
HAL Id: hal-02469901
https://hal.science/hal-02469901v1

Submitted on 14 Feb 2020 (v1), last revised 23 Sep 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BLASTER: An Off-Grid Method for Blind and
Regularized Acoustic Echoes Retrieval with

supplementary materials
Diego Di Carlo, Clément Elvira, Antoine Deleforge, Nancy Bertin, Rémi

Gribonval

To cite this version:
Diego Di Carlo, Clément Elvira, Antoine Deleforge, Nancy Bertin, Rémi Gribonval. BLASTER: An
Off-Grid Method for Blind and Regularized Acoustic Echoes Retrieval with supplementary materials.
[Research Report] Inria. 2020. �hal-02469901v1�

https://hal.science/hal-02469901v1
https://hal.archives-ouvertes.fr


BLASTER: AN OFF-GRID METHOD FOR BLIND AND REGULARIZED
ACOUSTIC ECHOES RETRIEVAL — SUPPLEMENTARY MATERIALS

Diego Di Carlo†?, Clément Elvira†?, Antoine Deleforge‡, Nancy Bertin† and Rémi Gribonval†§
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ABSTRACT

Acoustic echoes retrieval is a research topic that is gaining im-
portance in many speech and audio signal processing applications
such as speech enhancement, source separation, dereverberation and
room geometry estimation. This work proposes a novel approach to
blindly retrieve the off-grid timing of early acoustic echoes from a
stereophonic recording of an unknown sound source such as speech.
It builds on the recent framework of continuous dictionaries. In
contrast with existing methods, the proposed approach does not
rely on parameter tuning nor peak picking techniques by working
directly in the parameter space of interest. The accuracy and ro-
bustness of the method are assessed on challenging simulated setups
with varying noise and reverberation levels and are compared to two
state-of-the-art methods.

Index Terms— Blind Channel Identification, Super Resolution,
Sparsity, Acoustic Impulse Response.

1. INTRODUCTION

In room acoustics and audio signal processing, the temporal struc-
ture of the room impulse response (RIR) plays a central role. It is
the result of multiple (indirect) sound propagation paths due to spec-
ular and diffuse reflections on the room’s surfaces, leading to rever-
beration [1]. In such conditions, the perceived sound quality is of-
ten considered degraded and it is common to observe a detrimental
decrease of performance as reverberation increases for applications
such as speech recognition [2] or music information retrieval [3].

On the other hand, RIRs contain very rich geometrical informa-
tion about the acoustic scene. Recent echo-aware works have shown
that the knowledge of the timing of early reflections may boost per-
formance in many audio signal processing applications, from dere-
verberation [4, 5] to sound localization [6, 7] and separation [8, 9].
Moreover, it allows joint estimation of the receivers’ positions [10],
the reflective surfaces [11] and consequently the geometry of the
room [12, 13].

Acoustic echo retrieval (AER) consists in estimating the proper-
ties of the early (strong) acoustic reflections only in multi-path envi-
ronments [14], sometimes referred to as time delay estimation [15].
To achieve this, several methods rely on a known source signal [16,

The research presented in this paper is reproducible. Code and data are
available at https://gitlab.inria.fr/panama-team/blaster

17]. In contrast, when multiple receivers attend an unknown single
source, AER can be seen as an instance of Single Input Multiple Out-
put (Blind) Channel Estimation (SIMO-BCE) problem. A common
approach for solving AER in the context of SIMO-BCE is to first
blindly estimate a discrete version of the acoustic channels using the
so-called cross-relation identity [18, 19]. The location of the echoes
are then chosen among the strongest peaks with ad-hoc peak-picking
techniques. However, in practice, the true timings of echoes rarely
match the sampling grid, thus leading to pathological issues called
basis-mismatch in the field of compressed sensing. To circumvent
this issue, the authors of [14] proposed to leverage the framework of
finite-rate-of-innovation sampling to make one step towards off-grid
approaches. Despite promising results in the absence of noise and
with synthetic data, the quality of the estimation highly relies on an
initialization point.

Of particular interest in this paper is the recently proposed
framework of continuous dictionaries (CD) [20]. By formulat-
ing an inverse problem as the recovery of a discrete measure over
some parameter space, CD has allowed to overcome imaging device
limitations in many applications such as super-resolution [20] or
PALM/STORM imaging [21]. In this work, we formulate the prob-
lem of stereo AER within the framework of continuous dictionaries.
The resulting optimization problem is convex and thus not prone
to spurious minimizers. The proposed method is coined Blind And
Sparse Technique for Echo Retrieval (BLASTER) and requires no
parameter tuning. The method is compared to state-of-the art on-
grid approaches under various noise and reverberation levels using
simulated data. While comparable or slightly worse recovery rates
are observed for the task of recovering 7 echoes or more, better
results are obtained for fewer echoes and the off-grid nature of the
approach yields generally smaller estimation errors.

2. BACKGROUND IN ACOUSTIC ECHO ESTIMATION

2.1. Signal and measurement model

Consider the common setup where a band-limited and square-
integrable source signal s is emitted. Due to the geometry of the
room, the latter signal is both reflected (several times) and attenuated
before reaching a set of two microphones. The recorded signal at
microphone i ∈ {1, 2} reads

xi = s ∗ h?i + ni (1)

https://gitlab.inria.fr/panama-team/blaster


where ∗ denotes the (continuous) convolution operator, ni models
some additive noise in the measurement process and h?i denotes the
room impulse response (RIR). In the remainder of this paper, the
superscript ? refers to the ground truth. In AER, we are interested in
RIRs that are streams of Diracs, i.e.,

h?i (t) =

Ri−1∑
r=0

ci,rδ(t− τi,r) (2)

where Ri is the (unknown) number of echoes, {τi,r}Ri−1
r=0 mod-

els the echoes’ delays, and {ci,r}Ri−1
r=0 are the corresponding non-

negative attenuations. Note that r = 0 defines the direct propagation
path. In the noiseless case, that is when ni = 0 for i ∈ {1, 2}, we
have the identity

x1 ∗ h?2 = x2 ∗ h?1 (3)

by commutativity of the convolution operator. This result is dubbed
cross-relation identity in the channel identification literature [18].
Hence, one can expect to recover the two filters by solving an opti-
mization problem involving (3).

However, in practice, only sampled versions of the two recorded
signals are available. More precisely, we consider a measurement
model where the incoming signal undergoes a (ideal) low-pass filter
φ with frequency support [− Fs/2, Fs/2] before being regularly sam-
pled at the rate Fs. We denote x1,x2 ∈ R2N the two vectors of 2N

(consecutive) samples and i ∈ {1, 2} by

xi[n] = (φ ∗ x)

(
n

Fs

)
∀n ∈ {0, . . . , 2N − 1}. (4)

2.2. Existing works

Starting from the identity (3), the common SIMO BCE cross-relation
framework aims to compute h1, h2 solving the following LASSO-
type problem in the discrete-time domain:

ĥ1, ĥ2 = arg min
h1,h2

‖T (x1)h2 − T (x2)h1‖22 + λ‖h‖1

s.t. h[0] = 1 (5)

where xi and hi are the discrete, sampled version of xi, hi respec-
tively and h = [hᵀ

1,h
ᵀ
2]. T (xi) is the (2N + L − 1) × L Toeplitz

matrix1 associated to convolution where 2N and L respectively de-
note microphone and filter signal length. The constraint h[0] = 1 is
called an anchor constraint.

The accuracy of estimated RIRs has been subsequently im-
proved using a priori knowledge of the filters: in particular, the
authors of [22] have proposed to use sparsity penalty and non-
negativity constraints to increase robustness to noise as well as
Bayesian-learning methods to automatically infer the value of λ
in [5]. Even if sparsity and non-negativity could be seen as a strong
assumption, works in speech enhancement [6, 8] and room ge-
ometry [11, 13] estimation have proven the effectiveness of this
approach. On a similar scheme, in [23], (5) is solved using an
adaptive time-frequency-domain approach while [24] proposes to
use the `p-norm instead of the `1-norm. A successful approach has
been presented recently by Crocco et al. in [19], where the anchor
constraint is replaced by an iterative weighted `1 equality constraint.

1The first row and column of T (xi) are respectively [xi[2N −
n], 0, . . . , 0] and [xi[2N − n],xi[2N − n+ 1], . . . ,xi[n], 0, . . . , 0]

ᵀ.

3. PROPOSED METHOD

3.1. Cross-relation in the Fourier domain

We first remark that the cross-relation identity (3) ensures that the
relation φ ∗ x1 ∗ h?2 = φ ∗ x2 ∗ h?1 holds, hence

F(φ ∗ x1) · F h?2 = F(φ ∗ x2) · F h?1 (6)

where F denotes the Fourier transform (FT)

∀ f ∈ R , F y(f) =

∫ +∞

−∞
y(t)e−i2πft dt (7)

for any signal or filter y (note that we use the same notation when
referring to the Fourier transform of a function and a distribution).

While the FT of h?i can be expressed in closed-form (see (10)
below), the FT of φ ∗ xi is not available due to the measurement
process. To circumvent this issue, we use the approximation

F(φ ∗ xi)( k
2N
Fs) ' Xi[k] (8)

for all integers k ∈ {0, . . . , N}, where

Xi[k] =

2N−1∑
n=0

xi[n]e−i2π
kn
2N (9)

is the discrete Fourier transform of the real vector xi for positive
frequencies only. The FT of h?1, h?2 (see (2)) can be expressed in
closed-form. Denoting ∆τ the following parametric vector of com-
plex exponential

∆τ ,

(
e−i2π

k
2N

Fsτ

)
0≤k≤N

∈ CN+1, (10)

equation (6) evaluated at f = k
2N
Fs where k ∈ {0, . . . , N} reads

R2−1∑
r=0

X1 �∆τ2,r =

R1−1∑
r=0

X2 �∆τ1,r (11)

where � denotes the component-wise Hadamard product.

3.2. Echo localization with continuous dictionaries

By interpreting the FT of a Dirac as a parametric atom, we propose to
cast the problem of RIR estimation into the framework of continuous
dictionaries. To that aim, let us define the so-called parameter set

Θ , [0, T ]× {1, 2} (12)

where T is the length (in time) of the filter. Then, the two desired
filters h?1, h?2 given by (2) can be uniquely2 represented by the fol-
lowing discrete measure over Θ

µ? =

2∑
i=1

Ri−1∑
r=0

ci,rδ(τi,r,i). (13)

The rationale behind (12) and (13) is as follows. A couple of filters
is now represented by a single stream of Diracs, where we have con-
sidered an augmented variable i indicating to which filter the spike

2Uniqueness is ensured as soon as we impose ci,r > 0 ∀i, r.



belongs. For instance, a Dirac at (τ, 1) indicates that the first filter
contains a Dirac at τ .

The set M+(Θ) of all unsigned and discrete Radon measures
over Θ (i.e., the set of all couples of filters) is equipped with the
total-variation norm (TV-norm) ‖µ‖TV. See [25] for a rigorous con-
struction of measures set and the TV-norm. We now define the linear
observation operator A : M+(Θ)→ CN+1 , which is such that

Aδ(τ,i) =

{
−X1 �∆τ if i = 1

+X2 �∆τ if i = 2.
(14)

∀(τ, i) ∈ Θ where the two complex vectors X1,X2 have been de-
fined in (9) and FNδτ in (10). Then, by linearity of the observation
operator A, the relation (11) can be rewritten as

Aµ? = 0N+1. (15)

Before continuing our exposition, we note that the anchor constraint
can be written in a more convenient way. Indeed, the constraint
µ({(0, 1)}) = 1 ensures the existence of a Dirac at 0 in the filter
1. Then, the targeted filter reads

µ? = δ(0,1) + µ̃? (16)

where µ̃? is a (finite) discrete measure verifying µ̃?({(0, 1)}) = 0.
Denoting y , −Aδ(0,1) ∈ CN+1, the relation (15) becomes

Aµ̃? = y. (17)

For the sake of clarity, we use these conventions hereafter and omit
the tilde. Now, following [20, 26], one can expect to recover the
desired filter µ? by solving

µ̂ = arg min
M+(Θ)

‖µ‖TV s.t.

{
Aµ = y

µ({(0, 1)}) = 0.
(18-P0TV)

Note that (18-P0TV) has to be interpreted as a natural extension of
the well-known basis pursuit problem to the continuous setting. In-
deed, for any finite discrete measure µ =

∑R−1
r=0 crδ(τr,ir), the TV-

norm of µ returns to the `1-norm of the coefficients, i.e., ‖µ‖TV =∑R−1
r=0 |cr|.

Finally, (17) can be exploited to take into account noise during
the measurement process (i.e., ni 6= 0 in (1)), as well as approxi-
mation errors (see (8)-(11)). In that case, the first equality constraint
in (18-P0TV) is relaxed, leading to the so-called Beurling-LASSO
(BLASSO) problem

µ̂ = arg min
µ∈M+(Θ)

1
2
‖y −Aµ‖22 + λ‖µ‖TV

s.t. µ({(0, 1)}) = 0.

(19-PλTV)

We emphasize that although continuous Radon measures may po-
tentially be admissible, the minimizers of (19-PλTV) are guaranteed
to be streams of Diracs [27, Theorem 4.2]. In addition, although
problem (19-PλTV) seems to depend on some regularization parame-
ter λ, we describe in Section 4 a procedure to automatically tune it
to recover a desired number of spikes.

Finally, note that problem (19-PλTV) is convex with linear con-
straints. In this work, we particularize the sliding Frank-Wolfe algo-
rithm proposed in [21] to solve (19-PλTV). Detailed descriptions of
the steps of the algorithm are given in Appendix A.

4. EXPERIMENTS

The proposed method (BLASTER) is compared against the non-
negative `1-norm method (BSN) of [22] and the iterative `1-norm
approach (IL1C) described in [19]. The problem is formulated as
estimating the time location of the first R = 7 strongest components
of the RIRs for 2 microphones listening to a single sound source in a
shoebox room. It corresponds to the challenging task of estimating
first-order early reflections. The robustness of the methods is tested
against different level of noise (SNR) and reverberation time (RT60).

We propose to compute a path of solutions to automatically es-
timate the regularization parameter λ in (19-PλTV). More precisely,
let λmax be the smallest value of λ such that the null measure is the
solution to (19-PλTV). It can be shown that λmax is upper bounded
by maxθ∈Θ|yᵀAδθ|. Starting from ` = 1 and the empty filter, we
consider a sequential implementation where the solution of (19-PλTV)
is computed for λ` = 10−0.05`λmax until the desired number of
spikes is found in each channel when incrementing `. For each λ`,
we search for a solution of (19-PλTV) with the solution obtained for
λ`−1 as a warm start.

The quality of the AER estimation is assessed in terms of preci-
sion3 in percentage as in the literature of onset detection [28] and the
root-mean-square-error (RMSE) in samples. Both metrics evaluate
only the matched peaks, where a match is defined as being within
a small window τmax of a reference delay. These two metrics are
similar to the ones used in [29].

For this purpose we created three synthetic datasets of 1000 ob-
servations each: D (valid) is used for tuning the hyperparameter λ and
the peak-picking parameters for IL1C and BSN using RT60 and SNR
randomly drawn from U [0, 1] (sec) and U [0, 20] (dB) respectively;
D SNR features SNR value uniformly sampled in [0, 6, 14, 20,∞]

while the RT60 is kept fixed to 400 ms; akin the D RT60 is built sam-
pling RT60 value uniformly in [200, 400, 600, 800, 1000] ms keep-
ing SNR fix to 20 dB. Moreover, while forD (valid) broadband signals
(white noise) are used as the source, for D SNR and D RT60 speech
utterances from the TIMIT dataset are also included. The signal du-
ration is kept fixed to 1 s with sampling frequency Fs = 16 kHz.

For a given RT60 value and room with random dimensions, a
unique absorption coefficient is assigned to all surfaces based on the
Sabine’s formula. Then, the two microphones and the source are
randomly positioned inside the room. The parameters of such audio
scene are then passed as input to the pyroomacoustic simula-
tor [30], which returns the corresponding RIRs as well as the off-grid
echo delays and attenuation coefficients computed with the Image
Method [31]. Note that when generating the data, no samples have
been pruned to match any minimal separation condition.

To generate the microphone signals, an oversampled version of
the source signal is convolved with ideal RIRs at high frequency
(Fs = 1024 kHz) made up of on-grid Diracs. The results are later
resampled to meet the original Fs and Gaussian white noise is added
to meet the given SNR value.

Quantitative results are reported in Fig. 1, Fig. 2 and Tab. 1.
Here, for both RMSE and Precision and for both broadband and
speech signal, the metrics are displayed against the dataset param-
eters. We observe that BSN performs worst in all tested conditions,

3Since only K time locations are considered in both the ground truth and
the estimation, precision and recall are equal.
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Fig. 1. Line plot with error bands for error (left) and precision (right) versus SNR level (top) and RT60 level (bottom) using broadband and
speech signals for the task of recovering R = 7 echoes. A threshold of τmax = 2 samples is used to compute the precision.

Precision [%]
R = 2 echoes R = 7 echoes

τmax 0.5 1 2 3 10 0.5 1 2 3 10
BSN 8 9 27 46 62 5 8 38 54 73
IL1C 51 55 55 56 58 42 53 55 56 58
BLASTER 68 73 74 75 75 46 53 56 57 61

Table 1. Precision for different threshold τmax in samples for the
recovery of R = 2 and 7 echoes, RT60 = 200 ms and SNR = 20 dB.
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Fig. 2. Line plots with error bands of precision versus number
of echoes R to be retrieved for broadband (left) and speech (right)
signals with RT60 = 400 ms and SNR = 20 dB.

possibly due to its strong reliance on the peak picking step. For
R = 7 or higher, BLASTER yields similar or slightly worse perfor-
mance than IL1C for the considered noise and reverberation levels,
with decreasing performance for both as these levels increase. Us-
ing speech rather than broadband signals also yields worse results
for all methods. However, the echo timing RMSE is significantly
smaller using BLASTER due to its off-grid advantage. We also note
that BLASTER significantly outperforms IL1C on the task of recov-

ering R = 2 echoes. As showed in Tab. 1, in mild conditions, up
to 68% of echoes can be retrieved by BLASTER with errors lower
than half a sample in that case. This is promising since the practical
advantage of knowing the timing of two echoes per channel has been
demonstrated in [7, 9].

5. CONCLUSIONS

A novel blind, off-grid, multichannel echo retrieval method has been
proposed based on the framework of continuous dictionaries. Com-
parisons with state-of-the-art approaches on various noise and re-
verberation conditions show that this method performs best when
the number of echoes to retrieve is small. While some robustness
to noise, reverberation, and non-broadband signals is observed, our
experiments reveal that room for improvement exists for this chal-
lenging and emerging topic. Future works will include an extension
to more than two channels and experiments on real-world data.

A. SLIDING FRANK-WOLFE ALGORITHM

Among all the methods that address the resolution of (19-PλTV), a
significant number of them are based on variations of the well-known
Frank-Wolfe iterative algorithm, see, e.g., [21, 32, 33]. In this paper,
we particularize the sliding Frank-Wolfe (SFW) algorithm proposed
in [21]. Starting from an initial guess (e.g., the null measure), SFW
repeats the four following steps until convergence:

1. add a parameter (position of echo) to the support of the solu-
tion,

2. update all the coefficients solving a (finite dimensional)
Lasso,

3. update jointly the position of the echoes and the coefficients,



4. eventually remove parameters (echoes) associated to coeffi-
cients equal to zero.

Finally, SFW stops as soon as an iterate satisfies the first order opti-
mality condition associated to the convex problem (19-PλTV). More
particularly, denoting µ(t) the estimated filters at iteration t, SFW
stops as soon as µ(t) satisfies [32, Proposition 3.6]

sup
θ∈Θ

λ−1
∣∣∣〈Aδθ,y −Aµ(t)

〉∣∣∣ ≤ 1. (20)

The complete SFW method for echo estimation is described by
Algorithm 1. We now provide additional details about the imple-
mentation of each step.

Non-negative Blasso. To take into account the non-negative con-
straint on the coefficients, the authors of [21] have proposed to
slightly modify the SFW algorithm by i) removing the absolute
value in (20) and ii) adding the non-negativity constraints at step 2
and 3 (see lines 14 and 15 of Algorithm 1). The reader is referred
to [21, remark 8 in Section 4.1] for more details.

Real part in (20). We have shown earlier that SFW stops as soon
as an iterate µ(t) satisfies (20) at some iteration t. Since the esti-

mated coefficients
{
c
(t)
r

}R
r=1

are (non-negative) scalars, (20) can be
rewritten as

sup
θ∈Θ

λ−1 Re(〈Aδθ,y −Aµ?〉) ≤ 1. (21)

In particular, using the real part in the implementation allows to re-
move the imaginary part that may appear due to the imprecision.

Precision of the stopping criterion. Unfortunately, condition (20)
cannot be met due to the machine precision, i.e., the solution
of (19-PλTV) is computed up to some prescribed accuracy. In this
paper, we say that the algorithm stops as soon as

sup
θ∈Θ

λ−1 Re(〈Aδθ,y −Aµ?〉) ≤ 1 + ε (22)

where ε is a positive scalar set to ε = 10−3.

Finding new parameters (Line 7). The new parameter is found by
solving

arg max
θ∈Θ

Re(〈Aδθ,y −Aµ̂〉). (23)

To solve this optimization problem, we first find a maximizer on a
thin grid made of 20000 points. We then proceed to a local refine-
ment using the scipy optimization library4.

Nonnegative Lasso (Line 14). The nonnegative Lasso is solved us-
ing a custom implementation of a proximal gradient algorithm. In
particular, the procedure stops as soon as a stopping criterion in
terms of duality gap is reached (10−6).

Joint update (Line 15). In order to ease the numerical resolution, we
show that given a positive integer R, the solution of

arg min
θ∈ΘR,c∈RR

1
2

∥∥y − R∑
r=1

crAδθr
∥∥2

2
+ λ‖c‖1 (24)

4 https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html.

Algorithm 1: Sliding Frank-Wolfe algorithm for solv-
ing (19-PλTV).

Input: Observation operator A, positive scalar λ, precision
ε

Output: Channels represented as a measure µ̂

// Initialization
1 y← −Aδ(0,1) // observation vector
2 µ(0) = 0M // estimated filters
3 E(0) = ∅ // estimated echoes
4 xmax = (2λ)−1‖y‖22 ;

// Starting algorithm
5 repeat
6 t← t+ 1 // Iteration index

// 1. Add new element to the support

7 Find θnew ∈ arg maxθ∈Θ Re
(〈
Aδθ,y −Aµ(t−1)

〉)
;

8 η(t) ← λ−1 Re
(〈
Aδθnew ,y −Aµ(t−1)

〉)
;

9 if η(t) ≤ 1 + ε then
10 Stop and return µ̂ = µ(t−1) is a solution ;
11 end
12 E(t−½) ← E(t−½) ∪ {θnew} ;
13 R(t) ← card(E(t−½)) // Number of detected echoes

// 2. Lasso update of the coefficients

14 c(t−½) ← arg min
c∈RR(t)

+

1

2

∥∥y − ∑
θ∈E(t−½)

cθAδθ
∥∥2

2
+ λ‖c‖1

approximated using a proximal gradient algorithm ;

// 3. Joint update for a given number of spikes
15 E(t), c(t) ←

arg min
θ∈ΘR(t)

,c∈[0,xmax]R
(t)

1

2

∥∥y − R(t)∑
r=1

crAδθr
∥∥2

2
+λ‖c‖1

approximated using a non-convex solver initialized
with (E(t−½), c(t−½)) ;

// 4. Eventually remove zero amplitude Dirac masses

16 E(t) ←
{
θ

(t)
r ∈ E(t) | c(t)

r 6= 0
}

;

17 c(t) ←
{
c

(t)
r | c(t)

r 6= 0
}

;

18 µ(t) ←
card(E(t))∑

r=1

c(t)
r δ

θ
(t)
r

;

19 until until convergence;

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html


is equivalent to the solution of

arg min
θ∈ΘR,c∈[0,xmax]R

1
2

∥∥y − R∑
r=1

crAδθr
∥∥2

2
+ λ‖c‖1 (25)

where
xmax =

1

2λ
‖y‖22. (26)

Indeed, let us denote θ?, c? the minimizers of (24). For any θ ∈ ΘR,
the couple θ,0R is admissible for (24) so we have by definition

1
2

∥∥y − R∑
r=1

c?rAδθ?r
∥∥2

2
+ λ‖c?‖1 ≤

1
2

∥∥y∥∥2

2
. (27)

Hence
0 ≤ c?r ≤ ‖c?‖1 ≤

1
2λ

∥∥y∥∥2

2
, xmax. (28)

Finally, the joint update of the coefficients and parameters is per-
formed using the Sequential Least SQuares Programming (SLSQP)
implemented in the scipy optimization library, see footnote 4.
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