
HAL Id: hal-02469919
https://hal.science/hal-02469919v1

Preprint submitted on 6 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EASYPAP: a Framework for Learning Parallel
Programming

Alice Lasserre, Raymond Namyst, Pierre-André Wacrenier

To cite this version:
Alice Lasserre, Raymond Namyst, Pierre-André Wacrenier. EASYPAP: a Framework for Learning
Parallel Programming. 2020. �hal-02469919�

https://hal.science/hal-02469919v1
https://hal.archives-ouvertes.fr


EASYPAP: a Framework for Learning
Parallel Programming

Alice Lasserre∗ and Raymond Namyst† and Pierre-André Wacrenier†

Computer Science department, University of Bordeaux
Talence, France

∗alice.lasserre@etu.u-bordeaux.fr, †{raymond.namyst, pierre-andre.wacrenier}@u-bordeaux.fr

Abstract—This paper presents EASYPAP, an easy-
to-use programming environment designed to help
students to learn parallel programming. EASYPAP fea-
tures a wide range of 2D computation kernels that
the students are invited to parallelize using Pthreads,
OpenMP, OpenCL or MPI. Execution of kernels can
be interactively visualized, and powerful monitoring
tools allow students to observe both the scheduling
of computations and the assignment of 2D tiles to
threads/processes. By focusing on algorithms and data
distribution, students can experiment with diverse code
variants and tune multiple parameters, resulting in
richer problem exploration and faster progress towards
efficient solutions. We present selected lab assignments
which illustrate how EASYPAP improves the way stu-
dents explore parallel programming.

Keywords—parallel programming, visualization,
monitoring, education, OpenMP, MPI

I. INTRODUCTION

During the last decade, the High Performance
Computing community had a hard time coping
with the evolution of parallel architectures toward
massively parallel heterogeneous multicore ma-
chines. In fact, all software developers are currently
concerned about this manycore trend which has
impacted every commodity hardware, from smart-
phones to desktop machines. To get the most out
of nowadays computers, people must be trained to
parallel programming. It is no surprise that inte-
grating HPC into undergraduate and postgraduate
courses to expose all students to basic parallel
programming skills has been identified as a priority
by the European Technology Platform for HPC in their
3rd Strategic Research Agenda [8].

Unfortunately, learning parallel programming is
intrinsically more difficult than learning sequential
programming, especially because students lack con-
venient and easy-to-use tools to get familiar with
non-determinism and to visualize what happened
during a parallel execution.

We present EASYPAP, our attempt to provide
students with a simple and attractive programming
environment to facilitate their discovery of the
main concepts of parallel programming. EASYPAP
is a framework providing interactive visualization,
real-time monitoring facilities, and off-line trace
exploration utilities. Students focus on parallelizing
2D computation kernels using Pthreads, OpenMP,
OpenCL, MPI, intrinsics instructions, or a mix of
them. EASYPAP was designed to make it easy to
implement multiple variants of a given kernel, and
to experiment with and understand the influence of
many parameters related to the scheduling policy
or the data decomposition. During our undergradu-
ate and postgraduate lab sessions, students enjoyed
the feedback provided by the graphical tools and
were able to gain a deeper understanding of both
parallel programming and computer architecture.

II. THE EASYPAP FRAMEWORK

EASYPAP is a C programming environment that
relies on the SDL library [2] to interactively render
the results of 2D computations. EASYPAP’s main
philosophy is to let students focus on computa-
tion kernels while hiding most of the implemen-
tation details related to program initialization (at
the notable exception of memory allocation), code
instrumentation and interactive display. The main
program loop is thus controlled by EASYPAP.

A. Kernels and variants

In EASYPAP, functions performing computations
on images are called kernels. EASYPAP comes with
a large set of predefined kernels (e.g. Transpose, In-
vert, Blur, Pixelize, Game Of Life, Mandelbrot, Abelian
SandPile). New kernels can obviously be easily
added. Let us take the mandel kernel, which com-
putes the Mandelbrot set, as an illustration. Fig. 1



1 void mandel_compute_seq (unsigned nb_iter)
2 {
3 for (int it = 1; it <= nb_iter; it++) {
4 for (int y = 0; y < DIM; y++)
5 for (int x = 0; x < DIM; x++)
6 cur_img (y, x) = compute_color (y, x);
7 zoom (); // modify the viewpoint real coordinates
8 }
9 }

Figure 1. Sequential version of kernel mandel

shows a straightforward sequential implementation
of the mandel kernel.

The outer loop (line 3) performs the requested
nb_iter iterations in a row. Lines 4–6 illustrate
how the contents of the image are accessed during
an iteration. For the sake of simplicity, EASYPAP
works on square shape images. The pixels of the
image are accessed through the cur_img(row,
col) macro. Here is how to run the seq variant
of the mandel kernel on a 2048× 2048 image:

easypap --kernel mandel --variant seq \
--size 2048

This action brings a window on the screen which
displays an animation consisting of the series of
images computed at each iteration. The animation
can be paused, or can be slightly accelerated by
skipping frames.

Since checking the belonging to the Mandelbrot
set may be computed independently for any (i, j)
pixel, the mandel kernel can be trivially paral-
lelized. To develop a straightforward OpenMP ver-
sion designed as an incremental evolution of the
sequential variant, we can simply duplicate the
sequential variant, rename it mandel_compute_
omp, insert a single “#pragma omp parallel
for” clause before the for loop iterating over
lines, recompile EASYPAP, and launch:

easypap --kernel mandel --variant omp

The obtained graphical animation allows student
to visually check if this new variant produces the
expected output and if it runs faster.

The simplicity with which students are able
to implement while maintaining many different
variants of given kernel is an essential feature of
EASYPAP. Indeed, it makes it very convenient to
compare variants against each other and explore
their robustness when changing some parameters,
as we further discuss in the next sections.

// Tile inner computation
static void do_tile (int x, int y,

int width, int height, int thr)
{
monitoring_start_tile (thr);
for (int i = y; i < y + height; i++)
for (int j = x; j < x + width; j++)
cur_img (i, j) = compute_color (i, j);

monitoring_end_tile (x, y, width, height, thr);
}

void mandel_compute_omp_tiled (unsigned nb_iter)
{
#pragma omp parallel
for (int it = 1; it <= nb_iter; it++) {

#pragma omp for collapse(2) schedule(static)
for (int y = 0; y < DIM; y += TILE_SIZE)
for (int x = 0; x < DIM; x += TILE_SIZE)
do_tile (x, y, TILE_SIZE, TILE_SIZE,

omp_get_thread_num ());
#pragma omp single

zoom ();
}

}

Figure 2. Typical example of instrumented code using calls to
monitoring_start_tile and monitoring_end_tile

B. Interactive monitoring

In order to get more feedback about the paral-
lel execution of a variant, the code needs to be
slightly instrumented. To do so, sequential por-
tions of code computing image chunks (called tiles)
have to be bracketed by calls to monitoring_
{start/end}_tile.

Fig. 2 shows a typical OpenMP tiled implementa-
tion of the mandel kernel where the do_tile func-
tion has been instrumented. This function sequen-
tially computes all the pixels inside an arbitrary
rectangle defined by (x,y,width,height). The
last parameter is the rank (from 0 to #threads−1) of
the thread which computes the tile. With OpenMP,
we just pass omp_get_thread_num(). Once the
code has been instrumented, real-time monitoring
can simply be activated:

easypap --kernel mandel --variant omp_tiled \
--tile-size 16 --monitoring

The monitoring mode pops up two additional
side windows as displayed in Fig. 3.

The Activity Monitor window reports the real-
time load of each CPU. This load is a percentage
representing the amount of time spent in compu-
tations over the duration of the iteration. At the
bottom of the window, a history diagram reports
the evolution of cumulated idleness over time. In
Fig. 3, we clearly observe a load imbalance between

2



Figure 3. The monitoring mode displays two additionnal win-
dows: a tiling window (top) and a CPU monitoring window.

CPUs. The static distribution of tiles is indeed
inappropriate because the large black area at the
bottom of the image, which contains a lot of pixels
belonging to the Mandelbrot set, involves much
more computations than other areas.

The Tiling window reflects the way tiles have
been assigned to threads at each iteration. Each
thread is assigned a different color which is con-
sistent with the color assigned to CPUs in the
Activity Monitor window. By observing Fig. 3, we
see that the tiles have been assigned to threads in
contiguous blocks, in accordance to the static loop
scheduling policy.

The tiling window is a precious tool to observe
the different loop scheduling policies of OpenMP
when combined with the collapse clause. In
Fig. 4, we examine various loop scheduling policies
through the tiling window. Fig. 4a shows that the
static clause evenly distributes tiles to threads in
contiguous chunks. Fig. 4b reveals the opportunis-
tic nature of the dynamic clause. Fig. 4c illustrates
the behavior of the new OpenMP 5 nonmonotonic
clause: tiles are first distributed in a static man-
ner, but work-stealing is eventually used to correct
load imbalance. Finally, Fig. 4d shows how size
of chunks assigned to threads decreases over time
with the guided policy.

C. Performance mode
In order to accurately benchmark and compare

the performance of multiple variants, we need to
completely eliminate the overhead of graphical up-
dates. When invoked with the --no-display op-
tion, EASYPAP runs silently and reports the overall

(a) static (b) dynamic,2

(c) nonmonotonic:dynamic (d) guided

Figure 4. During execution, students observe how the OpenMP
loop scheduling policy impacts the assignment of tiles to
threads. Note that (a) reflects a steady state, whereas (b), (c)
and (d) are dynamically changing between iterations.

wall clock time after completion of the requested
number of iterations.

> easypap --kernel mandel --variant omp_tiled \
--tile-size 16 --iterations 50 \
--no-display

50 iterations completed in 579ms

Moreover, the completion time, together with
all execution and configuration parameters, are
reported in a Comma Separated Values (CSV) file.
Students can customize simple python scripts to au-
tomate their experiments by specifying parameter
ranges, as illustrated in Fig 5.

Students can then exploit their data and pro-
duce the desired graph or histogram thanks to the
easyplot command. A key feature of easyplot
is that the legend is automatically generated from
the data. Once data have been filtered, constant pa-
rameters are put aside, and the names of plotlines
are set using the remaining ones (see Fig. 6). This
guarantees that experiments conducted in different
conditions will not silently be incorporated in the
same graph, a common mistake among students’s
reports.

3



from expTools import *

easypap_options["--kernel "] = ["mandel"]
easypap_options["--iterations "] = [10]
easypap_options["--variant "] = ["omp_tiled"]
easypap_options["--grain "] = [16, 32]

omp_icv["OMP_NUM_THREADS="] = list(range(2, 13, 2))
omp_icv["OMP_SCHEDULE="] = ["static", "guided",

"dynamic,2", "nonmonotonic:dynamic"]

execute('easypap', omp_icv, easypap_options, runs=10)

Figure 5. Typical experiments automation script

2 4 6 8 10 12
threads

0

1

2

3

4

5

6

7

sp
ee

du
p

grain = 16

legend
schedule=guided 
schedule=nonmonotonic:dynamic 
schedule=dynamic,2 
schedule=static 

2 4 6 8 10 12
threads

grain = 32
Parameters : machine=6-core-computer dim=1024 kernel=mandel variant=omp_tiled iterations=10 refTime=669009

Figure 6. Speedup graphs with 16 × 16 and 32 ×
32 tiles. This graph is generated by the command
easyplot --kernel mandel --col grain --speedup
It uses data produced by easypap in performance mode.
Parameters with unique value are listed above the graph.

D. Post mortem trace analysis

Although the monitoring facilities greatly help
to detect and understand flaws in the execution of
kernels, it cannot always capture some subtle prop-
erties such as the heterogeneity of tasks duration or
the correct implementation of task dependencies.
When a deeper analysis is required, students use
the --trace option to record tile-related profiling
events at execution time (i.e. start/end time, tile
coordinates, cpu) into a trace file:

easypap --kernel mandel --variant omp --trace \
--no-display --iterations 10

To visually explore and interact with the trace, we
provide the EASYVIEW utility (Fig. 7). Its graphical
interface is subdivided in two parts.

The left side presents a view widely adopted by
many trace viewers: a Gantt chart displays per-
CPU sequences of tasks for a selectable range of
iterations. Tiles computed by the same CPU have
the same color, and are displayed on the same
timeline. When moving the mouse over a task, a
pop-up bubble displays the task duration.

Figure 7. EASYVIEW brings interactive exploration of traces.
Moving the mouse over a task in the Gantt diagram displays
its duration (bubble at top of window). Tasks intersecting the
mouse x-axis have their corresponding tile highlighted over the
image thumbnail, allowing to link computations and their data.

The right side displays a reduced view of the
surface computed at the selected iteration (see
thumbnails of Mandelbrot set appearing in Fig. 7).
Whenever the x-axis of the mouse intersects tasks
in the Gantt chart, the corresponding tiles are high-
lighted over this reduced image, helping to localize
computations. As a consequence, starting on the left
side of the Gantt chart and moving smoothly the
mouse towards the right side reveals the order in
which tiles have been computed.

In addition, students can toggle between this
vertical mouse mode and a horizontal mode in
which the y-axis of the mouse allows to select a
particular CPU and highlights the tiles computed
during the displayed period. Basically, this allows
to observe the “coverage map” of a given CPU
during one or multiple iterations, and to check
the locality of computations across iterations. This
feature is further detailed in Section III-B.

EASYVIEW is a powerful mean for students to
understand how the scheduling of computations
are performed, to see which image areas are the
most time-consuming, to check if the computations
were evenly balanced over computing units, and
even to track down synchronization issues. We
highlight a series of such situations in Section III.

III. EXAMPLE OF ASSIGNMENTS

We have used EASYPAP and EASYVIEW both
with undergraduate students during parallel pro-
gramming introduction courses, and with post-
graduate students during parallel and distributed
computing courses, where students explore ad-
vanced features of multicore, GPU and cluster
programming. Even if students usually start with
simple, straightforward implementations of basic

4



Figure 8. When using OpenMP dynamic loop scheduling of
small tiles, the tiling window reveals two noticeable patterns.

kernels, they quickly dive into more subtle codes
where they encounter bugs and performance issues.
Using various case studies, we now explore to what
extent EASYPAP and EASYVIEW help students to
better understand the behavior of their code and vi-
sualize things which are traditionally very difficult
to observe. Animated screenshots of EASYPAP and
EASYVIEW are available on the project site [12].

A. Computing the Mandelbrot Set
After a first hands-on session during which un-

dergraduate students discover the EASYPAP envi-
ronment using very simple kernels, their first as-
signment is usually devoted to the computation of
the Mandelbrot Set. As we previously mentioned,
parallelizing the mandel is trivial, but achieving
good speedups requires to pay attention to load
balancing. The assignment is thus mostly about per-
forming experiments to find the best combination
of loop scheduling policy, tile shape and tile size.

Almost all students end up with a tiled im-
plementation, either using Pthreads or OpenMP,
similar to the one described in Fig. 2 using dynamic
distribution of squared tiles. The size of tiles de-
pends on the dimension of the image as well as
on the underlying hardware. After a few iterations,
students observe interesting patterns appearing in
the tiling window, as spotted in Fig. 8.

Pattern 1 reveals horizontal stripes of the same
color together with a few stripes featuring an al-
ternation of two colors. These stripes correspond
to one or two threads computing several tiles in
a row. Such a situation happens because 1) these
tiles correspond to areas located far away from the

(a) mandel (b) blur

Figure 9. In “heat map” mode, the brightness of tiles displayed
in the Tiling Window reflects the duration of the corresponding
tasks: the brighter an area is, the more time-consuming it is. On
picture (a) we can distinguish the shape of the Mandelbrot set
as depicted in Fig. 8. On picture (b), we observe that border tiles
take a longer time to be processed than inner tiles.

Mandelbrot set, where computations take only a
few iterations to complete and 2) the other threads
are all busy computing time-consuming tiles in the
top-right black corner.

In contrast, Pattern 2 features a quasi-perfect
cyclic distribution of colors. This is due to the fact
that all tiles require the same amount of (heavy)
computations. Therefore, the dynamic distribution
turns into a regular, cyclic one in such areas.

B. Picture Blurring: a simple 2D stencil code

During their discovery of parallel computing,
our students are quickly exposed to simulations
involving Stencil computations. We use an assign-
ment based on a Picture Blurring kernel to introduce
students to the parallelization of 2D stencil codes.
The sequential version of the blur kernel uses
two images. At each iteration, all pixels from the
3×3 square centered in (i, j) are read from the first
image, and the average is written to the second one.
The two images are swapped between iterations.

Since every pixel is read multiple times at each
iteration, students are encouraged to implement
a tiled parallel version to maximize cache reuse.
To avoid out-of-bounds image accesses for pixels
located on the borders (which have less than 9
neighbours), their code includes several conditional
branches which leads to poor performance.

By observing that tests are only required for
tiles located on the edges (i.e. outer tiles), students
implement different codes for outer and inner tiles.
After implementing this optimization, they can
quickly check its effectiveness by using the “heat

5



map” mode of the tiling window: Fig. 9b reveals
that inner tiles involve less computations than tiles
located on the edges.

Running EASYPAP in performance mode tells
us that the gain achieved is beyond expectations:
the new variant is 3 times faster! To analyze this
performance boost, EASYVIEW offers a nice trace
comparison feature, as shown in Fig. 10. We no-
tice that many tasks are approximately 10 times
faster than their original version. By moving the
mouse over those tasks, students immediately get
the confirmation that short durations do always
correspond to inner tiles. The ×10 speedup not only
comes from the removal of conditional branches: it
is mostly imputable to compiler auto-vectorization
(×8 on AVX2-capable Intel processors).

Another interesting observation can be made
when switching to the “coverage map” mode pro-
vided by EASYVIEW, using mouse horizontal
mode to select all displayed tasks for a given
CPU. In Fig. 10, the mouse cursor is over the
CPU#3’s timeline, so the purple squares displayed
over the top-right thumbnail reveal the area cov-
ered by all tasks executed on this CPU dur-
ing iteration range [7..9]. We observe that the
squares are mostly regrouped in a single area, with
only a few ones scattered in other places, which
highlights the good locality property of the new
nonmonotonic:dynamic scheduling policy.

C. Identification of Connected Components
In more advanced courses, we introduce the

students to tasks and dependencies concepts. After
experimenting with OpenMP tasks on small pro-
grams, students are asked to parallelize a Connected
Components Detection algorithm on 2D images. The
main goal is to identify the different connected
components (i.e. separated by transparent pixels)
by coloring each of them in a unique color. The
proposed algorithm first reassigns each pixel a
unique color and then propagates the maximum
between neighbours until reaching a steady state.
The sequential implementation uses a sequence of
two phases per iteration: the first phase propagates
local maxima to the right and to the bottom, and
the second one proceeds to an up-left propagation.

Parallelizing this algorithm without introducing
extra iterations is quite challenging. A possible
solution is to use a tiled implementation in which
tiles are processed with some constraints: during
the bottom-right phase (resp. up-left), a tile cannot

be executed until its left and upper (resp. right
and lower) neighbours have not completed. With
OpenMP tasks, these constraints directly translate
into task dependencies, as sketched in Fig. 11.

However, because it takes time to get famil-
iar with the subtleties of task dependencies in
OpenMP, students usually achieve a correct im-
plementation only after several attempts. Most of
the time, they over-constrain the problem and end
up with a sequential execution of tasks. In such
cases, EASYVIEW greatly helps to figure out if the
dependencies were correctly enforced, as illustrated
in Fig. 12. One can observe the order in which tiles
were processed by just moving the mouse.

D. Game of Life: Putting it All Together
In addition to Pthreads, OpenMP and OpenCL,

EASYPAP also provides support for MPI programs,
and most notably for debugging such programs
using monitoring facilities. To illustrate this feature,
we present an assignment to students who attend
advanced courses on HPC programming.

The goal is to implement an efficient version of
Conway’s Game of Life [9] able to cope with large,
potentially sparse simulations. Therefore, we ask
them to pay attention to memory usage optimiza-
tion, by using their own, low memory footprint
data structures for computations. EASYPAP allows
kernels to use arbitrary data structures for com-
putations. Such kernels simply have to update the
current image when a graphical refresh is needed.

In addition, students have to develop a lazy
evaluation algorithm that avoids computing tiles
whose neighbourhood was in a steady state at the
previous iteration. Once they end up with an effec-
tive Pthreads or OpenMP lazy variant, students can
look at the tiling window to make sure that areas
where “nothing changes” are not computed.

Finally, students extend their implementation in
order to cope with distributed architectures by
using MPI. They learn how to exchange ghost-
cells between MPI processes, including meta-
informations regarding the state of tiles (steady
or lively). The whole code is less than 150 lines.
EASYPAP helps by integrating the mpirun process
launcher and only displaying the main window of
the master process by default.

For debugging purposes, EASYPAP can display
all the windows for each process. The following
command launches two MPI processes executing
the mpi_omp variant in debugging mode.

6



Figure 10. Comparison of two execution traces of the blur kernel using EASYVIEW. The bottom trace corresponds to the
execution of a basic OpenMP implementation using uniform tiles. The top trace corresponds to an optimized OpenMP version
where conditional code was removed from inner tiles. This later version is approximately 3 times faster in this setup (iteration 3
with the basic version is as long as iterations [7..9] with the optimized version).

for (int j = 0; j < NUM_TILES; j++)
for (int i = 0; i < NUM_TILES; i++)

#pragma omp task depend(in: tile[i - 1][j], \
tile[i][j - 1]) \

depend(inout: tile[i][j]) \
firstprivate(i, j)

tile_down_right (i, j);

Figure 11. Snippet showing the implementation of the down-
right propagation using OpenMP tasks with dependencies.

Figure 12. EASYVIEW allows to visualize the wave of tasks
moving forward during the execution of code depicted in Fig. 11.
These three screenshots were taken while moving the mouse
from left to right over the Gantt window.

easypap --kernel life --variant mpi_omp \
--mpirun "-np 2" --monitoring \
--debug M

The monitoring windows (Fig. 13) reveal that
each process contains 4 threads and works on half
of the image. Most importantly, since the sparse
dataset consists in planers evolving along the di-
agonals of the image, we can check that only tiles
located near diagonals are computed.

Figure 13. When launched in debugging mode, monitoring
windows of every MPI process show up and help to visualize
which area is processed by each of them.

E. Discussion

Since we introduced EASYPAP in our lab ses-
sions, in 2018, it is clear from our side that students
find parallel programming much more attractive
and fun. Graphical tools make their debugging
sessions less painful and more effective. The fact
that it took postgraduate students less than a dozen
hours to come up with an efficient MPI+OpenMP
implementation of the Game of Life kernel using lazy
evaluation (see Section III-D) impressed us. This
highlights the importance of allowing students to

7



quickly prototype preliminary variants of the code
and analyze their parallel behavior interactively.

On the downside, EASYPAP provides the stu-
dents with an integrated environment where all the
low-level details of configuration, compilation and
initialization of various components are hidden.
So it is necessary to conduct more conventional
lab assignments as well, involving writing small
applications from scratch to show student how a
complete OpenCL program looks like for instance.

IV. RELATED WORK

There have been many contributions to the field
of developping programming environments for
teaching parallel programming [4], [6].

Like the authors of [4], we are convinced by the
pedagogical benefits of using exemplars. EASYPAP
is also built around the notion of exemplars that
students can parallelize using multiple paradigms.

Regarding visualization, we adhere to the same
philosophy as the ParaVis [6] and TSGL [5] ef-
forts, which provide easy-to-use C/C++ interfaces
to visualize 2D animations produced by parallel
computations. These libraries are versatile and can
be interfaced with almost any existing 2D simula-
tion. EASYPAP follows a different approach by pro-
viding an integrated educational framework with
monitoring and trace exploration capabilities, expe-
rience automation and plot generation assistance.

Many outstanding tools have been developed
to visualize and analyze execution traces, such
as Aftermath [7], Grain Graphs [11], Intel Vtune
Profiler [1], TAU [13], Vampir [10] or ViTE [3]. We
think EASYPAP represents a smooth and attractive
first contact with trace analysis tools, before beeing
introduced to more complex ones. An original as-
pect of both EASYPAP and EASYVIEW is that they
establish a graphical link between computations
(i.e. tasks) and their associated data (i.e. image tile).

V. CONCLUSION AND FUTURE WORK

EASYPAP is a framework designed to make
learning parallel programming more accessible and
attractive to students. A comprehensive set of tools
allows to quickly get visual feedback about the
parallel behavior of their code, to analyze the
locality of the computations, and to understand
performance issues. The use of EASYPAP during
undergraduate and postgraduate courses on par-
allel programming at University of Bordeaux was
very successful. Students were able to understand

very subtle aspects of scheduling, synchronization
and compiler optimizations. We have also used
EASYPAP to popularize parallel programming for
middle school students. It made it possible to easily
illustrate concepts such as load imbalance.

Currently, EASYPAP only partially supports
OpenCL: users can observe animated output of
kernels, but monitoring and trace exploration are
not yet implemented. These features will soon be
developed by leveraging OpenCL profiling events.
In a near future, we also intend to further extend
the EASYVIEW trace explorer to integrate per-task
cache usage information using the PAPI library [14].

REFERENCES

[1] “Intel Vtune Profiler.” [Online]. Available: https:
//software.intel.com/en-us/vtune

[2] “SDL: Simple directmedia layer.” [Online]. Available:
https://www.libsdl.org

[3] “ViTE: Visual trace explorer.” [Online]. Available: http:
//vite.gforge.inria.fr

[4] J. Adams, R. Brown, and E. Shoop, “Patterns and exem-
plars: Compelling strategies for teaching parallel and dis-
tributed computing to cs undergraduates,” in Proceedings
- IEEE 27th International Parallel and Distributed Processing
Symposium Workshops and PhD Forum, 2013.

[5] J. C. Adams, P. A. Crain, and M. B. V. Stel, “Tsgl a
thread safe graphics library for visualizing parallelism,”
Procedia Computer Science, vol. 51, pp. 1986 – 1995, 2015,
international Conference On Computational Science.

[6] A. Danner, T. Newhall, and K. Webb, “Paravis: A library
for visualizing and debugging parallel applications,” in 9th
NSF/TCPP Workshop on Parallel and Distributed Computing
Education (EduPar-19), 2019.

[7] A. Drebes, J.-B. Bréjon, A. Pop, K. Heydemann, and A. Co-
hen, “Language-centric performance analysis of openmp
programs with aftermath,” in OpenMP: Memory, Devices,
and Tasks. Springer International Publishing, 2016.

[8] ETP4HPC, “Strategic research agenda,” 2017. [Online].
Available: https://www.etp4hpc.eu/pujades/files/SRA%
203.pdf

[9] M. Games, “The fantastic combinations of john conway’s
new solitaire game “life” by martin gardner,” Scientific
American, vol. 223, pp. 120–123, 1970.

[10] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M. S. Müller, and W. E. Nagel, “The vampir
performance analysis tool-set,” in Tools for High Performance
Computing. Springer Berlin Heidelberg, 2008, pp. 139–155.

[11] A. Muddukrishna, P. Jonsson, A. Podobas, and M. Brors-
son, “Grain graphs: Openmp performance analysis made
easy,” ACM SIGPLAN Notices, vol. 51, pp. 1–13, 02 2016.

[12] R. Namyst and P.-A. Wacrenier, “The EASYPAP web
site,” 2018. [Online]. Available: https://gforgeron.gitlab.
io/easypap/

[13] S. S. Shende and A. D. Malony, “The tau parallel perfor-
mance system,” The International Journal of High Performance
Computing Applications, vol. 20, no. 2, pp. 287–311, 2006.

[14] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting
performance data with papi-c,” in Tools for High Performance
Computing 2009, 2010, pp. 157–173.

8

https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://www.libsdl.org
http://vite.gforge.inria.fr
http://vite.gforge.inria.fr
https://www.etp4hpc.eu/pujades/files/SRA%203.pdf
https://www.etp4hpc.eu/pujades/files/SRA%203.pdf
https://gforgeron.gitlab.io/easypap/
https://gforgeron.gitlab.io/easypap/

	Introduction
	The EasyPAP Framework
	Kernels and variants
	Interactive monitoring
	Performance mode
	Post mortem trace analysis

	Example of assignments
	Computing the Mandelbrot Set
	Picture Blurring: a simple 2D stencil code
	Identification of Connected Components
	Game of Life: Putting it All Together
	Discussion

	Related Work
	Conclusion and Future Work
	References

