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PHYSICAL PARAMETERS OF AN OSCILLATOR CHANGED BY ACTIVE CONTROL APPLICATION TO A XYLOPHONE BAR

By applying active control to an oscillator, its modal behaviour changes. This paper makes a comparison between a second order damped harmonic oscillator and a xylophone bar's mode. Then it proposes a method for acting on an eigen resonance of a xylophone bar. The purpose is to get sound modifications, by bringing under quantitative and independent control its pitch and its duration. Thus it extends our previous work [1], by using a digital feedback controller.

INTRODUCTION

The sound emitted by a xylophone bar strongly depends on the localization and the shape of its eigen resonances. Thus changing the relative position and amplitude between the resonances should alter the bar's sound identity. This paper proposes a method for controlling in real time the resonance frequency and the damping factor of a xylophone bar mode. The variation of these parameters is intended to be independent and under quantitative control.

Active control of sound

Active control of sound is sound field modification. Various technological applications have been reported since the beginning of the last century, particularly around noise cancellation. The earliest patent, expressing how to compensate a sound signal by another one in antiphase, was submitted in 1933, by the German inventor P. Lueg [START_REF] Lueg | Process of silencing sound oscillations[END_REF]. The device is described by D. Guicking [START_REF] Guicking | On the invention of active noise control by paul lueg[END_REF] and presented in Fig1.

Figure 1: Illustration page from P. Lueg's U.S. patent [START_REF] Lueg | Process of silencing sound oscillations[END_REF] In 1995, an active control method was applied to a xylophone bar in order to cancel the damping on a chosen vibration mode [START_REF] Besnainou | Modal stimulation: a sound synthesis new approach[END_REF]. At the time we were using an analog feedback corrector which prevented us from achieving totally independent variations of the resonance frequency and the damping factor. The method described in this paper also uses an active control technique but with a digital feedback controller in order to get more accuracy on the mode parameters to modify.

Framework

The first part is dedicated to the theoretical review. First is described the behaviour of a second order harmonic oscillator when a PID (Proportional, Integral, Derivative) correction is applied. In the second part the transfer function of this system is compared to the frequency response of a xylophone bar around one of its eigen resonance. Then the validity of such a physical model will be discussed. Lastly a method is proposed for controlling in real time the resonance frequency and the damping factor of an eigen mode on the real xylophone bar.

PID CORRECTION ON A SECOND ORDER HARMONIC OSCILLATOR

The frequency response of a xylophone bar around one eigen resonance looks like the response of a second order damped harmonic oscillator. This assumption is verified below (cf part 3). This part describes the effect of a PID correction on the resonance frequency, the damping factor and the static gain of such an oscillator.

Expression of the oscillator's response parameters

Let us consider a {mass M , stiffness K, damping R} mechanical system as our theoretical model: cf Fig2

M du dt + Ru + K u(t)dt = Fext ( 1 
)
where u is the velocity oscillation. The expression of the resonance pulsation is:

ω0 = K M (2) 
Assuming Fext and u are the respective system input and output, equation [START_REF] Besnainou | Modal stimulation: a sound synthesis new approach[END_REF] gives the transfer function in the Laplace space, plot- 

H(s) = U (s) Fext(s) = 1 M s + R + K s ( 3 
)
where s is the Laplace variable. The static gain H0 is defined as the maximum value of |H(jω)|

H0 = |H(jω0)| = 1 R (4) 
The damping factor Q indicates how selective the frequency response is;

Q = ω 0 ω 2 -ω 1 , where |H(jω1)| dB = |H(jω2)| dB = H0| dB -3dB. Therefore, Q = √ KM R (5) 
Figure 3: Visualization of the oscillator's parameters: f0, Q and H0

PID correction on the oscillator

A PID controller provides a force Fcorr, which value is a sum of three terms proportional to its input u, its integral u, and its derivative u:

Fcorr = P u + I u(t)dt + D du dt (6) 
Then the relation ( 1) is modified: [START_REF] Cremer | Physik der Geige[END_REF] describes the motion of an other oscillator, whose parameters have been changed:

(M -D) du dt + (R -P )u + (K -I) u(t)dt = Fext (7) ( 
ω 0 = K -I M -D , Q = (K -I)(M -D) R -P , H 0 = 1 R -P (8)
While the variations of ω0, Q and H0 are defined by: ∆ω0 =

ω 0 ω 0 -1, ∆Q = Q Q -1 and ∆H0 = H 0
H 0 -1, the coefficients P , I and D can be expressed by: 

P = ∆H0 H0(1 + ∆H0) (9) 
I = Qω0 H0 (1 - (1 + ∆Q)(1 + ∆ω0) 1 + ∆H0 ) (10) D = Q H0ω0 (1 - (1 + ∆Q) (1 + ∆ω0)(1 + ∆H0) (11 

PID CORRECTION ON A REAL XYLOPHONE BAR RESONANCE

The purpose is to apply a PID correction to a real xylophone bar in order to modify one of its eigen modes. It would impose independent and quantitative control of its pitch, duration or sound intensity. On a real instrument some eigen modes may be coupled. In this case, modifying the parameters of a mode may imply nonlinear variations on the next ones. However in a xylophone bar we assume that some eigen frequencies are isolated, far from the other. Thus a correction on one of them does not change the bar's frequency response much, in its vicinity. Here we chose to control the first eigen mode of the bar.

System description

It has been proved above that a PID correction is an effective method to control the movement of an oscillator. In the real case the correction force is applied to the xylophone bar thanks to an actuator. As this force should depend on the system's velocity, eq [START_REF] Besnainou | Comment changer la voix des instruments de musique[END_REF], a sensor is also required to catch the signal and to feed it to the controller. Thus the PID controller is integrated in a feedback loop: cf Fig5. As a conclusion both measured system resonances are very similar to second order harmonic oscillator's responses. However the phase difference between estimation and measurement is larger and almost constant on the frequency band [480Hz, 540Hz]. This ought to be due to the fact that the sensor and the actuator are not colocalized.

Results of a PID correction

Three PID corrections are carried out on the first measured bar resonance (493Hz), cf Fig7. The PID controller is the theoretical one, which has been described in part 2. While ∆Q or ∆H0 ∈ [-25%, 150%], these variations remain independent. However as soon as ∆ω0 < -0.5% or > 2% this resonance pulsation modification comes with a bending of the mode's shape, it means an unwanted change of Q and H0.

PID CORRECTION IN REAL TIME

Active control on an instrument becomes relevant as soon as its application is carried out in real time. This way, it enables the musician or the instrument maker to immediately modify the sound.

System description

In real time the feedback correction signal cannot be calculated instantaneously by the controller. That's why a variable delay is added into the loop so that the control signal is exactly 2πdephased from the theoretical one. Moreover the PID controller is coded in C language and integrated into a digital signal processor (ARM microcontroller), in order to limit the introduced delay. Its input AD converter adds a very low offset in the signal that is fed to the PID controller. Then this offset is integrated so that the output DSP's level get saturated. That's why a digital high-pass filter H(z) = G(1+z -1 ) 1+τ z -1 is inserted in the controller just behind the integrator (Fig8). Its cut-off frequency is as low as possible (60Hz here). Thus, since the PID transfer function has been modified, the relationship between P , I, D and ∆ω0, ∆Q, ∆H0 (eq(9),( 10) and (11)) must be adapted too. 

How to correct quantitatively, independently and in real time the parameters of the resonance

Let us assume that a second order harmonic oscillator is a valid model of the measured first mode, whose response is called H. The closed loop transfer function is a rational fraction of the Laplace variable s:

Htot(s) = 1 1 H(s) -C(s) (12) 
where C is the response of the PID controller containing the previous described integrator, cf Fig8. The method is intended to set up a one-to-one mapping table between each (P , I, D) and each (ω0c, Qc, H0c), where ω0c, Qc, H0c are the parameters of the target's transfer function. First in the expression of |Htot|, ω is replaced by ω0c + ∆ω. It is then developed in power series around 0 (ω ≈ ω0c):

Htot(s) = k∈N a k ∆ω k , when ∆ω ≈ 0 (13) 
The maximum value of |Htot(s)| is intended to reach H0c as soon as ω = ω0c. So, when ω ≈ ω0:

∂|Htot| ∂ω |ω=ω 0c = 0 ⇔ k∈N * ka k ∆ω k-1 = 0 (14) ⇒ a1 = 0 (15) 
The (ai)i∈N coefficients depend on the parameters of H (H0,Q and ω0) and of C (P , I, D and G, τ ). Therefore (15) gives an expression of I in function of the other variables. This way, an algorithm tests a large range of P and D values, deduces I, and then compares the obtained response with the target. The best couple (P , D), which fits to the minimum relative quadratic error, is held in the table. The table is then completed by choosing another target mode.

Results

The described method is applied to the measured frequency response of the real xylophone bar. Thus the method enables to have H0 and Q under quantitative control without modifying ω0.

CONCLUSION

Acting on an acoustic instrument with an active control method is a way of diverting this technique from the traditional noise cancellation. Indeed by enhancing or damping an eigen mode, or by modifying its shape, we exploit larger possibilities than those usually used to soften vibrations. This new application of active control, in the music composition field, comes up to its expectation of new sounds, and reaches more and more fusion between the musician and its instrument [START_REF] Besnainou | Comment changer la voix des instruments de musique[END_REF].

The study described here is included in a larger work intended to build a generic method to control various sets of acoustic instruments by an active control technique. Finding a robust physical model of its resonances and an adapted corrector is a required stage for having them under digital and real time control. The very simple model described in part 2 is quite close to a real xylophone bar's mode. It shows that a PID correction is a possible theoretical way to modify an isolated xylophone resonance (part 3). By adapting it to real time requirements, some resonance modifications should be achieved as described in part 4. Some sounds come with these results. Now we still have the resonance frequency variations to bring under control by using the same digital corrector.

Once this method will be completed, it will be needed to considerate the effect of the coupling between modes in order to control the whole frequency response. Other works are in progress to apply the same technique to the violin bridge, by using another simple model described by Reinicke and Cremer [START_REF] Cremer | Physik der Geige[END_REF], and by checking the results published by J. Woodhouse [START_REF] Woodhouse | On the bridge hill[END_REF].
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 2 Figure 2: System Mass, Stiffness, Damping: second order harmonic oscillator
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 4 Figure 4: (a)-PID correction of f0: -2% ≤ ∆ω0 ≤ 2% (b)-PID correction of Q:-25% ≤ ∆Q ≤ 150% (c)-PID correction of H0-25% ≤ ∆H0 ≤ 150%
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 56 Figure 5: Description of the looped system {oscillator + con-troller}
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 7 Figure 7: PID correction, on the real transfer function, of: (a)-the of the resonance frequency: -2% ≤ ∆ω0 ≤ 2% (b)-the damping factor: -25% ≤ ∆Q ≤ 150% (c)-the static gain: -25% ≤ ∆H0 ≤ 150%
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 8 Figure 8: Description of the real looped system {oscillator + real time controller}

  Various corrections are simulated by attempting to keep ω0 constant (ie f0c = 493Hz). The resulting responses plotted in Fig 9 are obtained by choosing random (P ,D) values. Each of them have a different static gain (cf Fig9a) and a different damping factor (cf Fig9b), but the same resonance frequency.
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 9 Figure 9: (a)-Various corrections of Q and H0 with ω0 constant (b)-Same corrections after normalization (H0 = 1)