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ABSTRACT

Until now, mesoscale oceanic eddies have been automatically
detected through physical methods on satellite altimetry.
Nevertheless, they often have a visible signature on Sea Sur-
face Temperature (SST) satellite images, which have not been
yet sufficiently exploited. We introduce a novel method that
employs Deep Learning to detect eddy signatures on such
input. We provide the first available dataset for this task,
retaining SST images through altimetric-based region pro-
posal. We train a CNN-based classifier which succeeds in
accurately detecting eddy signatures in well-defined exam-
ples. Our experiments show that the difficulty of classifying
a large set of automatically retained images can be tackled by
training on a smaller subset of manually labeled data. The
difference in performance on the two sets is explained by the
noisy automatic labeling and intrinsic complexity of the SST
signal. This approach can provide to oceanographers a tool
for validation of altimetric eddy detection through SST.

Index Terms— Mesoscale Eddies, Oceanography, Sea
Surface Temperature, Deep Learning, Remote Sensing

1. INTRODUCTION

Mesoscale eddies are oceanic vortices with horizontal scales
on the order of few tens of kilometers and lifetime on the
order of weeks or months. These large, coherent structures
can trap and transport heat, salt, pollutants and various bio-
geochemical components from their regions of formation to
remote areas [1]. Their dynamics can impact significantly
the biological productivity at the ocean surface [2, 3], modify
the mixed layer [4], amplify locally the vertical motions [5]
and even concentrate and transport microplastics [6]. Thanks
to spectacular advances in satellite altimetry, automatic eddy
detection and tracking algorithms have become essential ana-
lytical tools for studying the dynamics of oceanic eddies.
Plenty of these algorithms, based on multi-satellite al-
timetry maps, have been developed during the last ten years
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(we cite some; [7, 8, 9]). These algorithms use geometrical
properties of the Sea Surface Height (SSH) field and/or the
streamlines of the derived velocity field to detect and track in
time vortex structures. However, altimetry satellite products
undergo large spatio-temporal interpolation between the areas
crossed by satellite tracks, producing low-resolution fields as
well as uncertainty in areas which have not been adequately
sampled. Recent studies show that many oceanic eddies could
be missed or wrongly detected [10].

On the other hand, eddy signatures are also apparent
in visible satellite imagery such as Sea Surface Tempera-
ture (SST), Ocean Color/Chlorophyll (C'H L), or synthetic-
aperture radar (SAR images). Even if visible imagery has
much higher resolution than altimetry, it may be frequently
covered by clouds and the few detection algorithms that have
been developed on SST (e.g. [11, 12]) hardly exploit their
complex patterns. Deep Learning has been rapidly gaining
in popularity and solving problems in remote sensing [13],
climate and the environment [ 14]. Machine learning methods
have also been used in previous studies to tackle altimetric
eddy detection and tracking on the SSH field via pixel-wise
classification [15] or LSTM [16], as well as the velocity field
[17]. Albeit their important contributions, they are restricted
the limitations of the altimetry field perse (that is, its interpo-
lation) on which the learning dataset is based. Deep learning
has also been reportedly employed for classification of eddy
signatures in SAR images [18].

In this study we seek to harness the potential of deep
learning on the visible satellite imagery of Sea Surface
Temperature, which contains high-resolution vortex signa-
tures. To this purpose, we introduce a novel method to
obtain a dataset of SST images based on altimetric de-
tection. The SST dataset is available on demand through
https://www1.lmd.polytechnique.fr/dyned/data-base.We train
a CNN-based classifier which is able to accurately detect
eddy signatures on well-defined, manually selected cases.
The classifier is tested on a larger set containing noisy labels
and shows potential in selecting the accurately labeled images
and correcting false labels. This methodology could serve to
validate altimetric eddy detection through SST.
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Fig. 1. Altimetric field with superimposed geostrophic velocity vectors (left) and SST field (right) in the Levantine Sea on the
08/06/2017. Maximum velocity contours detected by AMEDA on altimetry are superimposed on both figures. On the rightmost
one, the blue box represents a sample AE Aol, the big black box represents a sample NFE Aol, and the smaller black box

inside it shows the area of no-contour constrain.

2. SST EDDY IMAGE DATASET

2.1. Localizing SST images through altimetric detections

The task of this study consists in classifying SST images
which can contain either the signature of an Anticyclonic
Eddy (AFE), a Cyclonic Eddy (CE) or No Eddy signature
(N E). Anticyclones (cyclones) rotate in the opposite (same)
direction with the earth’s rotation, that is clockwise (counter-
clockwise) in the Northern Hemisphere.

To create a data-set of SST images, the Mediterranean
Sea is chosen as the domain of study, where through the
CMEMS we receive 720 daily high-resolution images for the
period of 2016-2017. These images, produced as desribed in
[19], consist of of supercollated SST data with a resolution
of 1/12° and are representative of night S.ST values.

To localize and retain Areas of Interest (Aol) containing
AFE and CFE signatures on the SST field, we utilize the daily
outputs of the Angular Momentum Eddy Detection and track-
ing Algorithm (AM E D A) [9], working on satellite altimetry
and applied on the AVISO/DUACS field of geostrophic ve-
locities. The AMEDA detects eddies by identifying minima
and maxima on the geostrophic velocity field and selecting
closed streamlines around them. The algorithm does also dy-
namically track eddies backward and forward in time, as well
as identifies their merging and splitting events. Eddy tracks
detected by AMEDA, labeled as AE or C'E based on their
sense of rotation, with information on the closed contour of
maximum velocity and other properties, are contained in the
DYNED-Atlas !

IThe DYNED-Atlas, containing more than 11500 eddy tracks for the
2000-2017 period in the Mediterranean Sea, is publicly available through:
https://www 1.lmd.polytechnique.fr/dyned/data-base

For each day of the two-year period of study, we co-
localize the AE and C'E contours received from AMEDA
with the SST images both referring to the domain of the
Med Sea. In this sense, physical detections on altimetry act
as a region proposal for class-representative SS7T" image ex-
traction. Around each AMEDA contour we crop a Aol with
side k = X * R,,4. Where R, .. is the radius of a circle of
equivalent area with the AMEDA maximum velocity contour,
and A = 5. These Aol are interpolated to a constant size of
m = X\ * Ry,q.(km) where R,,,, = 42.5km is the mean
maximum velocity radius of all AMEDA contours retained,
resulting in an image size of m = 230 pixels. In order to
receive SST images labeled as N FE, that is, not containing
an eddy signature, an Aol of size m = 230 pixels is slided
along the domain of the Mediterranean Sea. Aol that do not
contain any AMEDA contour in their center (in a smaller
box of side R,,,,) are retained as N FE images. The above
methodology is visualized in Figure 1.

All the retained images are also furtherly filtered based
on the altimetric satellite track coverage of the Aol and the
cloud coverage of the SST image. Thus SST images corre-
sponding to altimetric detections with the lowest uncertainty
are selected. A threshold of 50% is selected as the maximum
missing values due to clouds for an image to be retained.

2.2. Dataset features and labels

We automatically retain a dataset of SS7T" images with 4000
images for each of the AE,CFE and NE classes (total of
12000 images). These are one-channel images with values
that represent the grid temperature in degrees Celsius.
Examples of images contained in the Dataset are given in
Figure 2. They are distincted based on whether they contain
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Fig. 2. Samples of S ST images, plotted together with the
AMEDA contours. Columns represent the three classes.
Dashed line boxes on N E images represent the areas of no-
contour constrain. Examples with both accurate and noisy la-
bels are given. Colours represent one channel images in a per-
ceptually uniform jet colormap between the 5th and the 95th
percentile of the image range of temperature values. Clouds
are visualized with white colour and land with a gray patch.

an eddy signature (AE, C'E) or not (N E). Apart from their
sense of rotation, eddy signature images can also be visually
characterized by the sign of their core anomaly: both warm
and cold core cases exist for the two classes AE and C'E.

In order to enhance feature extraction and generalization,
two methods are followed: The first consists of applying ro-
tational augmentation during the training process. This way,
rotational invariance, on images which depict physically ro-
tating structures, can be learned. The second concerns cloud
coverage: all cloud cover pixels are set to zero value. An ex-

Setup Test Accuracy
EDDIES-HL 929+13%
EDDIES-HL (+Mask) 93.8+1.1%
EDDIES-HL (+Rotation) 947+ 1.0
EDDIES-HL (+Mask+Rot) | 95.6 £0.5 %

Table 1. Test accuracy for different setups on the EDDIES-
HL dataset training. Reported scores are means + stdev, of
the 5-fold cross validation.

tra channel of a semantic mask is added to each image, where
all non cloud points are set to a value of one.

Noisy labels are contained in the Dataset: images selected
through AMEDA contours and labeled as AE or C'E might
not contain eddy signature or, mutatis mutandis, images la-
beled as N E might contain the signature of an eddy missed
by AMEDA. Mislabeling by AMEDA can be due to intrin-
sic limits of the altimetric dataset or algorithm errors. Cloud
coverage and air-sea processes can also affect significantly
the surface eddy signature. Through visual sampling of the
automatically received, noisy labeled, Dataset, we diagnose
a 20% of images being accurately labeled and a 80% con-
taining false or uncertain labels. Because of this effect we
manually separate 1,200 images (400 per class) creating a of
handpicked, accurate labeled (here on EDDIES — HL) and
class-representative examples. From the total Dataset we re-
move the images contained in the EDDIES-HL dataset to re-
ceive a large dataset of 10,8000 images containing noisy la-
bels (here on EDDIES — AUTO).

3. TRAINING A CNN-BASED CLASSIFIER

Convolutional Neural Networks have been exceptionally suc-
cessful in practical applications which consist of processing
complex imagery, as is the case of the satellite data used here.
A CNN-based classifier is employed to treat the 3-class prob-
lem, using a Cross-Entropy Loss, Stochastic Gradient De-
scent with momentum and a SoftMax output. Residual Net-
works [20] use skip connections between layers in order to
build efficient Deep Architectures. A pretrained ResNetl8
architecture is used in this study, downloaded through the
torchvision package of the Pytorch library. All 18 layers are
finetuned during the training process.

Apart from the test set, a validation set (consisting of 10%
of the train set) is used in our experiments. This allows early
stopping based on loss function convergence to a local mini-
mum with a certain patience, in order to avoid overfitting.

4. RESULTS AND DISCUSSION

A 5-fold stratified cross validation is performed through a
80/20 train/test split on the EDDIES-HL dataset. For four
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different setups, the mean and standard deviation of the accu-
racy on the test set, is shown on Table 1. The positive effect of
adding a semantic mask and a rotation is seen through the in-
crease in mean accuracy and decrease in divergence of models
trained on different folds.

For a more in depth view of model performance, the nor-
malized confusion matrix on the EDDIES-HL set (using both
the semantic mask and rotational augmentation techniques)
is plotted in Figure 3(a). An overall accuracy of 95.6% is
achieved, with a good convergence between different folds
(o0 = 0.5%). The high precision on the AE denotes the preva-
lence of clear signatures in anticyclonic images. Also the zero
missprediction between AE and C'E classes depicts the abil-
ity of our model to clearly separate between eddy signature
classes. The model shows small error in discriminating C'E
images from N E. This can be explained by the fact that cy-
clonic signatures are in general weaker on SST than anticy-
clonic ones.

The performance of the models trained on the EDDIES-
HL dataset is then evaluated on the EDDIES-AUTO dataset.
The results of the confusion matrix in Figure 3(b) shows the
difference between the label predicted by the model and the
(noisy) label of this dataset. The drop in accuracy here, is
caused by the false labels as well as the larger variance of
features (increased cloud coverage and unclear signatures) of
the images contained in EDDIES-AUTO. Nevertheless, the
model is still able to separate clearly the AF from C'E signa-
tures.

In Figure 3(c) some characteristic examples of the above
matrix are visualized, illustrating the ability of the model to
predict physically accurate labels on noisy labeled images.
Samples outside of the diagonal are examples of false label
corrections. The confidence of the model is also evaluated by
visually inspecting 400 correctly predicted images per class,
above a score threshold of ¢ = 0.90. Of them 90% of AE,
70% of CE and 95% of NE have a visual signal correspond-
ing to their predicted label. The model trained on the well-
defined samples shows therefore robust performance in se-
lecting the accurately labeled AE and N E' images among the
noisy labeled ones, which could be used to further enlarge
the EDDIES-HL dataset in a semi-supervised learning fash-
ion. Performance is less reliable for the C'E class, depicting
that the signature of cyclones on SST' is more complex and
difficult to distinguish.

5. CONCLUSION AND PERSPECTIVES

In this study classification of mesoscale oceanic eddy signa-
tures in Sea Surface Temperature Images is introduced. A
methodology is presented to automatically obtain a dataset of
S ST images, using region proposal provided by physical de-
tections on the altimetric field. An accuracy of 95.6 £ 0.5
is performed on a manually selected dataset of 1200 images
with accurate labels (EDDIES-HL), by finetuning a pretrained

(a) Confusion: EDDIES-HL (b) Confusion EDDIES-AUTO

(c) Samples from EDDIES-AUTO confusion matrix

Fig. 3. (a-b): Normalized Confusion Matrices of the model
trained with a 5-fold cross validation on the EDDIES-HL
dataset and tested on the two different datasets. (c): Char-
acteristic samples corresponding to cells of the matrix in (b).

ResNet18. The same network is tested on a larger dataset with
noisy labels (EDDIES-AUTO) in order to evaluate its ability
to select among them those accurately labeled, and correct
false labels. Our CNN-based classifier shows robust perfor-
mance in detecting Anticyclonic Eddy signatures in images
and a less reliable one in detecting Cyclonic Eddy signatures.

In future work, methods used for treating and correcting
noisy labels [21, 22, 23] can be utilized to self-learn on a large
dataset of noisy-labeled images guided through a dataset of
accurate labeled ones. Ultimately, object detection and track-
ing methods as in [24, 25] could be applied on multi-modal
images containing eddy signatures, harnessing the power of
deep learning to surpass the limits of altimetric eddy detec-
tion.
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