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INTRODUCTION

In room acoustics and audio signal processing, the temporal structure of the room impulse response (RIR) plays a central role. It is the result of multiple (indirect) sound propagation paths due to specular and diffuse reflections on the room's surfaces, leading to reverberation [START_REF] Wang | Reverberation[END_REF]. In such conditions, the perceived sound quality is often considered degraded and it is common to observe a detrimental decrease of performance as reverberation increases for applications such as speech recognition [START_REF] Yoshioka | Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition[END_REF] or music information retrieval [START_REF] Barthet | On the effect of reverberation on musical instrument automatic recognition[END_REF].

On the other hand, RIRs contain very rich geometrical information about the acoustic scene. Recent echo-aware works have shown that the knowledge of the timing of early reflections may boost performance in many audio signal processing applications, from dereverberation [START_REF] Wu | A two-stage algorithm for one-microphone reverberant speech enhancement[END_REF][START_REF] Lin | Blind channel identification for speech dereverberation using l 1 -norm sparse learning[END_REF] to sound localization [START_REF] Ribeiro | Turning enemies into friends: Using reflections to improve sound source localization[END_REF][START_REF] Carlo | Mirage: 2d source localization using microphone pair augmentation with echoes[END_REF] and separation [START_REF] Dokmanić | Raking the Cocktail Party[END_REF][START_REF] Scheibler | Separake: Source separation with a little help from echoes[END_REF]. Moreover, it allows joint estimation of the receivers' positions [START_REF] Salvati | Sound Source and Microphone Localization from Acoustic Impulse Responses[END_REF], the reflective surfaces [START_REF] Antonacci | Inference of room geometry from acoustic impulse responses[END_REF] and consequently the geometry of the room [START_REF] Dokmanić | Acoustic echoes reveal room shape[END_REF][START_REF] Crocco | Uncalibrated 3D room geometry estimation from sound impulse responses[END_REF].

Acoustic echo retrieval (AER) consists in estimating the properties of the early (strong) acoustic reflections only in multi-path environments [START_REF] Tukuljac | MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval[END_REF], sometimes referred to as time delay estimation [START_REF] Chen | Time delay estimation in room acoustic environments: An overview[END_REF].

The research presented in this paper is reproducible. Code and data are available at https://gitlab.inria.fr/panama-team/blaster To achieve this, several methods rely on a known source signal [START_REF] Park | Compressive time delay estimation off the grid[END_REF][START_REF] Jensen | An EM method for multichannel TOA and DOA estimation of acoustic echoes[END_REF]. In contrast, when multiple receivers attend an unknown single source, AER can be seen as an instance of Single Input Multiple Output (Blind) Channel Estimation (SIMO-BCE) problem. A common approach for solving AER in the context of SIMO-BCE is to first blindly estimate a discrete version of the acoustic channels using the so-called cross-relation identity [START_REF] Xu | A Least-Squares Approach to Blind Channel Identification[END_REF][START_REF] Crocco | Estimation of TDOA for room reflections by iterative weighted l1 constraint[END_REF]. The location of the echoes are then chosen among the strongest peaks with ad-hoc peak-picking techniques. However, in practice, the true timings of echoes rarely match the sampling grid, thus leading to pathological issues called basis-mismatch in the field of compressed sensing. To circumvent this issue, the authors of [START_REF] Tukuljac | MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval[END_REF] proposed to leverage the framework of finite-rate-of-innovation sampling to make one step towards off-grid approaches. Despite promising results in the absence of noise and with synthetic data, the quality of the estimation highly relies on an initialization point.

Of particular interest in this paper is the recently proposed framework of continuous dictionaries (CD) [START_REF] Cands | Towards a mathematical theory of super-resolution[END_REF]. By formulating an inverse problem as the recovery of a discrete measure over some parameter space, CD has allowed to overcome imaging device limitations in many applications such as super-resolution [START_REF] Cands | Towards a mathematical theory of super-resolution[END_REF] or PALM/STORM imaging [START_REF] Denoyelle | The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy[END_REF]. In this work, we formulate the problem of stereo AER within the framework of continuous dictionaries. The resulting optimization problem is convex and thus not prone to spurious minimizers. The proposed method is coined Blind And Sparse Technique for Echo Retrieval (BLASTER) and requires no parameter tuning. The method is compared to state-of-the art ongrid approaches under various noise and reverberation levels using simulated data. While comparable or slightly worse recovery rates are observed for the task of recovering 7 echoes or more, better results are obtained for fewer echoes and the off-grid nature of the approach yields generally smaller estimation errors.

BACKGROUND IN ACOUSTIC ECHO ESTIMATION

Signal and measurement model

Consider the common setup where a band-limited and squareintegrable source signal s is emitted. Due to the geometry of the room, the latter signal is both reflected (several times) and attenuated before reaching a set of two microphones. The recorded signal at

microphone i ∈ {1, 2} reads xi = s * h i + ni (1)
where * denotes the (continuous) convolution operator, ni models some additive noise in the measurement process and h i denotes the room impulse response (RIR). In the remainder of this paper, the superscript refers to the ground truth. In AER, we are interested in RIRs that are streams of Diracs, i.e.,

h i (t) = R i -1 r=0 ci,rδ(t -τi,r) (2) 
where Ri is the (unknown) number of echoes, {τi,r} R i -1 r=0 models the echoes' delays, and {ci,r} R i -1 r=0 are the corresponding nonnegative attenuations. Note that r = 0 defines the direct propagation path. In the noiseless case, that is when ni = 0 for i ∈ {1, 2}, we have the identity

x1 * h 2 = x2 * h 1 (3) 
by commutativity of the convolution operator. This result is dubbed cross-relation identity in the channel identification literature [START_REF] Xu | A Least-Squares Approach to Blind Channel Identification[END_REF]. Hence, one can expect to recover the two filters by solving an optimization problem involving (3). However, in practice, only sampled versions of the two recorded signals are available. More precisely, we consider a measurement model where the incoming signal undergoes a (ideal) low-pass filter φ with frequency support [ -Fs /2, Fs /2] before being regularly sampled at the rate Fs. We denote x1, x2 ∈ R 2N the two vectors of 2N (consecutive) samples and i ∈ {1, 2} by

xi[n] = (φ * x) n Fs ∀n ∈ {0, . . . , 2N -1}. (4) 

Existing works

Starting from the identity (3), the common SIMO BCE cross-relation framework aims to compute h1, h2 solving the following LASSOtype problem in the discrete-time domain:

h1, h2 = arg min h 1 ,h 2 T (x1)h2 -T (x2)h1 2 2 + λ h 1 s.t. h[0] = 1 (5) 
where xi and hi are the discrete, sampled version of xi, hi respectively and h 1 associated to convolution where 2N and L respectively denote microphone and filter signal length. The constraint h[0] = 1 is called an anchor constraint.

= [h 1 , h 2 ]. T (xi) is the (2N + L -1) × L Toeplitz matrix
The accuracy of estimated RIRs has been subsequently improved using a priori knowledge of the filters: in particular, the authors of [START_REF] Lin | Blind sparse-nonnegative (BSN) channel identification for acoustic time-difference-ofarrival estimation[END_REF] have proposed to use sparsity penalty and nonnegativity constraints to increase robustness to noise as well as Bayesian-learning methods to automatically infer the value of λ in [START_REF] Lin | Blind channel identification for speech dereverberation using l 1 -norm sparse learning[END_REF]. Even if sparsity and non-negativity could be seen as a strong assumption, works in speech enhancement [START_REF] Ribeiro | Turning enemies into friends: Using reflections to improve sound source localization[END_REF][START_REF] Dokmanić | Raking the Cocktail Party[END_REF] and room geometry [START_REF] Antonacci | Inference of room geometry from acoustic impulse responses[END_REF][START_REF] Crocco | Uncalibrated 3D room geometry estimation from sound impulse responses[END_REF] estimation have proven the effectiveness of this approach. On a similar scheme, in [START_REF] Kowalczyk | Blind system identification using sparse learning for TDOA estimation of room reflections[END_REF], ( 5) is solved using an adaptive time-frequency-domain approach while [START_REF] Aïssa-El-Bey | Blind SIMO channel identification using a sparsity criterion[END_REF] proposes to use the p-norm instead of the 1-norm. A successful approach has been presented recently by Crocco et al. in [START_REF] Crocco | Estimation of TDOA for room reflections by iterative weighted l1 constraint[END_REF], where the anchor constraint is replaced by an iterative weighted 1 equality constraint.

PROPOSED METHOD

Cross-relation in the Fourier domain

We first remark that the cross-relation identity [START_REF] Barthet | On the effect of reverberation on musical instrument automatic recognition[END_REF] 

ensures that the relation φ * x1 * h 2 = φ * x2 * h 1 holds, hence F(φ * x1) • F h 2 = F(φ * x2) • F h 1 ( 6 
)
where F denotes the Fourier transform (FT)

∀ f ∈ R , F y(f ) = +∞ -∞ y(t)e -i2πf t dt (7) 
for any signal or filter y (note that we use the same notation when referring to the Fourier transform of a function and a distribution). While the FT of h i can be expressed in closed-form (see (10) below), the FT of φ * xi is not available due to the measurement process. To circumvent this issue, we use the approximation

F(φ * xi)( k 2N Fs) Xi[k] (8) 
for all integers k ∈ {0, . . . , N }, where

Xi[k] = 2N -1 n=0 xi[n]e -i2π kn 2N (9) 
is the discrete Fourier transform of the real vector xi for positive frequencies only. The FT of h 1 , h 2 (see [START_REF] Yoshioka | Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition[END_REF]) can be expressed in closed-form. Denoting ∆τ the following parametric vector of complex exponential

∆τ e -i2π k 2N Fsτ 0≤k≤N ∈ C N +1 , (10) equation 
(6) evaluated at f = k 2N Fs where k ∈ {0, . . . , N } reads R 2 -1 r=0 c1,rX1 ∆τ 2,r = R 1 -1 r=0 c2,rX2 ∆τ 1,r (11) 
where denotes the component-wise Hadamard product.

Echo localization with continuous dictionaries

By interpreting the FT of a Dirac as a parametric atom, we propose to cast the problem of RIR estimation into the framework of continuous dictionaries. To that aim, let us define the so-called parameter set

Θ [0, T ] × {1, 2} (12) 
where T is the length (in time) of the filter. Then, the two desired filters h 1 , h 2 given by (2) can be uniquely2 represented by the following discrete measure over

Θ µ = 2 i=1 R i -1 r=0 ci,rδ (τ i,r ,i) . (13) 
The rationale behind ( 12) and ( 13) is as follows. A couple of filters is now represented by a single stream of Diracs, where we have considered an augmented variable i indicating to which filter the spike belongs. For instance, a Dirac at (τ, 1) indicates that the first filter contains a Dirac at τ . The set M+(Θ) of all unsigned and discrete Radon measures over Θ (i.e., the set of all couples of filters) is equipped with the total-variation norm (TV-norm) µ TV . See [START_REF] Rudin | Real and Complex Analysis[END_REF] for a rigorous construction of measures set and the TV-norm. We now define the linear observation operator A : M+(Θ) → C N +1 , which is such that

Aδ (τ,i) = -X1 ∆τ if i = 1 +X2 ∆τ if i = 2. (14) 
∀(τ, i) ∈ Θ where the two complex vectors X1, X2 have been defined in [START_REF] Scheibler | Separake: Source separation with a little help from echoes[END_REF] and FN δτ in [START_REF] Salvati | Sound Source and Microphone Localization from Acoustic Impulse Responses[END_REF]. Then, by linearity of the observation operator A, the relation ( 11) can be rewritten as

Aµ = 0N+1. (15) 
Before continuing our exposition, we note that the anchor constraint can be written in a more convenient way. Indeed, the constraint µ({(0, 1)}) = 1 ensures the existence of a Dirac at 0 in the filter 1. Then, the targeted filter reads

µ = δ (0,1) + µ ( 16 
)
where µ is a (finite) discrete measure verifying µ ({(0, 1)}) = 0. Denoting y -Aδ (0,1) ∈ C N +1 , the relation [START_REF] Chen | Time delay estimation in room acoustic environments: An overview[END_REF] becomes

A µ = y. (17) 
For the sake of clarity, we use these conventions hereafter and omit the tilde. Now, following [START_REF] Cands | Towards a mathematical theory of super-resolution[END_REF][START_REF] Castro | Exact reconstruction using beurling minimal extrapolation[END_REF], one can expect to recover the desired filter µ by solving

µ = arg min M + (Θ)
µ TV s.t. Aµ = y µ({(0, 1)}) = 0.

(18-P 0 TV)

Note that (18-P 0 TV) has to be interpreted as a natural extension of the well-known basis pursuit problem to the continuous setting. Indeed, for any finite discrete measure µ = R-1 r=0 crδ (τr ,ir ) , the TVnorm of µ returns to the 1-norm of the coefficients, i.e., µ

T V = R-1 r=0 |cr|.
Finally, [START_REF] Jensen | An EM method for multichannel TOA and DOA estimation of acoustic echoes[END_REF] can be exploited to take into account noise during the measurement process (i.e., ni = 0 in (1)), as well as approximation errors (see ( 8)-( 11)). In that case, the first equality constraint in (18-P 0 TV) is relaxed, leading to the so-called Beurling-LASSO (BLASSO) problem

µ = arg min µ∈M + (Θ) 1 2 y -Aµ 2 2 + λ µ TV s.t. µ({(0, 1)}) = 0. ( 19 
-P λ TV )
We emphasize that although continuous Radon measures may potentially be admissible, the minimizers of (19-P λ TV ) are guaranteed to be streams of Diracs [START_REF] Bredies | Sparsity of solutions for variational inverse problems with finite-dimensional data[END_REF]Theorem 4.2]. In addition, although problem (19-P λ TV ) seems to depend on some regularization parameter λ, we describe in Section 4 a procedure to automatically tune it to recover a desired number of spikes.

Finally, note that problem (19-P λ TV ) is convex with linear constraints. In this work, we particularize the sliding Frank-Wolfe algorithm proposed in [START_REF] Denoyelle | The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy[END_REF] to solve (19-P λ TV ). Detailed descriptions of the steps of the algorithm are given in Appendix A.

EXPERIMENTS

The proposed method (BLASTER) is compared against the nonnegative 1-norm method (BSN) of [START_REF] Lin | Blind sparse-nonnegative (BSN) channel identification for acoustic time-difference-ofarrival estimation[END_REF] and the iterative 1-norm approach (IL1C) described in [START_REF] Crocco | Estimation of TDOA for room reflections by iterative weighted l1 constraint[END_REF]. The problem is formulated as estimating the time location of the first R = 7 strongest components of the RIRs for 2 microphones listening to a single sound source in a shoebox room. It corresponds to the challenging task of estimating first-order early reflections. The robustness of the methods is tested against different level of noise (SNR) and reverberation time (RT60).

We propose to compute a path of solutions to automatically estimate the regularization parameter λ in (19-P λ TV ). More precisely, let λmax be the smallest value of λ such that the null measure is the solution to (19-P λ TV ). It can be shown that λmax is upper bounded by max θ∈Θ |y Aδ θ |. Starting from = 1 and the empty filter, we consider a sequential implementation where the solution of (19-P λ TV ) is computed for λ = 10 -0.05 λmax until the desired number of spikes is found in each channel when incrementing . For each λ , we search for a solution of (19-P λ TV ) with the solution obtained for λ -1 as a warm start.

The quality of the AER estimation is assessed in terms of precision 3 in percentage as in the literature of onset detection [START_REF] Böck | Evaluating the online capabilities of onset detection methods[END_REF] and the root-mean-square-error (RMSE) in samples. Both metrics evaluate only the matched peaks, where a match is defined as being within a small window τmax of a reference delay. These two metrics are similar to the ones used in [START_REF] Crocco | Room impulse response estimation by iterative weighted L1-norm[END_REF].

For this purpose we created three synthetic datasets of 1000 observations each: D (valid) is used for tuning the hyperparameter λ and the peak-picking parameters for IL1C and BSN using RT60 and SNR randomly drawn from U[0, 1] (sec) and U[0, 20] (dB) respectively; D SNR features SNR value uniformly sampled in [0, 6, 14, 20, ∞] while the RT60 is kept fixed to 400 ms; akin the D RT 60 is built sampling RT60 value uniformly in [200, 400, 600, 800, 1000] ms keeping SNR fix to 20 dB. Moreover, while for D (valid) broadband signals (white noise) are used as the source, for D SNR and D RT 60 speech utterances from the TIMIT dataset are also included. The signal duration is kept fixed to 1 s with sampling frequency Fs = 16 kHz.

For a given RT60 value and room with random dimensions, a unique absorption coefficient is assigned to all surfaces based on the Sabine's formula. Then, the two microphones and the source are randomly positioned inside the room. The parameters of such audio scene are then passed as input to the pyroomacoustic simulator [START_REF] Scheibler | Pyroomacoustics: A python package for audio room simulation and array processing algorithms[END_REF], which returns the corresponding RIRs as well as the off-grid echo delays and attenuation coefficients computed with the Image Method [START_REF] Allen | Image method for efficiently simulating small-room acoustics[END_REF]. Note that when generating the data, no samples have been pruned to match any minimal separation condition.

To generate the microphone signals, an oversampled version of the source signal is convolved with ideal RIRs at high frequency (Fs = 1024 kHz) made up of on-grid Diracs. The results are later resampled to meet the original Fs and Gaussian white noise is added to meet the given SNR value.

Quantitative results are reported in Fig. 1, Fig. 2 and Tab. 1. Here, for both RMSE and Precision and for both broadband and speech signal, the metrics are displayed against the dataset parameters. We observe that BSN performs worst in all tested conditions, possibly due to its strong reliance on the peak picking step. For R = 7 or higher, BLASTER yields similar or slightly worse performance than IL1C for the considered noise and reverberation levels, with decreasing performance for both as these levels increase. Using speech rather than broadband signals also yields worse results for all methods. However, the echo timing RMSE is significantly smaller using BLASTER due to its off-grid advantage. We also note that BLASTER significantly outperforms IL1C on the task of recov-ering R = 2 echoes. As showed in Tab. 1, in mild conditions, up to 68% of echoes can be retrieved by BLASTER with errors lower than half a sample in that case. This is promising since the practical advantage of knowing the timing of two echoes per channel has been demonstrated in [START_REF] Carlo | Mirage: 2d source localization using microphone pair augmentation with echoes[END_REF][START_REF] Scheibler | Separake: Source separation with a little help from echoes[END_REF].

CONCLUSIONS

A novel blind, off-grid, multichannel echo retrieval method has been proposed based on the framework of continuous dictionaries. Comparisons with state-of-the-art approaches on various noise and reverberation conditions show that this method performs best when the number of echoes to retrieve is small. While some robustness to noise, reverberation, and non-broadband signals is observed, our experiments reveal that room for improvement exists for this challenging and emerging topic. Future works will include an extension to more than two channels and experiments on real-world data.

A. SLIDING FRANK-WOLFE ALGORITHM

Among all the methods that address the resolution of (19-P λ TV ), a significant number of them are based on variations of the well-known Frank-Wolfe iterative algorithm, see, e.g., [START_REF] Denoyelle | The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy[END_REF][START_REF] Bredies | Inverse problems in spaces of measures[END_REF][START_REF] Rao | Forwardbackward greedy algorithms for atomic norm regularization[END_REF]. In this paper, we particularize the sliding Frank-Wolfe (SFW) algorithm proposed in [START_REF] Denoyelle | The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy[END_REF]. Starting from an initial guess (e.g., the null measure), SFW repeats the four following steps until convergence:

1. add a parameter (position of echo) to the support of the solution,

2. update all the coefficients solving a (finite dimensional) Lasso, 3. update jointly the position of the echoes and the coefficients, 4. eventually remove parameters (echoes) associated to coefficients equal to zero.

Finally, SFW stops as soon as an iterate satisfies the first order optimality condition associated to the convex problem (19-P λ TV ). More particularly, denoting µ (t) the estimated filters at iteration t, SFW stops as soon as µ (t) satisfies [32, Proposition 3.6]

sup θ∈Θ λ -1 Aδ θ , y -Aµ (t) ≤ 1. (20) 
The complete SFW method for echo estimation is described by Algorithm 1. We now provide additional details about the implementation of each step.

Non-negative Blasso. To take into account the non-negative constraint on the coefficients, the authors of [START_REF] Denoyelle | The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy[END_REF] have proposed to slightly modify the SFW algorithm by i) removing the absolute value in [START_REF] Cands | Towards a mathematical theory of super-resolution[END_REF] and ii) adding the non-negativity constraints at step 2 and 3 (see lines 14 and 15 of Algorithm 1). The reader is referred to [21, remark 8 in Section 4.1] for more details.

Real part in [START_REF] Cands | Towards a mathematical theory of super-resolution[END_REF]. We have shown earlier that SFW stops as soon as an iterate µ (t) satisfies (20) at some iteration t. Since the estimated coefficients c (t) r R r=1 are (non-negative) scalars, (20) can be rewritten as

sup θ∈Θ λ -1 Re( Aδ θ , y -Aµ ) ≤ 1. (21) 
In particular, using the real part in the implementation allows to remove the imaginary part that may appear due to the imprecision.

Precision of the stopping criterion. Unfortunately, condition [START_REF] Cands | Towards a mathematical theory of super-resolution[END_REF] cannot be met due to the machine precision, i.e., the solution of (19-P λ TV ) is computed up to some prescribed accuracy. In this paper, we say that the algorithm stops as soon as

sup θ∈Θ λ -1 Re( Aδ θ , y -Aµ ) ≤ 1 + ε ( 22 
)
where ε is a positive scalar set to ε = 10 -3 .

Finding new parameters (Line 7 

Fig. 1 .

 1 Fig. 1. Line plot with error bands for error (left) and precision (right) versus SNR level (top) and RT60 level (bottom) using broadband and speech signals for the task of recovering R = 7 echoes. A threshold of τmax = 2 samples is used to compute the precision.

Fig. 2 .

 2 Fig. 2. Line plots with error bands of precision versus number of echoes R to be retrieved for broadband (left) and speech (right) signals with RT60 = 400 ms and SNR = 20 dB.

Table 1 .

 1 Precision for different threshold τmax in samples for the recovery of R = 2 and 7 echoes, RT60 = 200 ms and SNR = 20 dB.

						Precision [%]				
			R = 2 echoes			R = 7 echoes	
	τmax	0.5	1	2	3	10	0.5	1	2	3	10
	BSN	8	9	27	46	62	5	8	38	54	73
	IL1C	51	55	55	56	58	42	53	55	56	58
	BLASTER	68	73	74	75	75	46	53	56	57	61

  Observation operator A, positive scalar λ, precision ε Output: Channels represented as a measure µ // Initialization 1 y ← -Aδ (0,1) // observation vector 2 µ (0) = 0M // estimated filters 3 E (0) = ∅ // estimated echoes 4 xmax = (2λ) -1 y 2 2 ;Find θ new ∈ arg max θ∈Θ Re Aδ θ , y -Aµ (t-1) ;

	Algorithm 1: Sliding Frank-Wolfe algorithm for solv-
	ing (19-P λ TV ).				
		Input: // Starting algorithm			
	5 repeat				
		c∈R R (t) +	1 2	y -	θ∈E (t-½)	c θ Aδ θ	2 2 + λ c 1
		approximated using a proximal gradient algorithm ;
		arg min θ∈Θ R (t) ,c∈[0,xmax] R (t)	1 2	y -	R (t) r=1	crAδ θr	2 2 +λ c 1
		approximated using a non-convex solver initialized
		with (E (t-½) , c (t-½) ) ;	
		// 4. Eventually remove zero amplitude Dirac masses
	16	E (t) ← θ	(t) r ∈ E (t) | c (t) r = 0 ;
	17	c (t) ← c (t) r | c (t) r = 0 ;
		card(E (t) )			
	18	µ (t) ←	c (t) r δ θ (t)
		r=1			
	(23)					

). The new parameter is found by solving arg max θ∈Θ Re( Aδ θ , y -A µ ). 6 t ← t + 1 // Iteration index // 1. Add new element to the support 7 8

η (t) ← λ -1 Re Aδ θ new , y -Aµ (t-1) ; 9 if η (t) ≤ 1 + ε then 10

Stop and return µ = µ (t-1) is a solution ; 11 end 12

E (t-½) ← E (t-½) ∪ {θ new } ; 13 R (t) ← card(E (t-½) ) //

Number of detected echoes // 2. Lasso update of the coefficients 14 c (t-½) ← arg min // 3. Joint update for a given number of spikes 15 E (t) , c (t) ← r ;

The first row and column of T (x i ) are respectively[x i [2Nn], 0, . . . , 0] and [x i [2N -n], x i [2N -n + 1], . . . , x i [n], 0, . . . , 0] .

Uniqueness is ensured as soon as we impose c i,r > 0 ∀i, r.

Since only K time locations are considered in both the ground truth and the estimation, precision and recall are equal.

https://docs.scipy.org/doc/scipy/reference/ generated/scipy.optimize.minimize.html.

To solve this optimization problem, we first find a maximizer on a thin grid made of 20000 points. We then proceed to a local refinement using the scipy optimization library 4 .

Nonnegative Lasso (Line 14). The nonnegative Lasso is solved using a custom implementation of a proximal gradient algorithm. In particular, the procedure stops as soon as a stopping criterion in terms of duality gap is reached (10 -6 ).

Joint update (Line 15). In order to ease the numerical resolution, we show that given a positive integer R, the solution of

is equivalent to the solution of

where

Indeed, let us denote θ , c the minimizers of [START_REF] Aïssa-El-Bey | Blind SIMO channel identification using a sparsity criterion[END_REF]. For any θ ∈ Θ R , the couple θ, 0R is admissible for (24) so we have by definition

Hence

xmax.

Finally, the joint update of the coefficients and parameters is performed using the Sequential Least SQuares Programming (SLSQP) implemented in the scipy optimization library, see footnote 4.