Time-Scale Synthesis for Locally Stationary Signals - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Time-Scale Synthesis for Locally Stationary Signals

Résumé

We develop a time-scale synthesis-based probabilistic approach for the modeling of locally stationary signals. Inspired by our previous work, the model involves zero-mean, complex Gaussian wavelet coefficients, whose distribution varies as a function of time by time dependent translations on the scale axis. In a maximum a posteriori approach, we propose an estimator for the model parameters, namely the time-varying scale translation and an underlying power spectrum. The proposed approach is illustrated on a denoising example. It is also shown that the model can handle locally stationary signals with fast frequency variations, and provide in this case very sharp timescale representations more concentrated than synchrosqueezed or reassigned wavelet transform.
Fichier principal
Vignette du fichier
MT_v2.pdf (191.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02469842 , version 1 (06-02-2020)

Identifiants

Citer

Adrien Meynard, Bruno Torrésani. Time-Scale Synthesis for Locally Stationary Signals. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, Barcelona, Spain. pp.5820-5824, ⟨10.1109/ICASSP40776.2020.9053069⟩. ⟨hal-02469842⟩
173 Consultations
85 Téléchargements

Altmetric

Partager

More