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Deschodt-Arsacb

aCATIE - Centre Aquitain des Technologies de l’Information et Electroniques, Talence,
France

bUniv. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France

Abstract

Fluctuations in cyclic tasks periods is a known characteristic of human
motor control. Specifically, long-range fractal fluctuations have been evi-
denced in the temporal structure of these variations in human locomotion
and thought to be the outcome of a multicomponent physiologic system in
which control is distributed across intricate cortical, spinal and neuromuscu-
lar regulation loops.

Combined with long-range correlation analyses, short-range autocorrela-
tions have proven their use to describe control distribution across central and
motor components.

We used relevant tools to characterize long- and short-range correlations
in revolution time series during cycling on an ergometer in 19 healthy young
adults. We evaluated the impact of introducing a cognitive task (PASAT) to
assess the role of central structures in control organization.

Autocorrelation function and detrending fluctuation analysis (DFA) demon-
strated the presence of fractal scaling. PSD in the short range revealed a sin-
gular behavior which cannot be explained by the usual models of even-based
and emergent timing.

The main outcomes are that 1) timing in cycling is a fractal process,
2) this long-range fractal behavior increases in persistence with dual-task
condition, which has not been previously observed, 3) short-range behavior
is highly persistent and unaffected by dual-task.
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Relying on the inertia of the oscillator may be a way to distribute more
control to the periphery, thereby allocating less resources to central process
and better managing additional cognitive demands. This original behavior in
cycling may explain the high short-range persistence unaffected by dual-task,
and the increase in long-range persistence with dual-task.
Keywords:
Motor timing, Fractal, Timing nature, Cycling

1. Introduction1

There is growing evidence that the neurophysiological coordination of hu-2

man motor control can be meaningfully viewed as a dynamic system exhibit-3

ing complexity in its timing behavior (Costa et al. (2002); Diniz et al. (2011);4

Goldberger et al. (2002); Marmelat & Delignières (2012)). As such, human5

motor control is characterized by emergent dynamical properties that could6

hardly be understood by only studying the system’s different parts in isola-7

tion (Dingwell et al. (2010); Stergiou & Decker (2011); Warlop et al. (2018)).8

The coordination among multiple components and at multiple system levels9

is thought to be at the origin of the complex fractal behavior in signal outputs10

(Marmelat & Delignières (2012)). The presence of fractal dynamics implies11

that control in such systems is distributed rather than localized in given parts12

(Wijnants (2014)). This is a consequence of the interdependence and coop-13

eration of processes operating simultaneously at multiple timescales (Iyengar14

et al. (1996); Marmelat & Delignières (2012)). The arising absence of a char-15

acteristic timescale is considered as an advantage since the dominance of a16

unique timescale may be a sign of a restricted functional responsiveness, a17

lack of flexibility (Goldberger et al. (2002); Hausdorff (2009)). In this re-18

gard, the field of fractal physiology (Gilden et al. (1995); Goldberger et al.19

(2002); West (2010)) has demonstrated a greater capacity than classically20

used reductionist methods to assess movement control strategy, by provid-21

ing relevant complexity metrics (Eke et al. (2002); Nicolini et al. (2012);22

Whitacre (2010); Gilfriche et al. (2018)).23

An interesting link was established between signal output complexity and24

neurophysiological complexity. Especially, time series of rhythmic motor be-25

havior have been characterized within the continuum between two stochas-26

tic processes (Mandelbrot & Van Ness (1968)): white noise and Brownian27

motion, the middle of the continuum being 1/f noise, also called fractal fluc-28
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tuations (Tatom (1995)). In this formalism, cyclic movements exhibiting29

white noise may indicate no coordination in the supporting neurophysiologi-30

cal network. At the other end of the spectrum, Brownian motion is thought31

to mark a rigid, non flexible control since the system output widely deviates32

from its average temporal behavior. A coordinated system ensuring that tim-33

ing rhythm is both robust and flexible is conceivably midway between a tight34

and a loose control. This statement has found strong support in experimen-35

tal works in physiology (Iyengar et al. (1996); Torre & Wagenmakers (2009);36

Tulppo et al. (2005)), psychology (Gilden et al. (1995); Farrell et al. (2006);37

Pressing & Jolley-Rogers (1997); Thornton & Gilden (2005)), and behav-38

ioral sciences (Nourrit-Lucas et al. (2015); Wijnants (2014)), all indicating39

that the temporal behavior of young and healthy systems exhibits fractal40

fluctuations. Aging, pathology or mental and mechanical constraints shift41

the system’s temporal output towards less clear fractal properties (Wijnants42

(2014)).43

The presence of fractal fluctuations in motor rhythm during human lo-44

comotion has been a matter of interest (Den Hartigh et al. (2016, 2018);45

Jordan et al. (2009); Terrier & Dériaz (2012)). In pioneer works, stride-to-46

stride fluctuations during walking have been explored (Hausdorff et al. (1995,47

1996, 1999)), comparing fractal dynamics in healthy people to fractal dynam-48

ics in people with neurodegenerative diseases or facing different constraints49

(Hausdorff (2007)). Since then, researchers have paid more and more atten-50

tion to fractal fluctuations (Stergiou & Decker (2011)). Fractal properties51

have usually been quantified using the “scaling exponent” which places the52

analyzed signal in the monofractal continuum.53

Further exploration of motor variability revealed that in many tasks, the54

overall temporal structure is not only characterized by a fractal component,55

but is also influenced by a short range component. This component has56

been shown to bring meaningful information on control organization (Gilden57

(2001); Wijnants (2014)). The overall temporal structure is then a blend of58

a fractal process in the long range and another process in the short range.59

This short-range process has been explained in some specific motor tasks by60

the formalism of event-based vs. emergent nature of motor timing (Zelaznik61

et al. (2002)), a theory to explain timing generation processes (Delignières62

et al. (2004); Huys et al. (2008); Lewis & Miall (2003); Spencer et al. (2003);63

Torre et al. (2010)). Event-based and emergent timing are two distinct way to64

generate timing, relying respectively on an explicit cognitive (central) repre-65

sentation of timing and on an implicit bio-mechanical (peripheral) oscillator66
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(Delignières & Torre (2011); Lemoine (2007); Delignières et al. (2008)). Pre-67

vious studies have shown that the short-range correlation behavior can in68

some tasks mark a difference between both modes. As the short-range be-69

havior have been explained by the reliance (or non-reliance) on the dynamical70

properties of the effector, movement continuity and inertia play a critical role71

in this range.72

In recent years, fractal fluctuations have been observed in the timing73

of cycling (Warlop et al. (2013)). Cycling on a friction-loaded ergometer74

imposes a functional interaction between the neuromuscular system and the75

heavy rotating flywheel, which gives the global oscillating system a great76

inertia, a factor that could influence control design (Lemoine (2007)).77

To better understand neurophysiological control distribution in cycling,78

the present study added a cognitive challenge to normal cycling. It has79

been shown for years that simultaneously performing a motor task and a80

mental task deteriorates performance in one or both tasks (Kang et al. (2009);81

Szturm et al. (2013)). It has been expected that fractal properties could also82

be impacted by simultaneously performing a cognitive task (Gilden et al.83

(1995); Gilden (2001)). Yet, such impact is neither trivial nor consistent.84

Previous works on walking while performing a cognitive task reported either85

a decrease in fractal scaling exponent (Hausdorff (2009); Lamoth et al. (2011);86

Tanimoto et al. (2016)) or no change at all (Bollens et al. (2014); Grubaugh &87

Rhea (2014); Hausdorff (2009); Kiefer et al. (2009)). More work is still needed88

to fully understand the impact of dual-tasking on the temporal structure of89

motor control output. As such, exploring cycling while adding a cognitive90

challenge may improve our understanding of neurophysiological control in91

human locomotion.92

In the present work, we analyze short- and long-range fluctuations in cy-93

cling with and without a simultaneous cognitive task to better understand94

control distribution and identify the functional role of cognitive resources. We95

hypothesized that: i) like in other locomotor systems, the temporal struc-96

ture of cycling is fractal (Warlop et al. (2013)), ii) given the biomechanical97

constraints and the smoothness of the movement, cycling is characterized by98

positive short range correlations, iii) a cognitive challenge affects the long-99

range fractal properties.100
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2. Material and Methods101

2.1. Protocol102

19 subjects (15 men and 4 women) aged 24.4 ± 2.7 years participated103

in the study and gave informed consent. They were asked to cycle on a104

friction-loaded cycle ergometer with light charge (50W), for a total of 20105

minutes: 10 minutes without performing any task (reference situation), and106

10 minutes while performing a cognitive task (dual-task situation), in a ran-107

domized order. Each time, they first had to synchronize their pedaling with a108

metronome at 1Hz during 1 minute (not recorded) and were asked to continue109

at the same cadence after the metronome was turned off.110

The ”cognitive task” situation was a Paced Auditory Serial Addition Test111

(PASAT; Gronwall (1977)). PASAT recruits executive functions and requires112

attentional functioning, working memory and information processing speed.113

It has been suggested that the discrepancy in results obtained in fractal114

modification during dual-tasking in walking may be due to a poor choice115

of cognitive tasks; in order to avoid this problem here we selected PASAT116

because it is known to recruit prefrontal cortical networks (Lambourne et al.117

(2010)), and hence to be able to interfere with the motor area (also frontal;118

Dietrich & Sparling (2004)).119

In the PASAT, a list of numbers is given (one every 3 seconds here) and120

the subjects have to add the last number they heard to the previous one.121

The numbers were chosen randomly between 1 and 8 in a way that their sum122

was to be between 2 and 9. Participants listened to the instructions with123

earphones and answered aloud. They were informed that their answers were124

recorded, and the score of the cognitive task was defined as the percentage125

of good answers.126

To record time intervals between pedal strokes, a lightmeter (Light Meter127

Pod, AD-Instruments) with sampling frequency 1kHz detected the changes128

in light when the pedal passed by the sensor. Inter cycle intervals were then129

extracted using a semi-automated algorithm designed using Matlab 2018a130

(Mathworks). Examples of obtained time series for one subject are given in131

Figure 1.132

2.2. Data analysis133

All the data were processed using Matlab 2018a (Mathworks), using func-134

tions we specifically designed to this end.135
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Figure 1: Example of inter-cycle time series of one subject in normal (reference) and
dual-task cycling.

The data analysis techniques used here will be described below, and an136

overview is provided in Table 1.137

Table 1: Overview of the data analysis methods used and their aim.138

Focus Method Detects Quantifies
Long range Autocorrelation decay yes no
correlations DFA yes yes
Short range Lag-one Autocorrelation yes no
correlations DWA yes no

highPSDwe yes yes

139

The time intervals between pedal strokes, generally fluctuating around 1s140

(as the metronome heard during the first minute encouraged) were resampled141

at 1Hz using a cubic spline for the DFA and PSD-based methods that will142

be developed below, so that the periods and frequencies could be properly143

expressed in s and Hz rather than respectively trial and inverse-trial numbers.144

2.2.1. Long-range correlations145

First, to robustly confirm the fact that in normal situation cycling con-146

tains fractal properties (Warlop et al. (2013)), we visually controlled for the147

slow decay of the autocorrelation function, and the scaling exponent α was148

computed with DFA and checked to be close to 1.149

Once the presence of long-range correlations is validated, the subtle varia-150

tions of α can be properly used as a marker of variations in fractal properties.151

Autocorrelation decay. The decay of the time series autocorrelation function152

was qualitatively observed up to lag 30 on the linearly-detrended signal (sub-153

straction of a linear fit of the whole signal).154
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Detrended Fluctuation Analysis. Detrended Fluctuation Analysis (DFA) is a155

method to analyze the fractal properties in a signal (Peng et al. (1994)). It156

relies on the monofractal framework, which describes a continuum between157

white noise and brownian motion (Mandelbrot & Van Ness (1968)). This158

class of signals is said to exhibit ”scaling” properties; a specific power law159

relation between a characteristic scale and the power in said scale. The power160

spectral density in such a signal then follows the relation: P (f) ∼ 1
fβ

(hence,161

log(P (f)) ∼ β × log(f)). DFA has been designed specifically to analyze162

this type of signals, it computes a scaling exponent α, which in the limit of163

perfect monofractals of infinite length, is linked to β by the relation α = β+1
2 .164

Signals described by α close to 1 (α ∈ [0.75, 1.25]), are called 1/f noise, while165

α = 0.5 describes white noise, and α = 1.5 describes Brownian motion.166

DFA has been shown to give identical results as PSD analysis in long signals167

(Heneghan & McDarby (2000)), but has been preferred for shorter signals,168

or signals closer to 1/f noise (Delignières et al. (2005, 2006)), that is why it169

has been preferred here for computing long-range correlations.170

DFA algorithm contains several steps, detailed here for an initial signal171

x of size N :172

1. The cumulated sum of the signal x is computed (without its mean to173

avoid a linear drift):174

y(k) = ∑ k
i=1(x(i)− x̄)175

2. The time-series y is then divided into non-overlapping boxes of length176

n and in each box a straight line is fit to the data using least square177

approximation (representing the trend in each box). The signal con-178

structed with these lines is called yn.179

3. After subtraction of the approximated signal, the root-mean-square180

fluctuation of the detrended time-series obtained is calculated by:181

F (n) =
√

1
N

∑N
k=1[y(k)− yn(k)]2182

Steps 2 and 3 are repeated for a range of n (usually for n = 4 to n =183

N/4).184

4. In the case of a scaling phenomenon, F(n) increases with n as a power185

law:186

F (n) ∼ nα ⇒ log(F (n)) ∼ α× log(n)187

The scaling exponent α is obtained by the slope of the line of log(F (n))188

vs. log(n) (or the line of F (n) vs. n in a log-log plot, which is strictly189

equivalent). Throughout this article, log defines the base 10 logarithm (even190

though natural logarithm holds for most equations).191
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For the specific purpose of observing a possible crossover phenomenon, the192

time-series representing successive pedal-stroke durations, an irregular series193

by nature, was resampled in the present study at 1Hz using a cubic spline194

interpolation. First DFA was computed on all box sizes and the shape of the195

residuals was studied after the linear fit of log(F(n)) vs. log(n). The shape196

of the residuals allows to check for statistical independence of the residuals,197

in order to decide on which scales a proper linear fit can be done (Figure 3).198

DFA is then applied a second time only on the chosen box size range and the199

residuals of the linear fit are observed in order to check for the correctness of200

a linear model (Figure 4).201

It has been remarked that if all the integer values of n in a certain range202

are selected, a high concentration of data points will be regrouped in the203

large box sizes (due to the log plot), giving this zone excessive weight for204

the linear fit. To cope with that problem, box sizes were selected to be a205

geometric sequence, so that their log is an arithmetic sequence. This choice206

was made to follow recommendations of ”evenly-spaced” DFA (Almurad &207

Delignières (2016)). The sequence was defined as follows:208

• n(1) is the minimum timescale209

• n(2) = n(1) + 1210

• for i > 2, n(i) = n(i− 1)× n(2)
n(1) (values of n are then rounded to have211

integer values of box sizes)212

2.2.2. Short-range correlations213

Most methods to analyze short-range correlations in motor timing (Table214

1) rely on the theoretical models event-based and emergent timing. It is use-215

ful to understand them to better understand the subsequent computational216

methods.217

Event-based timing is mostly represented through the model of Wing and218

Kristofferson, or WK model, (Wing & Kristofferson (1973); Wing (1980)),219

wherein each cycle duration is considered to depend on two factors: an in-220

ternal central explicit timer, and a motor delay so that j-th interval, Ij, is:221

Ij = Cj +Mj −Mj−1

Where Cj is the j-th timekeeper’s interval and Mj is the j-th motor delay.222
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In emergent timing it has been proposed that motor noise affects the entire223

period (Delignières et al. (2004)), so that the intervals could be modeled using224

the following equation:225

Ij = Dj +Mj

Where Dj are the periods of a self sustained biomechanical oscillator.226

Cj and Dj are defined as fractal signals (Delignières & Torre (2011)) which227

dominate in the long range.228

Lag-one autocorrelation. Consequently, event-based and emergent timing are229

often differentiated using lag-one autocorrelation: event-based timing has230

been associated with negative lag-one autocorrelation (due to the differenti-231

ated white-noise term above) while emergent timing possesses null or positive232

lag-one autocorrelation (due to the white-noise term and the long-range 1/f233

noise; Delignières & Torre (2011)).234

Hence, lag-one autocorrelation, noted γ(1), was computed on our time-235

series.236

Detrended Windowed lag-one Autocorrelation. When using lag-one autocor-237

relation method, the presence of long-range correlations has been shown to238

corrupt the results by artificially inducing persistence. To tackle this prob-239

lem, it has been recently proposed to compute lag-one autocorrelations on a240

detrended moving window, a method called detrended windowed lag-one au-241

tocorrelation (DWA), giving an evaluation of the type of timing less impacted242

by slow trends (Lemoine & Delignières (2009)).243

DWA was computed using a 30 data points moving window and a linear244

detrending (Delignières & Torre (2011); Lemoine & Delignières (2009)). From245

the instantaneous value of DWA obtained, noted wγ(1), the mean value of246

wγ(1), and the percentage of positive wγ(1) were calculated.247

Spectral analysis. The models used for emergent timing and event-based tim-248

ing, describing the whole signal as a blend of short-range and long-range249

behavior, reveal that the short-range scaling behavior can persist on sev-250

eral small scales, so that observing the scaling on the small scales can be251

an interesting complementary information to lag-one autocorrelation anal-252

ysis (Delignières et al. (2004); Lemoine (2007); Torre et al. (2010)). This253

way, a β value calculated in the high frequencies with a value above 0 (nega-254

tive slope) signs emergent timing (persistence) while a value below 0 (positive255
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slope) reveals an event-based timing (antipersistence) as illustrated in Figure256

8.257

The β value is obtained by computing a modification of the PSD (here258

using Discrete Fourier Transform) called highPSDwe which consists in : 1)259

removing the mean from the signal, 2) applying a parabolic window (w), 3)260

operating a bridge detrending (e). The low frequency power estimates (lower261

than fs/8, fs being the sampling frequency) are then ignored when fitting a262

linear function log(P (f)) ∼ β × log(f) to the data (low) (Eke et al. (2000);263

Torre & Wagenmakers (2009)).264

The fs/8 limit was originally justified by the need for a separation of265

short range and long range processes, and the works of Eke et al. (Eke266

et al. (2000)) on improving long range correlation analysis, but has then been267

used by confusing fN and fs (Delignières et al. (2005, 2008)): we think that268

this limit should rather be considered has having a physiological meaning at269

the frontier between two different systems working on different frequencies,270

so as for DFA long range analysis, the PSD was visually examined before271

determining a frequency-range for short-range analysis (Figure 6).272

While lag-one autocorrelation and DWA both give limited information on273

the short-range behavior (positive or negative values), spectral analysis fully274

grasps signal persistence in the short range to explore subtle changes.275

It should be noted that a DFA analysis in the short timescales (small276

boxes) could be similarly performed, however the method is not optimized277

to this end (by beginning by boxes of size 4 for example), so that short term278

DFA analysis is generally not performed and won’t be used here.279

3. Results280

3.1. Cognitive task281

All subjects performed the cognitive task without notable disengagement.282

One audio recording was unusable as the sound from the cycle ergometer283

drowned the sound of the participant’s answers. One subjects had a partic-284

ularly low score due to a misunderstanding of the PASAT (the subject likely285

summed the wrong numbers). Both subjects were kept as there answer rate286

seemed sufficiently high (no disengagement).287

The other 17 subjects had a score of 85.5± 9.8%.288
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Figure 2: Autocorrelation function of the detrended time intervals for all subjects in the
reference and dual-task situation (full lines, where each line represents a subject), and the
95% confidence intervals associated (dashed lines). Note that the 2 confidence intervals
lines define the minimum and maximum values of confidence intervals, which respectively
correspond to the subject with the maximum and minimum number of samples (depending
on the pedaling speed).

3.2. Long-range correlations289

3.2.1. Autocorrelation decay290

Qualitatively, Figure 2 illustrates that the autocorrelation function of291

the linearly-detrended time intervals decreases slowly in reference situation,292

suggesting the presence of long-range correlations in cycling.293

3.2.2. Detrended Fluctuation Analysis294

Both in reference situation and in dual-task, the residuals of a linear fit295

in DFA on all box sizes reveals what seems to be a scaling zone in the long296

timescales, as expected (Figure 3). We inferred that the linear fits could be297

done in the low frequencies on boxes of size ≥ 10. The residuals of the linear298

fit on box sizes ≥ 10 indicate the adequacy of a linear fit in those scales299

(Figure 4).300

Finally, with long-range scaling exponents α close to 1 in reference situa-301

tion (1.01±0.10), DFA confirms again the presence of long-range correlations.302

Though the long-range scaling exponent of periods stays close to 1 for303

both reference and dual-task condition, a major result of this study is that304
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Figure 3: Detrended Fluctuation Analysis on the time series on all box sizes for all 19
subjects (each line represents a subject) in each experimental situation. The profile of the
residuals (no statistical independence) indicates that a linear fit over the entire range of
scales is poorly adapted.
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Figure 4: Detrended Fluctuation Analysis on the time series on box sizes ≥ 10 (long
range) for all 19 subjects (each line represents a subject) in each experimental situation.
The profile of the residuals (statistical independence) indicates that the linear fit computed
on this box size range is adapted. The thick black lines represent the mean slope across
all subjects (offset for clarity).
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Figure 5: Long-range scaling exponent α computed with DFA on box sizes ≥ 10, for all
subjects in reference and dual-task situations. Individual values as well as mean±standard
deviation are given. In 14 subjects out of 19, α increased in dual-task.

its value slightly but significantly increases from α = 1.01± 0.10 in reference305

to α = 1.07 ± 0.15 during cognitive task (P < 0.05; see Figure 5), with a306

small effect size (Cohen’s d = 0.14).307

We should remind that the choice of the minimal box size for the quan-308

tification of this scaling using DFA is not trivial, especially since the smallest309

boxes (high frequencies) are mostly influenced by the nature of the motor310

timing (event-based or emergent) and should be ignored when analyzing311

long-range 1/f noise. Here this choice was guided by a prior analysis of312

the residuals of a linear fit on all box sizes. Some authors, using PSD, ad-313

vised to look at frequencies lower than fs
8 where fs is the sampling frequency314

(Delignières et al. (2005, 2008)), this is rather close to our result as it matches315
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box sizes higher than 8 (Gilfriche et al. (2018)).316

3.3. Short-range correlations317

3.3.1. Short-range autocorrelation analysis318

In both situations (reference and dual-task), lag-one autocorrelation γ(1)319

was positive in all subjects, Mean wγ(1) was positive in all but one subject,320

and the percentage of positive wγ(1) was close to 100% in all but one subject321

(same atypical subject).322

3.3.2. Power spectral density323

From the residuals of a linear fit on the whole PSD graph we chose to324

analyze the short-range frequencies on frequencies ≥ 0.2Hz. The residuals of325

the individual linear fits on these frequency ranges indicate the adequacy of326

such linear fit (Figure 6). There is however a visible peak in spectral power327

around 0.34Hz in the dual task condition in all subjects (Figure 6), which328

still stands out in the residuals of the linear fit.329

The short-range PSD scaling analysis on frequencies ≥ 0.2Hz showed a330

short-range β value of 3.38 ± 1.32 in reference situation and 3.81 ± 1.34 in331

dual-task condition (P=0.12). These values of β ≥ 0.5 confirm yet again332

the strong short-range persistence in cycling. The value β > 1 is an original333

observation (Figure 8) and will be interpreted in section 4.3.334

4. Discussion335

The present quantitative study of temporal fluctuations in ergometer cy-336

cling reveals several interesting findings using an exhaustive analysis of the337

blend of long-range and short-range behaviors. 1) Cycling undoubtedly con-338

tains long-range fractal correlations as observed in other locomotor activities339

in humans. 2) The addition of a cognitive task modifies the properties of340

long-range correlations, which has not been clearly established in other loco-341

motor tasks. 3) A specific behavior emerges in the short-range fluctuations342

(strong persistence) that has not been observed to date. Taken together,343

these results may improve our understanding of control strategies and of the344

associated neurophysiological system coordination engaged in a cycling task.345

4.1. Significance of fractal fluctuations in cycling346

In the present study, using methods to assess the presence of long-range347

fractal fluctuations in physiological signals, namely autocorrelation decay and348

15



Figure 6: Top: Power Spectral Density analysis of the time series on frequencies ≥ 0.2Hz
(short range) for all 19 subjects (each line represents a subject) in each experimental
situation. Bottom: residuals of the linear fit. The profile of the residuals (statistical
independence) indicates that a linear fit on this frequency range is adapted. Thick black
lines represent the mean slope (offset for clarity).

16



DFA, we show strong evidence that a fractal temporal structure is definitively349

a hallmark of motor timing in cycling (Warlop et al. (2013)). The emergence350

of a fractal signal (1/f noise) as output of complex physiological systems is351

understood as a multilevel process implying coordinated interactions between352

many elements of the system. Such systems are especially interesting by the353

way the coordination between sensory, cognitive and motor components takes354

place across multiple levels, which allows a strong adaptability and flexible355

stability (Wijnants (2014)). This way of considering control strategy, called356

interaction-dominant dynamics, is in opposition with more conventional re-357

ductionist approaches that attempt to find a key critical structure (Eke et al.358

(2002)), a view called component-dominant dynamics (Wijnants (2014)).359

An original finding of the present study is a typical reference value of360

scaling exponent for cycling based on DFA method (α = 1.01± 0.10), which361

allows to place cycling in the framework of fractal fluctuations that char-362

acterize the neurophysiological control of human locomotion. A classical363

interpretation is that 1/f noise with α closest to 1.0 indicates an optimal co-364

ordination within and between interacting components, that constraints like365

pathology or aging can alter. This way, in response to constraints or pertur-366

bations, the scaling exponent moves away from 1.0, as remarked in physiology367

(Goldberger et al. (2002)) and in cognitive science (Wijnants (2014)). How-368

ever, it has been shown in some studies that things may be more subtle.369

Particularly, in locomotor tasks like walking and running, the typical uncon-370

strained scaling exponent is rather centered around 0.7-0.8 (Hausdorff et al.371

(1995); Jordan et al. (2007); Terrier et al. (2005)). More than the distance372

from α = 1.0, the relevant information linked to control strategies seems to373

be the way the signal becomes more persistent or more random when facing374

constraints (Marmelat & Delignières (2012); Jordan et al. (2007)). Here in375

the studied population we evidence a significant increase in signal persistence376

with dual-task situation compared to reference situation (Figure 5).377

4.2. Evidence for a cognitive contribution in fractal fluctuations378

By showing the impact of dual-tasking on long-range fractal properties379

of scaling, we deduced a non-negligible role of a central integration in the380

control strategy during cycling. The cognitive task presently used, PASAT,381

recruiting executive functions, disrupted the ordinary behavior of the free-382

running system as quantified by a higher scaling exponent α, which signifies383

a more persistent signal (Figure 5). As cycling is a continuous task, which384

are believed to rely even less on cognitive control (Lewis & Miall (2003), this385
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result is not straightforward. By imposing the rhythm of a metronome, War-386

lop et al. (Warlop et al. (2013)) showed a breakdown in long-range fractal387

fluctuations in cycling and inferred an active central control of locomotion388

on the generation of long-range autocorrelations. This result was consistent389

with the previously observed breakdown of fractal features in metronomic390

walking (Hausdorff et al. (1996)). As well, a cognitive task has the potential391

to alter long-range fractal dynamics in walking (Hausdorff (2009); Lamoth392

et al. (2011); Tanimoto et al. (2016)). Unfortunately, the effect of a cogni-393

tive task reported by different groups can hardly allow a definitive synthetic394

view of control strategy in dual-task locomotion, because of some discrepan-395

cies. Here α slightly increased with dual-tasking in cycling, while precedent396

studies on walking reported either a decrease in scaling exponent (Hausdorff397

(2009); Lamoth et al. (2011); Tanimoto et al. (2016)) or no change at all398

(Bollens et al. (2014); Grubaugh & Rhea (2014); Hausdorff (2009); Kiefer399

et al. (2009)). The theories of interaction-dominant dynamics support the400

idea that adding an external constraint to a system increases its random-401

ness (Wijnants (2014); Diniz et al. (2011); Kello et al.), which would mean402

a decrease in α and is once again contrary to our observations.403

Three possible reasons, not mutually exclusive, may explain these dis-404

crepancies.405

First, methodological issues, associated with the range over which long-406

range correlations are assessed (Wijnants (2014)) and the sensitivity of DFA407

to box sizes distribution (Almurad & Delignières (2016); Gilfriche et al.408

(2018)) can alter the reliability of the computed scaling markers in exper-409

imental works. In the present study, these issues were taken into account410

by careful examination of DFA characteristics (Figures 4), and use of robust411

methods (evenly-spaced DFA), which certainly improved the reliability of412

scaling exponent computation by better distinguishing short- and long-range413

behaviors.414

A second, more probable, cause of discrepancy may be that fractal prop-415

erties variations in dual-task conditions are inherently dependent on the416

cognitive task, so that the alterations to long-range correlations under ex-417

ternal constraints may depend on the type of constraints. Here in the418

PASAT/cycling dual-task, the observed increase in long-range persistence419

is not in line with interaction-dominance, which predicts that external con-420

straints reduce long-range persistence (Wijnants (2014)). This opens the421

door to a deeper investigation about the interaction between constraints422

typology and complex control network remodeling. To this end, more ex-423
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perimental works may be needed to map changes in fractal behavior with424

different mental constraints. In this context, the increased scaling exponent425

during dual-tasking observed for the first time in the present study may be426

specifically associated with the PASAT. This task recruits executive func-427

tions and requires attentional functioning, working memory and information428

processing speed, and this result cannot trivially be extended to any cognitive429

task.430

A third explanation for this discrepancy with previous works (increase in431

scaling exponent) lies in the peculiarity of the motor task. Indeed, in such432

complex system wherein control is inherently distributed (as evidenced by433

long-range fractal correlations), relying on the inertia of the pedaling move-434

ment could allow the subjects to reduce the cognitive demand of the motor435

task by unloading central control towards more peripheral dominance (as436

will be seen in the following section). This way, the complex control, partly437

centrally-mediated, would slightly untighten and stabilize around a looser438

form of control reflected in a higher long-range persistence. Simply put, the439

mental task distracts the subjects from their primary task (cycling), decreas-440

ing their focus on their internal timing, hence drifting more and increasing441

their long-range persistence. Once again more work is needed to explore this442

hypothesis.443

It is rather clear from Figure 5 that although the increase in long-range444

scaling exponent α with dual-tasking is significant, it is not systematic in all445

subjects. In a few subjects, long-range persistence does not increase or even446

decreases. One can suppose that this originates in a difference in engagement447

in the task: less engaged subjects would focus more on their motor timing448

by cutting on their focus on the PASAT. This hypothesis is rejected here449

as shown by the absence of correlation between the variation of α and the450

PASAT score (Figure 7); at least, the effect is not directly reflected in the451

PASAT score. Another possibility is that only individuals with a greater452

capacity to manage dual-tasking increased their focus on the motor task,453

without decreasing their efficiency in the PASAT. Unfortunately the design454

of the study does not allow to conclude on that matter.455

Much less is known about another fundamental aspect of control, the456

putative interference of a cognitive task with the behavior of a dynamic457

oscillator supposed to be a key factor in motor timing of continuous motor458

tasks. As cycling exhibit clearly such a characteristic, here we paid attention459

to short-range correlations in order to shed some light on this particular460

issue and be able to have a more comprehensive view of control strategies in461
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Figure 7: Correlation between the percentage of variation of α with dual tasking and the
score in the 17 subjects with exploitable PASAT results.

dual-task cycling.462

4.3. An unprecedented short-term correlation behavior463

Some studies focusing on the temporal structure of variability pointed464

to a blend of short-term and long-term serial correlations. In the present465

study, a crossover was similarly observed in cycling time series (Figures 3).466

Further explorations using classical lag-one autocorrelation and DWA showed467

the presence of positive short-range autocorrelations, which are generally468

associated with emergent timing, expected here due to the smoothness in469

the rotating movement. A relevant supplementary information came in an470

original high short-range persistence (β = 3.38± 1.32 in reference situation;471

Figure 6) in our conditions demonstrated by the short-range PSD analysis,472

which does not match currently used models of emergent timing (wherein473

β ≤ 1; Figure 8). Thus, this result uncovers a new short-term correlation474

behavior which has not been reported before to our knowledge, and therefore475

deserves further comments.476

Short-range characteristics have been a matter of interest to assess the477

contribution of the motor subsystems in control strategies. It is understood478
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Figure 8: Example of the high frequency (≥ 0.2Hz) PSD of one typical subjects in refer-
ence situation, placed beside the classical zones associated with event-based and emergent
timing.
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that cycling exhibits a singular timing. We expect that this unusual behavior479

typical of cycling signs a motor characteristic not engaged in other human480

movements studied to date. In our conditions of cycling on a friction loaded481

cycle ergometer, the heavy rotating flywheel likely plays a critical role in a482

motor subsystem composed of a generator (skeletal muscles) and heavy parts483

with large inertia: legs and flywheel, linked via the feet on the pedals. It484

allows the subjects to rely on the large inertia of this bio-mechanical oscilla-485

tor, which does not require any quick adjustment by the neurophysiological486

system to maintain the desired rhythm. Under this hypothesis, high short-487

range autocorrelations are the natural consequence of the persistence of the488

rotating flywheel.489

Although the theory behind the emergent timing / event-based timing490

distinction lies in cognitive considerations (Delignières & Torre (2011)), the491

association of such mechanisms with the short-range correlations in the out-492

put time-series has been a post-hoc task-specific models. This way, the use493

of previous domain-specific models to any motor task is not straightforward.494

Our observations of a highly persistent signal in the short timescales (≤ 5495

pedal strokes), inconsistent with the usual event-based and emergent mod-496

els of short-range correlations, can feed new task-specific models (putatively497

covering the field of human locomotion) and promote the development of a498

more general framework in motor control theory.499

As an additional piece of knowledge, our study shows the absence of effect500

of a cognitive challenge on timing control in the short-range. This component501

has generally been associated with a dominance of motor components of the502

whole system for which we show here great persistence associated with high503

inertia. It is therefore not surprising that a cognitive challenge, mobilizing504

central resources, would not be reflected in this component of the temporal505

structure of variability. In a more general way, this could point to a global506

strategy to allocate a great part of the distributed control towards the mo-507

tor component when supported by the environment, in order to minimize508

cognitive resource recruitment for timing generation and ensure cognitive509

availability for dual-task.510

4.4. Impact of the periodicity in the cognitive task511

Interestingly enough, the cognitive task used here is repetitive at a con-512

stant period (3s cycle of the delivered numbers during the PASAT), which513

could alter the periodicity of cycling variability through a cyclic stimula-514

tion. Indeed, it has been shown that cognitive time duration assessments,515
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typically behaving like 1/f noise, could spontaneously couple with a periodic516

driver through a process called entrainment, while keeping an underlying517

fractal scaling (Amon et al. (2018)).518

Such a phenomenon, driven by the PASAT process, appears in our con-519

ditions in the short-range, as revealed by a peak in the PSD graph around520

0.34Hz during dual-tasking, corresponding to the 3s period between two suc-521

cessive instructions (Figure 6). Thus, we observe a process similar to previous522

works (Amon et al. (2018)), but in the short- rather than long-range localized523

control.524

It was suggested that one advantage of 1/f noise could be the capacity to525

adaptatively lock to any periodic driver. Here, though we have no means of526

showing whether it occurs through entrainment (strong anticipation) or local527

correction, we show that a similar coupling can occur even in the short range528

in a strongly persistent scaling (rather than 1/f scaling). Future studies may529

find it interesting to delve deeper into this subject.530

5. Conclusion and perspectives531

The present study aimed at exploring neurophysiological control strate-532

gies in cycling by exploring concomitantly short- and long-range timing be-533

haviors. The presence of fractal fluctuations in the long range during cycling534

was evidenced and could be definitively considered as a hallmark of tempo-535

ral fluctuations in cycling. This property reveals that a complex distributed536

and coordinated system underlies control, which is considered to be an asset537

to face perturbations thanks to many degrees of freedom for system respon-538

siveness (flexibility). Contrary to previous works, our study evidenced that539

dual-tasking could increase long-range persistence, which may reveal a special540

characteristics of the cognitive task (PASAT), of the motor task (continuity541

and great inertia), or of the combination of both. A peculiar short-term542

process was observed here in cycling, revealing that the interface between543

the locomotor system and an external oscillator with great inertia can lead544

to an original control distributions across central and peripheral instances.545

Collectively, these results invite to explore more thoroughly both short- and546

long-range persistence in different motor and cognitive situations to better547

understand the neurophysiology of human locomotor control. For example,548

future works may find it interesting to explore more thoroughly the effect of549

inertia by testing a similar motor tasks with different loads. Other endeav-550

ors may aim at upgrading the current models of timing generation for them551
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to include such peculiar short-range inertia phenomenon (Delignières et al.552

(2008))553

Such explorations may be interesting in applied contexts. The population554

here was young and healthy and might represent a reference from which555

elderly or diseased populations could be compared. The response to dual-556

tasking helps discriminating frailty in such populations (Kang et al. (2009)),557

and the fact that cycling on an ergometer is safe for fallers offers new ways558

of exploring neurophysiological functions in relation with psychological or559

physiological defects. The fractal approach of physiological complexity also560

has the potential to reveal the effect of training and motor learning (Nourrit-561

Lucas et al. (2015)), a domain in which the cycle ergometer is now obviously562

relevant for fractal analysis.563
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