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Equations of the gravitational Maxwell Gauged O(3) Sigma model
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Abstract

This article is devoted to the study of the following semilinear equation with measure
data which originates in the gravitational Maxwell gauged O(3) sigma model,

k u k !
L e .
(E) —Au—i—Ao(H |z — p;["7) (1+ev)lte =dr E N0y, — 4m E m;é,, in R®.
=1 i=1 i=1

k

In this equation the {dp, }7_; (resp. {dg; }é-:l ) are Dirac masses concentrated at the points

{p; }§:1’ (resp. {g; }3:1), n; and m; are positive integers, and a is a nonnegative real number.
We set N = Z?Zl n; and M = 23:1 m;.

In previous works [11, 32], some qualitative properties of solutions of (E) with a = 0
have been established. Our aim in this article is to study the more general case where
a > 0. The additional difficulties of this case come from the fact that the nonlinearity
is no longer monotone and the data are signed measures. As a consequence we cannot
anymore construct directly the solutions by the monotonicity method combined with the
supersolutions and subsolutions technique. Instead we develop a new and self-contained
approach which enables us to emphasize the role played by the gravitation in the gauged
0(3) sigma model. Without the gravitational term, i.e. if @ = 0, problem (FE) has a layer’s
structure of solutions {ug}ge(—2(n—nr), —2], Where ug is the unique non-topological solution
such that ug = Bln|z|4+0(1) for —2(N—-M) < 8 < —2and u_o = —2In|z|—2Inln |z|+O(1)
at infinity respectively. On the contrary, when a > 0, the set of solutions to problem (E)
has a much richer structure: besides the topological solutions, there exists a sequence of
non-topological solutions in type I, i.e. such that u tends to —oo at infinity, and of non-
topological solutions of type II, which tend to oo at infinity. The existence of these types
of solutions depends on the values of the parameters N, M, 8 and on the gravitational
interaction associated to a.
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1 Introduction

In this paper our goal is to classify the solutions of the following equation with measure data

k

" k [

ni\—a € .

—Au + AO(H ‘.%’ _pj|2 ]) W =4m E nj(;pj — 4 E mjéqj mn R2, (11)
j=1

J=1 J=1

where {0, };?:1 (resp. {dg; }2:1 ) are Dirac masses concentrated at the points {pj}le, (resp.
{qj}ézl), p; # py for j # j', the related coefficients n; and my; are positive integers, Ag > 0 is a
given constant, a = 16mG with G being the Newton’s gravitational constant (or more precisely
a dimensionless rescaling factor of the gravitational constant [31]) which is of the order of 1070.
This means that physically speaking the exponent « is very small. Set

k
P(x) = Ao([ ] le — ")~ (1.2)
j=1
Since "
271" min{e, e7%} < (1+€W < min{e", e” "}, (1.3)
e

we define the notion of weak solution as follows:
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Definition 1.1 A function u € L}, .(R?) such that P min{e*,e~} € L} (R?) is called a weak
solution of (E), if for any & € C3°(R?),

eu

i l
/R2 u(—A)E dx +/ Pmﬁdx = dm Y njé(py) - 47Tj;mjf(qg‘)-

2
R =

This definition means that the following equation holds in the sense of distributions in R2,
cu k !
j=1 J=1

We denote by ¥ := {p1, -+ ,pk,q1, - ,q} the set of the supports of the measures in the
right-hand side of (1.1). Since the nonlinearity in (1.4) is locally bounded in R?\ ¥, a weak
solution of (1.4) belongs to C?(R? \ X) and is a strong solution of

eu

The nonlinear term is not monotone, actually the function v +— 0 is increasing on

eu
TFenyrra
(=00, —Ina), and decreasing on (— In a, c0). This makes the structure of solutions of our problem
much more complicated than the case where a = 0.

1.1 Physical models and related equations

Equation (1.1) comes from the Maxwell gauged O(3) sigma model. When a = 0, it governs
the self-dual O(3) gauged sigma model developed from Heisenberg ferromagnet, see references
[1, 2, 25, 28]. When the sigma model for Heisenberg ferromagnet with magnetic field is two-
dimensional, it can be expressed by a local U(1)-invariant action density [32, p. 43-49]:

1 1 — 1
L=——F,F" + -D,¢Dre — —(1 —ii - ¢)?,
4 2 2
where 7 = (0,0,1), ¢ = (¢1,d2,¢3) is a spin vector defined over the (2 + 1)-dimensional
Minkowski spacetime R?!, with value in the unit sphere S?, i.e. |¢| = 1, D,, are gauge-covariant
derivatives on ¢, defined by

D¢ = 0,0+ A1 x ¢) where p=0,1,2

and F,, = 0,A, — 0, A, is the electromagnetic curvature induced from the 3-vector connection
Ay, v =0,1,2 as detailled in [34, p. 177-189]. When the time gauge Ay is zero, that is in the
static situation, the functional of total energy can be expressed by the following expressions

1

BG.A) = 5 [ (D0f + (Do + (1 =770 + Fh) do

— dnldeg(@)] +; [

| (D10£ 06X Dag)* + (Fiz F (171 9))%) do,
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where deg(¢) denotes the Brouwer’s degree of ¢. The related Bogomol'nyi equation is obtained
by using the stereographic projection ¢ — ¢ from the south pole & = (0,0, —1) of S?\ {S} onto
R? (see e.g. [7, 34] for details). Then the function u = In|¢|? satisfies

k l
4e¥ : 2
—Au + T =47 E njépj — 47 E mj(qu in R-. (16)
j=1 j=1

It is pointed out in [32] that the points p; (j = 1,--- , k), which are the poles of 6 can be viewed
as magnetic monopoles and the points ¢; (j = 1,--- , 1), which are the zeros of q~5 as antimonopoles
(see [34, p. 55]). They are also called magnetic vortices and anti-vortices respectively.

An important quantity for the gauged sigma model is the total magnetic flux. It is customary
[27] to identity it to the integral of the curvature as follows:

M(g) = /R2 Fia. (1.7)

Using the variable u its value coincides with [z, Audz (the Laplacian being taken a.e.). Thus,
for the sake of simplicity, we identify M(¢) and M(u), an expression which will be called the
total flux in the sequel. Here and in what follows, we denote

k l
N:an and M:ij.
Jj=1 J=1

When the gravitation constant G is replaced by zero, a layer’s structure of solutions of (1.1)
has been determined in the following result:

Theorem 1.1 [11, 32/ (i) If M = N — 1, then problem (1.6) has no solution.
(t6) If M < N — 1, then for any B € [2, 2(N — M)) problem (1.6) has a unique solution ug
verifying

M(up) = 2x(2(N — M) + B),

with the following behaviour as |x| — oo,

—BIn|z|+0(1) if Be(2,2(N-M)),
ug(z) = {

—2In|z| —2Inln|z|+0O(1) if g=2.

Furthermore the correspondence 3 — ug is decreasing.

(#i7) If M < N — 1 and u is a non-topological solution of (1.6) with finite total magnetic fluz,
i.e. M(u) < oo, then there exists a unique 5 € [2,2(N — M)) such that u = ug.

These equations have been studied extensively, motivated by a large range of many applica-
tions in physics such as the gauged sigma models with broken symmetry [33], the gravitational
Maxwell gauged O(3) sigma model [7, 9, 27, 28], the self-dual Chern-Simons-Higgs model [8, 21],
magnetic vortices [19], Toda system [20, 24], Liouville equation [18] and the references therein. It
is also motivated by important questions in the theory of nonlinear partial differential equations
[5, 29, 30], which has its own features in two dimensional space.
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When a = 167G, equation (1.1) governs the gravitational Maxwell gauged O(3) sigma model
restricted to a plane. Because of the gravitational interaction between particles, the Lagrangian
density becomes

1 ’ / 1 _— 1 =
L= 29" 9" FuFu + 5DudDro — S(1 - 0)?
with stress energy tensor
T;w = g“/ylFuuF;ﬂu’ + DquDMQb - gMVL:‘
We simplify the Einstein equation

1
R, — §Rg,“, = —81GT).,

where R, is the Ricci tensor and R is a scalar tensor of the metric in considering a metric
conformal to the (2 4+ 1)-dimensional Minkowski one

-1 0 0
I = 0 e 0
0O 0 ¢
Then ]
ge_nAn = —87GTyo,
where

1 . _ . _ 1
Top = (™" Fra & (1= 7i - )2 £e "Fia(1—7i-¢)) £e "¢(D1p x Dag) + 5 (D16 £ ¢ % Dsg)?.
The minimum of the energy is achieved if and only if (¢, A) satisfies the self-dual equations (the
Bogomol'nyi equations)

Di¢p=F¢ x Do, Fio==xe"(1—-1-¢).

Furthermore, a standard analysis yields equation (1.1). In particular, Yang in [34] studied
equation (1.1) when there is only one concentrated pole, i.e. k¥ = 1 and [ = 0. For multiple
poles, Chae showed in [7] that problem (1.1) has a sequence of non-topological solutions ug such
that

ug(x) = fln|z| + O(1) when |z| = oo

for f € (—min{6, 2(N — M)}, —2), when
aN <1 and N —M > 2. (1.8)

Under the assumption (1.8), the existence of solutions has been improved up to the range
g € (—2(N — M), —2) by Song in [28]. However, these existence results do not show the role
of the gravitation played in the gauged sigma model and the features of the interaction of the
diffusion and the non-monotone nonlinearity of equation (1.1) in the whole two dimensional
space.
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1.2 Main results

Note that if we take into account the gravitation, the total magnetic flux turns out to be

u

M(u) = /R? P(m)m dz, (1.9)

which, due to the potential and the decay to zero for ﬁ as t — oo, allows the existence
of solutions with very wild behaviors at infinity. In fact, the following three types of solutions
are considered in this paper

a solution u of (1.1) is topological if  lim wu(x)=(€eR,
|z|—=+o0

a solution u of (1.1) is non-topological of type I~ if  lim wu(x) = —o0,
|z|—+o0

a solution u of (1.1) is non-topological of type II  if  lim wu(z) = +oo.
|z|—+o0

The first result of this paper deals with non-topological solutions of type I for (1.1). For
such a task we introduce two important quantities:

g = max{ — (N — M), #} and * =min {0, 2aN — 2,a* — 2(N — M)}, (1.10)
where )
o = — | P(z)dx. (1.11)
271' R2

Notice that a* = oo if an; > 1 for some j or alN < 1, otherwise o* is finite, in this case, a
free parameter Ag should be taken into account. If alN < 1, we have that 8* = 2aN — 2 < 0.

Theorem 1.2 Let a = 167G, anj <1 for j =1,--- ,k and M be the total magnetic flux given
in (1.9).

() If
aN <1 and M<(l4+a)N—1, (1.12)

then for any B € (—=2(N —M), B*), problem (1.1) possesses a minimal solution ug min satisfying
ug min(x) = fln|z| +O(1) as |z| = +oo.
Moreover, for some real number C\,
_aN—-B-2
ugmin () = fln || + Ci + O(|z| «¥=F-1) as  |z| = +oo0, (1.13)
and the total magnetic flux of the solution ug min is equal to 2w[2(N — M) + f], i.e.
M3 min) = 202(N — M) + ] (1.14)

(id) If
aN >1 and M <N, (1.15)
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then B# < 0 and for any B € (5#, 0), problem (1.1) possesses a sequence of non-topological
solutions ug; of type I satisfying

aN—23-2

2
ugi(x) = Bln|z| + C; + O(|z| 2eN=25-1) as |z]| — oo, (1.16)
where
C; <Ciy1 > 00 as i — +oo.
Moreover, the total magnetic fluz of the solutions {ug;}; is equal to 2w[2(N — M) + f].
Note that our assumption (1.12) is much weaker than (1.8) and Theorem 1.2 provides a larger
range of 3 for existence of solutions ug verifying ug = Sln|z| + o(1) at infinity. Furthermore
we obtain a minimal solution and not just a finite energy solution as in [28, Theorem 1.3]. Note

also that the assumption M < (14 a)N — 1 implies that 5* > —2(N — M), and our second
interest is to consider this extremal case = 8%, which is 2aN — 2 under the assumption (1.12).

Theorem 1.3 Assume that a = 167G, an; <1 for j =1,--- ,k, the magnetic flur M is given
by (1.9) and let (1.12) hold.
Then problem (1.1) possesses a minimal non-topological solution ugs mi, satisfying

ug min(z) = f*Injz| —2Inln |z| + O(1) as |z| = +o0, (1.17)
and the total magnetic flux of ugs min is equal to 2w[2(N — M) + B*].
The existence of non-topological states of type II to (1.1) states as follows.

Theorem 1.4 Assume that a = 167G, anj <1 for j =1,--- k and B7 is given by (1.10), then

for any (> ﬂf = max{0, 8%}, problem (1.1) possesses a sequence of non-topological solutions
{ug,i}i such that

aN—28-2

ugi(z) = Blulz| + C; + O(|z| 27=25-1)  as |a| — +oo, (1.18)

where
C; < Cijy1 = +o0 ast — +o0.

Moreover, the total magnetic fluz of the solutions {ug;}; is equal to 2w[2(N — M) + f].
Concerning topological solutions of (1.1), we have following result,

Theorem 1.5 Let a = 167G, an; <1 for j=1,--- ,k and (1.15) hold true.
Then problem (1.1) possesses infinitely many topological solutions ug; satisfying

Uos(z) = Ci + O(|z| " 28=1)  as |z| — oo, (1.19)

where
Ci < Ciy1 — 0 asi— oo.

Moreover, the total magnetic flux of the solutions {ug;}i is equal to 4w (N — M).
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Note that Theorem 1.4 and Theorem 1.5 provide respectively infinitely many non-topological
solutions of Type II and topological solutions. Furthermore, there is no upper bound for these so-
lutions, this is due to the failure of the Keller-Osserman condition for the nonlinearity ﬁ,
see [17, 23]. More precisely equation (1.1) admits no solution with boundary blow-up in a
bounded domain. The existence of these solutions illustrates that the gravitation plays an

important role in the Maxwell gauged O(3) sigma model:

() the set of solutions is extended to topological and two types of non-topological solutions;
(#7) the uniqueness fails for the solution under the given condition ug(xz) = Sln|z| + O(1) at
infinity;

(7i7) the numbers (counted with multiplicity) of magnetic poles N, M do no longer verify M <
N + 1. In fact, for the non-topological solution of type I, it becomes M < (1 + a)N + 1, but

for the non-topological solution of type II, there is no restriction on N and M, if 5 > 0 is large
enough.

Our existence statements of solutions of (1.1) are summarized in the three tables above.

Table 1: Non-topological solutions of Type 1

Assumptions on a, N, M range of 8 solutions asymptotic behavior at oo
aN <1,M <(14a)N—-1| (=2(N—M), *) | Minimal Blnlz|+ O(1)
aN <1, M <(1+a)N—-1| p*=2(aN —1) | Minimal f*ln x| —2Inln|z| + O(1)
N> M,aN >1 (57, 0) Multiple | Bln |z| + ¢ + o(1), zliglo ¢ = 00

Table 2: Non-topological solutions of Type II

range of 5 | solutions asymptotic behavior at oo
(Bf, oo0) | Multiple | fln|z| 4+ ¢; 4+ o(1), lim ¢; = 0o
1—00

Table 3: Topological solutions

Assumptions on a, N, M | solutions | asymptotic behavior at oo
aN >1, M <N Multiple ¢i+o(1), lim ¢; =
1—00

The biggest difference with the case that a = 0 is that the nonlinearity is no longer monotone,
which makes more difficult to construct super and sub solutions to (1.1). Our main idea is to
approximate the solution by monotone iterative schemes for some related equations with an
increasing nonlinearity.

Finally, we concentrate on the nonexistence of solutions ug for (1.1) with the behavior
Bln|z| + O(1) at infinity for some f.

Theorem 1.6 Assume that a = 167G and an; <1 for j =1,--- k.

(i) If aN < 1 and 5* < 8 < 2_;N, then problem (1.1) has no solution ug with the aymptotic
behavior

ug(z) = fln|z| +o(In|z|) as |z|— oco.

(i) If aN = 1, then problem (1.1) has no topological solution.
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The remaining of this paper is organized as follows. In Section 2, we present some decomposi-
tions of solutions of (1.1), some important estimates are provided and related forms of equations
are considered. We prove that problem 1.1 has a minimal non-topological solution of Type I
and minimal solutions in Section 3. Existence of infinitely many non-topological solutions of
Type II is obtained in Section 4. Infinitely many topological solutions and minimal topological
solution are constructed in Section 5. Finally, Section 6 deals with the classification of general
non-topological solutions of (1.1) with infinite total magnetic flux.

2 Preliminary

2.1 Regularity

We begin our analysis by considering the regularity of weak solutions of (1.1). Let ¢ be a smooth
and increasing function defined in (0, 00) and such that

. Int for 0<t<1/2,
t) =
0 for ¢ > 1.

Set i l
vi(z) =2 ang <@) and 1(x) = ZijC (@) , (2.1)
i=1 j=1
where o € (0,1) is chosen such that any two balls of the set

{Bo(pi); Bo(gj) : i =1,k j=1,---1}

do not intersect. We fix a positive number ry > e° large enough such that B, (p;), B,(q;) C
B, (0) fori=1,--- ;kand j=1,---,[, and we denote

21:{p17"' 7pk}7 22:{6117"' 7QZ} and Z:ZEIUEI

If u is a weak solution of (1.1), we set

u=w—v; +19 in RZ\E. (2.2)
Then w is a weak solution of
eV _ . 9
—Aw + V(euruz ey fi— fo in R, (2.3)
with
k l
V = Petri—¥2) , fi=4n Z ni0p, — Avy and fo =4 ijéqj — Aws. (2.4)
i=1 j=1

The functions fi, fo are smooth with compact supports in By, (0) and they satisfy

/R(Z(f1 — fo)da = 4x(N — M). (2.5)
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Proposition 2.1 Assume that u is a weak solution of (1.1), then u is a classical solution of

eu

—Au+ P(l‘)i(l e

=0 in R?\YX, (2.6)

and w = u — vy + 1o is a classical solution of (2.3) in whole R2.

Proof. Let u be a weak solution of (1.1). Since (15% is uniformly bounded in R? and P is

locally bounded and smooth in R? \ ¥, the function u is a classical solution of (2.6) in R?\ X.
By standard regularity theory it belongs to C*° (R2 \ Z). Then w is a smooth locally bounded
function in R? \ X satisfying (2.3), an equation that we rewrite under the form

—Aw+ h(-,w) = fi — f» in D'(R?), (2.7)
where the function h(z, z) is defined in R? x R by

eZ

2
V(x) (e 1 )i for x € R*\ X,
h(sz) — 0 for x € 3o,
o2 H Ipj — pi| 2™ for = pj € X1.

itk

The function & is nonnegative and smooth in R?\ ¥ and continuous in R? x R. Since w is smooth
in R?\ ¥, so is h(-,w). Next we set, with Z = e* > 0

¢(Z) B Zea(zqug) . QS/(Z) B ea(u1ﬂ/2) (ea(m*w) _ CLZ) (2 8)
— (ea(m*l/z) + Z) 1+a o (ea(ylflfg) + Z)Q—I—a . .
Then
a(vi—r2) a
"(Zo) = - _c Y (a—a®)(m-vs) _ .
¢'(Zp) =0 with Zy — = *(Zo) ar 1)Hae max{¢(Z) : Z > 0}.
(2.9)
Hence "
0 < h(z,w) < P(z)— (a=a®)(rr—v2) (2.10)

(a + 1)1+“e

Note that P is locally bounded in R?\ X1, then it follows by standard regularity arguments, (see
e.g. [13]) that w belongs to I/Vlict(]R2 \ ¥1) for any 1 < t < co. Hence h(-,w) € C19(R?\ %) for
any 6 € (0,1), and finally w € C*%(R?\ ¥;) is a strong solution in R?\ ;. In a neighborhood
of X1 we write h under the form

zZ—av
e 2

h(z,z) = P(z)e™ (er1—v2 4 ez)1+a'

Since h is nonnegative, then w satisfies the inequality

—Aw S f1 — f2 in D/(RQ),
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and as f; — fa is bounded with compact support, it follows that w is locally bounded from above
in R2. Fﬁurthermore, there exist an open set O such that ¥1 € @ and ON Xy = @ and a function
(1 € C(O) such that

eZ

(61/1 —v2 4 ez)l—l—a

hz,z) = (1 for all (x,z) € O x R.

For a given p; € %1, we set 7; = sup{w(z) : € Bo(p;)} and vj = 7j —w. Then v; > 0 in
Bs(p;) and

67"]' —vy

(61/1—112 + eri— Vi )

e Yi

(61/171/271”]' + efvj)l—&—a :

—Av;=fo— i+ G e = o i+ Qe

Since fi, f2 are smooth, hence ;e c € L'(B,(p;)) by [4]. If 0 < 0/ < 7, we

(eul—u2—rj+e—'v])1+a
denote by qbf"’ the harmonic lifting of v;|sp_, in B,/(p;) and put 0, = v; — qﬁf"'. Then for
o' <o,

_A@o“ = f2 - fl + Crem (eul_uQ_i;J:e_vf)H'a = F’] in By (pj)a
Ugr =0 on 0B, (pj).

Let M?(By(p;)) denote the Marcikiewicz space also known as the Lorentz space L2 (B,(p;)).
Then there holds
IV lar2(B,,(p;)) < coll FjllL1(B,, ())) (2.11)

and the constant ¢y is independent of o’. We recall below John-Nirenberg’s theorem [13, Theorem
7.21): Let u € WHY(G) where G C 2 is convexr and suppose there is a constant K such that

/ |Vu|de < Kr  for any ball B;(0). (2.12)

GNB;y

Then there exist positive constants pg and ¢y such that

/Gexp (%|u - uG|> dz < ¢1(diam(G))?, (2.13)

where ji = o|G|(diam(G)) =2 and uS is the average of u on G.
From (2.11) with G = By (p;),

o’

/ [Vigr|de < esrl|Fjll LB, (p,)) = K(o)r, (2.14)
BNB,

and since |G|(diam(G))~2 = m, we obtain

THO |~ ~B_, 2
exp | ——~ |0y —0_7 \) dx < c10'°. (2.15)
/Ba’(Pj) <K(J/) 7 7
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Hence, for any x > 0 there exists ¢’ € (0, 0] such that
/ exp (/{\60/ — 17:,‘" ]) dzr < ¢10”? = / exp(kiy)dz) < cio” exp(m@f}"). (2.16)
By (p;) By (pj)

Now we observe that there holds in B,/ (p;),

‘E]‘ < ’f2 _ fl’ + Clefarjeavj < ‘f2 . fl‘ + Cleasup\vjl_aBo,‘eaﬁg/_

For k > a,

/ |Fj(x)‘gd$ 322_1/ <|f2—f1‘z + (C1€asup|®jLaBa’|>ae"“jff’> dx.
Bor(pj) B, (pj)
By (2.15) the right-hand side of the above inequality is bounded, hence Fj € La(By/(p;)).
Since U, vanishes on 0B, (p;), it follows by LP regularity theory that v, € W2a (B, (pj)) N
Wol’E(Bg/ (pj)). By Sobolev embedding theorem, 9, € L*(B,/(p;)). Hence Fj € L*(By(p;))
and again ¥,» € W24(By(p;)) for any ¢ € [1,00) and thus 7,/ € CY(B,:(p;)) for any 0 € (0,1).
Therefore v; remains bounded in C*Y(B,(p;)) for any ¢” < ¢’. In a neighborhood of p;,

l==pily . . .
x> | — pj| 729 e?%(—=") is Holder continuous (of order 2an; if 2an; < 1), and so is x
ew ()

(e(Vlsz)(IHew(z))

P(z)e®"1=2)(*) For the same reason, = — = is Holder continuous (with the

same exponent) near p;. Finally we infer that there exists 6 € (0, 1) such that v; € C* (B, (p;)),
which implies that w € C??(R?) is a strong solution of (2.3) in R2. O

Remark. Since 91 and 1o have compact support, we note that a weak solution ug with the
asymptotic behavior f1n |z| + O(1) at infinity can be decomposed

ug = wg — v + 1o, (2.17)
where wg is a classical solution of (2.3) with the same asymptotic behavior Sln|z| 4+ O(1) at
infinity. In fact, we shall continue to take out the singular source of the solution wg at infinity
in our derivation of non-topological solutions of (1.1).

2.2 Basic estimates

The following estimates play an important role in our construction of solutions to (1.1).

Lemma 2.1 Let ' be the fundamental solution of —A in R?, F € Lfoc
support in Br(0) for some R > 0 such that

/ F(z)dzr = 0. (2.18)
R2

(R2), p > 1, with the

Then there holds

D F()| < 2

< | F||L1@2y  for |z > 4R, (2.19)

and for some co > 0 depending on p and R,

1T Fl| oo (r2) < c2l| Fll 1o (r2)- (2.20)
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Proof. As supp(F) C Bg(0) and F € L}
Since (2.18) holds, we have for |z| > 4R,

1
= I R L Ty AR
Bgr(0) Br(0)
_ e )
= hr1|e;D z| F(|z|z)dz

(R?), F € L'(R?) N LP(R?) by Hélder’s inequality.

xr
< BE / (2P (Ja2)|dz
T JB g (0)
[z]
2R
< 221 Ry
7|z| JBr(0)

R
< HIFl e,
|z (R?)
where e, = ﬁ Besides (2.18) we have used the fact that

R
[In|e; — z|| < 2[2] < 27— for any 2 € Bp/j3)(0) C By/4(0).

]

Therefore, (2.19) is proved. On the other hand, for |z| < 4R, we have that

PeF@)| = o / () |z~ yldy|
Br(0

(] rF<y>|Pdm);( [, mle—ula)?

< &l FllLeBr(0))>

IN

1
7

where p’ = -7 and ¢, = max (/ o |In |z — y||P'dz)? . Thus, (2.20) follows and the proof is
Br(0)

|z|<4R
complete. O

For functions with non-compact supports, we have the following estimates.

Lemma 2.2 Let F € I?

loc

(R?) with p > 1 satisfy that

/ F(z)dx=0 (2.21)
R2

and
|F(z)| <eslz|™" for |z| >r (2.22)

for some 7> 2, c3 >0 and r > 0. Then for some c4 >0
|7 # F|| oo (r2) < c,
and there exist ¢z > 0 and 1o > r such that for |x| > rg

|||V « F(z)| + T« F(z)| < 5 || 71, (2.23)

(1-2)
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Proof. If F € LI (R?) satisfies (2.22), then F' € L'(R?). Let n, : R* — [0, 1] be a smooth and
radially symmetric function such that

nr =1 in B-(0), n =0 in B,11(0),

and denote

F = Fr, — </ Fnrdx> M mp-—F_P.
R2 H’?rHLl(R2)

By (2.21), we have that
/ Fldl‘:/ Fle‘:O.
R2 R2
Since Fy € L?

] OC(RQ) has compact support, it follows by Lemma 2.1, I" x F} is bounded and
satisfies (2.19). Concerning F5, we have

fRQ Fnydx

Fr=F—F =
||UrHL1(R2)

on B,,

and Fy satisfies (2.22) on B¢, with may be another constant. It is locally bounded hence T" % F;
is also locally bounded in R2. If (2.22) holds true, we have to prove that I verifies (2.23).

||

Since [po Fp dx = 0, then for all |z| > 4r and R € (r,7) which will be chosen latter on,
2n(Cx Fy)(z) = |ac]2/ In|e, — z|Fa(|z|z)dz + |x|2ln|x|/ Fy(|z|z)dz
R2 R2
= |x]2/ In|e; — z|Fa(|z|2)dz + |x!2/ In|ey — 2| F(|z|z)dz
BRr/|«((0) 1/2(ex

+\x|2/ In|eg — 2| Fa(|z|2)dz
R2\(BR|2|(0)UB1 2(ex))

= IL(x) + L(x) + I3(x),

using the fact that Bp/|,(0) N Byj2(ex)) = (. By a direct computation, we have that

[1(2)] < !36\2/ |2|| F2(|2|2)|dz
BRy1«| (0
R
=2 |Fy(y)|dy
1Z| JBr(0)
R

< 20— (1Bl L1 re)-
2] (R2)

For z € Byj3(ex), there holds |z|[z] > $|z| > 2r, then |F(|z|z)| < es]z|~7|2| 7" and

()] < sl / (—Injes — 22| 7dz
Biya(ex)

< 2703\a:|27/ (—Inle, — z|)dz
By (ex

S CGR2_7—7
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where ¢g = 22(N7M)03(f31/2(0)(— In |z])dz) can be chosen independently of 7 in (2,2(N — M)).
Next, if z € R?\ (Bg|3(0)UB; j2(ez)), then | In |e; —z|| < In(1+]|z]) and |F(|z|2)| < erla] 7|2,
since |z| > % > ﬁ By the integration by parts we get

|Auns%m*j/ (1 + |2]) o] 7dz
R2\Bg/|2|(0)

2mcg 9_ R 2mes 92—
< R 14+ — —— _RT
S T2 “('*m)*KT—m2

< (7_2ic28)2<(7' —2)In2+ 1)R2_T.

Thus, taking R = ]:U|$ and |z| sufficiently large (certainly R € (r, %) is satisfied), we have

R 8 o1 c8 2—T1
Ts R < Pl + 5 R +m(2(N—M—1)ln(e+1)+1)R
< 769 |x_:7j
- (=2 ’

where cg > 0 can be chosen independently of 7. In order to prove the gradient estimate, we
denote by (r,6) the polar coordinates in R?, set t = Inr and

W(t,0) = @(r0) = 10 % F(r,0) and 6(t,0) = " F(r,0).
Then w and ¢ are bounded on [In71,00) x S! where there holds

9w 27’ — 20w r—2\? n A%w _(T,sz
—_— 22— — ) W — =7
ot2? T—10t T—1 002

Lw =

Since the operator £ is uniformly elliptic on [Inry,00) x S1, for any T' > Inr; + 2 there holds
by standard elliptic equations regularity estimates [13],

Ow Ow
sup <cio  sup jw| +
[T—-1,T+1]x St [T—2,T+2]x St

a6| " ot
1
and ¢11 does not depend on T'. As |z||Vo(z)| = <|g—°g‘2 + ’%—‘;’|2> ? | this implies the claim. O

) <o

The decay estimate on the gradient at infinity does not use the identity (2.21). It is actually
more general.

Corollary 2.1 Let F € L} (R?) with p > 1 satisfy (2.22) with 7 > 2 and w be a solution of
~Aw=F in R (2.24)
(i) If lim |z|7=t|w(z)| < co, then
|z| =00

27—3

| Vu(z) |< eralz|" 71 for |z > ro. (2.25)

(i) If there exists a constant C' such that w(x) = C + O(]aj\_%f) when |x| — oo, then estimate
(2.25) holds.
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Proof. The assertion (i) is clear since the starting point of the gradient estimate in the previous
lemma is .,
|lw(z)| < ciz|lz|” 71 for |x| large enough.

For assertion (ii), we set w(x) = C'+ w(x) where |w(z)| = O(\xr%i) Then —Aw = —Aw and
Vw = Vw. We conclude by (i). O

When 7 = 2, Lemma 2.2 is no longer valid, however the following limit case is available.
Lemma 2.3 Let F € LT (R?) with p > 1 satisfy (2.21) and
|F(z)| < culz|2(In|z|)™ for |z| >, (2.26)
for some v > 2, ci14 >0 andr > 0. Then
T % Fl| oo (r2) < c15,

and

|z||VT « F(z)| + T« F(z)| < ci6(Infz|)™  for |z| >ry, (2.27)
where c15, c16 > 0 and r1 > r is large enough.

Proof. The assumption (2.26) jointly with F € LP (R?) implies F € L'(R?). We write
F = Fy + F5 in the same way as in Lemma 2.2. Clearly I'x F} is uniformly bounded and satisfies
(2.19) and (2.20). Then for |z| > 4r >4 and R € (r, %],

27(C x Fy)(z) = I1(x) + I2(x) + I3(x),

where I, I and I3 are defined in the proof of Lemma 2.2 and where |I1(z)| < 2%HFQ||L1(R2).
When z € Bi(e;) we have |z||z| > 3|z| > 2r, hence
2

|Ea(Jz]2)] < eralz| ™27 (In 2] + In]2)) ™" < cralz| (27 Infz| — n 2|7, (2.28)

and
I(z) < —cia|In|z| — 1n2\_”/ In|z — eg||2|2dz < 17 (In|z]) ™" .

B1(ex
2
Finally, if z € R?\ (Bg/|4/(0) U By 2(ex)), then |In|e, — z|| < In(1 + |z|) and
|1 Ba(jz]2)| < err(1+ [2]]2)) 72 (In(L + [2[]2]) ™" < exrl2]72|2]72 (In(1 + |z[]2])) ™"

Since |z| > & > =, we have
=] ~ I

o0 [e.e] ds

In(1 +t)(1n(1+t|x|)*”% < Clg/R (In(1 + s)) v =.

S

I3(z) < cis /R

[z
Since R > r > 1,

& ds C19

Iy(w) < 19 /R (L) T = Ty R
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]

If we choose R = 7', we obtain that (In(1+ |=]))” (T * F)(x) remains uniformly bounded on R2.
Next we prove the gradient estimate. Set ¢t = Inr, w(t,8) = (I'x F)t,0) and ¢(t,0) = F(r,0),

then

Pw  Pw

2 T =?

ot 00

and |w(t,0)] < coot™ and |¢(t,0)| < coot™ for ¢ > ¢1. Since the operator £ = g—; + 5%22 is

uniformly elliptic, then we have for T" > max{4, ¢},

Lw =

8(4.) Gw —v —v
sup (‘ *H)S sup (] + [6]) < 2er0020(T = 2™ < enT™.
T-1,7+1]xs1 \| 00| | Ot [T—2,T+2]xS?

Returning to the variable =, we infer (2.27). O

Similarly as in Corollary 2.1, the following extension of (2.27) holds.

Corollary 2.2 Let F € L (R?) with p > 1 satisfy (2.26) with v > 2 and w satisfiesf (2.24).

loc
(i) If| l‘im (In|z|)’|w(z)| < oo, then there exist cag > 0 and ro > 1 such that
T|—00
| Vw(z) |< coolz|(In|z|)™  for |z| > ro. (2.29)
(ii) If there ezists a constant C' such that w(z) = C + O((In|z|)™") when |z| — +oo, then
estimate (2.29) holds.
2.3 Related problems with increasing nonlinearity

In order to remove the condition S1n|z| + O(1) as |z| — oo satisfied by the solutions of (1.1),
we introduce two functions A and A, which are positive smooth functions such that

AMz) =z, A(z)=In|z| for |z|> €. (2.30)
Since AA =0 in B&(0),
AN VAP 1 .
AlnA = — — =— BZe 2.31
and )
— [ (Aln\)dz =1, (2.32)
2w R2
it implies
1 1 A
— [ (AlnA)dz = lim / VA() idw(a:)
21 Jpe r—=+00 27 /9B, (0) Az) ||

= lim =0
r—+oorlnr

In what follows we classify the solutions of the following equations

~Au+WE;(Me')=gs in R? (2.33)
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where ¢ = 1,2, Fi(s) = s, Fa(-,s)

J— S
= Oy
9 = f1— f2+ BAInA, (2.34)

and where W satisfies the following assumption:

(Wo) The function W is positive and locally Hélder continuous in R? \ ¥1 and

W(z) < coslx —p;| ™ in By(p;) and limsup W(x)|z|"* < +oo,

|z| =400

where co3 > 0, 7, € [0,2) and vo > 0.
It is important to note that from (2.5), (2.32) and (2.34), there holds

/]12{2 ggdx = 2m[2(N — M) + ). (2.35)

Theorem 2.1 Assume that Fi(s) = s, Fa(x,s) = W‘M
function with compact support in By,(0) satisfying the relation (2.35) for some nonnegative
integers N and M. Let W wverify (W) with

and gg is a Holder continuous

Yoo > B+ 2. (2.36)

(2) Then problem (2.33) with i =1 has a unique bounded solution v verifying, for some Cg € R,

(&) = Cs+ O(je] 2=71) and |Vo(z)| = O(|z| 31 as |z = +o0.  (2:37)
(ii) Assume additionally that 2(N — M) + 8 > 0 and
21 2(N = M)+ p] < | Wdr < +o0. (2.38)

RQ
Then problem (2.33) with i = 2 has a unique bounded solution verifying

Yoot+B_—2 Yoot+B_—2

v(z) = Cg+ O(|z| "™=F-"1) and |Vou(z)| = O(|m|_1_m) as |x| — +oo. (2.39)
Proof. Step 1. Since 0 <7, <2, W € L}OC(RN). For t € R, we set
hit(x) = W(z)Fi(z, \°(x)e!) Ve R\ X,
Notice that hg; is defined on o by

hot(q;) =0 = lim hg(x) for all ¢; € ¥s.
m%qj

The function h;; is Holder continuous in R? \ Xy, ¢ + h,, is increasing in R? \ ¥y, and there
holds
hit — oo locally in R? \X; ast— +oo,

hot — W locally in R? \ Y1 ast— +oo.
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Furthermore,
hiy — 0 locally in R®\ Xy ast— —oo, i=1,2.

Using assumption (W), we obtain that

hit(z) < 624et\x]_7°°+5 for |x| > rs (2.40)

for some r3 > 0. Since —yo, + 8 < —2, we have that

lim h1 ¢(z)dx = 0.

t——o0 R2
Concerning hg, we have (v1 — vo)(z)(x) = 0 if dist(z, X) > o, and there holds

Az)Bet |z|Bet for [2] >
= = or |r T
14+ Xz)Pet 1+ |z|fet =

FQ(xa )‘(‘r)ﬁet)
then
hot(z) < cosellz| 7=~ for |z| > r3, (2.41)

which implies

lim hat(z)dx = 0.

t——o00 R2

We claim that there exists t; € R such that

/ hi,(x)dx = / gg(x)dx = 2w[2(N — M) + S]. (2.42)
R2 R2
From the definition of F;, (2.38) and the assumption on gg,

lim hit(z)dxr =00 and lim hot(z)dx = Wdx > / ggdx.
R? R2

t——+oo R2 t——+oo R2

Since t — fR2 hi+(x)dz is continuous and increasing, it follows by the mean value theorem that
there exists ¢; € R such that
/ hit,(x)dx = / gs(z)dx.
R2 R2

Step 2. We use Lemma 2.2 to obtain some basic estimates on wg; = I" * (gg — hs, ), taking into
account the fact that ng (98 — hit;) dx =0 and

—Awm =9p — hi,ti in RQ.

The function gg is smooth with compact support, the functions h; ¢, are locally integrable in R?
and satisfy

|hi (2)] < 026|x|_%°_6 and |hoy,(x)] < 026]:L"|_7°°_B* for |z| large enough.
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Since (2.36) holds, then, by Lemma 2.2, the functions wg; are uniformly bounded in R?

, 0i . 0i—1
(3 = 7 — ) .
|wo,i(z)| < cor|z|®  and |Vwp,(x)| < cos|z] for |z| large enough (2.43)
where 5 5
01 _700‘1'6_ and 0 :_'700‘1'57_ ) (2'44)
700+6_1 '700‘*'5*_1

Step 3. In order to apply the classical iterative method we have to construct suitable superso-
lutions and subsolutions for equation (2.33).

Construction of the supersolution. Set v; = (t;)4 + wo; + [|wo || Lo (r2), then

—AU; + WF;(Ae¥) = gg — WE;(M\eli) + WEF;(\e¥)

> 98,
since F;(\e%) > F;(\’e!?) as v; > t;. Hence ©; is a super solution of (2.33) for i = 1,2.
Construction of the subsolution. Set v; = —(t;)— + wo; — ||wo [/ oo (r2), then

Ay, + WFi()\Beyi) =93 — WFi()\Beti) + WFi()\ﬁeyi) < gs,

since Fj(\el) < Fj(\’e') as v; < t;. Hence v, is a subsolution of (2.33) for i = 1,2. As v; > v,
in R?, by a standard iterating process, see [31, Section 2.4.4], there exists a solution v; of (2.33)
such that
v; <v; <T; in RZ

Note that v; belongs to C?(R?\ 1) N C(R?) N L>(R?).
Uniqueness: Let ©; be another solution of (2.33) and w; = ¥; — v;, then

A(w?) = 2wiAw; + 2|Vw;|?

_ m%ﬂ@%%-ﬂ@%%)z&

hence wf is bounded and subharmonic in R?. Thus wf is a constant by Liouville’s theorem, that
is 9; = v; + C. Then Fj(\e%) = F;(Me%*C). Thus C = 0 and uniqueness follows. We denote
by vg,; this unique solution.

Step 3: asymptotic expansion. Now we shall employ Lemma 2.2 with ®; = WFi()\/Bet) — 98,
where gg has compact support and (2.36) holds, thus

timsup (|1 ()] 27 + s () |2~ ) < o0,
|z|—+o0

Therefore we have that
limsup |I' % ®;(x)]]z| "% < 4o0. (2.45)

|z| =400
The function w = vg; —I'*®; is harmonic and bounded, hence it is constant by Louville theorem.
Denote this constant by Cg;, we deduce that

vg; = Cp; + O(|x|?) as |z| = +oo.

The gradient estimates in (2.37) are the consequences of Corollary 2.1, which ends the proof.O
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Corollary 2.3 Under the assumptions of Theorem 2.1 the unique solutions vg,; of problem
(2.33) with i = 1,2 respectively, satisfy the fluzx identity

WE;(M\evsi)dx = 2r(2(N — M) + j3). (2.46)
R2

Proof. For any R > 0, there holds

dvg, |
- / DBigs [ WE(M)dn = / gadz.
|

s=r O By .
By (2.37),

/xl:R 8;£7id5 — O(|z]"") as |z| — oo,
where p; is defined in (2.44). The result follows from (2.35). .

In the critical case 8 = 8* := 2alN — 2 where a > 0 and 0 < aN < 1, the problem related to
(1.1) is the following
—Au+ WM\ A2 = gg- in R? (2.47)

where gg- expressed by
g = fi — fo+ B*AIn A — 2AIn A, (2.48)

is subject to the condition

| g0 da =22l — )+ 57),
RQ

and W satisfies that
(W1) The function W is positive, locally Hélder continuous in R? \ X1 and satisfies

W (x) < caglz — p;| 2™ in  B,(p;) and limsup (Hx\QaNW(:U) —2||z]) < +oo,

|z|—o00

where ca9 > 0, nja <1 withj=1,--- k.

Theorem 2.2 Let Fa(s) = =05, 9p+ be defined in (2.48) with f* = 2(aN — 1) <0 and W
satisfies (Wh). Assume furthermore that M < (1 +a)N — 1 and set 0* = min{3,2 — g*} > 2.
Then problem (2.47) has a unique bounded solution v and there exists Cx € R such that

ve(x) = Cy + O(]wf%) as |x| = 400
(2.49)

Vo(z)| = O(|lz| =7 1) as || = +oo,

if aN < 1, or
ve(z) = C, + O ((In|z|) % as |x| = +oo
(z) ((n]z))=*) |z (2.50)
|Vou(z)| =0 (\x|_1(ln ]:1:\)_4) as |x| — 400,

if aN = 1.
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Proof. Notice that the assumptions aN <1 and M < (1+a)N — 1 imply N — M > 0. Set

1

Ao() = T4l

for any z € R?, (2.51)

and for t € R,
WAB" A—2etAo(z)
er1(@)—rva(z) 4 \B* A—2¢tAo(2)

hi(x) = for any 2 € R*\ %,

with h;(z) = 0 for # € ¥9. The function hy(-) is continuous in R?\ X1 and ¢ + hy(z) is increasing
for all z € R? \ ¥. Direct computation implies the following properties:

hi(xz) = W locally in R?\ ¥y ast — +oo,
and

hi(xz) — 0 locally in R*\ ¥y ast— —oo.
Since 2aN < 2, there holds

W(x)dx = oo.
R2

Furthermore, there exist 7 € R and r, > 0 such that for any ¢t < 7 and |z| > 7y,

2“2 (n(jz] + 1))
hi(z) < €307 + |x[2eN=2(In(|z| + 1))~2’

where c39 > 0 depends on 7. Since 2aN — 2 < 0, it follows that for |z| > r,,
hi(x) < esp)z| 2 (n(|z| + 1)) 72 (2.52)

Hence, by the dominated convergence theorem,

lim hi(z)dz = 0.

t——o00 R2

Using the fact that t — [p. hy(2)dz is increasing, there exists tg € R such that

/ hiy(x)dx = 27[2(N — M) + %] = / gp+(x)dx. (2.53)
R2 R2
We claim that for some c3o > 0,

wo(2)] < esol| "1 for |z| large enough, (2.54)

and if this holds true it will follow that ||wg|[z~ < 0o, where wo =T * (gg= — hy,)-
Using (2.48),
2
gp-(z) = [2[2A2(z) for x| = r1,

and .
WA A 2etoo 2|z |~2etoho(1 + O(|z| 1)

hto(x) = 1 + )\/B*A_QetoAO - A2 + |x‘ﬁ*€toA0

as |z| — +o0.
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Therefore, we obtain that

2¢toto AQetOAO(l + O(|x|_1)) — A2 — |95|B*etOAO
gp* — hto =

AZetoho (A2 4 |z|P” etodo)
2¢todo (Az(etoAO —-1)— et0A0(|:c\5* — A2O(|x]_1)))
’x’2A26t0A0(A2 + ’x‘ﬁ*etvo) :

(2.55)

Since Ag(z) is defined by (2.51), efoho —1 = O(|z|~?) at infinity. Noticing that 3* = 0 if aN = 1,
we conclude that
||~ it aN <1

g — hy| < 33 max{ z|3A72 |z _2"'6*/\_4} < 33 2.56
98+ = | g = a2l i av =1 00

Additionally, fR2 wodx = 0. Therefore, from Lemmas 2.2 and 2.3, we have that wy remains
bounded on R? and there exists ¢34 > 0 such that

|wo(z)| < esa(1+ ]x|)_% for all 2 € R? if aN < 1 (2.57)
and
wo(z)| < eza(In(2+[2)) ™" forall z € R? ifaN =1. (2.58)
Ezxistence. We first construct a supersolution. Set
v = (to)4+ + wo + Hw()HLoo(Rz) in RZ
Since Ag : R? — (0,1], then ¥ > tgAg in R%. The function ¢ % is increasing,
therefore,

WA A—2e? W A" A—2etolo
evi—v2 )\B*A—Qei — evi—v2 )\B*A—Qetvo ’

which implies,

WA A—2e7 WP A—2¢tolo

— AT + iz 1 NB* A 200 — gp* > apx — hto + evi—va2 AB* A—2¢toMo

—gpx = 07

then T is a super solution of (2.33).
Similarly we construct a subsolution by setting v = (to)— +wo — [|wol| Lo (r2). Using v < #pAg
in R? and by monotonicity, we have that

WA A—2e2 WP A—2¢tolo
ev1—v2 + AB*A—2eu = eri—va 4 \B*A—2¢toMo’
thus,
WAPTA—2eL WP A—2¢toto
—Av + —9p < gpr = hig + —gp- =0,

= erimr2 4 \BTA2ev er1—v2 £ \B* A—2¢toho
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thus v is a subsolution.
Since v > v, the standard iterative process, yields the existence of a solution v, of (2.33)
such that
v<v, <7 in R2.

As in the proof of Theorem 2.1 the solutions are unique in the class of bounded solutions, a
class to which v, belongs. Put ®, = gg« — W Fp(A\*A~2e%), then w, = v, — I' ¥ ®, is harmonic
and bounded, hence it is a constant, say C,. Since ®, satisfies the same estimate (2.57), with
possibly another constant, we deduce from Lemma 2.2 that for all z € R?

(1+ |a|)" 71 if aN <1

| I x (I)* |§ C35
(1+ |z))2(In(2 + |=]))~* if aN =1.

(2.59)

This implies inequalities (2.49) and (2.50) by Lemma 2.2 and Lemma 2.3 and Corollary 2.1 and
Corollary 2.2. O

Similarly as Corollary 2.3, there holds,

Corollary 2.4 Under the assumptions of Theorem 2.2 the solutions vg« satisfy

W Fy(NA72e% ) dx = 27(2(N — M) + 3%). (2.60)
R2
From the existence and uniqueness of solutions of (2.33) and (2.47), it is easy to prove the
following statements.

Corollary 2.5 Under the assumptions of Theorem 2.1, if w; and w; are respectively a bounded
supersolution and a bounded subsolution of (2.33) such that w; < w;, then the standard iterative
process will converge to the unique bounded solution v; of (2.33), and w; < v; < w;. A similar
result holds concerning equation (2.47) under the assumption of Theorem 2.1.

Corollary 2.6 Under the assumptions of Theorem 2.2, the function wy := \°"A=2 + v, where
vy 18 the unique bounded solution of (2.47) satisfies

—Aw, + WFy(e¥*) = fi — fo in R2 (2.61)

3 Minimal solution

In order to consider solutions w of (2.3) with asymptotic behavior f1n |z| 4+ O(1), we look for w
under the form w = B 1n |z| + v where v is a bounded function satisfying some related equation.
In particular, we look for non-topological solution ug of problem (1.1) under the form

ug=—1v1+va+BInA+vg or wg=vg+BInA,
where X is given by (2.30) and vg is a bounded classical solution of

VABev

— : 2
(eVl—VQ + Aﬁev)l—f—a =g 1M R ) (31)

—Av +
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with V' being defined in (2.4) and where gg is defined in (2.34). Here and in what follows, we
always assume that a = 167G, an; <1 for j =1,--- ,k and M is the total magnetic flur given
in (1.9).

We first consider the non-topological solutions of type I for problem (1.1) in the subcritical
case, which are solutions verifying u(z) = f1n|z|+O(1) as |z| — oo with 8 < 0. It is equivalent
to look for classical solutions of (3.1) with 5 < 0.

Proposition 3.1 Let N, M be positive integers verifying (1.12) and aN < 1, then for any
B € (=2(N — M), B*), problem (3.1) has a minimal bounded solution vg min, such that

)\Bevﬁ,min
LV G Sy s = 2 = 00) ) @2

Proof. Step 1: construction of an approximating scheme. We recall that

1% g
P— m 1m R \27
then
k
lim P —p;|Pie = A ;— pj| 2, lim  P(z) =0,
Jim P(a)le — pj| ngoz pil o im | P(o)
and
lml|iinooP(x)\x|2aN = Ay. (3.3)

Since aN < 1, there holds

/]R2 P(z)dz = oo,

then that P verifies the assumption (Wp) with 7, = 2nja < 2 and 7o = 2aN > 2 —2(N — M).
Theorem 2.1-(i7) implies that for any 8 € (—2(N —M), 2aN —2}), the nonlinear elliptic problem

ABev
a(v1—v2) evi—va 4 )\56”

—Av + =gz in R? (3.4)
(&

has a unique bounded solution vy, which is continuous in R?, smooth in R? \ ¥ and

%4 )\ﬁevo
/Rg (ea(lezxz) ev1—v2 + \Bevo - gg) dr =0

by the same argument as in Theorem 2.1-(ii); then there exists a constant Cj g such that

2aN—B—2
lim wo(x) = Cos and vo(x)—co,ﬁzo(wiaaw—ﬂ—l) as |z| = +oo.  (3.5)

|z| =400
We set
v 6(1(1/1 —v2)

— — _ : 2
Wo=P and Wi = (ev1—v2 4 \evo)a — (er1—v2 4 \Bevo)a Wo in R\
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The function W is positive and Holder continuous in R? \ ¥, and since
0 < Wi(x) < Woy(x) Vo e R? (3.6)

it satisfies Wy. Furthermore, as N — M > 0, vg(xz) — 0 as |z] — oo and 5 < 0 and therefore
Wi(x) = Wy(x)(1+ o(1)) as |x| — oo. Applying Theorem 2.1-(i7), with vo, = 2aN, we see that
there exists a unique bounded function v; satisfying

A\Bevt
—Av; + W1 €
e

— ; 2
vimvs 4 NBeur 98 R=. (3.7)

Furthermore, vi(x) converges to some constant C g when  — 400 and
_2aN-—-B-2
vi(z) =C1 3+ 0 <|x] 2GN*5*1> as |z| — 4o0. (3.8)

ABet

Set z = vg — v1. Since the function t TT=va Nt

is nondecreasing, it follows that

Mevo Mev
vi—va 4 \Bevo e + ABev1

Mevt
evi—rvz2 4 )\ﬁevl

—AZF =22 (W) — W)
<0.

— 2Wozy (6 ) —2|Vzy |2

Hence z_% is subharmonic and bounded, it is therefore constant. Hence (vg —v1)y = C > 0. If
C > 0 then sup{vg — v1,0} = C, which implies that vg — v; = C. Replacing vy by v1 + C we
deduce from (3.4), (3.7)

|4 ABevt Vv \Bevite
(6V1—V2 + )\561)1-1—0)(1 ev1—v2 4 \Bevt - ealvi—ve) gr1—v2 1 \Beu1+C’

which yields
e (6”1*”2 + /\ﬁe“1> = ¢¥n—r2) (6”1*”2 + /\66”1+c)1_a in R?\ .

Since § < 0, we obtain ¢ = 1 by letting |z| — oo. Hence C' = 0 which implies vy < v; in R?
and C g > Cpg.

By induction, we suppose that for n > 2 we have constructed the sequence {vj}r<y of
bounded solutions to

A\Bevk
—Avy + Wy ¢ — g5 in R (3.9)
e

vi—va 4 A\Bevk

where
ea(ul —v2)

(e”lfV? + )\Bevkﬂ)a
Then 0 < Wi, < Wp_1 < ... < Wj and therefore vy < ... < vp_1 < vk, and furthermore

Wi = Wo.

_ 2aN-—B—2
vk(x):cw+o(yx\ M,ﬁ,l) as || — +oo. (3.10)
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Then v, is the unique bounded solutions of

Ay W, R 3.11
—Avy + neyl_y2 + )\ﬁevn — gﬁ m y ( . )
where
ea(ylfz/g) ea(ulfz/g)
Wn = WO < anl = WO)

(el’l—l/2 + )\Bevnfl)a (el’l—l/2 + )\Beﬂn72)a

since v,—o < vp—1 by induction. Furthermore, by Lemma 2.2 (since § < 0 and N — M > 0),
_2aN—-pB-2
vp(z) =Chp+ 0O (]a:\ QGN*6*1> as |z| — 4o0. (3.12)

As above the function (v,—1 — v,)2 is subharmonic and bounded, hence it is constant, which
implies v,_1 = v, + C, C' > 0. Then from the equations satisfied by v,, and v,_1,

W, ¢ ev17v2 4 \Bevn

1> e
~ Who ev1—v2 4 \BeCetn =

Hence e =1, then C = 0 and v,_; < v,. Consequently n — (3 is increasing.

Let R > 1 be such that supp(gg) C Br and O(z) :=T « |gg|(z) = 5= fBR lgg(z)|1In |z — y|dy.
For || > R+ 1, one has 1 < |z — y| < |z| + R, hence

R
0<ln|z—yl <In(Jz|+ R) <In|z|+ — <In|z| +1,

]

therefore ,
R Hgﬁ HLOO (
2

Since |O] is bounded from above on By by some constant csg, we deduce

0<0O(x)< In|z|+1) if |z| > R+1.

R?\gs| L (

5 Ing |z| +1) for all z € R% (3.13)

1O(z)| < c36+

Set z = v, — ©, then

, \Bevn
—A2 S 22 A= 2 W <

The function z; has compact support because of (3.13). It is subharmonic, nonnegative and
bounded, hence it is constant with zero value necessarily, hence, for any n € N,

R? oo
vo(z) < wvp(z) < c36 + Hg2’6HL (Ing |z| +1) for all z € R?. (3.14)
For € > 0 set )
R 00
we(z) = eln|z| 4+ c36 + Rlgsll= (nR+1).

2
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Then w, is harmonic in Bg°. It is larger than v, for |z| = R and also at infinity, since v, is
bounded. If we set Z = v,, — w,, then as above the function Z_% is subharmonic, nonnegative and
bounded in B%. Since it vanishes for |z| = R, its extension ¢ by 0 in B is still subharmonic
nonnegative and bounded. It is therefore constant. Since it vanishes at infinity, it is identically

0. Hence v, — we < 0. Letting € — 0 we obtain

R?|\gs]| Lo

5 (InR+1) forall 2 € R?

vo(z) < wvp(z) < 36+

Combining Lemma 2.2 with (3.15) for n = 1 we infer

_ 2aN-8-2
| () — Crp |< car(1 + |z])"2eN=F-1  for all x € R?

where c37 > 0 is independent of n. By Lemma 2.2
4 2aN-B-2
| Von(z) |< essla| 17 28=F=1  for |z| large enough,

then,

n )\B Un
|$‘:R 8r Br evi—r2 4 AP evn Br

By (3.17), the first integral tends to 0 when R — 400, therefore

N evn
Wyp————————dx = dr =2m(2(N — M .
/R? er1—v2 4+ \Bevn o /Rz 9BaT m(2( )+ 5)

Set vg min = lim v, and Cg = lim C,, g, then
n—o0 n—o0

ea(ul—z/g)
W, — Wy = (o 1 )\Be’uﬁ,min>aW0
and 2aN+2(N—M)—B—2
| V8.min(®) — Cg |< c39(1 + |x|)” 2eN+F2(V=20=5-1 for all x € R%
Furthermore

)\6 Un )\B VB, min
(& WO e

0 S Wn el/l*VZ _|_ )\Bevn -

The right-hand side of the above inequality is an integrable function, therefore

evi—va 4 \Bevs,min

)\Bevn ea(Vl_VZ)ABeUB,min

neljl—Vz + )\Bevn - WO (eVl_VZ + )\Bevﬁ,min)1+a

This implies that vg .y, is a weak solution of (1.1) and relation (3.2) holds.

in LY(R?) as n — 4oo.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Step 2: vgmin 15 minimal among the bounded solutions. Let © be any bounded solution.

Then and by uniqueness, it implies vg < ©. Hence

\% \%
(eul—u2+>\ﬁei)a S ea(ul—u2)7

I
(€u171/2+)\ﬂev0)a

v
(eul—u2+>\ﬁei)a S
and therefore v; < . By induction we obtain v, < ¥ and finally vg min < 0.
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Step 3: asymptotic behaviour. Put

V)VBeUﬁ,min
(61/171/2 _I_ Aﬁevﬁ,min)l‘i’a :

F=gs—

Then [p. Fdx = 0 and |F(z)| < caoz| NP for |z| > ry. So we have (3.2), and applying
Lemma 2.2 yields the estimate

2aN—B—2

T % F| < ¢g1(1 + |z])"208=5=1  for all z € R%

Therefore w = vg i, — I' ¥ F' is harmonic and bounded in R2. It is therefore constant. This
implies
_2aN-—-B-2
V8min = Cg + O(|z| 22N=F-1) as |z| = +o0. (3.20)
This ends the proof. O
Proof of Theorem 1.2 part (i). Let

UB min = —V1 + V2 + Bln A+ VB, min»

where vg ip, is the minimal bounded solution of (3.1) obtained in Proposition 3.1. Then ug min
is the minimal non-topological solution of type I of (1.1) in the sense that

UBmin(z) — flnjz| = O(1) as |z] = +o0.

Moreover, ug min verifies (1.13) and its total magnetic flux is 27[2(N — M) + 5] by (3.2). O

4 Critical-minimal solutions

4.1 Non-topological solutions

If N> M and aN < 1, we recall that by Theorem 2.1, for any g € (—=2(N — M), 5*), with
B* =2(aN — 1) < 0, there exists a unique bounded solution vg to equation

\ev
a(v1—v2) eV1—V2 + \Bev

—Av + =gs in R? (4.1)
e

and by Theorem 2.2, there exists a unique bounded solution vg« to

Vv MTA2ev ) 5
TAVY i) gy A2 90 RS (4.2)
For g € (=2(N — M), B*), we first set
wg = vg + Bln A (4.3)
Then wg is a the unique solution of
A v _ in R
AWt ea(v1i—v2) gv1—V2 + ew - fl - f2 in R (4,4)
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such that w — B1ln X is bounded in R?.

When g8 = p*, we set
wgs = vgx + B In XA —2InA, (4.5)

thus wg- is the unique solution of (4.4) such that w — 8*In A — 21In A remains bounded in R

Proposition 4.1 Under the assumptions of Theorem 2.2, the mapping 3 — wg is increasing

for g€ (=2(N — M), 5*) and
wg = sup{wg in R*: B € (—2(N — M), B*)}.

Proof. If g* > 8 > 3 > —2(N — M), the function z = wg — wg is negative in Bf, for some
R > 0. Hence

A2 = —22 Az -2V < —— 2 i i <0
—Az = -2z, Az = 2|Vz " < T ealti—wm) \ evi-va 4 U8 eri—va 1 oWs (wpr —wg) < 0.
Hence zi is a nonnegative and bounded subharmonic function in R?, it is therefore constant.
Since it vanishes in Bf, it is identically 0, which yields wg < wg. Actually the inequality is
strict since it is the case at infinity and there cannot exist 2o € R? such that wg (z¢) = wg(zo),
because of the strong maximum principle. Similarly, if 8 < £*, there holds by (4.3) and (4.5),

(wg —wg=)(z) = (B — %) In|z|+2In(ln|z|) + O(1) as |z| = +o0.

Hence 22 = (wg — wg+)? is subharmonic nonnegative and bounded, hence it is constant and
necessarily with value zero. Therefore wg < wg-+, and actually wg < wg~ by the strong maximum
principle. We set

wg= == sup{wg : B € (=2(N — M), %)} = lim wg.

BB
Then wg~ < wg+ and wg+ is a solution of (4.4). By the strong maximum principle, either
wgx < wgs or Wwg+ = wg«. In order to identify wg-, we use the flux identities obtained in

Corollaries 2.3 and 2.4, replacing vgo and vg« by their respective expressions from (4.3) and
(4.5):
Vv ews
Mws) = [, s i =2l — M) 6

and
% es* .
M(wﬁ*) B /IR2 evi—V2 el1—V2 | oWpx dz =27 (2(N — M) + B%).

Since the mapping 8 +— 15:325 is increasing, there holds by the monotone convergence theorem,
B V e’J)ﬂ*
M(wgr) = a(r—v _ D g
R26(1 2)@”1 V2_|_66
= lim v e d
e gz edtiv) @iy e (4.6)

= 27(2(N — M) + %)

V ewﬁ*
- a(v1—12) pv1—v Wa* dz,
R2 € 1 2) eVl 2 + evB
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e’u")B* ewB* L. . - .
where v S iR This implies that g+ = wg+ almost everywhere and actually
everywhere by continuity. O

4.2 Proof of Theorem 1.3

If vg ymin is the minimal bounded solution of (3.1) obtained in Proposition 3.1, we set

WB,min = Vgmin + SN in R2. (4.7)
Then wg min is a solution of
Ve¥ . 9
At Gy — AT i R 1.9

w=LFlnA+ 0O(1) as || — +o0.

Since vg i is the minimal bounded solution of (3.1), wg m, is the minimal solution of (4.8).

Furthermore, vg pp, is the limit of the increasing sequence of the bounded solutions {v,} of
(3.11), therefore wpg iy is the limit of the increasing sequence {wg,,} := {v, + FIn A} of the
solutions of

V ew,é’,n .
v1—v2 WE p—1)a ol —U: w =fi—f2 in R2,
(6 + e¥Bin ) et 2 4+ e¥Bin (49)

wg, = PBInA+0(1) as |x| — oo.

—Aw/g,n +

By the comparison principle, the mapping 8 € (—=2(N — M), *) — wg,, is increasing for any
n, and this is also true for 8 — wg min. By (3.15) there holds for any n € N,

R?|\gsll L~ (

5 InR+1)+ SlnA(x) in R?. (4.10)

wo(7) < wg () < Wemin(T) < caz +

Uniformly upper bound for {wg min}tg. Let To =T * gg«, then Tg = ' (f1 — fo) + 8 In A —2In A
and

“A2) o N+ 5 > 0.

Since Ty is a super solution of (4.9), we have by comparison
wg, <Ty in RZ
which implies that for any g € (=2(N — M), %)
WBmin < V2 1N R2.

Hence there exists wg« min = ng%l Wg,min and

_ . )
Wp* min <vy in R7
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and therefore
Wg* min() < *In|z] —2Inln|z| + C (4.11)
for some C' € R.
Lower bound for wg« m;,. From Proposition 4.1, the equation
o

Awt —Y =fi—fo in R? (4.12)

6(1(1/1—1/2) evi—v2 | ew

has a unique solution wg-, with the following asymptotic behavior
wg«(z) = f*Injz| —2Inln|z|+ O(1) as |z| = +oo,
and wg- is the limit of the solutions wg of (4.4) for § € (=2(N — M), %) satisfying
wg(z) = Blnlz|+O(1) as |z| = +oo.

Since wg is a subsolution for (4.8) it is bounded from above by wg i, by the same comparison
method as the ones used previously. Therefore wg« < wgs ymin. Combining (4.11) with the
expression of wg« given in (4.11), we infer that

wgs m(r) = In|z| — 2Inln|z[ + O(1) as |z| = +o0.

Clearly the flux identity holds as in the previous theorem, which ends the proof. ]

5 Multiple solutions
5.1 Non-topological solutions
Let 8 # 0 and ug be a solution of problem (1.1) with the asymptotic behavior
ug(z) = Bln|z|+O(1) as |z| — +o0.
Then ug can written under the form
ug = —vi + vy + Bln A+ vg,
where vg is a bounded solution of the following equation equivalent to (3.1)

e’U

(61/1—1/2 )\—ﬁ + ev)l—i—a

—Av+Wp =g in R? (5.1)

with Wy = VA~ and where gs is expressed by

98 =f1— fa+ BAnA

Note that it is a smooth function with compact support in By, (0) and it verifies

/RQ g3 dz = 2x[2(N — M) + 8.
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As for Wj it satisfies

2nZ —a _ 2aN+af _
xh_{]]rjl Wa(z) = Ao( H\p] il , :ch_%l Ws(z) =0 and lim Wpg(x)|z| Ap.

iy |x|—o00
The existence of multiple solutions states as follows:

Proposition 5.1 Let N, M be positive integers and % be given in (1.10). Then for any 8 > Jit:
problem (5.1) possesses a sequence of solutions vg; such that

evBii
/]1&2 WB (el’l—vz)\—ﬁ + e“B,i)l—&-a dx = 277[2(N o M) + B]’ (5'2)
and
B+2aN—2
vgi(x) = Cg; + O(|z| af+2aN— af+2aN=-1) qs |z| = +00
with

Cgi —+00 as i — +oo.
Proof. By Theorem 2.1, for any A > 0 the equation
—Aw + e AFDWee? = g5 in R (5.3)
has a unique bounded solution w4. We note that
wa =wo+ A(l + a),
where wy is the bounded solution of (5.3) with A = 0. Note that for any A > A* = a~* lwoll oo (2,
wg > A in R2
Step 1: construction of an approximating sequence. We set vg := w4 and define Hy(.) by
Ao in Xq,
Holt,) = 0 in X,

et

Wﬁ (61/171/2)\75 + evo)lJra

in R?\ X.

Under the assumptions, Hy(t,-) € L*(R?) for some § > 1 and there exists a unique (and explicit)
real number ¢; such that

o Ho(tl,x)dw = 27T(2(N - M) + B)

We construct first a bounded solution vy of

e’l}

_A'U + Wﬁ (eyl—y2A—ﬁ + €U0)1+a

=g in RZ (5.4)




Equations of the gravitational Maxwell Gauged O(3) Sigma model 34

We set
wy = @ * (95 — Ho(t1,")).

By Lemma 2.2, w; is bounded. Put T = ||vg| e + w1 + ||wi ||z + |t1]. Then

v t1

(& e
61/171/2)\7,8 evo)l+a 2 61/171/2)\7,8 evo 1+a’
( + ) ( +e)

therefore

v t1

e
_ g//j Z QB - H(tl, ) + W,B (eVl_V2)\_B + ev0)1+a

e

_1Aii+'vvb(ey1—y2A—ﬁ +»€U0)1+a

—9520.

Hence 7 is a supersolution of (5.4). Since

evo

1 1
VUi
—Avy + W3 (emﬂ/z)\*ﬁ +evo)iHa —gg < Wge™ ((61/11/2)\,3 T+ en)iTa — 6(1+a)A> <0,

vo is a subsolution of (5.4) dominated by ©. Hence there exists a solution v = vy of (5.4)
satisfying
v < v <.
Since af + 2aN > 2, we have from Lemma 2.2
_aB+2aN-2
vi(z) = C1 g+ O(|x| @F+2aN-T) as |z| = oo.
We define a sequence {vy, }nen with vg = wa and v = v, is the bounded solution of

e’l)

(61/171/2 )\7,8 + evn_l)lJra

—Av + Wp =gs in R% (5.5)

Assume that we have proved the existence and boundedness of the functions v for k£ < n and
that there holds vg < v; < ... <w,_1. We define H,,_1(t,.) by

Ag in X

0 in 22

et

W,B (elfl—l@)\—ﬁ + evnfl)l‘i‘a

Hyo1(t,.) =

in R?\ X,
and denote by ¢, the unique real number such that

/R2 Hy_i(t,x)dz =27(2(N — M) + B).

Since vg < v < ... < wy_q, there holds ¢y < t1 < ... < t,. If we set w,, =T * (95 — Hp—1(tn,.)),
clearly Uy, := ||vn—1||1ee + Wy + ||wn||Lee + |tn| is a supersolution. Furthermore

evnfl

(61/1—1/2 )\—B + evn_1)1+a

—Avp_1 4+ Wp —9s

1 1
Un—1 -
< Wge <(6V1V2)\/3 +evnn)lta (g2 A= evn_2)1+a> =
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Hence v,_1 is a subsolution. A solution v = v, of (5.5) satisfying v,—1 < v, < T, exists. It is
bounded and satisfies

_ap+2aN-2
vp(z) = Cp g+ O(|z| @F+2eN-T) as |z]| = o0 (5.6)

for some C), 3. Furthermore the sequence {C,, 3} is nondecreasing, and by Corollary 2.1

aB+2aN—2
V()] = O(|z| ' ebr2av=1)  as |z — oco. (5.7)

Uniformly upper bound for {v,}n. Let Tg = I' * gg, then it is a supersolution of (5.5) for any
n € N and satisfies

m Wﬂ(m)—2(N—M)—|—B.

ja| o0 In|z|
This implies that for any for any € > 0, there exists Cc > 0 such that
Tp(r) < (2(N — M)+ B +e)In(|z| +1) + C. in R2 (5.8)
Note that vg is a super solution of (5.5) and by the comparison principle
v, <Vg in R?.

Therefore the limit of the sequence {v,} as n — oo exists. As it depends also on A, we denote
it by vg 4 and there holds
VB, A < g in R2

Furthermore vg 4 is a locally bounded solution of (5.1) which satisfies
A<wvga(z) < (2(N—-M)+B8+en(lz] +1) +C. in R (5.9)

evn (z)
(e¥17¥2\=P4evn (z) Yl+a

Because of the above lower estimate, the functions = + are upper bounded

on R? by some constant depending on A and 3 but independent of n, and this estimate holds
true if vy, is replaced by vg 4. Hence for any R > 0,

ov evn
_ —4s %% dr = dx.
/lacR or +/BR 561/1—V2/\—B_|_€vn x /BRgﬁ x

By (5.7) the integral term on |z| = R tends to 0 when R — oo, therefore

evn
W, dr = dr =2m(2(N — M . 5.10
| Wo s e = [ asde = 2N = A1)+ 5) (5.10)

evn

Since eVi—v2 A\—Btevn
theorem that

is bounded independently of n, it follows by the dominated convergence

evs.A
/R2 Wps Py I de = /]1&2 ggdx. (5.11)

Combining this identity with the estimate

evs,A(T)

gp(x) — Ws(z) < cy3(l+ |a:|)_2aN_a6,

(er1=v2 \=FB 4 evs.a(?))l+a
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and using Lemma 2.2, we infer that vg 4 is uniformly bounded in R? and that there exists
Cp,a > A such that

_aB+2aN-2
vgaA(x) = Cg A+ O(|x| «Ft2eN-1) as |z| = 4o00. (5.12)
In order to construct the sequence of solutions, we start with A = Ag = 1, then take

A=A, =inf{k € N: k> Cg 4} and we iterate this process, defining by induction A; 1 by
Ai+l = mf{k eN: k> C@Ai}.
O

Proof of Theorem 1.2 part (ii) and Theorem 1.4. Multiple solutions. Let
ug; = —vi +vo+ Bln A+ vg,

where {vg;}; is a sequence solutions of (5.1) which exist by Proposition 5.1. Then {ug;}; is a
sequence of non-topological solutions in type II of (1.1) verifying (1.13) and with total magnetic
flux 27[2(N — M) + (]. The proof is now complete. O

5.2 Topological solution

Proof of Theorem 1.5. Multiple Topological solutions. Let u be a topological solution of
problem (1.1). We can write it as w = —v; + 2 + v where v is a bounded regular solution of
e’l}

— : 2
—Av + V(eyl_y2 e go in R (5.13)

with

90 = f1— fa,
and where the functions f; and f, have been defined in (2.4). They are smooth, have compact
support in B,,(0) and the flux identity (2.5) is satisfied.

Claim: Problem (5.13) possesses a sequence of bounded solutions {v;}; such that

evt
\%4 dex =4n(N — M 5.14
/Rz (€12 + eviylta ™ i i (514

and 2aN—2
vi(x) = C; + O(|z| 2eN=1) as |z| — +o0, (5.15)
with C; — +o00 as i = 4o0.
This can be proved as follows: given A > 0, let w4 be the bounded solution of
—Aw + e AH)Y e — g0 in R2, (5.16)
We note that
wa =wo + A(l + a),

where wy is a bounded solution of (5.3) with A = 0. Note also that if A > A* = a™!{|wol| 0 (R2),
then
wy > A in R2.
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We set g = w4, and define p, (n € N) to be the solution of

etn

—Apn +V =go in R? (5.17)

(eVl_V2 _|_ eun—1)1+a

As in the proof of Proposition 5.1, the mapping n + u, is increasing and ., is uniformly upper
bounded. It converges to some function v4 as n — +oo, and v4 is a weak solution of (5.13).
Since V(z) < cg2|z|72*N when |z| — 400, and 2aN > 2, there holds

2aN—-2

2aN -2
pin(@) = g + O (275571 ) and [Vpin(@)] < carlal ™ 7281 as fo] = +oc.

Integrating (5.17) on Br and letting R — oo yields

ekn
/ %4 dl’:/ (fl—fz)d.fv:47T(N—M).
R2 R2

(eVl_VQ + eln—1 )1-‘1—(1

eHn
(eV1 —V2 tebn—1 )1+a
convergence theorem

Because

is uniformly bounded and V' € L!(R?) we obtain by the dominated

ev4
/]12{2 V(€V1—V2 n evA)lJradx =4n(N — M). (5.18)
Therefore,
2aN—-2
va(x) = Ca + O(|z| 2eN-1) as |z| = +oo, (5.19)
and the end of the proof is similar as the one of Proposition 5.1.
O
6 Nonexistence
Lemma 6.1 Let aN < 1. Then
(2) Problem (1.1) has no solution ug verifying
ug(z) — fln|z| = o(In|z]) as |z| = +oo (6.1)

for B* < 5 <0.
(73) Problem (1.1) has no solution ug verifying (6.1) if 0 < 8 < #
(#i7) Problem (1.1) has no topological solution.
Proof. We recall that a solution verifying (6.1) with 5 < 0 (resp. S > 0) is called non-

topological of type II (resp. type I). Given a function, we denote by w the circular average of
w, i.e.

2T
W) = — w(E)do(E) = — /0 w(r, 0)do.

211 Jog, (o) 21

For |z| > rg, there exists c45 > 0 such that

P(x) > cqslz| 7,
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and we set, for all z € R?
eu(m)

hy(x) = P(x)m.

38

(6.2)

Part (i). If u is a non-topological solution of Type I, it satisfies u(x) < ¢4 for |z| > 79 and

cs6 > 0. By Jensen inequality there exists positive constants c47 and cy4g such that

alN

— C47A07“7

hlr) 2 7y gmnyra '™ 2 ease™®for v >,

and from (6.1), there exist g € (0, 1) and c49 > 0 such that for r > ro,

— T2—€() :

Then (1.1) implies that

_ C49
(ry )y > o for r > o,

thus, integrating the above inequalities, we obtain

Uy (1) — rotr(ro) > cso(rt —rgt),
where u, = g—f and c49, c50 > 0. Hence there holds

u(r) > u(ro) + (rour(ro) — csorg') Inr + Cj—orel for r > rg.
1
As a consequence,
u(r) — +oo as r — 400,

which contradicts the fact that u is bounded from above.

Part (it). If u is a non-topological solution of Type I and 0 < 8 < %, then

1 C51

hu(lE) (1—|—€u)a e |33|2_61

P(x)

for some €; > 0 and ¢51 > 0. Then (1.1) implies that

__ C52
(rwy), > -

for r > rg.
Hence there holds

C52
—Zpa
€1

w(r) > w(ro) + (rowr(ro) — csorg’) Inr + for r > g,

which contradicts (6.1).

Part (iii). The proof is the same as above.

(6.3)

(6.4)

d

Proof of Theorem 1.6. If aN < 1, Lemma 6.1 implies that then problem (1.1) has no solution

ug for B* < B < = verifying ug(x) = f1n |z + O(1).

a
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Next we assume that aN = 1, and u is a topological solution (1.1). Hence u is bounded at

infinity and

ev C53

(T+e9)* = |z

hy(z) > P(x)

Then (1.1) implies that

(ry )y > 0%4 for r > rg.

By integrating this inequality we encounter a contradiction with the fact that w is bounded at
infinity. a
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