
HAL Id: hal-02469849
https://hal.science/hal-02469849

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

4’-(5-Methylfuran-2-yl)-2,2’:6’,2�-terpyridine: A New
Ligand Obtained from a Biomass-Derived Aldehyde with

Potential Application in Metal-Catalyzed Reactions
Jérôme Husson, Laurent Guyard

To cite this version:
Jérôme Husson, Laurent Guyard. 4’-(5-Methylfuran-2-yl)-2,2’:6’,2�-terpyridine: A New Ligand Ob-
tained from a Biomass-Derived Aldehyde with Potential Application in Metal-Catalyzed Reactions.
Molbank, 2018, 2018 (4), pp.M1032. �10.3390/M1032�. �hal-02469849�

https://hal.science/hal-02469849
https://hal.archives-ouvertes.fr


molbank

Communication

4′-(5-Methylfuran-2-yl)-2,2′:6′,2′′-terpyridine:
A New Ligand Obtained from a Biomass-Derived
Aldehyde with Potential Application in
Metal-Catalyzed Reactions

Jérôme Husson * and Laurent Guyard

Institut UTINAM UMR CNRS 6213, UFR Sciences et Techniques, Université de Bourgogne-Franche-Comté,
16 Route de Gray, 25030 Besançon cedex, France; laurent.guyard@univ-fcomte.fr
* Correspondence: jerome.husson@univ-fcomte.fr; Tel.: +33-381-666-291

Received: 9 November 2018; Accepted: 22 November 2018; Published: 24 November 2018 ����������
�������

Abstract: The new ligand 4′-(5-methylfuran-2-yl)-2,2′:6′,2′′-terpyridine (1) was prepared in one step
from 2-acetylpyridine and 5-methylfurfural. The latter is an aldehyde that can be readily obtained
from biomass. The new terpyridine molecule was characterized by 1H and 13C-NMR spectroscopy as
well as by elemental analyses and HR-MS. Owing to its chelating properties, this new terpyridine
molecule was tested as a ligand in a metal-catalyzed reaction: The Ni-catalyzed dimerization of
benzyl bromide.
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1. Introduction

2,2′:6′,2′′-Terpyridine molecules (tpy) are a class of heterocyclic compounds that possess three
pyridine moieties (Figure 1). These molecules can form complexes with a broad range of metals owing
to the chelate effect. Therefore, tpy and their complexes have been widely studied [1]. Terpyridines
and their complexes find applications in various fields, such as photovoltaic devices [2], sensors [3],
medicinal chemistry [4], and for the construction of MOFs [5] just to name a few.
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aldehyde. Biomass-derived aldehyde furfural has been already used for the preparation of 
terpyridines [11]. Apart of providing terpyridines with interesting properties, the use of furfural in 

Figure 1. Chemical structure and atom-numbering of 4′-(5-methylfuran-2-yl)-2,2′:6′,2′′-terpyridine (1).

Many methods are available for the preparation of terpyridine derivatives [6–8]. A classical
method, the so-called Kröhnke’s method [9,10] involves the reaction of 2-acetylpyridine and
an aldehyde. Biomass-derived aldehyde furfural has been already used for the preparation of
terpyridines [11]. Apart of providing terpyridines with interesting properties, the use of furfural in tpy
preparation allows greener synthetic procedures since furfural is obtained from biomass and therefore
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renewable [12]. Furthermore, the use of furfural in the preparation of functionalized terpyridine
derivatives allows the design of greener synthetic pathways [13].

5-Methylfurfural is another furan derivative that can be easily obtained from biomass [14]. To the
best of our knowledge, this aldehyde has not been used for the preparation of a terpyridine molecule.
This article describes the preparation of compound 1 (Figure 1) from 5-methylfurfural and its use as
a ligand in metal-catalyzed reactions.

2. Results and Discussion

Terpyridine 1 was prepared by simply mixing 2-acetylpyridine and 5-methylfurfural in ethanol in
the presence of potassium hydroxide and aqueous ammonia (Scheme 1), according to the method of
Wang and Hanan [15].
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Scheme 1. Preparation of terpyridine 1.

Since the product precipitates as a light yellow solid, it was easily isolated by filtration in 38% to
43% yield over three experiments. The synthetic protocol is very simple and provided a material that
was sufficiently pure (>98% by quantitative 1H-NMR) to be used without purification. Nevertheless,
an analytically pure sample was obtained by recrystallization in ethanol. The identity of the compound
was confirmed by 1H and 13C-NMR spectroscopy, as well as by elemental analyses and HR-MS.

Terpyridines can be used as ligands in a vast list of metal-catalyzed reactions [16]. Thus compound
1 was tested in the nickel-catalyzed dimerization of alkyl halides [17,18]. In fact, it has been reported
that 4,4′,4′′-tritertbutyl-2,2′:6′,2′′-terpyridine is an efficient ligand for this reaction [19]. Although 81%
yield is obtained in the dimerization of benzyl bromide using 4,4′,4′′-tritertbutyl-2,2′:6′,2′′-terpyridine,
substituting it by compound 1 resulted in a very low yield under the same conditions (Scheme 2,
Table 1). This can be explained by the effects of the substituents onto the terpyridine, which can have
important effects onto the outcome of reactions [20]. For instance, the nature of the substituents can
influence the redox properties of the complex formed between the ligand and the metal [18] thus
modifying the course of the reaction.
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Scheme 2. Ni-catalyzed dimerization of benzyl bromide.

Table 1. Yields obtained for the Ni-catalyzed dimerization of benzyl bromide with 4,4′,4′′-tritertbutyl-
2,2′:6′,2′′-terpyridine and compound 1 as ligands.

Ligand Yield (%)

4,4′,4′′-tritertbutyl-2,2′:6′,2′′-terpyridine 81
1 2
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3. Materials and Methods

All reagents were purchased from commercial suppliers and used as received. Flash
chromatography was carried out on a Combiflash Rf + Lumen (Teledyne ISCO, Lincoln, NE, USA)
using Redisep Rf silica column (Teledyne ISCO, Lincoln, NE, USA). 1H and 13C-NMR spectra were
recorded on a Brucker AC 400 (Bruker, Wissembourg, France) at 400 and 100 MHz, respectively using
CDCl3 as a solvent. UV-Vis spectrum was recorded on a Cary 300 (Agilent Technologies, Santa Clara,
CA, USA) using acetonitrile (C = 1.15 × 10−4 M) as solvent. Melting point was recorded with a Stuart
SMP 10 melting point apparatus (Bibby Sterilin, Stone, UK) and is uncorrected. Elemental analysis
was performed at Service d’Analyses Elementaires, UMR 7565 CNRS, Vandoeuvre-les-Nancy, France.
HR-MS was recorded at Welience, Dijon, France.

3.1. Preparation of 4′-(5-Methylfuran-2-yl)-2,2′:6′,2′′-terpyridine

4′-(5-Methylfuran-2-yl)-2,2′:6′,2′′-terpyridine (1): To a solution of 2-acetylpyridine (4.84 g; 40 mmol)
in ethanol (100 mL) are added 5-methylfurfural (2.20 g; 20 mmol), 85% potassium hydroxide pellets
(3.08 g; 47 mmol) and 25% aqueous ammonia (58 mL). The reaction mixture was stirred at room
temperature for 24 h. The solid was then filtered on a glass-sintered funnel and washed with ice-cold
50% ethanol until washings were colorless. The product was dried under vacuum over phosphorus
pentoxide. Compound 1 was obtained as a light yellow solid (2.42 to 2.71 g; 38% to 43%). An analytical
sample was obtained by recrystallization in ethanol. Mp = 174 ◦C. 1H-NMR (CDCl3, 400 MHz),
δ (ppm): 8.75 (ddd, 2H, H6, 6′′, J = 4.8 Hz, J = 1.6 Hz, J = 0.8 Hz), 8.67 (s, 2H, H3′, 5′), 8.65 (d, 2H, H3,
3′′, J = 8.0 Hz), 7.87 (dt, 2H, H4, 4′′, J = 7.7 Hz, J = 1.8 Hz), 7.35 (ddd, 2H, H5, 5′′, J = 7.4 Hz, J = 4.8 Hz,
J = 1.1 Hz), 7.03 (d, 1H, H2-furyl, J = 3.3 Hz), 6.17 (dd, 1H, H3-furyl, J = 3.3 Hz, J = 0.9 Hz), 2.44 (s, 3H,
CH3-furyl). 13C-NMR (CDCl3, 100 MHz), δ (ppm): 156.2, 155.7, 154.0, 150.2, 149.0, 139.7, 136.8, 123.7,
121.3, 114.5, 110.4, 108.4, 13.9. Elemental analysis for C20H15N3O: C, 76.66; H, 4.82; N, 13.41. Found C,
77.00; H, 4.93; N, 13.50. HR-MS: calc. for [C20H15N3O + H]+ 314.12773, found 314.12879. UV-Vis (nm,
L·cm−1·mol−1): λabs = 229, ε = 24017; λabs = 251, ε = 21434; λabs = 286, ε = 33678; λabs = 312, ε = 28008.

3.2. Nickel-Catalyzed Dimerization of Benzyl Bromide with Compound 1 as a Ligand

In a test tube were successively added NiCl2·glyme (2.6 mg; 0.01 mmol), compound 1 (3.1 mg;
0.01 mmol), benzyl bromide (238 µL; 2.00 mmol), manganese powder (110.0 mg; 2.00 mmol), and DMF
(2 mL). The test tube was stoppered and the mixture was stirred at 40 ◦C for 24 h. After cooling to
room temperature, the crude solution was directly injected onto a 12 g-silica column and the product
was purified by flash chromatography using hexane as eluent. The pure product was obtained as
a white solid (3.6 mg; 2%). Analytical data match those reported in the literature [19,21].

4. Conclusions

A new member of the terpyridine family has been prepared and characterized. It was prepared
from the biomass-derived reagent 5-methylfurfural. Its preparation was easy on the gram-scale. This
new terpyridine was assessed for its potential application as a ligand in metal-catalyzed reactions.
Although it was not efficient in the nickel-catalyzed dimerization of benzyl bromide, considering the vast
number of reactions employing terpyridines as a ligand, 4′-(5-methylfuran-2-yl)-2,2′:6′,2′′-terpyridine
could be a promising tool in synthetic organic chemistry. Future work will focus on screening other
reactions, in which this new terpyridine could be used.

Supplementary Materials: The following are available online, 1H and 13C-NMR, HR-MS spectra and
UV-Vis spectra.
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