middle of the stress "plateau". Then the slope increases until the end of phase around ∼ 7.5% strain in Fig. 14b indicates the beginning of plastic deformation.

These results support the assumption that the zone between ∼ 2% and ∼ 7.5% strain predominantly contains phase transformation.

Determination of ∆H tr

From the results obtained in section 5.2.3 and assuming that the ratio qtr / εtr is constant in the zone between ∼ 2% and ∼ 7.5% during loading and between 3.6% and 1.8% during unloading, Eq. 26 can be rewritten as:

∆H tr = ( qtr / εtr )∆ε tr (27) 
The specific latent heat (∆H tr ), calculated for both cyclic and rupture tests using Eq. 27 and the experimental data, are shown in Table 1. 14.9 ± 0.2 J/g -These results were obtained with a value of transformation strain ∆ε tr = 8% and in the [1.8%, 3.8%] strain interval for the cyclic test and between ε = 2% and 7.5% strain for the rupture test.

These values are comparable to those obtained by [START_REF] Frenzel | On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys[END_REF] from DSC measurements. The authors showed that for fully annealed NiTi alloys the specific latent heat values decrease from about 30 J/g to 10 J/g with an increase in at.%Ni.

For a Ti-50.9at.%Ni alloy, the values obtained were around 17J/g [46,[START_REF] Frenzel | On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys[END_REF]. ) is associated only with the mechanical energy (W mech ). Rewriting Eq. 19 gives:

Analysis of the difference between ∆H

∆H A-M tr -∆H M -A tr = 1 ρ σ A-M ∆ε tr - 1 ρ σ M -A ∆ε tr (28) 
From the thermal analysis, the difference between specific latent heat on loading and unloading is ∆H A-M tr -∆H M -A tr = 4.7 ± 0.6 J/g. From a mechanical stand point, assuming σ A-M as the mean stress of the forward transformation "plateau" and σ M -A as the mean stress for the reverse transformation "plateau", the difference in mechanical energy between loading and unloading is W A-M mech -W M -A mech = 3.5 ± 0.7 J/g. The mean stress values, as well as the standard deviation, were calculated between 1% and 1.5% transformation strain.

The weak difference between these two experimental results (4.7 and 3.5 J/g) seems to confirm the theoretical relation in Eq. 19.

Estimation of martensite fraction (f m )

The martensite fraction was obtained only for the cyclic test due to the absence of plastic effects. It was calculated by time integration of the martensite fraction rate deduced from Eq. 27, where ḟm = qtr /∆H tr . The ∆H tr values used are in the first column of Table 1.

Figure 15 shows the evolution of the martensite fraction as a function of (a) strain and (b) nominal stress. Loading can be identified by the solid line between 0% and point a in Fig. 15. The red-line delimited by points "a" and "b" corresponds to the hold time at the end of loading. The dashed lines represent the martensite fraction during unloading.

In Fig. 15a, the solid curve shows that A -M phase transformation takes place from the beginning of strain, even before the superelastic "plateau". Likewise, in Fig. 15b during loading, around 5% of martensite is formed between 0 and 400 MPa and more than 10% at 600 MPa. Note that this amount of martensite is present in a strain range commonly considered to be purely elastic. This result is related to the early increasing amount of thermal power observed in Figs. 7, 8 and 10.

Between points "a" and "b" there is a modest decrease in the martensite fraction due to reverse transformation. It is related with the small stress decrease during this hold time, which in turn is associated with the relaxation caused by the temperature decrease. At the beginning of unloading (Fig. 15b), between point "b" and 500 MPa, around 10 % of martensite transforms into austenite. Furthermore, the path described by the martensite fraction in Fig. 15, where its value is higher during unloading than during loading, was also reported in the study of [START_REF] Pelton | In Situ Neutron Diffraction Studies of Increasing Tension Strains of Superelastic Nitinol[END_REF].

A maximum martensite fraction of f m = 0.45 is achieved at the end of loading. This behaviour does not follow what was commonly assumed in literature, i.e. that at the end of superelastic "plateau" all the microstructure in the austenite phase had transformed into the martensite phase [START_REF] Lagoudas | Shape Memory Alloys[END_REF]. Indeed, recent studies using neutron diffraction to measure the crystal phase structure and determine the martensite fraction during stress induced phase transformation have shown that martensite fraction is below unit after the "plateau" [START_REF] Stebner | In Situ Neutron Diffraction Studies of Large Monotonic Deformations of 42 Superelastic Nitinol[END_REF][START_REF] Pelton | In Situ Neutron Diffraction Studies of Increasing Tension Strains of Superelastic Nitinol[END_REF].

Authors in [START_REF] Stebner | In Situ Neutron Diffraction Studies of Large Monotonic Deformations of 42 Superelastic Nitinol[END_REF] obtained a maximum of f m = 0.95 at ε = 11% strain in a stress relieved NiTi rod (Ti-50.8at.%Ni). Such high value for the martensite fraction is expected in stress relieved materials because the grain size tends to increase with the heat treatment intensity, as well as the phase transformation intensity.

For nanostructured materials, however, numerous studies [START_REF] Tsuchiya | Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation[END_REF][START_REF] Waitz | Phase Transformations of Nanocrystalline Martensitic Materials[END_REF][START_REF] Glezer | Martensite Transformation in Nanoparticles and Nanomaterials[END_REF] reveal that the reduced grain size tends to partially suppress martensite phase transformation. It has been shown that the grain size reduction drastically decreases the grain's potential to be a nucleation site [START_REF] Chen | Statistics of martensitic nucleation[END_REF]. In the present study, the material used is assumed to have a nanoscale crystalline structure, since it was submitted to a severe cold work fabrication process and underwent a low magnitude heat treatment [START_REF] Ahadi | Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi[END_REF][START_REF] Tsuchiya | Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation[END_REF] at temperatures below recrystallization. The manufacturing history associated with the absence of transformation peak on DSC curve [START_REF] Tsuchiya | Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation[END_REF] is in accordance with the low level of martensite fraction achieved, as seen in Fig. 15.

Conclusion

This study analyses the thermomechanical tensile behaviour of a cold drawn Ti-50.9at.%Ni wire subjected to heat treatment at 598 K for 30 min, which is below the grain growth and crystallization temperature (623 K). Such low heat treatment temperature induces a superelastic loop without a stress plateau.

However, the absence or weakness of DSC peaks hampers the determination of specific latent heat. This is a common effect of nanostructured materials such as the superelastic wire used in the study. A method using strain and temperature field measurements was developed and used to determine thermal power and thermal energy during superelastic tensile tests through a heat balance. From these results and using a thermodynamic approach, forward and reverse specific latent heat and the martensite fraction as a function of strain and stress were estimated. The calculated specific latent heat values were 19.6 J/g for forward and 14.9 J/g for reverse transformation. A maximum of 45% martensite fraction was calculated when the global strain was limited to about 5%. We also calculated an increase from 0 to 5% of the martensite fraction between 0 and 400 MPa on loading, i.e. commonly considered to be an elastic region. Likewise, in a supposedly elastic zone at the beginning of unloading (between 680 MPa and 500 MPa), around 10% of the martensite fraction was recovered. These results highlight the presence of phase transformation phenomenon throughout 665 the superelastic cycle.

Figure 1 :

 1 Figure 1: a) Tensile response at room temperature (297 K) for different heat treatment temperatures. b) DSC results for the wires with the different heat treatments (the curves are plotted with an offset of 0.0125 W/g).

Figure 2 :

 2 Figure 2: Experimental set-up showing the NiTi wire in the center with extracted thermal and visible images.

Figure 3 :

 3 Figure 3: a) Tensile stress-strain curve during loading of the NiTi wire, where ε is the average logarithmic strain measured with DIC over the length l 0 , defined in Fig. 2. b)

Figure 4 Figure 4 :

 44 Figure4shows the nominal stress-true strain σ 0 -ε curve of the uniaxial tensile test (Fig.4a). The time course of the temperature variation θ and strain ε , both considered uniform, are shown in Fig.4b. This figure also shows the strain rate time evolution ε , calculated by numerical derivation of the strain time evolution. Four distinct stages are outlined, denoted I(0 -a), II(a -b), III(b -c) and IV(c -d):

Figure 5 :

 5 Figure 5: a) Uniform temperature variation θ and thermal power q, presented on left and right axis, respectively, as a function of time. b) Mean and standard deviation of q, calculated in the time interval ∆t shown in a), obtained for different τeq values.

Figure 6 :

 6 Figure 6: Thermal and mechanical power and energy per unit of mass as a function of time for a single superelastic tensile test at ε = 10 -2 s -1 . On the right, close-ups of stages I and III of power curves and of energy curves at the end of stage IV.

3. 4 .Figure 7 Figure 7 :

 477 Figure7shows, in a function of true strain ε , the thermal ( q) and mechanical (P mech ) power per unit of mass (on the left ordinate axis) and strain rate ( ε) (on the right ordinate axis). The dots represent the loading and the empty circles represent the unloading.The thermal power increases from the beginning of loading. The non-zero values at low strain levels confirm that phase transformation begins early in stage I. The increase stops at approximately 3% strain. Beyond this point, thermal power decreases slightly until the end of unloading. This behaviour suggests

Figure 8 :

 8 Figure 8: Thermal and mechanical power normalized by the strain rate in function of (a) true strain and (b) nominal stress; and thermal and mechanical energy normalized by the strain rate in function of (c) true strain and (d) nominal stress.

Figure 8c and d 4 J

 4 Figure 8c and d shows thermal and mechanical energy per unit of mass as

Figure 9 :

 9 Figure 9: a) Thermal and mechanical power normalized by the strain rate as a function of true strain. b) Thermal and mechanical energy as a function of true strain.

Figure 10 :

 10 Figure 10: Normalized inelastic thermal power ( qin / ε) and normalized thermal power ( q/ ε) on the left ordinate axes; ratio between inelastic thermal power ( qin ) and inelastic mechanical power on right ordinate axes ( qin /P mech in ) as a function of a) true strain and b) nominal stress. (c) and (d) are organized in the same manner, showing thermal energy (E th ), inelastic thermal energy (E in ) and energy ratio (E in /E mech in ).

  the stored energy in the elementary volume transformed in the infinitesimal step df m ;• δE f r = (∂E f r /∂f m )df m = E f r (f m )df m isthe friction energy dissipated in the infinitesimal step df m ; • δW tr mech = (∂W mech /∂f m )df m = W mech (f m )df m is the external mechanical work per unit mass of the elementary volume performed during the infinitesimal step df m .

Figure 11 :

 11 Figure 11: a) Scheme of a superelastic cycle of SMA showing the residual deformation after loading (εa), after unloading (ε b ) and after heating (εc). (b) Theoretical evolution of ε tr a with the inelastic strain ε in . c) Experimental data used to determine the transformation strain ∆εtr value.

Figure 12 :

 12 Figure 12: Ratio qin / εin , computed using experimental data and Eq. 26, as a function of true strain. The experimental error is ±5 J/g.

Figure 13 :Figure 14 :

 1314 Figure 13: Ratio qin / εin computed with Eq. 26 and experimental data from the rupture test as a function of a) strain and b) nominal stress.

tr

  As shown in Eq. 12, the specific latent heat of transformation ∆H tr of the SMA wire in tension consists of a enthalpy change ∆H c , an elastic energy E st stored or released during the transformation process and a mechanical workW mech = 1ρ σ∆ε tr . As shown in Eq. 19, the difference between forward and reverse transformation enthalpies (where ∆H A-M tr > ∆H M -A tr

Figure 15 :

 15 Figure 15: a) Martensite fraction as a function of a) strain and b) nominal stress. The solid lines represent loading and dashed lines unloading.

Table 1 :

 1 Mean specific latent heat values during loading and unloading for cyclic and rupture tests.

		Cyclic Test	Rupture Test
	∆H A-M tr	19.6 ± 0.4 J/g 20.2 ± 1.3J/g
	∆H M -A tr	

transformation. Once plastic deformation is present and the slope dσ/dε again decreases with a further increase of strain. Based on this, the inflection point
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