
HAL Id: hal-02469914
https://hal.science/hal-02469914v1

Submitted on 6 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time embedded video denoiser prototype
Andrea Petreto, Thomas Romera, Florian Lemaitre, Manuel Bouyer, Boris

Gaillard, Patrice Menard, Quentin Meunier, Lionel Lacassagne

To cite this version:
Andrea Petreto, Thomas Romera, Florian Lemaitre, Manuel Bouyer, Boris Gaillard, et al.. Real-time
embedded video denoiser prototype. 9th International Symposium - Optronics in Defense and Security
(Optro), Jan 2020, Paris, France. �hal-02469914�

https://hal.science/hal-02469914v1
https://hal.archives-ouvertes.fr

 1

REAL-TIME AMBEDDED VIDEO DENOISER PROTOTYPE

9TH INTERNATIONAL SYMPOSIUM – OPTRO2020
OPTRONICS IN DEFENCE AND SECURITY

OECD CONFERENCE CENTER, PARIS, FRANCE /28 – 30 JANUARY 2020

Andrea Petreto(1,2), Thomas Romera(1,2), Florian Lemaitre(2), Manuel Bouyer(2), Boris Gaillard(1), Patrice
Menard(1), Quentin Meunier(2), Lionel Lacassagne(2)

(1) LHERITIER, 10 rue de l’entreprise, 95 862 Cergy, apetreto@lheritier-alcen.com
(2)Sorbonne Université, CNRS, LIP6, F-75005 Paris, France, firstname.lastname@lip6.fr

KEYWORDS: Embedded systems, Video
denoising, Real-time, Image processing

ABSTRACT:

Low light or other poor visibility conditions often
generate noise on any vision system. However,
video denoising requires a lot of computational
effort and most of the state-of-the-art algorithms
cannot be run in real-time at camera framerate.
Noisy video is thus a major issue especially for
embedded systems that provide low computational
power. This article presents a new real-time video
denoising algorithm for embedded platforms called
RTE-VD [1]. We first compare its denoising
capabilities with other online and offline algorithms.
We show that RTE-VD can achieve real-time
performance (25 frames per second) for qHD video
(960x540 pixels) on embedded CPUs with an output
image quality comparable to state-of-the-art
algorithms. In order to reach real-time denoising, we
applied several high-level transforms and
optimizations. We study the relation between
computation time and power consumption on
several embedded CPUs and show that it is
possible to determine find out frequency and core
configurations in order to minimize either the
computation time or the energy. Finally, we
introduce VIRTANS our embedded real-time video
denoiser based on RTE-VD.

1. INTRODUCTION

Forces, either from Police or Army are in great need
for enhanced surveillance systems. One recurrent
issue with those systems is the noise apparition in
poor conditions. More particularly in low light
situations or with fog, video can become so noisy
that the range of detection, recognition and
identification (DRI) is significantly reduced. Two
main kind of video surveillance technology are
commonly used: infrared (IR) and visible domain
(VIS) cameras. The IR technology does not suffer
from noise due to low light conditions as the VIS
technology. However, if IR performs very well in
terms of detection, it does not provide a lot of
information for recognition. This is why VIS
technology is still needed for many surveillance

applications. Therefore, we need to provide
solutions to improve video quality for VIS systems
in order to push back the DRI limitation.

Noise reduction can be achieved in three different
ways. We can improve the optic or the sensor, but
we can also add a software-based video processing
to enhance the video quality. The two first solutions
are pretty expansive to apply and have their
limitations. Especially the sensor improvement
since modern sensors are able to achieve really low
read noise level, so the preponderant noise is now
the photon noise which can’t be avoided. Software
denoising is also a challenging task if we need to
perform at real-time.

In this work we focus on real-time embedded video
denoising. Single image denoising is a well-known
research area and a lot of algorithms have been
developed. They can be either based on pixel-wise
filters [2-4], patch-based methods [5-6] or
Convolutional Neural Network [7-9]. Compared to
simple image denoising, video denoising is a much
less explored domain. It brings however the
additional temporal dimension. This dimension can
be used to retrieve more information and perform
better denoising.

Denoising algorithms can be classified into two
criteria: the computation time and the denoising
efficiency. In this work we consider heavily noisy
video processed in real-time: 25 frames per second
(fps) on embedded systems.

Some video denoising algorithms are able to deal
with heavy noise situations but are too slow to be
used for real-time denoising [10-15]. Moreover, they
have a high latency as they use many frames to
process the current one (typically 5-7). Some other
algorithms are designed for real-time denoising [16]
on embedded architectures [17], but they only suit
to light noise like compression artifacts. As far as we
know there is no real-time embedded video
denoising algorithm able to deal with very noisy
video as in this work.

OPTRO2020_31

mailto:apetreto@lheritier-alcen.com

 2

Table 1. PSNR results for 7 sequences of the Derf's Test Media Collection on state-of-the-art methods and on our
algorithm (RTE-VD)

In this paper we present a new Real-Time
Embedded Video Denoising (RTE-VD) algorithm in
section 2. Then, we compare our method with other
state-of-the-art algorithms in terms of denoising
efficiency in section 3. We then present the main
optimizations made to achieve real-time
performances in section 4. In section 5, we compare
RET-VD with other state of the art methods in terms
of computation speed and we also provide a time
versus energy consumption study for various
embedded platforms. Finally, we introduce our
embedded video denoiser prototype called
VIRTANS in section 6.

2. DENOISING ALGORITHM

Most state-of-the-art video denoising algorithms rely
on patch-based filtering methods [11] [14] [15].
These methods are able to provide a very effective
noise reduction but are very time consuming. Their
memory access pattern also generates a lot cache
misses so it makes it difficult to optimize. For these
reasons we did not consider patch search for a real-
time implementation.

In the case of video denoising, we need to maintain
a temporal coherence between frames. Usually it is
ensured by the patch search. Since we do not
consider this option, we must find another way. We
decided to use an optical flow estimation [12] [18].
Optical flow estimation methods are also time
consuming but are more sensitive to code
transformations so they can be highly accelerated
[19-23]. Many optical flow algorithms exist [24]. In
order to perform a robust video denoising, the
optical flow estimation must be dense, robust to

noise and handle discontinuities within the flow [18].
Therefore, we chose the TV-L1 algorithm to
compute the optical flow since it satisfies all these
constraints [25].

Figure 2. Main steps of the denoising chain RTE-VD

Our denoising chain RTE-VD is composed of 3 main
steps visible in Fig. 2. First a stabilization step is
applied using global one-pass Lucas-Kanade
approach [26]. This step is used to compensate the
camera movement. It eases the next step which is
the computation of the optical flow using the TV-L1
algorithm. The flow enables to match past frame
with the current one so we can apply the last filtering
step without generating motion blur. This filtering
step uses a 3D spatial-temporal bilateral filter
approach [27].

3. DENOISING EFFICIENCY

In this section we compare RTE-VD performances
with other state of the art algorithms in terms of
denoising efficiency. To do so, we reproduced the
comparison made in [28]. The video sequences are
originally in colored 1080p format. We downscaled
them to 960*540 grey-scale pixels. A Gaussian
noise is added to each image with standard
deviations of 20 and 40. All the video sequences are
from the Derf’s Test Media Collection [29].

We compared the PSNR value and visuals results

Noise Method Crowd Park_joy pedestrian Station Sunflower Touchdown Tractor overall

 = 20

STMKF 26.25 25.29 28.34 26.66 26.97 28.87 25.37 26.70

RTE-VD 26.38 25.65 30.58 30.98 32.51 30.17 29.38 28.73

VBM3D 28.75 27.89 35.49 34.19 35.48 32.85 31.44 31.34

VBM4D 28.43 27.11 35.91 35.00 35.97 32.73 31.65 31.11

 = 40

STMKF 20.80 20.75 20.70 20.41 20.70 20.86 19.80 20.56

RTE-VD 22.25 21.64 25.72 27.76 27.87 27.05 25.99 24.85

VBM3D 24.81 23.78 30.65 30.62 30.21 30.21 27.82 27.43

VBM4D 24.65 23.22 31.32 31.53 30.09 30.09 28.09 27.35

Figure 1. Visual comparison on the pedestrians sequence with a standard deviation noise of 40 (PSNR in Tab.1)

 3

of RTE-VD with two very popular offline methods:
VBM3D [13] and VBM4D [14] and one state of the
art method for real time denoising: STMKF [16].
Every time, we used the source code provided on
the authors website with the default parameters
depending on the noise intensity.

 shows the PSNR results for all the considered
methods and video sequences. Overall RTE-VD is
less than 3 dB below VBM3D/4D while it is 2dB
above STMKF for a noise deviation of 20 and more
than 4dB above, for a noise deviation of 40. Given
these results it appears that RTE-VD performs
between VBM3D/4D and STMKF being closer from
the 2 offline methods on very noisy situations.

Some visual results are presented in Figure 1.
These results tend to confirm the PSNR results. We
can see that RTE-VD brings a clear improvement
compare to the noisy input. VBM3D and 4D are
usually visually better. On the other hand, STMKF
is much less effective that other methods. If RTE-
VD provides an overall more detailed rendering than
STMKF, it has some difficulties on static scenes.
This may due to poor approximation of the optical
flow on very small movements. Approximation
errors are in this case indeed proportionally more
important so it may generate a blur effect. This issue
should be resolved by filtering the optical flow. This
solution is considered for our future works.

4. ALGORITHM OPTIMIZATIONS

In order to perform real-time performances, RTE-
VD had to be optimized and some trade off were
made. Some transformations are specific to each
step of the denoising chain. Some others described
in [30] can be applied to every step. These high-
level transformations are:

- SIMDization: handcrafted Neon
instructions.

- Multi-thread parallelization (with OpenMP).
- Operator fusion: to reduce memory

accesses.
- Operator pipeline: to increase memory

locality.
- Modular memory allocation: to reduce

memory footprint and enforce memory
locality.

-
The efficiency of these type of optimizations on both
speed and energy consumption has been shown in
[31] and [32].

4.1. Global Lucas-Kanade stabilization

To stabilize the video stream, we use a modified
version of the Lucas-Kanade method [26] with a
global approach. The input image is convolved with
a gate function, (a function that is 0 outside a
specified interval and 1 inside it) in order to compute
its average over a neighborhood. As the gate size
depends on the largest movement to compensate,

the convolution kernels can be very large. To speed
the convolution up, integral images (also known as
summed area table [33]) are used. The convolution
is computed by multiple threads, each one
processing a strip. Consequently, each thread only
computes the partial integral image it needs. We
then apply the Lucas-Kanade flow estimation to a
neighborhood of the same size as the input images.

4.2. TV-L1 Dense optical flow estimation

The TV-L1 algorithm is the main step to optimize
since it takes more than 90% of the total
computation time. Since this step is so critical, we
provided a more specific study of its optimizations
in [19]. In this previous work we showed that the
transformations we made result in a processing 5
times faster while being 6 times less power
consuming on embedded ARM Cortex A57 CPU.

Also, since TV-L1 is an iterative method, we fixed
the iterations to a given number, so the computation
time is no more data dependent and remain
constant. Important design choices were made for
the TV-L1 computation. A lot of parameters have
indeed a major impact on the optical flow precision
versus speed tradeoff. In the end we used a 3
scales configuration with an unbalanced number of
iterations and warp per scale. We compute 80
iterations with 4 warps at the most zoomed-out
scale, 20 iterations with 2 warps at the medium
scale and 3 iterations with 1 warp at the largest
scale.

Optimization of optical flow estimation methods is
crucial for many other embedded applications other
than denoising. Our work on optical flow is also used
for embedded meteors detection in a nanosatellite
project [34-35].

4.3. Spatial-temporal filter

To actually filter out the noise, we compose a spatial
bilateral filter [26] with a unilateral filter to handle the
temporal dimension and speed the processing up.
Thus, we are able to decorrelate the strength of the
filter in the spatial domain from the temporal
domain. The filter is defined in Eqs 1-3 where If is
the filtered image, Ip is the previous compensated
filtered image and I is the current image. x is the
coordinates of the current pixel. Ω is the filter kernel
domain while 𝜎𝑖, 𝜎𝑑, 𝜎𝑡 are the smoothing
parameters of filter respectively of the spatial
intensity difference, the distance and the temporal
intensity difference between pixels.

Eq.1 𝐼𝑓(𝑥) =
1

𝑊𝑝
∑ 𝐼𝑡(𝑥𝑖)𝑒

−[𝐼𝑡(𝑥𝑖)− 𝐼𝑡(𝑥)]2

2𝜎𝑖
2

× 𝑒

−[𝑥𝑖 −𝑥]2

2𝜎𝑑
2

𝑥𝑖∈Ω

Eq.2 𝑊𝑝 = ∑ 𝑒

−[𝐼𝑡(𝑥𝑖)− 𝐼𝑡(𝑥)]2

2𝜎𝑖
2

× 𝑒

−[𝑥𝑖 −𝑥]2

2𝜎𝑑
2

𝑥𝑖∈𝛺

 4

Eq.3 𝐼𝑡(𝑥) = 𝐼𝑝(𝑥)𝑒

−[𝐼𝑝(𝑥𝑖)− 𝐼(𝑥)]2

2𝜎𝑡
2

+ 𝐼(𝑥) (1 − 𝑒

−[𝐼𝑝(𝑥𝑖)−𝐼(𝑥)]2

2𝜎𝑡
2

)

In order to accelerate the computation, we
approximate the bilateral filter as a separable filter.
It has been shown in [36] that even if the bilateral is
not separable, this remains a good approximation.
We also used a fast approximation of the
exponential function which manipulates the bit
representation of floats as defined in the IEEE-754
standard. Such an approximation is described in
[37] and is accurate enough for our application.

5. TIME & ENERGY CONSUMPTION

In this section we first compare the execution time
of RTE-VD to the algorithms previously introduced.
We then briefly study the impact of our optimizations
on computation speed. Finally, we evaluate the
performances of RTE-VD on various embedded
CPUs and frequencies.

We consider 4 different platforms. The first one is an
Intel Xeon Silver 4114 2×10C/20T@2.20GHz. The
3 others are the latest Nvidia Jetson embedded
platforms; for those platforms, we only consider the
ARM CPUs and not the GPUs. Their names and
specifications are given in Tab.2.

Table 2 Technical specifications of the target embedded
boards

Board Process CPU
Fmax
(GHz)

Idle Power
(W)

TX2 16nm
4xA57 +

2xDenver
2.00 2.0

AGX 12nm 8xCarmel 2.27 6.3

NANO 12nm 4xA57 1.43 1.2

5.1. Processing time and analysis

We compared the computation time of RTE-VD with
the other methods that we considered in section 3.
We ran RTE-VD, STMKF, VBM3D and VBM4D on
the Xeon platform. We also tested RTE-VD and
STMKF on the AGX platform. The results for
960x540 pixels images are presented int Tab.3. On
the same platform RTE-VD is more than 200 times
faster than VBM3D and more than 4600 times faster
than VBM3D. On the AGX platform, RTE-VD is 2.5
times slower than STMKF but still achieves real-
time processing with 26.7 frames per second.

Table 3 Denoising time depending on the used method
and platform for 960x540 pixel images

Algorithm Time (s) Platform

STMKF 0.0045 Xeon

RTE-VD 0.0097 Xeon

VBM3D 2.0 Xeon

VBM4D 45 Xeon

STMKF 0.015 AGX

RTE-VD 0.037 AGX

To exhibit the efficiency of our optimizations, we
compared our Fast implementation to a Slow

straightforward implementation. The integral image
computation is hard to parallelize without major
transformations. Those transformations are only
applied to the Fast version. In order to provide fair
results, we compare the Fast and Slow versions in
mono-thread and then analyze only the Fast version
in multi-thread. The images used for the
experiments are square images, with a width
varying from 200 to 1500 pixels. The size of the
image has negligible impact on the processing
speed per pixel. Thus, 1000x1000 images are
considered for the following experiments.

The results for all algorithms involved in RTE-VD on
the AGX are presented in Tab.4. It shows that in
mono-thread, we have an overall speedup of x18,
and in multi-thread, a speedup of x70 using the 8
cores of the AGX. We can also observe that the
major part of the speedup is obtained on the
filtering, mainly due to its approximation with a
separable filter. As a consequence, the optical flow
estimation now takes almost 98% of the total time of
the Fast version, while filtering was the most time-
consuming part of the processing chain without the
optimizations. Since the optical flow estimation is, in
the end, the most consuming step, we produced a
more detailed study in [19].
In this previous work the impact of each optimization
is discussed. Both time and power consumption are
considered.

Table 4 Execution time (ms) and speedup of RTE-VD on
AGX CPU

Algorithm Slow 1C Fast 1C Fast 8C speedup

LK 6.66 1.59 0.37 x18

Flow 260.73 107.93 27.59 x10

Filter 1717.85 1.39 0.25 x6871

Total 1985.24 110.90 28.21 x70

5.2. Time & energy efficiency of RTE-VD

Since we target embedded systems, we have to
consider not only the computation speed but also
the energy consumption. Therefore, we ran RTE-
VD at various frequencies on the three Nvidia
embedded systems. The frequencies have been
taken among the available frequencies of each
board and the external memory frequency has been
set to its maximum. For the AGX and NANO, we
have used a multi-threaded version on all the
physical cores, respectively 8 and 4. For the TX2,
we have first used only the two Denver cores, then
only the four A57 cores and finally all 6 cores. The
cooling system of each target board has been set to
the maximum and the energy saving policies of the
Operating System have been deactivated. We have
simultaneously measured time and power
consumption for various frequencies and image
sizes.

In order to perform simple and reproducible power
measurements, the electrical consumption of the
entire system has been measured. A board was

 5

developed to this effect and has been inserted
between the power source and the target system.
The board samples both voltage and current at 5
kHz. Measurements and code executions are
synchronized using GPIOs.

We can define four different metrics related to power
consumption:

- Static energy: the energy associated to the
static power when the system is idle (here,
when the power consumption comes from
the leakage and running the operating
system)

- Dynamic energy: the energy associated to
the dynamic power: that is the extra energy
consumed by the computation: the total
energy minus the static energy.

- Compute energy: the energy consumed
by the whole system, that is the sum of
static and dynamic energy.

- Period energy: the energy consumed by
the whole system between two executions
starts, including the waiting time.

The period energy is more relevant if we consider a
complete system for which we know all of its
applications and behaviors. Since this is not yet the
case here, we only consider compute and dynamic

energies in the following.

Our measurements show that considering the
compute energy, the maximum frequency is always
the most efficient for all configurations, being both
the fastest and the least energy consuming.
Considering dynamic energy, results show that
there is a possible tradeoff between speed and
energy consumption by selecting different
frequencies values.

Fig.3 represents the computation time in
nanosecond per pixel and the dynamic energy
consumption in nanojoule per pixel for all the boards
and frequencies. The NANO is the least energy
consuming; however, it is possible to be 2.7x faster
while consuming almost as little energy using the
AGX. The AGX is the fastest since it is 2.3x faster
than the fastest configuration of the TX2 and 4.4x
faster than the fastest NANO configuration. Due to
its etching process (16nm), the TX2 is often less
energy efficient and slower than the two others
(12nm). This is especially visible if we compare the
NANO to the TX2 using only its A57 quad core at
equivalent frequency. Since the NANO also
possesses a quad core A57, it is able to compute as
fast as the TX2 while consuming 1.6x less.
However, the maximum frequency of the TX2 being

Figure 3 Speed and energy efficiency of RTE-VD depending on CPU architectures and frequencies

 6

higher, it is able to be faster than the NANO even
using only the A57 cores. Therefore, it would be
interesting to have a TX2 like architecture
processed in 12nm. Since Nvidia announced for
early 2020 a new embedded architecture with a
computation power between the Nano and the AGX,
the gap between the two platforms should be filled.

The Tab. 5 synthesizes the best configurations
minimizing either energy consumption or
computation time for each platform. It gives for each
configuration the largest image size possibly
processed at 25 frames per second.

Table 5 Best configurations for real-time denoising at 25
frame per second

Configuration
Energy
(nJ/pix)

Time
(ns/pix)

Max size
(#pix)

Freq
(GHz)

NANO min energy
616 311 358 1.4

NANO min time

TX2 min energy 1046 242 406 1.2
TX2 min time 1209 165 492 2.0

AGX min energy 683 114 592 1.4
AGX min time 832 70 754 2.3

6. VIRTANS: EMBEDDED DENOISER

In this section we introduce the VIRTA family and its
first born: the VIRTANS. VIRTA stands for Video
Real-Time Algorithm and NS for Noise
Suppression. VIRTA aims to provide a new
embedded platform to perform heavy real-time
video processing algorithms. It is currently in its
early development stage and the first algorithm to
be deployed on, is RTE-VD. With RTE-VD, VIRTA
becomes VIRTANS. It is based on the industrial
version of the TX2 architecture and comes in a
pretty small form factor (cf Fig. 4).

Figure 4 Current prototype of the VIRTANS platform

For now, video processed at 25 fps by VIRTANS,
are 480x270 pixel large. We only use the 4 A57
CPU cores of the platform to run RTE-VD. As we
have seen in Tab.5 and Fig.3 it is possible to have
better performances using also the 2 Denver cores.
In order to increase the size of the denoised image
size we also plan to provide a GPU implementation.
Our previous work on optical flow in [19] showed
that for the Horn & Schunck optical flow estimation
algorithm [38], GPUs are faster and more energy
efficient than the CPU.

Our partial results on TV-L1 confirm that the TX2
GPU is 2.2x faster than the CPU. Since the GPU
implementation is currently an ongoing study, we
are not able to provide more results for now. As
future works, we plan to provide a complete GPU
implementation of RTE-VD. The goal is actually to
integrate a hybrid CPU/GPU implementation into
VIRTANS to benefit from the best of both
architectures.

VIRTANS is compatible with the Camera from
LHERITIER. It receives an SDI video flow and is
able to communicate with the camera. This
communication can be used to retrieve useful
information from the camera sensors. For example,
the optical sensor to get information about the noise
intensity, or a gyroscopic sensor to get information
about the camera movements. The denoised video
is live displayed on any screen via an HDMI port.

7. CONCLUSION

In this article, we present a novel real-time
embedded video denoising chain called RTE-VD,
which is able to restore details on very noisy video
while achieving high performance on embedded
systems.

In order to achieve real-time processing, we applied
several code transformations (like SIMDization,
multi-threading, operator fusion and pipelining) and
were able to get an implementation 70x faster than
a naive one. The PSNR and visual results from our
experiments validates our approach.

We thus compared RTE-VD to other state-of-the-art
algorithms: VBM3D, VBM4D and STMKF. RTE-VD
always denoises better than STMKF while being
less effective than the more costly algorithms
VBM3D and VBM4D. On heavy noise situations

(=40), RTE-VD achieves an overall PSNR more
than 4dB above STMKF.

While RTE-VD is 2.5x slower than STMKF, it is still
able to process 960x540 pixels video at 25 fps on a
Nvidia Tegra AGX. Given these results, we believe
that RTE-VD is a denoising algorithm particularly
well positioned for speed/accuracy tradeoff.

Since we are targeting embedded systems, we also
studied the link between time and energy
consumption on various embedded CPUs. Within
the tested platforms, it appears that the Nano is the
least power consuming platform while the AGX is
the fastest. We were also able to determine for each
platform multiple efficient frequencies minimizing
either computation time or energy consumption.

Finally, we introduced VIRTANS: our first real-time
embedded video denoiser prototype based on the
TX2 architecture and on RTE-VD. VIRTANS comes
in a small form factor and can be plugged to a
LHERITIER camera to perform live denoising.

 7

As future work, we plan to increase the whole
performance by balancing the load on the CPU and
the GPU and by studying what parts of the algorithm
can be hybridized with 32 and 16-bit computation.
16-bit computation has shown good speed versus
accuracy results on simpler algorithms including
optical flow estimation [39-42][44]. We have also
leads to shrink further the form factor of VIRTANS.
Finally some step from the denoising chain will be
used for the other VIRTA applications like
turbulences rejection or scene pre-segmentation to
focus operator attention [43].

8. ACKNOWLEDGMENT

The authors would like to thank the DGA for the
support they provide to this project through a “Thèse
Cifre Défense”.

9. REFERENCES

[1] A. Petreto, T. Romera, F. Lemaitre, I. Masliah,
B. Gaillard, M. Bouyer, Q. L. Meunier et L.
Lacassagne, «A New Real-Time Embedded
Video Denoising Algorithm,» chez IEEE
International Conference on Design and
Architectures for Signal and Image Processing
(DASIP), 2019.

[2] M. Zhang et B. K. Gunturk, «Multiresolution
bilateral filtering for image denoising,» IEEE
Transactions on image processing, vol. 17,
pp. 2324-2333, 2008.

[3] T. Chen, K.-K. Ma et L.-H. Chen, «Tri-state
median filter for image denoising,» IEEE
Transactions on Image processing, vol. 8, pp.
1834-1838, 1999.

[4] A. Buades, B. Coll et J.-M. Morel, «A review of
image denoising algorithms, with a new one,»
Multiscale Modeling & Simulation, vol. 4, pp.
490-530, 2005.

[5] A. Buades, B. Coll et J.-M. Morel, «A non-local
algorithm for image denoising,» chez 2005
IEEE Computer Society Conference on
Computer Vision and Pattern Recognition
(CVPR'05), 2005.

[6] M. Lebrun, A. Buades et J.-M. Morel, «A
nonlocal Bayesian image denoising
algorithm,» SIAM Journal on Imaging
Sciences, vol. 6, pp. 1665-1688, 2013.

[7] H. C. Burger, C. J. Schuler et S. Harmeling,
«Image denoising: Can plain neural networks
compete with BM3D?,» chez 2012 IEEE
conference on computer vision and pattern
recognition, 2012.

[8] V. Jain et S. Seung, «Natural image denoising
with convolutional networks,» chez Advances
in neural information processing systems,
2009.

[9] K. Zhang, W. Zuo, Y. Chen, D. Meng et L.
Zhang, «Beyond a gaussian denoiser:

Residual learning of deep cnn for image
denoising,» IEEE Transactions on Image
Processing, vol. 26, pp. 3142-3155, 2017.

[10] C. Zuo, Y. Liu, X. Tan, W. Wang et M. Zhang,
«Video denoising based on a spatiotemporal
Kalman-bilateral mixture model,» The
Scientific World Journal, vol. 2013, 2013.

[11] P. Arias, G. Facciolo et J.-M. Morel, «A
Comparison of Patch-Based Models in Video
Denoising,» chez 2018 IEEE 13th Image,
Video, and Multidimensional Signal
Processing Workshop (IVMSP), 2018.

[12] A. Buades et J.-L. Lisani, «Video Denoising
with Optical Flow Estimation,» Image
Processing On Line, vol. 8, pp. 142-166, 2018.

[13] K. Dabov, A. Foi et K. Egiazarian, «Video
denoising by sparse 3D transform-domain
collaborative filtering,» chez 2007 15th
European Signal Processing Conference,
2007.

[14] M. Maggioni, G. Boracchi, A. Foi et K.
Egiazarian, «Video denoising using separable
4D nonlocal spatiotemporal transforms,» chez
Image Processing: Algorithms and Systems
IX, 2011.

[15] P. Arias et J.-M. Morel, «Towards a bayesian
video denoising method,» chez International
Conference on Advanced Concepts for
Intelligent Vision Systems, 2015.

[16] S. G. Pfleger, P. D. M. Plentz, R. C. O. Rocha,
A. D. Pereira et M. Castro, «Real-time video
denoising on multicores and GPUs with
Kalman-based and Bilateral filters fusion,»
Journal of Real-Time Image Processing, pp. 1-
14, 2017.

[17] J. Ehmann, L.-C. Chu, S.-F. Tsai et C.-K.
Liang, «Real-Time Video Denoising on Mobile
Phones,» chez 2018 25th IEEE International
Conference on Image Processing (ICIP),
2018.

[18] C. Liu et W. T. Freeman, «A high-quality video
denoising algorithm based on reliable motion
estimation,» chez European Conference on
Computer Vision, 2010.

[19] A. Petreto, A. Hennequin, T. Koehler, T.
Romera, Y. Fargeix, B. Gaillard, M. Bouyer, Q.
L. Meunier et L. Lacassagne, «Energy and
Execution Time Comparison of Optical Flow
Algorithms on SIMD and GPU Architectures,»
chez 2018 Conference on Design and
Architectures for Signal and Image Processing
(DASIP), 2018.

[20] T. Kroeger, R. Timofte, D. Dai et L. V. Gool,
«Fast Optical Flow using Dense Inverse
Search,» chez (ECCV), 2016.

[21] A. Plyer, G. L. Besnerais et F. Champagnat,
«Massively parallel Lucas Kanade optical flow
for real-time video processing applications,»
Journal of Real-Time Image Processing, Vols.

 8

%1 sur %211,4, pp. 713-730, 2016.

[22] M. Kunz, A. Ostrowski et P. Zipf, «An FPGA-
optimized architecture of horn and schunck
optical flow algorithm for real-time
applications,» chez International Conference
on Field Programmable Logic and
Applications (FPL), 2014.

[23] L. Bako, S. Hajdu, S.-T. Brassai, F. Morgan et
C. Enachescu, «Embedded Implementation of
a Real-Time Motion Estimation Method in
Video Sequences,» Procedia Technology, vol.
22, pp. 897-904, 2016.

[24] Middlebury, Optical Flow Database
http://vision.middlebury.edu/flow/.

[25] C. Zach, T. Pock et H. Bischof, «A duality
based approach for realtime TV-L 1 optical
flow,» chez Joint Pattern Recognition
Symposium, 2007.

[26] B. D. Lucas, T. Kanade et others, «An iterative
image registration technique with an
application to stereo vision,» 1981.

[27] C. Tomasi et R. Manduchi, «Bilateral filtering
for gray and color images,» chez null, 1998.

[28] A. Davy, T. Ehret, G. Facciolo, J.-M. Morel et
P. Arias, «Non-Local Video Denoising by
CNN,» arXiv preprint arXiv:1811.12758, 2018.

[29] Derf, Derf's Test Media Collection
https://media.xiph.org/video/derf/.

[30] L. Lacassagne, D. Etiemble, A. Hassan-
Zahraee, A. Dominguez et P. Vezolle, «High
Level Transforms for SIMD and low-level
computer vision algorithms,» chez ACM
Workshop on Programming Models for
SIMD/Vector Processing (PPoPP), 2014.

[31] H. Ye, L. Lacassagne, D. Etiemble, L.
Cabaret, J. Falcou et O. Florent, «Impact of
High Level Transforms on High Level
Synthesis for motion detection algorithm,»
chez IEEE International Conference on
Design and Architectures for Signal and
Image Processing (DASIP), 2012.

[32] H. Ye, L. Lacassagne, J. Falcou, D. Etiemble,
L. Cabaret et O. Florent, «High Level
Transforms to reduce energy consumption of
signal and image processing operators,» chez
IEEE International Workshop on Power and
Timing Modeling, Optimization and Simulation
(PATMOS), 2013.

[33] F. C. Crow, «Summed-area tables for texture
mapping,» chez ACM SIGGRAPH computer
graphics, 1984.

[34] N. Rambaux, D. Galayko, G. Guignan, J.
Vaubaillon, L. Lacassagne, P. Keckhut, A. C.
Levasseur-Regourd, A. Hauchecorne,
M.Birlan, G. Augarde, S. Barnier, S. B.
Kemmoum, A.Bigot, P. Boisse, M. Capderou,
A. Chu, F. Colas, F. Deshours, Y. Fargeix, A.
Hennequin, T. Koehler, M. Lumbroso, J.-F.
Mariscal, D. Portela-Moreira, J. Raffard, J.-L.

Rault, T. Romera, C. Tob et B. Zanda,
«METEORIX: a cubesat mission dedicated to
the detection of meteors,» chez 42nd
Assembly of Committee on Space Research
(COSPAR), 2018.

[35] N. Rambaux, J. Vaubaillon, L. Lacassagne, D.
Galayko, G. Guignan, M. Birlan, M. Capderou,
F. Colas, F. Deleflie, F. Deshours, A.
Hauchecorne, P. Keckhut, A. C. Levasseurd-
Regourd, J. L. Rault et B. Zanda, «Meteorix: a
cubesat mission dedicated to the detection of
meteors and space debris,» chez ESA Space
Safety Programme Office, NEO and Debris
Detection Conference (ESA NDDC), 2019.

[36] T. Q. Pham et L. J. Van Vliet, «Separable
bilateral filtering for fast video preprocessing,»
chez 2005 IEEE International Conference on
Multimedia and Expo, 2005.

[37] N. N. Schraudolph, «A fast, compact
approximation of the exponential function,»
Neural Computation, vol. 11, pp. 853-862,
1999.

[38] B. K. P. Horn et B. G. Schunk, «Determining
optical flow,» ACM Computing Surveys
(CSUR), vol. 17, pp. 185-203, 1981.

[39] S. Piskorski, L. Lacassagne, S. Bouaziz et D.
Etiemble, «Customizing CPU instructions for
embedded vision systems,» chez Computer
Architecture, Machine Perception and
Sensors (CAMPS), 2006.

[40] L. Lacassagne, D. Etiemble et S. Kablia, «16-
bit Floating Point Instructions for embedded
Multimedia Applications,» chez CAMP:
Computer Architecture and Machine
Perception, 2005.

[41] D. Etiemble, L. Lacassagne et S. Bouaziz,
«Customizing 16-bit floating point instruction
on a NIOS II processor for FPGA image and
media processing,» chez Estimedia -
Embedded Systems for Real-Time
Multimedia, 2005.

[42] D. Etiemble et L. Lacassagne, «Introducing
image processing and SIMD computations
with FPGA soft-cores and customized
instructions,» chez Workshop on
Reconfigurable Computing Education
(WRCE), 2006.

[43] K. Aneja, F. Laguzet, L. Lacassagne et A.
Merigot, «Video rate image segmentation by
means of region splitting and merging,» chez
IEEE International Conference on Signal and
Image Processing Applications (ICSIPA),
2009.

[44] L. Lacassagne et D. Etiemble, «16-bit floating
point operations for low-end and high-end
embedded processors,» chez ODES:
Optimizations for DSP and Embedded
Systems, 2005.

