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This article is devoted to the study of the following semilinear equation with measure data which originates in the gravitational Maxwell gauged O(3) sigma model, (E) -∆u + A 0

k j=1 |x -p j | 2nj ) -a e u (1 + e u ) 1+a = 4π k j=1 n j δ pj -4π l j=1 m j δ qj in R 2 .
In this equation the {δ pj } k j=1 (resp. {δ qj } l j=1 ) are Dirac masses concentrated at the points {p j } k j=1 , (resp. {q j } l j=1 ), n j and m j are positive integers, and a is a nonnegative real number. We set N = k j=1 n j and M = l j=1 m j . In previous works [START_REF] Chen | Classification of non-topological solutions of a self-dual Gauged Sigma model[END_REF][START_REF] Yang | A necessary and sufficient conditions for the existence of multisolitons in a self-dual gauged sigma model[END_REF], some qualitative properties of solutions of (E) with a = 0 have been established. Our aim in this article is to study the more general case where a > 0. The additional difficulties of this case come from the fact that the nonlinearity is no longer monotone and the data are signed measures. As a consequence we cannot anymore construct directly the solutions by the monotonicity method combined with the supersolutions and subsolutions technique. Instead we develop a new and self-contained approach which enables us to emphasize the role played by the gravitation in the gauged O(3) sigma model. Without the gravitational term, i.e. if a = 0, problem (E) has a layer's structure of solutions {u β } β∈(-2(N -M ), -2] , where u β is the unique non-topological solution such that u β = β ln |x|+O(1) for -2(N -M ) < β < -2 and u -2 = -2 ln |x|-2 ln ln |x|+O(1) at infinity respectively. On the contrary, when a > 0, the set of solutions to problem (E) has a much richer structure: besides the topological solutions, there exists a sequence of non-topological solutions in type I, i.e. such that u tends to -∞ at infinity, and of nontopological solutions of type II, which tend to ∞ at infinity. The existence of these types of solutions depends on the values of the parameters N, M, β and on the gravitational interaction associated to a.

Introduction

In this paper our goal is to classify the solutions of the following equation with measure data

-∆u + A 0 ( k j=1 |x -p j | 2n j ) -a e u (1 + e u ) 1+a = 4π k j=1 n j δ p j -4π l j=1 m j δ q j in R 2 , (1.1) 
where {δ p j } k j=1 (resp. {δ q j } l j=1 ) are Dirac masses concentrated at the points {p j } k j=1 , (resp. {q j } l j=1 ), p j = p j for j = j , the related coefficients n j and m j are positive integers, A 0 > 0 is a given constant, a = 16πG with G being the Newton's gravitational constant (or more precisely a dimensionless rescaling factor of the gravitational constant [START_REF] Yang | Solitons in Field Theory and Nonlinear Analysis[END_REF]) which is of the order of 10 -30 . This means that physically speaking the exponent a is very small. Set

P(x) = A 0 ( k j=1 |x -p j | 2n j ) -a .
(1.2) Since 2 -1-a min{e u , e -au } ≤ e u (1 + e u ) 1+a ≤ min{e u , e -au }, (1.3) we define the notion of weak solution as follows:

Definition 1.1 A function u ∈ L 1 loc (R 2 ) such that P min{e u , e -au } ∈ L 1 loc (R 2 ) is called a weak solution of (E), if for any ξ ∈ C ∞ c (R 2 ), This definition means that the following equation holds in the sense of distributions in R 2 , -∆u + P e u (1 + e u ) 1+a = 4π k j=1 n j δ p j -4π l j=1 m j δ q j .

(1.4)

We denote by Σ := {p 1 , • • • , p k , q 1 , • • • , q l } the set of the supports of the measures in the right-hand side of (1.1). Since the nonlinearity in (1.4) is locally bounded in R 2 \ Σ, a weak solution of (1.4) belongs to C 2 (R 2 \ Σ) and is a strong solution of -∆u + P e u (1 + e u ) 1+a = 0 in R 2 \ Σ.

(

The nonlinear term is not monotone, actually the function u → e u (1+e u ) 1+a is increasing on (-∞, -ln a), and decreasing on (-ln a, ∞). This makes the structure of solutions of our problem much more complicated than the case where a = 0.

Physical models and related equations

Equation (1.1) comes from the Maxwell gauged O(3) sigma model. When a = 0, it governs the self-dual O(3) gauged sigma model developed from Heisenberg ferromagnet, see references [START_REF] Beeker | Electromagnetic Fields and Interactions[END_REF][START_REF] Belavin | Metastable states of two-dimensional isotropic ferromagnets[END_REF][START_REF] Rajaraman | Solitons and Instantons[END_REF][START_REF] Song | Improved existence results of solutions to the gravitational Maxwell gauged O(3) sigma model[END_REF]. When the sigma model for Heisenberg ferromagnet with magnetic field is twodimensional, it can be expressed by a local U (1)-invariant action density [32, p. 43-49]:

L = - 1 4 F µν F µν + 1 2 D µ φD µ φ - 1 2 (1 -n • φ) 2 ,
where n = (0, 0, 1), φ = (φ 1 , φ 2 , φ 3 ) is a spin vector defined over the (2 + 1)-dimensional Minkowski spacetime R 2,1 , with value in the unit sphere S 2 , i.e. |φ| = 1, D µ are gauge-covariant derivatives on φ, defined by

D µ φ = ∂ µ φ + A µ ( n × φ) where µ = 0, 1, 2
and F µν = ∂ µ A ν -∂ ν A µ is the electromagnetic curvature induced from the 3-vector connection A ν , ν = 0, 1, 2 as detailled in [34, p. 177-189]. When the time gauge A 0 is zero, that is in the static situation, the functional of total energy can be expressed by the following expressions

E(φ, A) = 1 2 R 2 (D 1 φ) 2 + (D 2 φ) 2 + (1 -n • φ) 2 + F 2 12 dx = 4π|deg(φ)| + 1 2 R 2 (D 1 φ ± φ × D 2 φ) 2 + (F 12 ∓ (1 -n • φ)) 2 dx,
where deg(φ) denotes the Brouwer's degree of φ. The related Bogomol'nyi equation is obtained by using the stereographic projection φ → φ from the south pole S = (0, 0, -1) of S 2 \ {S} onto R 2 (see e.g. [START_REF] Chae | Existence of multi-string solutions of the gauged harmonic map model[END_REF][START_REF] Yang | Advances in Nonlinear Partial Differential Equations and Related Areas[END_REF] for details). Then the function u = ln | φ| 2 satisfies -∆u + 4e u 1 + e u = 4π k j=1 n j δ p j -4π l j=1 m j δ q j in R 2 .

(1.6)

It is pointed out in [START_REF] Yang | A necessary and sufficient conditions for the existence of multisolitons in a self-dual gauged sigma model[END_REF] that the points p j (j = 1, • • • , k), which are the poles of φ can be viewed as magnetic monopoles and the points q j (j = 1, • • • , l), which are the zeros of φ as antimonopoles (see [34, p. 55]). They are also called magnetic vortices and anti-vortices respectively. An important quantity for the gauged sigma model is the total magnetic flux. It is customary [START_REF] Schroers | Bogomol'nyi solitons in a gauged O(3) sigma model[END_REF] to identity it to the integral of the curvature as follows:

M(φ) = R 2 F 12 .
(1.7)

Using the variable u its value coincides with R 2 ∆udx (the Laplacian being taken a.e.). Thus, for the sake of simplicity, we identify M(φ) and M(u), an expression which will be called the total flux in the sequel. Here and in what follows, we denote

N = k j=1 n j and M = l j=1 m j .
When the gravitation constant G is replaced by zero, a layer's structure of solutions of (1.1) has been determined in the following result: Theorem 1.1 [START_REF] Chen | Classification of non-topological solutions of a self-dual Gauged Sigma model[END_REF][START_REF] Yang | A necessary and sufficient conditions for the existence of multisolitons in a self-dual gauged sigma model[END_REF] 

(i) If M = N -1, then problem (1.6) has no solution. (ii) If M < N -1, then for any β ∈ [2, 2(N -M )) problem (1.6) has a unique solution u β verifying M(u β ) = 2π(2(N -M ) + β),
with the following behaviour as |x| → ∞,

u β (x) = -β ln |x| + O(1) if β ∈ (2, 2(N -M )), -2 ln |x| -2 ln ln |x| + O(1) if β = 2.
Furthermore the correspondence β → u β is decreasing.

(iii) If M < N -1 and u is a non-topological solution of (1.6) with finite total magnetic flux, i.e. M(u) < ∞, then there exists a unique β ∈ [2, 2(N -M )) such that u = u β .

These equations have been studied extensively, motivated by a large range of many applications in physics such as the gauged sigma models with broken symmetry [START_REF] Yang | The Existence of Solitons in Gauged Sigma Models with Broken Symmetry: Some Remarks[END_REF], the gravitational Maxwell gauged O(3) sigma model [START_REF] Chae | Existence of multi-string solutions of the gauged harmonic map model[END_REF][START_REF] Chern | Evaluating solutions on an elliptic problem in a gravitational gauge field theory[END_REF][START_REF] Schroers | Bogomol'nyi solitons in a gauged O(3) sigma model[END_REF][START_REF] Song | Improved existence results of solutions to the gravitational Maxwell gauged O(3) sigma model[END_REF], the self-dual Chern-Simons-Higgs model [START_REF] Chan | Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation[END_REF][START_REF] Lin | A system of elliptic equations arising in Chern-Simons field theory[END_REF], magnetic vortices [START_REF] Lin | Gauged harmonic maps, Born-Infeld electromagnetism, and magnetic vortices[END_REF], Toda system [START_REF] Lin | Classification and nondegeneracy of SU (n + 1) Toda system with singular sources[END_REF][START_REF] Poliakovsky | On non-topological solutions for planar Liouville Systems of Toda-type[END_REF], Liouville equation [START_REF] Jost | Analytic aspects of the Toda system: I. A Moser-Trudinger inequality[END_REF] and the references therein. It is also motivated by important questions in the theory of nonlinear partial differential equations [START_REF] Brezis | Uniform estimates and blow-up behavior for solutions of ∆u = V (x)e u in two dimensions[END_REF][START_REF] Vázquez | On a semilinear equation in R 2 involving bounded measures[END_REF][START_REF] Véron | Elliptic equations involving Measures, Stationary Partial Differential equations[END_REF], which has its own features in two dimensional space.

When a = 16πG, equation (1.1) governs the gravitational Maxwell gauged O(3) sigma model restricted to a plane. Because of the gravitational interaction between particles, the Lagrangian density becomes

L = 1 4 g µµ g νν F µν F µ ν + 1 2 D µ φD µ φ - 1 2 (1 -n • φ) 2
with stress energy tensor

T µν = g µ ν F µν F µ ν + D µ φD µ φ -g µν L.
We simplify the Einstein equation

R µν - 1 2 Rg µν = -8πGT µν ,
where R µν is the Ricci tensor and R is a scalar tensor of the metric in considering a metric conformal to the (2 + 1)-dimensional Minkowski one

g µν =   -1 0 0 0 e η 0 0 0 e η   .
Then 1 2 e -η ∆η = -8πGT 00 ,

where

T 00 = 1 2 (e -η F 12 ± (1 -n • φ)) 2 ± e -η F 12 (1 -n • φ)) ± e -η φ(D 1 φ × D 2 φ) + 1 2 (D 1 φ ± φ × D 2 φ) 2 .
The minimum of the energy is achieved if and only if (φ, A) satisfies the self-dual equations (the Bogomol'nyi equations)

D 1 φ = ∓φ × D 2 φ, F 12 = ±e η (1 -n • φ).
Furthermore, a standard analysis yields equation (1.1). In particular, Yang in [START_REF] Yang | Advances in Nonlinear Partial Differential Equations and Related Areas[END_REF] studied equation (1.1) when there is only one concentrated pole, i.e. k = 1 and l = 0. For multiple poles, Chae showed in [START_REF] Chae | Existence of multi-string solutions of the gauged harmonic map model[END_REF] that problem (1.1) has a sequence of non-topological solutions u β such that

u β (x) = β ln |x| + O(1) when |x| → ∞ for β ∈ (-min{6, 2(N -M )}, -2), when aN < 1 and N -M ≥ 2. (1.8)
Under the assumption (1.8), the existence of solutions has been improved up to the range β ∈ (-2(N -M ), -2) by Song in [START_REF] Song | Improved existence results of solutions to the gravitational Maxwell gauged O(3) sigma model[END_REF]. However, these existence results do not show the role of the gravitation played in the gauged sigma model and the features of the interaction of the diffusion and the non-monotone nonlinearity of equation (1.1) in the whole two dimensional space.

Main results

Note that if we take into account the gravitation, the total magnetic flux turns out to be

M(u) = R 2 P(x) e u (1 + e u ) 1+a dx, (1.9) 
which, due to the potential and the decay to zero for e t (1+e t ) 1+a as t → ∞, allows the existence of solutions with very wild behaviors at infinity. In fact, the following three types of solutions are considered in this paper

         a solution u of (1.1) is topological if lim |x|→+∞ u(x) = ∈ R, a solution u of (1.1) is non-topological of type I if lim |x|→+∞ u(x) = -∞, a solution u of (1.1) is non-topological of type II if lim |x|→+∞ u(x) = +∞.
The first result of this paper deals with non-topological solutions of type I for (1.1). For such a task we introduce two important quantities:

β # = max -2(N -M ), 2 -2aN a and β * = min {0, 2aN -2, α * -2(N -M )} , (1.10) 
where

α * := 1 2π R 2 P(x)dx. (1.11)
Notice that α * = ∞ if an j ≥ 1 for some j or aN ≤ 1, otherwise α * is finite, in this case, a free parameter A 0 should be taken into account. If aN ≤ 1, we have that β * = 2aN -2 ≤ 0. Theorem 1.2 Let a = 16πG, an j < 1 for j = 1, • • • , k and M be the total magnetic flux given in (1.9). then β # < 0 and for any β ∈ β # , 0 , problem (1.1) possesses a sequence of non-topological solutions u β,i of type I satisfying

(i) If aN ≤ 1 and M < (1 + a)N -1, (1.12 
u β,i (x) = β ln |x| + C i + O(|x| -2aN -2β-2 2aN -2β-1 ) as |x| → ∞, (1.16) 
where

C i < C i+1 → ∞ as i → +∞.
Moreover, the total magnetic flux of the solutions

{u β,i } i is equal to 2π[2(N -M ) + β].
Note that our assumption (1.12) is much weaker than (1.8) and Theorem 1.2 provides a larger range of β for existence of solutions u β verifying u β = β ln |x| + o(1) at infinity. Furthermore we obtain a minimal solution and not just a finite energy solution as in [START_REF] Song | Improved existence results of solutions to the gravitational Maxwell gauged O(3) sigma model[END_REF]Theorem 1.3]. Note also that the assumption M < (1 + a)N -1 implies that β * > -2(N -M ), and our second interest is to consider this extremal case β = β * , which is 2aN -2 under the assumption (1.12).

Theorem 1.3 Assume that a = 16πG, an j < 1 for j = 1, • • • , k, the magnetic flux M is given by (1.9) and let (1.12) hold. Then problem (1.1) possesses a minimal non-topological solution u β * ,min satisfying

u β * ,min (x) = β * ln |x| -2 ln ln |x| + O(1) as |x| → +∞, (1.17) 
and the total magnetic flux of u β * ,min is equal to 2π

[2(N -M ) + β * ].
The existence of non-topological states of type II to (1.1) states as follows.

Theorem 1.4 Assume that a = 16πG, an j < 1 for j = 1, • • • , k and β # is given by (1.10), then for any β > β # + = max{0, β # }, problem (1.1) possesses a sequence of non-topological solutions {u β,i } i such that

u β,i (x) = β ln |x| + C i + O(|x| -2aN -2β-2 2aN -2β-1 ) as |x| → +∞, (1.18) 
where

C i < C i+1 → +∞ as i → +∞.
Moreover, the total magnetic flux of the solutions

{u β,i } i is equal to 2π[2(N -M ) + β].
Concerning topological solutions of (1.1), we have following result, Theorem 1.5 Let a = 16πG, an j < 1 for j = 1, • • • , k and (1.15) hold true.

Then problem (1.1) possesses infinitely many topological solutions u 0,i satisfying

u 0,i (x) = C i + O(|x| -2aN -2 2aN -1 ) as |x| → ∞, (1.19) 
where

C i < C i+1 → ∞ as i → ∞.
Moreover, the total magnetic flux of the solutions {u 0,i } i is equal to 4π(N -M ).

Note that Theorem 1.4 and Theorem 1.5 provide respectively infinitely many non-topological solutions of Type II and topological solutions. Furthermore, there is no upper bound for these solutions, this is due to the failure of the Keller-Osserman condition for the nonlinearity 4e u (1+e u ) 1+a , see [START_REF] Keller | On solutions of ∆u = f (u)[END_REF][START_REF] Osserman | On the inequality ∆u = f (u)[END_REF]. More precisely equation (1.1) admits no solution with boundary blow-up in a bounded domain. The existence of these solutions illustrates that the gravitation plays an important role in the Maxwell gauged O(3) sigma model: (i) the set of solutions is extended to topological and two types of non-topological solutions; (ii) the uniqueness fails for the solution under the given condition u β (x) = β ln |x| + O(1) at infinity; (iii) the numbers (counted with multiplicity) of magnetic poles N, M do no longer verify M < N + 1. In fact, for the non-topological solution of type I, it becomes M < (1 + a)N + 1, but for the non-topological solution of type II, there is no restriction on N and M , if β > 0 is large enough. Our existence statements of solutions of (1.1) are summarized in the three tables above. 

∞ aN ≤ 1, M < (1 + a)N -1 (-2(N -M ), β * ) Minimal β ln |x| + O(1) aN ≤ 1, M < (1 + a)N -1 β * = 2(aN -1) Minimal β * ln |x| -2 ln ln |x| + O(1) N > M , aN > 1 (β # , 0) Multiple β ln |x| + c i + o(1), lim i→∞ c i = ∞
∞ aN > 1, M < N Multiple c i + o(1), lim i→∞ c i = ∞
The biggest difference with the case that a = 0 is that the nonlinearity is no longer monotone, which makes more difficult to construct super and sub solutions to (1.1). Our main idea is to approximate the solution by monotone iterative schemes for some related equations with an increasing nonlinearity.

Finally, we concentrate on the nonexistence of solutions u β for (1.1) with the behavior β ln |x| + O(1) at infinity for some β. The remaining of this paper is organized as follows. In Section 2, we present some decompositions of solutions of (1.1), some important estimates are provided and related forms of equations are considered. We prove that problem 1.1 has a minimal non-topological solution of Type I and minimal solutions in Section 3. Existence of infinitely many non-topological solutions of Type II is obtained in Section 4. Infinitely many topological solutions and minimal topological solution are constructed in Section 5. Finally, Section 6 deals with the classification of general non-topological solutions of (1.1) with infinite total magnetic flux.

Preliminary

Regularity

We begin our analysis by considering the regularity of weak solutions of (1.1). Let ζ be a smooth and increasing function defined in (0, ∞) and such that

ζ(t) = ln t for 0 < t ≤ 1/2, 0 for t ≥ 1.
Set

ν 1 (x) = 2 k i=1 n i ζ |x-p i | σ and ν 2 (x) = 2 l j=1 m j ζ |x-q j | σ , (2.1) 
where σ ∈ (0, 1) is chosen such that any two balls of the set

{B σ (p i ), B σ (q j ) : i = 1, • • • k, j = 1, • • • l}
do not intersect. We fix a positive number r 0 ≥ e e large enough such that B σ (p i ), B σ (q j ) ⊂ B r 0 (0) for i = 1, • • • , k and j = 1, • • • , l, and we denote

Σ 1 = {p 1 , • • • , p k }, Σ 2 = {q 1 , • • • , q l } and Σ = Σ 1 ∪ Σ 2 .
If u is a weak solution of (1.1), we set

u = w -ν 1 + ν 2 in R 2 \ Σ. (2.2)
Then w is a weak solution of

-∆w + V e w (e ν 1 -ν 2 + e w ) 1+a = f 1 -f 2 in R 2 , (2.3) with V = Pe a(ν 1 -ν 2 ) , f 1 = 4π k i=1 n i δ p i -∆ν 1 and f 2 = 4π l j=1 m j δ q j -∆ν 2 .
(2.4)

The functions f 1 , f 2 are smooth with compact supports in B r 0 (0) and they satisfy

R 2 (f 1 -f 2 ) dx = 4π(N -M ). (2.5)
Proposition 2.1 Assume that u is a weak solution of (1.1), then u is a classical solution of

-∆u + P(x) e u (1 + e u ) 1+a = 0 in R 2 \ Σ, (2.6 
)

and w = u -ν 1 + ν 2 is a classical solution of (2.3) in whole R 2 .
Proof. Let u be a weak solution of (1.1). Since

e u (1+e u ) 1+a is uniformly bounded in R 2 and P is locally bounded and smooth in R 2 \ Σ, the function u is a classical solution of (2.6) in R 2 \ Σ. By standard regularity theory it belongs to C ∞ R 2 \ Σ . Then w is a smooth locally bounded function in R 2 \ Σ satisfying (2.
3), an equation that we rewrite under the form

-∆w + h(•, w) = f 1 -f 2 in D (R 2 ), (2.7) 
where the function

h(x, z) is defined in R 2 × R by h(x, z) =              V (x) e z (e ν 1 -ν 2 + e z ) 1+a for x ∈ R 2 \ Σ, 0 for x ∈ Σ 2 , σ -2an j i =k |p j -p i | -2an i e -az for x = p j ∈ Σ 1 .
The function h is nonnegative and smooth in R 2 \Σ and continuous in R 2 ×R. Since w is smooth in R 2 \ Σ, so is h(•, w). Next we set, with Z = e z ≥ 0

φ(Z) = Ze a(ν 1 -ν 2 ) e a(ν 1 -ν 2 ) + Z 1+a =⇒ φ (Z) = e a(ν 1 -ν 2 ) e a(ν 1 -ν 2 ) -aZ e a(ν 1 -ν 2 ) + Z 2+a . (2.8) Then φ (Z 0 ) = 0 with Z 0 = e a(ν 1 -ν 2 ) a =⇒ φ(Z 0 ) = a a (a + 1) 1+a e (a-a 2 )(ν 1 -ν 2 ) = max{φ(Z) : Z > 0}. (2.9) Hence 0 ≤ h(x, w) ≤ P(x) a a (a + 1) 1+a e (a-a 2 )(ν 1 -ν 2 ) .
(2.10)

Note that P is locally bounded in R 2 \ Σ 1 , then it follows by standard regularity arguments, (see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) that w belongs to

W 2,t loc (R 2 \ Σ 1 ) for any 1 < t < ∞. Hence h(•, w) ∈ C 1,θ (R 2 \ Σ 1 )
for any θ ∈ (0, 1), and finally

w ∈ C 3,θ (R 2 \ Σ 1 ) is a strong solution in R 2 \ Σ 1 . In a neighborhood of Σ 1 we write h under the form h(x, z) = P(x)e aν 1 e z-aν 2 (e ν 1 -ν 2 + e z ) 1+a .
Since h is nonnegative, then w satisfies the inequality

-∆w ≤ f 1 -f 2 in D (R 2 ),
and as f 1 -f 2 is bounded with compact support, it follows that w is locally bounded from above in R 2 . Furthermore, there exist an open set O such that Σ 1 ⊂ O and O ∩ Σ 2 = ∅ and a function

ζ 1 ∈ C(O) such that h(x, z) = ζ 1 e z (e ν 1 -ν 2 + e z ) 1+a for all (x, z) ∈ O × R. For a given p j ∈ Σ 1 , we set r j = sup{w(x) : x ∈ B σ (p j )} and v j = r j -w. Then v j ≥ 0 in B σ (p j ) and -∆v j = f 2 -f 1 + ζ 1 e r j -v j (e ν 1 -ν 2 + e r j -v j ) 1+a = f 2 -f 1 + ζ 1 e -ar j e -v j (e ν 1 -ν 2 -r j + e -v j ) 1+a . Since f 1 , f 2 are smooth, hence ζ 1 e -ar j e -v j (e ν 1 -ν 2 -r j +e -v j ) 1+a ∈ L 1 (B σ (p j )) by [4]. If 0 < σ ≤ σ, we denote by φ B σ j the harmonic lifting of v j ∂B σ in B σ (p j ) and put ṽσ = v j -φ B σ j . Then for σ ≤ σ, -∆ṽ σ = f 2 -f 1 + ζ 1 e -ar j e -v j (e ν 1 -ν 2 -r j +e -v j ) 1+a := F j in B σ (p j ), ṽσ = 0 on ∂B σ (p j ).
Let M 2 (B σ (p j )) denote the Marcikiewicz space also known as the Lorentz space L 2,∞ (B σ (p j )).

Then there holds

∇ṽ σ M 2 (B σ (p j )) ≤ c 0 F j L 1 (B σ (p j )) (2.11)
and the constant c 0 is independent of σ . We recall below John-Nirenberg's theorem [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.21]:

Let u ∈ W 1,1 (G)
where G ⊂ Ω is convex and suppose there is a constant K such that G∩Br |∇u|dx ≤ Kr for any ball B r (0).

(2.12)

Then there exist positive constants µ 0 and c 1 such that

G exp µ K |u -u G | dx ≤ c 1 (diam(G)) 2 , (2.13 
)

where µ = µ 0 |G|(diam(G)) -2 and u G is the average of u on G. From (2.11) with G = B σ (p j ), B∩Br |∇ṽ σ |dx ≤ c 3 r F j L 1 (B σ (p j )) := K(σ )r, (2.14) 
and since |G|(diam(G)) -2 = π, we obtain

B σ (p j ) exp πµ 0 K(σ ) |ṽ σ - ṽB σ σ | dx ≤ c 1 σ 2 . (2.15)
Hence, for any κ > 0 there exists σ ∈ (0, σ] such that

B σ (p j ) exp κ|ṽ σ - ṽB σ σ | dx ≤ c 1 σ 2 =⇒ B σ (p j ) exp(κṽ σ )dx) ≤ c 1 σ 2 exp(κṽ B σ σ ). (2.16)
Now we observe that there holds in B σ (p j ),

|F j | ≤ |f 2 -f 1 | + ζ 1 e -ar j e av j ≤ |f 2 -f 1 | + ζ 1 e a sup |v j ∂B σ | e aṽ σ .
For κ > a,

B σ (p j ) |F j (x)| κ a dx ≤ 2 κ a -1 B σ (p j ) |f 2 -f 1 | κ a + ζ 1 e a sup |v j ∂B σ |
κ a e κṽ σ dx.

By (2.15) the right-hand side of the above inequality is bounded, hence

F j ∈ L κ a (B σ (p j )). Since ṽσ vanishes on ∂B σ (p j ), it follows by L p regularity theory that ṽσ ∈ W 2, κ a (B σ (p j )) ∩ W 1, κ a 0 (B σ (p j )). By Sobolev embedding theorem, ṽσ ∈ L ∞ (B σ (p j )). Hence F j ∈ L ∞ (B σ (p j )) and again ṽσ ∈ W 2,q (B σ (p j )) for any q ∈ [1, ∞) and thus ṽσ ∈ C 1,θ (B σ (p j )) for any θ ∈ (0, 1). Therefore v j remains bounded in C 1,θ (B σ (p j )) for any σ < σ . In a neighborhood of p j , x → |x -p j | -2an j e 2aζ( |x-p j | σ
) is Hölder continuous (of order 2an j if 2an j < 1), and so is x →

P(x)e a(ν 1 -ν 2 )(x) . For the same reason, x → e w(x)
e (ν 1 -ν 2 )(x)+e w(x) 1+a is Hölder continuous (with the same exponent) near p j . Finally we infer that there exists θ ∈ (0, 1) such that

v j ∈ C 2,θ (B σ (p j )), which implies that w ∈ C 2,θ (R 2 ) is a strong solution of (2.3) in R 2 . 2 
Remark. Since ϑ 1 and ν 2 have compact support, we note that a weak solution u β with the asymptotic behavior β ln |x| + O(1) at infinity can be decomposed

u β = w β -ν 1 + ν 2 , (2.17) 
where w β is a classical solution of (2.3) with the same asymptotic behavior β ln |x| + O(1) at infinity. In fact, we shall continue to take out the singular source of the solution w β at infinity in our derivation of non-topological solutions of (1.1).

Basic estimates

The following estimates play an important role in our construction of solutions to (1.1).

Lemma 2.1 Let Γ be the fundamental solution of -∆ in R 2 , F ∈ L p loc (R 2 ), p > 1, with the support in B R (0) for some R > 0 such that R 2 F (x)dx = 0.
(2.18)

Then there holds

|Γ * F (x)| ≤ R |x| F L 1 (R 2 ) for |x| > 4R, (2.19) 
and for some c 2 > 0 depending on p and R,

Γ * F L ∞ (R 2 ) ≤ c 2 F L p (R 2 ) . (2.20) Proof. As supp(F ) ⊂ B R (0) and F ∈ L p loc (R 2 ), F ∈ L 1 (R 2 ) ∩ L p (R 2
) by Hölder's inequality. Since (2.18) holds, we have for |x| > 4R,

|Γ * F (x)| = 1 2π B R (0) ln |x -y| F (y)dy - B R (0) ln |x| F (y)dy = |x| 2 2π B R |x| (0) ln |e x -z| F (|x|z)dz ≤ |x| 2 π B R |x| (0) |z||F (|x|z)|dz ≤ 2R π|x| B R (0) |F (y)|dy < R |x| F L 1 (R 2 )
,

where e x = x |x| . Besides (2.18) we have used the fact that

| ln |e x -z|| ≤ 2|z| ≤ 2 R |x| for any z ∈ B R/|x| (0) ⊂ B 1/4 (0).
Therefore, (2.19) is proved. On the other hand, for |x| ≤ 4R, we have that

|Γ * F (x)| = 1 2π B R (0) F (y) ln |x -y|dy ≤ B R (0) |F (y)| p dx 1 p B R (0) | ln |x -y|| p dx 1 p ≤ c p F L p (B R (0)) ,
where p = p p-1 and c p = max For functions with non-compact supports, we have the following estimates.

Lemma 2.2 Let F ∈ L p loc (R 2 ) with p > 1 satisfy that R 2 F (x) dx = 0 (2.21) and |F (x)| ≤ c 3 |x| -τ for |x| ≥ r (2.22)
for some τ > 2, c 3 > 0 and r > 0. Then for some

c 4 > 0 Γ * F L ∞ (R 2 ) ≤ c 4 ,
and there exist c 5 > 0 and r 0 > r such that for |x| ≥ r 0

|x||∇Γ * F (x)| + |Γ * F (x)| ≤ c 5 (τ -2) 2 |x| -τ -2 τ -1 . (2.23) Proof. If F ∈ L p loc (R 2 ) satisfies (2.22), then F ∈ L 1 (R 2
). Let η r : R 2 → [0, 1] be a smooth and radially symmetric function such that η r = 1 in B r (0), η r = 0 in B r+1 (0), and denote

F 1 = F η r - R 2 F η r dx η r η r L 1 (R 2 ) , F 2 = F -F 1 .
By (2.21), we have that 

R 2 F 1 dx = R 2 F 2 dx = 0. Since F 1 ∈ L p loc (R
F 2 = F -F 1 = R 2 F η r dx η r L 1 (R 2 ) on B

Since

R 2 F 2 dx = 0, then for all |x| > 4r and R ∈ (r, |x| 4 ) which will be chosen latter on,

2π(Γ * F 2 )(x) = |x| 2 R 2 ln |e x -z|F 2 (|x|z)dz + |x| 2 ln |x| R 2 F 2 (|x|z)dz = |x| 2 B R/|x| (0) ln |e x -z|F 2 (|x|z)dz + |x| 2 B 1/2 (ex) ln |e x -z|F (|x|z)dz +|x| 2 R 2 \(B R/|x| (0)∪B 1/2 (ex)) ln |e x -z| F 2 (|x|z)dz =: I 1 (x) + I 2 (x) + I 3 (x),
using the fact that B R/|x| (0) ∩ B 1/2 (e x )) = ∅. By a direct computation, we have that

|I 1 (x)| ≤ |x| 2 B R/|x| (0) |z||F 2 (|x|z)|dz = 2 R |x| B R (0) |F 2 (y)|dy ≤ 2 R |x| F 2 L 1 (R 2 ) . For z ∈ B 1/2 (e x ), there holds |x||z| ≥ 1 2 |x| > 2r, then |F (|x|z)| ≤ c 3 |x| -τ |z| -τ and |I 2 (x)| ≤ c 3 |x| 2-τ B 1/2 (ex) (-ln |e x -z|)|z| -τ dz ≤ 2 τ c 3 |x| 2-τ B 1/2 (ex) (-ln |e x -z|)dz ≤ c 6 R 2-τ , where c 6 = 2 2(N -M ) c 3 B 1/2 (0) (-ln |z|)dz can be chosen independently of τ in (2, 2(N -M )). Next, if z ∈ R 2 \(B R/|x| (0)∪B 1/2 (e x )), then ln |e x -z| ≤ ln(1+|z|) and |F (|x|z)| ≤ c 7 |x| -τ |z| -τ , since |z| ≥ R |x| > r |x| .
By the integration by parts we get

|I 3 (x)| ≤ c 8 |x| 2-τ R 2 \B R/|x| (0) ln(1 + |z|) |z| -τ dz ≤ 2πc 8 τ -2 R 2-τ ln 1 + R |x| + 2πc 5 (τ -2) 2 R 2-τ ≤ 2πc 8 (τ -2) 2 (τ -2) ln 2 + 1 R 2-τ . Thus, taking R = |x| 1 τ -1 and |x| sufficiently large (certainly R ∈ (r, |x| 4 ) is satisfied), we have |Γ * F 2 (x)| ≤ R π|x| F L 1 (R 2 ) + c 8 2π R 2-τ + c 8 (τ -2) 2 2(N -M -1) ln(e + 1) + 1 R 2-τ ≤ c 9 (τ -2) 2 |x| -τ -2 τ -1 ,
where c 9 > 0 can be chosen independently of τ . In order to prove the gradient estimate, we denote by (r, θ) the polar coordinates in R 2 , set t = ln r and

ω(t, θ) = ω(r, θ) = r -τ -2 τ -1 Γ * F (r, θ) and φ(t, θ) = r τ F (r, θ).
Then ω and φ are bounded on [ln r 1 , ∞) × S 1 where there holds

Lω := ∂ 2 ω ∂t 2 -2 τ -2 τ -1 ∂ω ∂t + τ -2 τ -1 2 ω + ∂ 2 ω ∂θ 2 = τ -(τ -2) 2 τ -1 φ.
Since the operator L is uniformly elliptic on [ln r 1 , ∞) × S 1 , for any T > ln r 1 + 2 there holds by standard elliptic equations regularity estimates [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF],

sup 

[T -1,T +1]×S 1 ∂ω ∂θ + ∂ω ∂t ≤ c 10 sup [T -2,T +2]×S 1 |ω| + τ -( τ -2 τ -1 ) 2 φ ≤ c
(i) If lim |x|→∞ |x| τ -2 τ -1 |w(x)| < ∞, then | ∇w(x) |≤ c 12 |x| -2τ -3 τ -1
for |x| ≥ r 0 .

(2.25)

(ii) If there exists a constant C such that w(x) = C + O(|x| -τ -2 τ -1 ) when |x| → ∞, then estimate (2.25) holds.
Proof. The assertion (i) is clear since the starting point of the gradient estimate in the previous lemma is

|w(x)| ≤ c 13 |x| -τ -2 τ -1
for |x| large enough.

For assertion (ii), we set w(x) = C + w(x) where | w(x)| = O(|x| -τ -2 τ -1 ). Then -∆ w = -∆w and ∇w = ∇ w. We conclude by (i).

2

When τ = 2, Lemma 2.2 is no longer valid, however the following limit case is available.

Lemma 2.3 Let F ∈ L p loc (R 2 ) with p > 1 satisfy (2.21) and |F (x)| ≤ c 14 |x| -2 (ln |x|) -ν for |x| ≥ r, (2.26) 
for some ν > 2, c 14 > 0 and r > 0. Then

Γ * F L ∞ (R 2 ) ≤ c 15 ,
and |x||∇Γ * F (x)| + |Γ * F (x)| ≤ c 16 (ln |x|) -ν for |x| ≥ r 1 , (2.27) 
where c 15 , c 16 > 0 and r 1 > r is large enough.

Proof. The assumption (2.26) jointly with 

F ∈ L p loc (R 2 ) implies F ∈ L 1 (R 2 ). We write F = F 1 + F 2 in
(x)| ≤ 2 R |x| F 2 L 1 (R 2 ) . When z ∈ B 1 2 (e x ) we have |x||z| ≥ 1 2 |x| > 2r, hence |F 2 (|x|z)| ≤ c 14 |x| -2 |z| -2 (ln |x| + ln |z|) -ν ≤ c 14 |x| -2 |z| -2 |ln |x| -ln 2| -ν , (2.28) 
and

I 2 (x) ≤ -c 14 |ln |x| -ln 2| -ν B 1 2 (ex) ln |z -e x ||z| -2 dz ≤ c 17 (ln |x|) -ν . Finally, if z ∈ R 2 \ (B R/|x| (0) ∪ B 1/2 (e x )), then | ln |e x -z|| ≤ ln(1 + |z|) and |F 2 (|x|z)| ≤ c 17 (1 + |x||z|) -2 (ln(1 + |x||z|)) -ν ≤ c 17 |x| -2 |z| -2 (ln(1 + |x||z|)) -ν .
Since |z| ≥ R |x| > r |x| , we have

I 3 (x) ≤ c 18 ∞ R |x| ln(1 + t)(ln(1 + t|x|) -ν dt t ≤ c 18 ∞ R (ln(1 + s)) 1-ν ds s .
Since R > r > 1,

I 3 (x) ≤ c 19 ∞ R (ln(1 + s)) 1-ν ds 1 + s = c 19 ν(ln(1 + R)) ν .
If we choose R = |x| 4 , we obtain that (ln(1 + |x|)) ν (Γ * F )(x) remains uniformly bounded on R 2 . Next we prove the gradient estimate. Set t = ln r, ω(t, θ) = (Γ * F )t, θ) and φ(t, θ) = F (r, θ), then

Lω := ∂ 2 ω ∂t 2 + ∂ 2 ω ∂θ 2 = φ and |ω(t, θ)| ≤ c 20 t -ν and |φ(t, θ)| ≤ c 20 t -ν for t ≥ t 1 . Since the operator L = ∂ 2 ∂t 2 + ∂ 2 ∂θ 2 is uniformly elliptic, then we have for T ≥ max{4, t 1 }, sup [T -1,T +1]×S 1 ∂ω ∂θ + ∂ω ∂t ≤ c 10 sup [T -2,T +2]×S 1 (|ω| + |φ|) ≤ 2c 10 c 20 (T -2) -ν ≤ c 21 T -ν .
Returning to the variable x, we infer (2.27). 2

Similarly as in Corollary 2.1, the following extension of (2.27) holds. 

Related problems with increasing nonlinearity

In order to remove the condition β ln |x| + O(1) as |x| → ∞ satisfied by the solutions of (1.1), we introduce two functions λ and Λ, which are positive smooth functions such that

λ(x) = |x|, Λ(x) = ln |x| for |x| ≥ e e . (2.30) 
Since ∆Λ = 0 in B c e e (0),

∆ ln Λ = ∆Λ Λ - |∇Λ| 2 Λ 2 = - 1 |x| 2 (ln |x|) 2 in B c e e (0), (2.31 
)

and 1 2π R 2 (∆ ln λ)dx = 1, (2.32) it implies 1 2π R 2 (∆ ln Λ)dx = lim r→+∞ 1 2π ∂Br(0) ∇Λ(x) Λ(x) • x |x| dω(x) = lim r→+∞ 1 r ln r = 0.
In what follows we classify the solutions of the following equations

-∆u + W F i (λ β e u ) = g β in R 2 , (2.33 
)

where i = 1, 2, F 1 (s) = s, F 2 (•, s) = s e (ν 1 -ν 2 )(•) +s , g β = f 1 -f 2 + β∆ ln λ, (2.34) 
and where W satisfies the following assumption:

(W 0 ) The function W is positive and locally Hölder continuous in R 2 \ Σ 1 and

W (x) ≤ c 23 |x -p j | -τp j in B σ (p j ) and lim sup |x|→+∞ W (x)|x| γ∞ < +∞,
where

c 23 > 0, τ p j ∈ [0, 2) and γ ∞ > 0.
It is important to note that from (2.5), (2.32) and (2.34), there holds 

R 2 g β dx = 2π[2(N -M ) + β]. (2.35) Theorem 2.1 Assume that F 1 (s) = s, F 2 (x, s) = s e (ν 1 -ν 2 )(x)
2π[2(N -M ) + β] < R 2 W dx ≤ +∞. (2.38)
Then problem (2.33) with i = 2 has a unique bounded solution verifying

v(x) = C β + O(|x| - γ∞+β --2 γ∞+β --1 ) and |∇v(x)| = O(|x| -1- γ∞+β --2 γ∞+β --1 ) as |x| → +∞. (2.39) Proof. Step 1. Since 0 ≤ τ p j < 2, W ∈ L 1 loc (R N ). For t ∈ R, we set h i,t (x) = W (x)F i (x, λ β (x)e t ) ∀ x ∈ R 2 \ Σ 1 .
Notice that h 2,t is defined on Σ 2 by h 2,t (q j ) = 0 = lim

x→q j h 2,t (x) for all q j ∈ Σ 2 .
The function

h i,t is Hölder continuous in R 2 \ Σ 1 , t → h i,t is increasing in R 2 \ Σ 1 , and there holds h 1,t → ∞ locally in R 2 \ Σ 1 as t → +∞, h 2,t → W locally in R 2 \ Σ 1 as t → +∞. Furthermore, h i,t → 0 locally in R 2 \ Σ 1 as t → -∞, i = 1, 2.
Using assumption (W 0 ), we obtain that h 1,t (x) ≤ c 24 e t |x| -γ∞+β for |x| ≥ r 3 (2.40)

for some r 3 > 0. Since -γ ∞ + β < -2, we have that lim t→-∞ R 2 h 1,t (x)dx = 0.
Concerning h 2 , we have (ν 1 -ν 2 )(x)(x) = 0 if dist(x, Σ) ≥ σ, and there holds

F 2 (x, λ(x) β e t ) = λ(x) β e t 1 + λ(x) β e t = |x| β e t 1 + |x| β e t for |x| ≥ r 3 , then h 2,t (x) ≤ c 25 e t |x| -γ∞-β -for |x| ≥ r 3 , (2.41) 
which implies lim t→-∞ R 2 h 2,t (x)dx = 0.
We claim that there exists t i ∈ R such that

R 2 h i,t i (x)dx = R 2 g β (x)dx = 2π[2(N -M ) + β]. (2.42)
From the definition of F i , (2.38) and the assumption on g β ,

lim t→+∞ R 2 h 1,t (x)dx = ∞ and lim t→+∞ R 2 h 2,t (x)dx = R 2 W dx > R 2 g β dx.
Since t → R 2 h i,t (x)dx is continuous and increasing, it follows by the mean value theorem that there exists

t i ∈ R such that R 2 h i,t i (x)dx = R 2 g β (x)dx.
Step 2. We use Lemma 2.2 to obtain some basic estimates on w 0,i = Γ * (g β -h i,t i ), taking into account the fact that R 2 (g β -h i,t i ) dx = 0 and

-∆w 0,i = g β -h i,t i in R 2 .
The function g β is smooth with compact support, the functions h i,t i are locally integrable in R 2 and satisfy |h 

= - γ ∞ + β -2 γ ∞ + β -1 and 2 = - γ ∞ + β --2 γ ∞ + β --1 .
(2.44)

Step 3. In order to apply the classical iterative method we have to construct suitable supersolutions and subsolutions for equation (2.33).

Construction of the supersolution.

Set v i = (t i ) + + w 0,i + w 0,i L ∞ (R 2 )
, then

-∆v i + W F i (λ β e v i ) = g β -W F i (λ β e t i ) + W F i (λ β e v i ) ≥ g β , since F i (λ β e v i ) ≥ F i (λ β e t i ) as v i ≥ t i . Hence v i is a super solution of (2.33) for i = 1, 2.
Construction of the subsolution. 

Set v i = -(t i ) -+ w 0,i -w 0,i L ∞ (R 2 ) , then -∆v i + W F i (λ β e v i ) = g β -W F i (λ β e t i ) + W F i (λ β e v i ) ≤ g β , since F i (λ β e v i ) ≤ F i (λ β e t i ) as v i ≤ t i . Hence v i is a subsolution of (2.33) for i = 1, 2. As v i > v i in R 2 ,
v i ≤ v i ≤ v i in R 2 .
Note that v i belongs to

C 2 (R 2 \ Σ 1 ) ∩ C(R 2 ) ∩ L ∞ (R 2 ).
Uniqueness: Let ṽi be another solution of (2.33) and

w i = ṽi -v i , then ∆(w 2 i ) = 2w i ∆w i + 2|∇w i | 2 ≥ 2w i ∆w i = 2w i F i (λ β e ṽi ) -F i (λ β e v i ) ≥ 0,
hence w 2 i is bounded and subharmonic in R 2 . Thus w 2 i is a constant by Liouville's theorem, that is ṽi = v i + C. Then F i (λ β e v i ) = F i (λ β e v i +C ). Thus C = 0 and uniqueness follows. We denote by v β,i this unique solution.

Step 3: asymptotic expansion. Now we shall employ Lemma 2.2 with 

Φ i = W F i (λ β e t ) -
R 2 W F i (λ β e v β,i )dx = 2π(2(N -M ) + β).
(2.46)

Proof. For any R > 0, there holds

- |x|=R ∂v β,i ∂r dS + B R W F i (λe v β,i )dx = B R g β dx.
By (2.37),

|x|=R ∂v β,i ∂r dS = O(|x| ρ i ) as |x| → +∞,
where ρ i is defined in (2.44). The result follows from (2.35). 2

In the critical case β = β * := 2aN -2 where a > 0 and 0 < aN ≤ 1, the problem related to (1.1) is the following

-∆u + W F 2 (λ β * Λ -2 e u ) = g β * in R 2 , (2.47) 
where g β * expressed by

g β * = f 1 -f 2 + β * ∆ ln λ -2∆ ln Λ, (2.48) 
is subject to the condition

R 2 g β * dx = 2π[2(N -M ) + β * ],
and W satisfies that (W 1 ) The function W is positive, locally Hölder continuous in R 2 \ Σ 1 and satisfies

W (x) ≤ c 29 |x -p j | -2n j a in B σ (p j ) and lim sup |x|→∞ |x| 2aN W (x) -2 |x| < +∞, where c 29 > 0, n j a < 1 with j = 1, • • • , k. Theorem 2.2 Let F 2 (s) = s e ν 1 -ν 2 +s , g β * be defined in (2.48) with β * = 2(aN -1) ≤ 0 and W satisfies (W 1 ). Assume furthermore that M < (1 + a)N -1 and set θ * = min{3, 2 -β * } ≥ 2.
Then problem (2.47) has a unique bounded solution v and there exists

C * ∈ R such that v * (x) = C * + O(|x| -θ * -2 θ * -1 ) as |x| → +∞ |∇v(x)| = O(|x| -1-θ * -2 θ * -1 ) as |x| → +∞, (2.49) if aN < 1, or v * (x) = C * + O (ln |x|) -4 as |x| → +∞ |∇v(x)| = O |x| -1 (ln |x|) -4 as |x| → +∞, (2.50) if aN = 1.
Proof. Notice that the assumptions aN ≤ 1 and

M < (1 + a)N -1 imply N -M > 0. Set Λ 0 (x) = 1 1 + |x| 2 for any x ∈ R 2 ,
(2.51) and for t ∈ R,

h t (x) = W λ β * Λ -2 e tΛ 0 (x) e ν 1 (x)-ν 2 (x) + λ β * Λ -2 e tΛ 0 (x) for any x ∈ R 2 \ Σ, with h t (x) = 0 for x ∈ Σ 2 . The function h t (•) is continuous in R 2 \Σ 1 and t → h t (x) is increasing for all x ∈ R 2 \ Σ.
Direct computation implies the following properties:

h t (x) → W locally in R 2 \ Σ 2 as t → +∞, and h t (x) → 0 locally in R 2 \ Σ 1 as t → -∞.
Since 2aN ≤ 2, there holds

R 2 W (x)dx = ∞.
Furthermore, there exist τ ∈ R and r * > 0 such that for any t ≤ τ and |x| ≥ r * ,

h t (x) ≤ c 30 |x| -2 (ln(|x| + 1)) -2 1 + |x| 2aN -2 (ln(|x| + 1)) -2 ,
where c 30 > 0 depends on τ . Since 2aN -2 ≤ 0, it follows that for |x| ≥ r * ,

h t (x) ≤ c 31 |x| -2 (ln(|x| + 1)) -2 .
(2.52)

Hence, by the dominated convergence theorem, lim

t→-∞ R 2 h t (x)dx = 0.
Using the fact that t → R 2 h t (x)dx is increasing, there exists t 0 ∈ R such that

R 2 h t 0 (x)dx = 2π[2(N -M ) + β * ] = R 2 g β * (x)dx. ( 2 

.53)

We claim that for some c 32 > 0,

|w 0 (x)| ≤ c 32 |x| -θ * -2 θ * -1
for |x| large enough, (2.54) and if this holds true it will follow that w 0 L ∞ < ∞, where w 0 = Γ * (g β * -h t 0 ). Using (2.48),

g β * (x) = 2 |x| 2 Λ 2 (x) for |x| ≥ r 1 , and 
h t 0 (x) = W λ β * Λ -2 e t 0 Λ 0 1 + λ β * Λ -2 e t 0 Λ 0 = 2|x| -2 e t 0 Λ 0 (1 + O(|x| -1 ) Λ 2 + |x| β * e t 0 Λ 0 as |x| → +∞.
Therefore, we obtain that

g β * -h t 0 = 2e t 0 Λ 0 |x| 2 Λ 2 e t 0 Λ 0 (1 + O(|x| -1 )) -Λ 2 -|x| β * e t 0 Λ 0 Λ 2 e t 0 Λ 0 (Λ 2 + |x| β * e t 0 Λ 0 ) = 2e t 0 Λ 0 Λ 2 (e t 0 Λ 0 -1) -e t 0 Λ 0 (|x| β * -Λ 2 O(|x| -1 )) |x| 2 Λ 2 e t 0 Λ 0 (Λ 2 + |x| β * e t 0 Λ 0 ) .
(2.55) Since Λ 0 (x) is defined by (2.51), e t 0 Λ 0 -1 = O(|x| -2 ) at infinity. Noticing that β * = 0 if aN = 1, we conclude that

|g β * -h t 0 | ≤ c 33 max |x| -3 Λ -2 , |x| -2+β * Λ -4 ≤ c 33 |x| -θ * if aN < 1 |x| -2 (ln |x|) -4 if aN = 1.
(2.56)

Additionally, R 2 w 0 dx = 0. Therefore, from Lemmas 2.2 and 2.3, we have that w 0 remains bounded on R 2 and there exists c 34 > 0 such that

w 0 (x) ≤ c 34 (1 + |x|) -θ * -2 θ * -1 for all x ∈ R 2 if aN < 1 (2.57) and w 0 (x) ≤ c 34 ln(2 + |x|) -4 for all x ∈ R 2 if aN = 1. (2.58)
Existence. We first construct a supersolution. Set

v = (t 0 ) + + w 0 + w 0 L ∞ (R 2 ) in R 2 . Since Λ 0 : R 2 → (0, 1], then v ≥ t 0 Λ 0 in R 2 . The function t → Λ -2 e t e ν 1 -ν 2 +Λ -2 e t is increasing, therefore, W λ β * Λ -2 e v e ν 1 -ν 2 + λ β * Λ -2 e v ≥ W λ β * Λ -2 e t 0 Λ 0 e ν 1 -ν 2 + λ β * Λ -2 e t 0 Λ 0 , which implies, -∆v + W λ β * Λ -2 e v e ν 1 -ν 2 + λ β * Λ -2 e v -g β * ≥ g β * -h t 0 + W λ β * Λ -2 e t 0 Λ 0 e ν 1 -ν 2 + λ β * Λ -2 e t 0 Λ 0 -g β * = 0, then v is a super solution of (2.33).
Similarly we construct a subsolution by setting v = (t 0 ) -+ w 0 -w 0 L ∞ (R 2 ) . Using v ≤ t 0 Λ 0 in R 2 and by monotonicity, we have that

W λ β * Λ -2 e v e ν 1 -ν 2 + λ β * Λ -2 e v ≤ W λ β * Λ -2 e t 0 Λ 0 e ν 1 -ν 2 + λ β * Λ -2 e t 0 Λ 0 , thus, -∆v + W λ β * Λ -2 e v e ν 1 -ν 2 + λ β * Λ -2 e v -g β * ≤ g β * -h t 0 + W λ β * Λ -2 e t 0 Λ 0 e ν 1 -ν 2 + λ β * Λ -2 e t 0 Λ 0 -g β * = 0, thus v is a subsolution.
Since v > v, the standard iterative process, yields the existence of a solution v * of (2.33)

such that v ≤ v * ≤ v in R 2 .
As in the proof of Theorem 2.1 the solutions are unique in the class of bounded solutions, a class to which 

v * belongs. Put Φ * = g β * -W F 2 (λ * Λ -2 e v * ), then w * = v * -Γ *
| Γ * Φ * |≤ c 35    (1 + |x|) -θ * -2 θ * -1 if aN < 1 (1 + |x|) -2 (ln(2 + |x|)) -4 if aN = 1.
( 

R 2 W F 2 (λ β * Λ -2 e v β * )dx = 2π(2(N -M ) + β * ). (2.60)
From the existence and uniqueness of solutions of (2.33) and (2.47), it is easy to prove the following statements.

Corollary 2.5 Under the assumptions of Theorem 2.1, if w i and w i are respectively a bounded supersolution and a bounded subsolution of (2.33) such that w i ≤ w i , then the standard iterative process will converge to the unique bounded solution v i of (2.33), and w i ≤ v i ≤ w i . A similar result holds concerning equation (2.47) under the assumption of Theorem 2.1.

Corollary 2.6 Under the assumptions of Theorem 2.2, the function w * := λ β * Λ -2 + v * where v * is the unique bounded solution of (2.47) satisfies

-∆w * + W F 2 (e w * ) = f 1 -f 2 in R 2 .
(2.61)

Minimal solution

In order to consider solutions w of (2.3) with asymptotic behavior β ln |x| + O(1), we look for w under the form w = β ln |x| + v where v is a bounded function satisfying some related equation.

In particular, we look for non-topological solution u β of problem (1.1) under the form

u β = -ν 1 + ν 2 + β ln λ + v β or w β = v β + β ln λ,
where λ is given by (2.30) and v β is a bounded classical solution of

-∆v + V λ β e v (e ν 1 -ν 2 + λ β e v ) 1+a = g β in R 2 , (3.1)
with V being defined in (2.4) and where g β is defined in (2.34).

Here and in what follows, we always assume that a = 16πG, an j < 1 for j = 1, • • • , k and M is the total magnetic flux given in (1.9).

We first consider the non-topological solutions of type I for problem (1.1) in the subcritical case, which are solutions verifying u(x) = β ln |x| + O(1) as |x| → ∞ with β < 0. It is equivalent to look for classical solutions of (3.1) with β < 0. Proposition 3.1 Let N, M be positive integers verifying (1.12) and aN ≤ 1, then for any

β ∈ (-2(N -M ), β * ), problem (3.1) has a minimal bounded solution v β,min such that R 2 V λ β e v β,min (e ν 1 -ν 2 + λ β e v β,min ) 1+a dx = 2π(2(N -M ) + β). (3.2) 
Proof.

Step 1: construction of an approximating scheme. We recall that 

P = V e a(ν 1 -ν 2 ) in R 2 \ Σ, then lim x→p j P(x)|x -p j | 2n j a = A 0 k i =j |p i -p j | -2an i , lim |x-q j |→0 + P(x) = 0,
Since aN ≤ 1, there holds

R 2 P(x)dx = ∞,
then that P verifies the assumption (W 0 ) with τ p j = 2n j a < 2 and τ ∞ = 2aN > 2 -2(N -M ). Theorem 2.1-(ii) implies that for any β ∈ (-2(N -M ), 2aN -2}), the nonlinear elliptic problem

-∆v + V e a(ν 1 -ν 2 ) λ β e v e ν 1 -ν 2 + λ β e v = g β in R 2 , (3.4) 
has a unique bounded solution v 0 , which is continuous in R 2 , smooth in R 2 \ Σ and

R 2 V e a(ν 1 -ν 2 )
λ β e v 0 e ν 1 -ν 2 + λ β e v 0 -g β dx = 0 by the same argument as in Theorem 2.1-(ii); then there exists a constant C 0,β such that

lim |x|→+∞ v 0 (x) = C 0,β and v 0 (x) -C 0,β = O |x| -2aN -β-2 2aN -β-1 as |x| → +∞. ( 3.5) 
We set

W 0 = P and W 1 = V (e ν 1 -ν 2 + λ β e v 0 ) a = e a(ν 1 -ν 2 ) (e ν 1 -ν 2 + λ β e v 0 ) a W 0 in R 2 \ Σ.
The function W 1 is positive and Hölder continuous in R 2 \ Σ 1 , and since

0 < W 1 (x) ≤ W 0 (x) ∀x ∈ R 2 , (3.6) 
it satisfies W 0 . Furthermore, as N -M > 0, v 0 (x) → 0 as |x| → ∞ and β < 0 and therefore

W 1 (x) = W 0 (x)(1 + o(1)) as |x| → ∞. Applying Theorem 2.1-(ii)
, with γ ∞ = 2aN , we see that there exists a unique bounded function v 1 satisfying

-∆v 1 + W 1 λ β e v 1 e ν 1 -ν 2 + λ β e v 1 = g β in R 2 . ( 3.7) 
Furthermore, v 1 (x) converges to some constant C 1,β when x → +∞ and

v 1 (x) = C 1,β + O |x| -2aN -β-2 2aN -β-1 as |x| → +∞. (3.8) Set z = v 0 -v 1 . Since the function t → λ β e t e ν 1 -ν 2 +λ β e t is nondecreasing, it follows that -∆z 2 + = 2z + (W 1 -W 0 ) λ β e v 1 e ν 1 -ν 2 + λ β e v 1 -2W 0 z + λ β e v 0 e ν 1 -ν 2 + λ β e v 0 - λ β e v 1 e ν 1 -ν 2 + λ β e v 1 -2|∇z + | 2 ≤ 0. Hence z 2
+ is subharmonic and bounded, it is therefore constant. Hence (v 0 -v 1 )

+ = C ≥ 0. If C > 0 then sup{v 0 -v 1 , 0} = C, which implies that v 0 -v 1 = C. Replacing v 0 by v 1 + C we deduce from (3.4), (3.7) V (e ν 1 -ν 2 + λ β e v 1 +c ) a λ β e v 1 e ν 1 -ν 2 + λ β e v 1 = V e a(ν 1 -ν 2 ) λ β e v 1 +c e ν 1 -ν 2 + λ β e v 1 +C , which yields e C e ν 1 -ν 2 + λ β e v 1 = e a(ν 1 -ν 2 ) e ν 1 -ν 2 + λ β e v 1 +c 1-a in R 2 \ Σ. Since β < 0, we obtain e C = 1 by letting |x| → ∞. Hence C = 0 which implies v 0 ≤ v 1 in R 2 and C 1,β ≥ C 0,β .
By induction, we suppose that for n ≥ 2 we have constructed the sequence {v k } k<n of bounded solutions to

-∆v k + W k λ β e v k e ν 1 -ν 2 + λ β e v k = g β in R 2 , (3.9) 
where

W k = e a(ν 1 -ν 2 ) (e ν 1 -ν 2 + λ β e v k-1 ) a W 0 . Then 0 < W k ≤ W k-1 ≤ ... ≤ W 0 and therefore v 0 ≤ ... ≤ v k-1 ≤ v k , and furthermore v k (x) = C k,β + O |x| -2aN -β-2 2aN -β-1 as |x| → +∞. ( 3.10) 
Then v n is the unique bounded solutions of

-∆v n + W n λ β e vn e ν 1 -ν 2 + λ β e vn = g β in R 2 , (3.11) 
where

W n = e a(ν 1 -ν 2 ) (e ν 1 -ν 2 + λ β e v n-1 ) a W 0 ≤ W n-1 = e a(ν 1 -ν 2 ) (e ν 1 -ν 2 + λ β e v n-2 ) a W 0 , since v n-2 ≤ v n-1 by induction. Furthermore, by Lemma 2.2 (since β < 0 and N -M > 0), v n (x) = C n,β + O |x| -2aN -β-2 2aN -β-1
as |x| → +∞.

(3.12)

As above the function

(v n-1 -v n ) 2 + is subharmonic and bounded, hence it is constant, which implies v n-1 = v n + C, C ≥ 0. Then from the equations satisfied by v n and v n-1 , 1 ≥ W n W n-1 = e C e ν 1 -ν 2 + λ β e vn e ν 1 -ν 2 + λ β e C e vn ≥ 1. Hence e C = 1, then C = 0 and v n-1 ≤ v n . Consequently n → C n,β is increasing. Let R > 1 be such that supp(g β ) ⊂ B R and Θ(x) := Γ * |g β |(x) = 1 2π B R |g β (x)| ln |x -y|dy. For |x| ≥ R + 1, one has 1 ≤ |x -y| ≤ |x| + R, hence 0 ≤ ln |x -y| ≤ ln(|x| + R) ≤ ln |x| + R |x| ≤ ln |x| + 1, therefore 0 ≤ Θ(x) ≤ R 2 g β L ∞ 2 (ln |x| + 1) if |x| ≥ R + 1.
Since |Θ| is bounded from above on B R+1 by some constant c 36 , we deduce

|Θ(x)| ≤ c 36 + R 2 g β L ∞ 2 (ln + |x| + 1) for all x ∈ R 2 . (3.13) Set z = v n -Θ, then -∆z 2 + ≤ -2z + ∆z = -2z + W n λ β e vn e ν 1 -ν 2 + λ β e vn ≤ 0.
The function z + has compact support because of (3.13). It is subharmonic, nonnegative and bounded, hence it is constant with zero value necessarily, hence, for any n ∈ N,

v 0 (x) ≤ v n (x) ≤ c 36 + R 2 g β L ∞ 2 (ln + |x| + 1) for all x ∈ R 2 . (3.14) 
For > 0 set

w (x) = ln |x| + c 36 + R 2 g β L ∞ 2 (ln R + 1) .
Then w is harmonic in B R c . It is larger than v n for |x| = R and also at infinity, since v n is bounded. If we set Z = v n -w , then as above the function Z 2 + is subharmonic, nonnegative and bounded in B c R . Since it vanishes for |x| = R, its extension ζ by 0 in B R is still subharmonic nonnegative and bounded. It is therefore constant. Since it vanishes at infinity, it is identically 0. Hence v n -w ≤ 0. Letting → 0 we obtain

v 0 (x) ≤ v n (x) ≤ c 36 + R 2 g β L ∞ 2 (ln R + 1) for all x ∈ R 2 . (3.15) 
Combining Lemma 2.2 with (3.15) for n = 1 we infer

| v n (x) -C n,β |≤ c 37 (1 + |x|) -2aN -β-2 2aN -β-1 for all x ∈ R 2 , (3.16) 
where c 37 > 0 is independent of n. By Lemma 2.2

| ∇v n (x) |≤ c 38 |x| -1-2aN -β-2 2aN -β-1
for |x| large enough, (3.17) then,

- |x|=R ∂v n ∂r dS + B R W n λ β e vn e ν 1 -ν 2 + λ β e vn dx = B R g β dx.
By (3.17), the first integral tends to 0 when R → +∞, therefore 

W n → W ∞ := e a(ν 1 -ν 2 ) (e ν 1 -ν 2 + λ β e v β,min ) a W 0 and | v β,min (x) -C β |≤ c 39 (1 + |x|) - 2aN +2(N -M )-β-2 2aN +2(N -M )-β-1 for all x ∈ R 2 . (3.19) Furthermore 0 ≤ W n λ β e vn e ν 1 -ν 2 + λ β e vn ≤ W 0 λ β e v β,min e ν 1 -ν 2 + λ β e v β,min .
The right-hand side of the above inequality is an integrable function, therefore

W n λ β e vn e ν 1 -ν 2 + λ β e vn → W 0 e a(ν 1 -ν 2 ) λ β e v β,min (e ν 1 -ν 2 + λ β e v β,min ) 1+a in L 1 (R 2 ) as n → +∞.
This implies that v β,min is a weak solution of (1.1) and relation (3.2) holds.

Step 2: v β,min is minimal among the bounded solutions. Let ṽ be any bounded solution. Then V (e ν 1 -ν 2 +λ β e ṽ ) a ≤ V e a(ν 1 -ν 2 ) , and by uniqueness, it implies v 0 ≤ ṽ. Hence V (e ν 1 -ν 2 +λ β e ṽ ) a ≤ V (e ν 1 -ν 2 +λ β e v 0 ) a and therefore v 1 ≤ ṽ. By induction we obtain v n ≤ ṽ and finally v β,min ≤ ṽ.

Step 3: asymptotic behaviour. Put 

F = g β - V λ β e v β,min (e ν 1 -ν 2 + λ β e v β,min ) 1+a .
|Γ * F | ≤ c 41 (1 + |x|) -2aN -β-2 2aN -β-1 for all x ∈ R 2 .
Therefore w = v β,min -Γ * F is harmonic and bounded in R 2 . It is therefore constant. This implies

v β,min = C β + O(|x| -2aN -β-2 2aN -β-1 ) as |x| → +∞. (3.20)
This ends the proof. 2

Proof of Theorem 1.2 part (i). Let If N > M and aN < 1, we recall that by Theorem 2.1, for any β ∈ (-2(N -M ), β * ), with β * = 2(aN -1) < 0, there exists a unique bounded solution v β to equation

u β,min = -ν 1 + ν 2 + β ln λ + v β,
-∆v + V e a(ν 1 -ν 2 ) λ β e v e ν 1 -ν 2 + λ β e v = g β in R 2 , (4.1) 
and by Theorem 2.2, there exists a unique bounded solution v β * to

-∆v + V e a(ν 1 -ν 2 ) λ β * Λ -2 e v e ν 1 -ν 2 + λ β * Λ -2 e v = g β * in R 2 . (4.2)
For β ∈ (-2(N -M ), β * ), we first set

w β = v β + β ln λ. (4.3)
Then w β is a the unique solution of

-∆w + V e a(ν 1 -ν 2 ) e w e ν 1 -ν 2 + e w = f 1 -f 2 in R 2 (4.4) such that w -β ln λ is bounded in R 2 . When β = β * , we set w β * = v β * + β * ln λ -2 ln Λ, (4.5) 
thus w β * is the unique solution of (4.4) such that w -β * ln λ -2 ln Λ remains bounded in R 2 .

Proposition 4.1 Under the assumptions of Theorem 2.2, the mapping β → w β is increasing for β ∈ (-2(N -M ), β * ) and

w β * = sup w β in R 2 : β ∈ (-2(N -M ), β * ) . Proof. If β * > β > β > -2(N -M ), the function z = w β -w β is negative in B c R for some R > 0. Hence -∆z 2 + = -2z + ∆z -2|∇z + | 2 ≤ - 2V e a(ν 1 -ν 2 ) e w β e ν 1 -ν 2 + e w β - e w β e ν 1 -ν 2 + e w β (w β -w β ) ≤ 0. Hence z 2
+ is a nonnegative and bounded subharmonic function in R 2 , it is therefore constant. Since it vanishes in B c R , it is identically 0, which yields w β ≤ w β . Actually the inequality is strict since it is the case at infinity and there cannot exist x 0 ∈ R 2 such that w β (x 0 ) = w β (x 0 ), because of the strong maximum principle. Similarly, if β < β * , there holds by (4.3) and (4. 

M(w β ) = R 2 V e ν 1 -ν 2 e w β e ν 1 -ν 2 + e w β = 2π(2(N -M ) + β), and 
M(w β * ) = R 2 V e ν 1 -ν 2 e w β * e ν 1 -ν 2 + e w β * dx = 2π(2(N -M ) + β * ).
Since the mapping β → e w β 1+e w β is increasing, there holds by the monotone convergence theorem,

M( wβ * ) = R 2 V e a(ν 1 -ν 2 ) e wβ * e ν 1 -ν 2 + e wβ * dx = lim β↑β * R 2 V e a(ν 1 -ν 2 ) e w β e ν 1 -ν 2 + e w β dx = 2π(2(N -M ) + β * ) = R 2 V e a(ν 1 -ν 2 )
e w β * e ν 1 -ν 2 + e wβ * dx, (4.7)

Then w β,min is a solution of

   -∆w + V e w (e ν 1 -ν 2 + e w ) 1+a = f 1 -f 2 in R 2 , w = β ln λ + O(1)
as |x| → +∞.

(4.8)

Since v β,min is the minimal bounded solution of (3.1), w β,min is the minimal solution of (4.8). Furthermore, v β,min is the limit of the increasing sequence of the bounded solutions {v n } of (3.11), therefore w β,min is the limit of the increasing sequence {w β,n } := {v n + β ln λ} of the solutions of

   -∆w β,n + V (e ν 1 -ν 2 + e w β,n-1 ) a e w β,n e ν 1 -ν 2 + e w β,n = f 1 -f 2 in R 2 , w β,n = β ln λ + O(1)
as |x| → ∞.

(4.9)

By the comparison principle, the mapping β ∈ (-2(N -M ), β * ) → w β,n is increasing for any n, and this is also true for β → w β,min . By (3.15) there holds for any n ∈ N,

w 0 (x) ≤ w β,n (x) ≤ w β,min (x) ≤ c 42 + R 2 g β L ∞ 2 (ln R + 1) + β ln λ(x) in R 2 . (4.10) Uniformly upper bound for {w β,min } β . Let v 2 = Γ * g β * , then v 2 = Γ * (f 1 -f 2 ) + β * ln λ -2 ln Λ and lim |x|→∞ v 2 (x) ln |x| = 2(N -M ) + β * > 0.
Since v 2 is a super solution of (4.9), we have by comparison

w β,n ≤ v 2 in R 2 , which implies that for any β ∈ (-2(N -M ), β * ) w β,min ≤ v 2 in R 2 .
Hence there exists w β * ,min = lim β↑β * w β,min and for some C ∈ R.

w β * ,min ≤ v 2 in R 2 ,
Lower bound for w β * ,min . From Proposition 4.1, the equation Then u β can written under the form

-∆w + V e a(ν 1 -ν 2 ) e w e ν 1 -ν 2 + e w = f 1 -f 2 in R 2
u β = -ν 1 + ν 2 + β ln λ + v β ,
where v β is a bounded solution of the following equation equivalent to (3.1)

-∆v + W β e v (e ν 1 -ν 2 λ -β + e v ) 1+a = g β in R 2 (5.1)
with W β = V λ -aβ , and where g β is expressed by

g β = f 1 -f 2 + β∆ ln λ.
Note that it is a smooth function with compact support in B r 0 (0) and it verifies

R 2 g β dx = 2π[2(N -M ) + β].
As for W β it satisfies lim

x→p j W β (x) = A 0 ( i =j |p j -p i | 2n i ) -a , lim x→q j W β (x) = 0 and lim |x|→∞ W β (x)|x| 2aN +aβ = A 0 .
The existence of multiple solutions states as follows:

Proposition 5.1 Let N, M be positive integers and β be given in (1.10). Then for any β > β problem (5.1) possesses a sequence of solutions v β,i such that

R 2 W β e v β,i (e ν 1 -ν 2 λ -β + e v β,i ) 1+a dx = 2π[2(N -M ) + β], (5.2) 
and v β,i (x) = C β,i + O(|x| -aβ+2aN -2 aβ+2aN -1 ) as |x| → +∞ with C β,i → ∞ as i → +∞.
Proof. By Theorem 2.1, for any A > 0 the equation

-∆w + e -A(1+a) W β e w = g β in R 2 (5.3) 
has a unique bounded solution w A . We note that

w A = w 0 + A(1 + a),
where w 0 is the bounded solution of (5.3) with A = 0. Note that for any

A ≥ A * = a -1 w 0 L ∞ (R 2 ) , w A ≥ A in R 2 .
Step 1: construction of an approximating sequence. We set v 0 := w A and define H t (.) by

H 0 (t, •) =          A 0 in Σ 1 , 0 in Σ 2 , W β e t (e ν 1 -ν 2 λ -β + e v 0 ) 1+a in R 2 \ Σ.
Under the assumptions, H 0 (t, •) ∈ L δ (R 2 ) for some δ > 1 and there exists a unique (and explicit) real number t 1 such that

R 2 H 0 (t 1 , x)dx = 2π(2(N -M ) + β).
We construct first a bounded solution v 1 of

-∆v + W β e v (e ν 1 -ν 2 λ -β + e v 0 ) 1+a = g β in R 2 .
(5.4)

We set

w 1 = Φ * (g β -H 0 (t 1 , •)). By Lemma 2.2, w 1 is bounded. Put v = v 0 L ∞ + w 1 + w 1 L ∞ + |t 1 |. Then e v (e ν 1 -ν 2 λ -β + e v 0 ) 1+a ≥ e t 1 (e ν 1 -ν 2 λ -β + e v 0 ) 1+a , therefore -∆v + W β e v (e ν 1 -ν 2 λ -β + e v 0 ) 1+a -g β ≥ g β -H(t 1 , •) + W β e t 1 (e ν 1 -ν 2 λ -β + e v 0 ) 1+a -g β ≥ 0.
Hence v is a supersolution of (5.4). Since

-∆v 0 + W β e v 0 (e ν 1 -ν 2 λ -β + e v 0 ) 1+a -g β ≤ W β e v 0 1 (e ν 1 -ν 2 λ -β + e v 0 ) 1+a - 1 e (1+a)A ≤ 0,
v 0 is a subsolution of (5.4) dominated by v. Hence there exists a solution v = v 1 of (5.4)

satisfying v 0 ≤ v 1 ≤ v. Since aβ + 2aN > 2, we have from Lemma 2.2 v 1 (x) = C 1,β + O(|x| -aβ+2aN -2 aβ+2aN -1 ) as |x| → ∞.
We define a sequence {v n } n∈N with v 0 = w A and v = v n is the bounded solution of

-∆v + W β e v (e ν 1 -ν 2 λ -β + e v n-1 ) 1+a = g β in R 2 .
(5.5)

Assume that we have proved the existence and boundedness of the functions v k for k < n and that there holds v 0 ≤ v 1 ≤ ... ≤ v n-1 . We define H n-1 (t, .) by

H n-1 (t, .) =            A 0 in Σ 1 0 in Σ 2 W β e t (e ν 1 -ν 2 λ -β + e v n-1 ) 1+a in R 2 \ Σ,
and denote by t n the unique real number such that

R 2 H n-1 (t, x)dx = 2π(2(N -M ) + β). Since v 0 ≤ v 1 ≤ ... ≤ v n-1
, there holds t 0 < t 1 < ... < t n . If we set w n = Γ * (g β -H n-1 (t n , .)), clearly v n := v n-1 L ∞ + w n + w n L ∞ + |t n | is a supersolution. Furthermore -∆v n-1 + W β e v n-1 (e ν 1 -ν 2 λ -β + e v n-1 ) 1+a -g β ≤ W β e v n-1 1 (e ν 1 -ν 2 λ -β + e v n-1 ) 1+a -1 (e ν 1 -ν 2 λ -β + e v n-2 ) 1+a ≤ 0. This implies that for any for any > 0, there exists C > 0 such that v β (x) ≤ (2(N -M ) + β + ) ln(|x| + 1) + C in R 2 .

(5.8)

Note that v β is a super solution of (5.5) and by the comparison principle

v n ≤ v β in R 2 .
Therefore the limit of the sequence {v n } as n → ∞ exists. As it depends also on A, we denote it by v β,A and there holds v β,A ≤ v β in R 2 .

Furthermore v β,A is a locally bounded solution of (5.1) which satisfies W β e v β,A e ν 1 -ν 2 λ -β + e v β,A dx = R 2 g β dx.

A ≤ v β,A ( 
(5.11)

Combining this identity with the estimate g β (x) -W β (x) e v β,A (x) (e ν 1 -ν 2 λ -β + e v β,A (x) ) 1+a ≤ c 43 (1 + |x|) -2aN -aβ , We set µ 0 = w A , and define µ n (n ∈ N) to be the solution of -∆µ n + V e µn (e ν 1 -ν 2 + e µ n-1 ) 1+a = g 0 in R 2 .

(5.17)

As in the proof of Proposition 5.1, the mapping n → µ n is increasing and µ n is uniformly upper bounded. It converges to some function v A as n → +∞, and v A is a weak solution of (5. Proof. We recall that a solution verifying (6.1) with β < 0 (resp. β > 0) is called nontopological of type II (resp. type I). Given a function, we denote by w the circular average of w, i.e. (1 + e c 24 ) 1+a e u(x) ≥ c 48 e u(r) for r > r 0 , (

and from (6.1), there exist 0 ∈ (0, 1) and c 49 > 0 such that for r > r 0 , h u (r) ≥ c 49 r 2-0 . (6.4)

Then (1.1) implies that (ru r ) r ≥ c 49 r 1-0 for r ≥ r 0 , thus, integrating the above inequalities, we obtain Next we assume that aN = 1, and u is a topological solution (1.1). Hence u is bounded at infinity and h u (x) ≥ P(x) e u (1 + e u ) a ≥ c 53 |x| -2 .

Then (1.1) implies that (ru r ) r ≥ c 54 r for r ≥ r 0 .

By integrating this inequality we encounter a contradiction with the fact that u is bounded at infinity. 2

  e u ) 1+a ξ dx = 4π k j=1 n j ξ(p j ) -4π l j=1m j ξ(q j ).

)

  then for any β ∈ (-2(N -M ), β * ), problem (1.1) possesses a minimal solution u β,min satisfying u β,min (x) = β ln |x| + O(1) as |x| → +∞. Moreover, for some real number C * , u β,min (x) = β ln |x| + C * + O(|x| -aN -β-2 aN -β-1 ) as |x| → +∞, (1.13) and the total magnetic flux of the solution u β,min is equal to 2π[2(N -M ) + β], i.e. M(u β,min ) = 2π[2(N -M ) + β]. (1.14) (ii) If aN > 1 and M < N, (1.15)

Theorem 1 . 6

 16 Assume that a = 16πG and an j < 1 for j = 1, • • • , k. (i) If aN < 1 and β * < β < 2-aN a , then problem (1.1) has no solution u β with the aymptotic behavior u β (x) = β ln |x| + o(ln |x|) as |x| → ∞. (ii) If aN = 1, then problem (1.1) has no topological solution.

|

  ln |x -y|| p dx) 1 p . Thus, (2.20) follows and the proof is complete.2

  the same way as in Lemma 2.2. Clearly Γ * F 1 is uniformly bounded and satisfies (2.19) and (2.20). Then for |x| > 4r > 4 and R ∈ (r, |x| 4 ], 2π(Γ * F 2 )(x) = I 1 (x) + I 2 (x) + I 3 (x), where I 1 , I 2 and I 3 are defined in the proof of Lemma 2.2 and where |I 1

Corollary 2 . 2

 22 Let F ∈ L p loc (R 2 ) with p > 1 satisfy (2.26) with ν > 2 and w satisfiesf (2.24). (i) If lim |x|→∞ (ln |x|) ν |w(x)| < ∞, then there exist c 22 > 0 and r 2 > 1 such that | ∇w(x) |≤ c 22 |x| -1 (ln |x|) -ν for |x| ≥ r 2 . (2.29) (ii) If there exists a constant C such that w(x) = C + O((ln |x|) -ν ) when |x| → +∞, then estimate (2.29) holds.

  +s and g β is a Hölder continuous function with compact support in B r 0 (0) satisfying the relation (2.35) for some nonnegative integers N and M . Let W verify (W 0 ) with γ ∞ > β + 2. (2.36) (i) Then problem (2.33) with i = 1 has a unique bounded solution v verifying, for some C β ∈ R, v(x) = C β + O(|x| -γ∞-β-2 γ∞-β-1 ) and |∇v(x)| = O(|x| -1-γ∞-β-2 γ∞-β-1 ) as |x| → +∞. (2.37) (ii) Assume additionally that 2(N -M ) + β > 0 and

  |x| 2aN = A 0 .

R 2 W n λ β e vn e ν 1 2 g

 212 -ν 2 + λ β e vn dx = R β dx = 2π(2(N -M ) + β). (3.18) Set v β,min = lim n→∞ v n and C β = lim n→∞ C n,β , then

Then R 2 F

 2 dx = 0 and |F (x)| ≤ c 40 |x| -(2aN -β) for |x| ≥ r 0 . So we have (3.2), and applying Lemma 2.2 yields the estimate

2 4

 2 min , where v β,min is the minimal bounded solution of (3.1) obtained in Proposition 3.1. Then u β,min is the minimal non-topological solution of type I of (1.1) in the sense that u β,min (x) -β ln |x| = O(1) as |x| → +∞. Moreover, u β,min verifies (1.13) and its total magnetic flux is 2π[2(N -M ) + β] by (3.2). Critical-minimal solutions 4.1 Non-topological solutions

  5), (w β -w β * )(x) = (β -β * ) ln |x| + 2 ln(ln |x|) + O(1) as |x| → +∞. Hence z 2 + = (w β -w β * ) 2 + is subharmonic nonnegative and bounded, hence it is constant and necessarily with value zero. Therefore w β ≤ w β * , and actually w β < w β * by the strong maximum principle. We set wβ * := sup{w β : β ∈ (-2(N -M ), β * )} = lim β↑β * w β . Then wβ * ≤ w β * and w β * is a solution of (4.4). By the strong maximum principle, either wβ * < w β * or wβ * = w β * . In order to identify w β * , we use the flux identities obtained in Corollaries 2.3 and 2.4, replacing v β,2 and v β * by their respective expressions from (4.3) and (4.5):

e ν 1

 1 -ν 2 +e wβ * ≤ e w β * e ν 1 -ν 2 +e w β * . This implies that wβ * = w β * almost everywhere and actually everywhere by continuity.

4. 2

 2 Proof of Theorem 1.3 If v β,min is the minimal bounded solution of (3.1) obtained in Proposition 3.1, we set w β,min = v β,min + β ln λ in R 2 .

  and therefore w β * ,min (x) ≤ β * ln |x| -2 ln ln |x| + C (4.11)

2 5

 2 solution w β * , with the following asymptotic behavior w β * (x) = β * ln |x| -2 ln ln |x| + O(1) as |x| → +∞, and w β * is the limit of the solutions w β of (4.4) for β ∈ (-2(N -M ), β * ) satisfying w β (x) = β ln |x| + O(1) as |x| → +∞. Since w β is a subsolution for (4.8) it is bounded from above by w β,min by the same comparison method as the ones used previously. Therefore w β * ≤ w β * ,min . Combining (4.11) with the expression of w β * given in (4.11), we infer that w β * ,m (x) = β * ln |x| -2 ln ln |x| + O(1) as |x| → +∞. Clearly the flux identity holds as in the previous theorem, which ends the proof. Multiple solutions 5.1 Non-topological solutions Let β = 0 and u β be a solution of problem (1.1) with the asymptotic behavior u β (x) = β ln |x| + O(1) as |x| → +∞.

Hence v n- 1 - 1 -aβ+2aN - 2 aβ+2aN - 1 ). 7 )

 11217 is a subsolution. A solution v = v n of (5.5) satisfying v n-1 ≤ v n ≤ v n exists. It is bounded and satisfiesv n (x) = C n,β + O(|x| -aβ+2aN -2 aβ+2aN -1 ) as |x| → ∞ (5.6)for some C n,β . Furthermore the sequence {C n,β } is nondecreasing, and by Corollary 2.1|∇v n (x)| = O(|x| as |x| → ∞. (5Uniformly upper bound for {v n } n . Let v β = Γ * g β ,then it is a supersolution of (5.5) for any n ∈ N and satisfies lim |x|→∞ v β (x) ln |x| = 2(N -M ) + β.

e vn e ν 1 2 W β e vn e ν 1 2 ge ν 1

 12121 x) ≤ (2(N -M ) + β + ) ln(|x| + 1) + C in R 2 .(5.9) Because of the above lower estimate, the functions x → e vn(x) (e ν 1 -ν 2 λ -β +e vn(x) ) 1+a are upper bounded on R 2 by some constant depending on A and β but independent of n, and this estimate holds true if v n is replaced by v β,A . Hence for any R > 0, -ν 2 λ -β + e vn dx = B R g β dx.By (5.7) the integral term on |x|= R tends to 0 when R → ∞, therefore R -ν 2 λ -β + e vn dx = R β dx = 2π(2(N -M ) + β).-ν 2 λ -β +e vn is bounded independently of n, it follows by the dominated convergence theorem that R 2

2 2aN - 1 and 2 2aN - 1 as 2 (f 1 - 2 V 2 6Lemma 6 . 1

 2121212261 [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. Since V (x) ≤ c 22 |x| -2aN when |x| → +∞, and 2aN > 2, there holdsµ n (x) = C n,A + O |x| -2aN -|∇µ n (x)| ≤ c 44 |x| -1-2aN -|x| → +∞. Integrating (5.17) on B R and letting R → ∞ yields R 2 V e µn (e ν 1 -ν 2 + e µ n-1 ) 1+a dx = R f 2 )dx = 4π(N -M ). Because e µn (e ν 1 -ν 2 +e µ n-1 ) 1+a is uniformly bounded and V ∈ L 1 (R 2 ) we obtain by the dominated convergence theorem R e v A (e ν 1 -ν 2 + e v A ) 1+a dx = 4π(N -M ). (5.18) Therefore, v A (x) = C A + O(|x| -2aN -2 2aN -1 ) as |x| → +∞, (5.19) and the end of the proof is similar as the one of Proposition 5.1. Nonexistence Let aN < 1. Then (i) Problem (1.1) has no solution u β verifying u β (x) -β ln |x| = o(ln |x|) as |x| → +∞ (6.1) for β * < β ≤ 0. (ii) Problem (1.1) has no solution u β verifying (6.1) if 0 ≤ β < 2-aN a . (iii) Problem (1.1) has no topological solution.

  w(r) = 1 2πr ∂Br(0) w(ξ)dθ(ξ) = 1 2π 2π 0 w(r, θ)dθ. For |x| ≥ r 0 , there exists c 45 > 0 such that P(x) ≥ c 45 |x| -aN , and we set, for all x ∈ R 2 h u (x) = P(x) e u(x) (1 + e u(x) ) 1+a . (6.2) Part (i). If u is a non-topological solution of Type I, it satisfies u(x) ≤ c 46 for |x| ≥ r 0 and c 46 > 0. By Jensen inequality there exists positive constants c 47 and c 48 such that h u (r) ≥ c 47 A 0 r -aN

1 r 1 1 0 ) ln r + c 52 1 r 1

 11111 ru r (r) -r 0 u r (r 0 ) ≥ c 50 (r 1 -r 1 0 ), where u r = du dr and c 49 , c 50 > 0. Hence there holds u(r) ≥ u(r 0 ) + (r 0 u r (r 0 ) -c 50 r 1 0 ) ln r + c 50 for r > r 0 .As a consequence, u(r) → +∞ as r → +∞, (6.5)which contradicts the fact that u is bounded from above.Part (ii). If u is a non-topological solution of Type II and 0 ≤ β < 2-aN a , thenh u (x) ≥ P(x) 1 (1 + e u ) a ≥ c 51 |x| 2-1for some 1 > 0 and c 51 > 0. Then (1.1) implies that(rw r ) r ≥ c 52 r 1-1 for r ≥ r 0 .Hence there holds w(r) ≥ w(r 0 ) + (r 0 w r (r 0 ) -c 52 r for r > r 0 , which contradicts (6.1).Part (iii). The proof is the same as above.2Proof of Theorem 1.6. If aN < 1, Lemma 6.1 implies that then problem (1.1) has no solution u β for β * < β < 2-aN a verifying u β (x) = β ln |x| + O(1).

Table 1 :

 1 

		Non-topological solutions of Type I
	Assumptions on a, N, M	range of β	solutions	asymptotic behavior at

Table 2

 2 

		: Non-topological solutions of Type II
	range of β solutions	asymptotic behavior at ∞
	(β # + , ∞)	Multiple β ln |x| + c i + o(1), lim i→∞	c i = ∞

Table 3 :

 3 Topological solutionsAssumptions on a, N, M solutions asymptotic behavior at

  F 2 is also locally bounded in R 2 . If (2.22) holds true, we have to prove that F 2 verifies (2.23).

r , and F 2 satisfies (2.22) on B c r , with may be another constant. It is locally bounded hence Γ *

  The decay estimate on the gradient at infinity does not use the identity (2.21). It is actually more general.

	∂ω ∂θ	2 + ∂ω ∂t	2	1 2 , this implies the claim.	2
	Corollary 2.1 Let F ∈ L p loc (R 2 ) with p > 1 satisfy (2.22) with τ > 2 and w be a solution of	
	-∆w = F in R 2 .		(2.24)

11 , and c 11 does not depend on T . As |x||∇ω(x)| =

  Since (2.36) holds, then, by Lemma 2.2, the functions w 0,i are uniformly bounded in R 2 , |w 0,i (x)| ≤ c 27 |x| i and |∇w 0,i (x)| ≤ c 28 |x| i -1 for |x| large enough,

	(2.43)
	where
	1

1,t 1 (x)| ≤ c 26 |x| -γ∞-β and |h 2,t 2 (x)| ≤ c 26 |x| -γ∞-β -for |x| large enough.

  g β , where g β has compact support and (2.36) holds, thus lim sup |x|→+∞ |Φ 1 (x)||x| γ∞+β + |Φ 2 (x)||x| γ∞+β -< +∞. Corollary 2.3 Under the assumptions of Theorem 2.1 the unique solutions v β,i of problem (2.33) with i = 1, 2 respectively, satisfy the flux identity

	Therefore we have that		
	lim sup	|Γ * Φ i (x)]|x| -i < +∞.	(2.45)
	|x|→+∞		

The function w = v β,i -Γ * Φ i is harmonic and bounded, hence it is constant by Louville theorem. Denote this constant by C β,i , we deduce that

v β,i = C β,i + O(|x| i ) as |x| → +∞.

The gradient estimates in (2.37) are the consequences of Corollary 2.1, which ends the proof.2

  Φ * is harmonic and bounded, hence it is a constant, say C * . Since Φ * satisfies the same estimate (2.57), with possibly another constant, we deduce from Lemma 2.2 that for all x ∈ R 2

  Under the assumptions of Theorem 2.2 the solutions v β * satisfy

		.59)
	This implies inequalities (2.49) and (2.50) by Lemma 2.2 and Lemma 2.3 and Corollary 2.1 and
	Corollary 2.2.	2
	Similarly as Corollary 2.3, there holds,	
	Corollary 2.4	
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and using Lemma 2.2, we infer that v β,A is uniformly bounded in R 2 and that there exists

aβ+2aN -1 ) as |x| → +∞.

(5.12)

In order to construct the sequence of solutions, we start with A = A 0 = 1, then take A = A 1 = inf{k ∈ N : k > C β,A } and we iterate this process, defining by induction A i+1 by

Proof of Theorem 1.2 part (ii) and Theorem 1.4. Multiple solutions. Let

where {v β,i } i is a sequence solutions of (5.1) which exist by Proposition 5.1. Then {u β,i } i is a sequence of non-topological solutions in type II of (1.1) verifying (1.13) and with total magnetic flux 2π[2(N -M ) + β]. The proof is now complete. 2

Topological solution

Proof of Theorem 1.5. Multiple Topological solutions. Let u be a topological solution of problem (1.1). We can write it as u = -ν 1 + ν 2 + v where v is a bounded regular solution of

(5.13)

and where the functions f 1 and f 2 have been defined in (2.4). They are smooth, have compact support in B r 0 (0) and the flux identity (2.5) is satisfied. Claim: Problem (5.13) possesses a sequence of bounded solutions {v i } i such that

and

with C i → +∞ as i → +∞. This can be proved as follows: given A > 0, let w A be the bounded solution of -∆w + e -A(1+a) V e w = g 0 in R 2 .

(5.16)

We note that w A = w 0 + A(1 + a), where w 0 is a bounded solution of (5.3) with A = 0. Note also that if