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Abstract

Human Activity Recognition (HAR) is an important research issue for pervasive

computing that aims to identify human activities in smart homes. In the liter-

ature, most reasoning approaches for HAR are based on centralized approach

where a central system is responsible for processing and reasoning about sensor

data in order to recognize activities. Since sensor data are distributed, hetero-

geneous, and dynamic (i.e., whose characteristics are varying over time) in the

smart home, reasoning process on these data for HAR needs to be distributed

over a group of heterogeneous, autonomous and interacting entities in order to

be more efficient. This paper proposes a main contribution, the DCR approach,

a fully Distributed Collaborative Reasoning multi-agent approach where agents,

with diverse classifiers, observe sensor data, make local predictions, communi-

cate and collaborate to identify current activities. Then, an improved version

of the DCR approach is proposed, the DCR-OL approach, a distributed Online

Learning approach where learning agents learns from their collaborations to

improve their own performance in activity recognition. Finally, we test our ap-

proaches by performing an evaluation study on Aruba dataset, that indicates an

enhancement in terms of accuracy, F-measure and G-mean metrics compared to

the centralized approach and also compared to a distributed approach existing
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in the literature.

Keywords: Human activity recognition, Distributed reasoning, Multi-agent

system, Smart homes, Online learning.

1. Introduction

HAR is an emerging research field in smart environments (Ranasinghe et al.,

2016; Ziaeefard and Bergevin, 2015) through which the performed human activ-

ities can be identified. Various approaches use reasoning techniques for activity

modeling and recognition such as ontological or semantic reasoning (Noor et al.,5

2016; Chen et al., 2012), probabilistic reasoning (Riboni et al., 2016; Wang and

Ji, 2014), evidential reasoning (McKeever et al., 2010; Sebbak et al., 2014) or

fuzzy reasoning (Rodriguez et al., 2014; Abdelhedi et al., 2016). The common

characteristic of these approaches is that they are centralized for processing

and reasoning with sensor data. The centralized approach integrates a recog-10

nition model already built and identifies activities as the environment changes.

Nevertheless, connections between sensors and the centralized system are not

guaranteed. Moreover, handling the huge incoming sensor data from different

locations in smart homes, decreases the system performance. To rectify these

shortcomings, a fully decentralized approach seems to be a necessity for dis-15

tributing both sensor data and reasoning process. Due to the dynamic and

open nature of smart homes, the following main challenges must be considered

when dealing with distributed HAR: C1: sensor data management : how to deal

with distributed data arrival from deployed sensors in different locations of the

smart home? C2: data freshness: how to avoid outdated data? C3: identifi-20

cation: how to identify current activities based on past person behaviors? C4:

accuracy : how to increase the activity recognition accuracy? C5: heterogeneity :

how to handle the nature of sensor data? C6: uncertainty : how to trust data

coming from other sensors ? C7: Conflict : how to deal with contradictory data

coming from different sensors? The literature review revealed few approaches25

that have considered distributed reasoning for HAR in smart homes (Cicirelli
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et al., 2016; Wang and Ji, 2014; Mosabbeb et al., 2013; Ramakrishnan et al.,

2013; Amft and Lombriser, 2011; Marin-Perianu et al., 2008). However, these

few works only deal with some of the challenges discussed above. In this work,

we consider the six aforementioned challenges as requirements to achieve. The30

aim of this paper is to propose a totally Distributed Collaborative Reasoning

(DCR) approach for HAR. DCR is a novelty for distributed single-user activity

recognition issue.

The layout of this paper is structured as follows. Section 2 gives recent

studies on distributed HAR approaches. In section 3, our main contribution,35

the DCR approach, is introduced. In Section 4, the improved version of DCR is

presented (the DCR-OL approach). In Section 5, several experiments are con-

ducted over the Aruba dataset to evaluate the effectiveness of our approaches.

Finally, the conclusion and future works are briefly summarized in Section 6.

2. Related works40

Few recent studies have focused on distributed HAR approaches that can be

grouped according to their architecture.

1)- Client-server approach: authors in (Cicirelli et al., 2016; Fortino et al.,

2015) proposed a framework that mainly relies on the Cloud-assisted Agent-based

Smart home Environment (CASE) architecture which is composed of three lay-45

ers: IoT Layer, Virtualization Layer and Analytics Layer. The latter consists of

several nodes. Each node contains a server agent that hosts quite a few agents

and permits them to execute their functionalities. Agents evolve the activity

recognition task which is in charge of processing the features and recognizing

the high level activities in real time.50

2)- Hierarchical distributed approaches: authors in (Amft and Lombriser, 2011)

introduced an activity-event-detector (AED) for distributed activity recognition

systems based on directed acyclic graphs. It is a set of distributed sensing and

detection nodes (detectors) where each detector performs local data acquisition,

atomic activity spotting and communicates event-type information to other net-55
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work nodes. In addition, authors in (Marin-Perianu et al., 2008) proposed an

activity recognition architecture based on fuzzy logic, through which multiple

nodes collaborate to produce a reliable recognition result from unreliable sensor

data. The three main steps are: the detection of simple events, the combination

of events into basic operations and the final activity classification.60

3)- Totally distributed approaches: authors in (Wang and Ji, 2014) proposed

a distributed abnormal activity detection approach (DetectingAct) which em-

ploys sensor nodes to detect abnormal activities. In DetectingAct, a node detects

normal activities using frequent pattern mining technique (FP-tree algorithm).

Then, the activity is labeled by each node it passes through. Its status becomes65

abnormal as soon as it is tagged as abnormal by at least one node. In addi-

tion, authors, in (Mosabbeb et al., 2013), proposed a multi-view distributed

SVM model for camera sensor networks where different learning nodes inte-

grate SVM classifiers. In order to pull the learning results of different views

together, a regularization is used to concatenate all views. Finally, authors in70

(Ramakrishnan et al., 2014, 2013) proposed a modular and distributed Bayesian

framework which is a collection of Bayesian Networks (BN) where each individ-

ual BN models a unique high-level context. The parent node in each individual

BN is the high-level context node to be inferred and their respective children

nodes correspond to the sensors used to infer them.75

Table 1 summarizes distributed HAR systems discussed above from the re-

cent to the oldest one.

Despite their major differences regarding their architecture, all these ap-

proaches propose a distributed HAR where sensor data are processed in a

bottom-up manner to detect activities. Moreover, in some approaches, entities80

(nodes or agents) use data-driven models (KNN and SVM classifiers, FP-tree)

for data reasoning that allow the use of large-scale datasets of sensors to learn

activity models. However, they present some limitations:

− All entities adopt the same type of reasoning model. The choice of this one

depends on the nature of sensor data. However, sensor data differ from a loca-85

tion to another and then the reasoning model has to be different from an entity
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Table 1. Distributed HAR approaches

System Distributed

system

Reasoning

model

Architecture Communi-

cation

Input Collabora-

tion

CASE

system

(Cicirelli

et al., 2016;

Fortino

et al., 2015)

Multi-agent

system

KNN classi-

fiers

Client-

Server

Server

agent-

Agents

A set of

events

{date,

timestamp,

sensorId,

status}

No collab.

between

server

agents

DetectingAct

System

(Wang and

Ji, 2014)

A set of sen-

sor nodes

FP-tree al-

gorithm

Totally dis-

tributed

A node-a

subset of

nodes

Trajectory

and dura-

tion data

Yes (shar-

ing with

neighbors

to mark

a normal

or an ab-

normal

activity)

Multi-view

Distributed

SVM

System

(Mosabbeb

et al., 2013)

A set of

camera sen-

sor nodes

SVM classi-

fiers

Totally dis-

tributed

A node-all

nodes

Camera

data

(IXMAS

dataset)

Yes ( reg-

ularization

of different

views)

Distributed

Bayesian

Framework

(Ramakr-

ishnan

et al., 2014,

2013)

A set of

nodes

Bayesian

networks

Totally dis-

tributed

A node-all

nodes

Tri-axial

accelerome-

ter, binary

sensors, etc.

Yes (gen-

erating

a global

view)

Distributed

recogni-

tion system

(Amft and

Lombriser,

2011)

A set of

nodes

AED graph Hierarchical

distributed

Parent-

children

Detectors

data

Yes (de-

tected

events are

communi-

cated)

Distributed

HAR fuzzy-

enabled

system

(Marin-

Perianu

et al., 2008)

A set of sen-

sor nodes

(detectors)

Rule-based

fuzzy infer-

ence

Hierarchical

distributed

Parent-

children

Trial ac-

celerome-

ters

No collab.

between

nodes in a

same layer

Our ap-

proach

Multi-agent

system

Different

type of

classifiers

built upon

different

training

data

Totally dis-

tributed

An agent-a

set of agents

A set of

events

{date,

timestamp,

sensorId,

status}

(Aruba

dataset)

Yes (aggre-

gating the

final activ-

ity)
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to another.

− For totally distributed approaches, 3rd and 4th approaches present a com-

munication with all entities. On the other hand, in the 2nd approach, the

communication is possible with some predefined entities established in advance.90

In order to, respectively, overcome the high costs and to meet the real-time

needs, the communication should be dynamically defined for a set of entities.

− Uncertainty is not commonly addressed in these approaches. Entities trust

all data provided from the others when collaborating.

Table 2 positions these different approaches according to the challenges ad-95

dressed in the Introduction section. These approaches deal with some of chal-

lenges.

In this regard, we propose the DCR approach that tackles the seven chal-

lenges by providing the following contributions:

−C1 (sensor data management) → P1: a fully distribution of reasoning100

process and data over heterogeneous, autonomous and interacting entities.

−C2 (data freshness) →P2: a bottom-up approach should guarantee data

freshness.

−C3 (identification)→ P3: enriching agents with classifiers as activity mod-

els.105

−C4 (accuracy) → P4: ensuring communication and collaboration with a

dynamic set of agents in order to increase the recognition accuracy.

−C5 (heterogeneity) → P5: adopting agents with different types of activity

models built upon different training data regarding the nature of sensor data.

−C6 (uncertainty) → P6: assigning a trust degree for recognized activities.110

−C7 (conflict) → P7: three conflict resolution strategies are proposed.

3. The DCR approach

The DCR approach was briefly described in (Jarraya et al., 2018). However,

this paper describes in detail the DCR model and its algorithms.
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Table 2. Position of the different approaches according to cited challenges

Systme D1: sen-

sor data

manage-

ment

D2: data

freshness

D4: ac-

curacy

D5:

hetero-

geneity

D6: un-

certainty

D7: con-

flict

CASE system

Cicirelli et al.

(2016); Fortino

et al. (2015)

3 7 3 7 7 7

DetectingAct

system Wang

and Ji (2014)

3 3 3 7 7 3

Multi-view

Distributed

SVM system

Mosabbeb et al.

(2013)

3 7 3 7 7 3

Distributed

Bayesian

Framework

?Ramakrishnan

et al. (2014,

2013)

3 7 3 7 7 3

Distributed

Recognition

System Amft

and Lombriser

(2011)

7 3 7 7 7 3

Distributed

HAR fuzzy-

enabled system

Marin-Perianu

et al. (2008)

7 7 7 7 7 7

Our approach 3 3 3 3 3 3

3.1. System overview115

The whole framework for distributed HAR is illustrated in Figure 1. The

agent paradigm was adopted to architect our distributed system that aims at

supporting activity recognition process in smart homes. Multi-agent systems

are a well-adapted paradigm in modeling smart homes, facilitating local data

processing and the final decision is made by a collaboration (Maciel et al., 2015).120
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Figure 1. System overview of distributed HAR

We assume that a smart home is composed of different smart zones that deploys

heterogeneous sensors (e.g, motion sensors, presence sensors). A zone can be

the set of bedrooms or the living room plus the corridor or simply a kitchen.

The architecture of the proposed framework is composed of three main mod-

ules:125

Perception: more than one collector agent can be deployed in the same zone

that incorporate a CEP (Complex Event Processing) engine (Luckham, 2008).

These agents gather raw data sensor coming from one or more sensors and

produce events represented by a quadruple {date, timestamp, sensorId, status

(on/off)}.130

Observation: one observer agent is deployed by zone. Observer agents segment

the incoming event list into segments. Then, they extract a feature vector from

each segment (segmentation and feature extraction techniques are detailed in

this survey (Alzahrani and Kammoun, 2016)).

Identification: aims to recognize the occurring activities. In this work, the135

first two modules are not in the scope and the focus is on the identification

module which is the core of our proposed DCR approach.
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Actually, DCR models a smart home as a multi-agent system MAS =

{Al1 , Al2 , ..., Aln} where each agent Ali is assigned to a zone li. Agents are

autonomous and have the same functionalities. Each agent Ali ∈ MAS is de-140

fined as a tuple Ali = (idAli
, clfAli

, ACTAli
, ACQAli

) where:

− idAli
: is the identifier of the agent Ali in the location li.

− clfAli
: is the classifier associated to the agent Ali . It is built from past feature

vectors labeled with performed activities in the zone li. Thus, agents in MAS

hold different type of classifiers built upon different training data. The choice145

of the classifier type is detailed in the Simulation and evaluation section.

− ACTAli
= {< a1(li)

, d1(li)
>,< a2(li)

, d2(li)
>, ..., < am(li)

, dm(li)
>}: is the set

of activities a1(li)
, a2(li)

, ..., am(li)
known by the classifier clfAli

with their trust

degrees d1(li)
, d2(li)

, ..., dm(li)
. These ones express the truth degree of an activ-

ity. This list is fixed when building the classifier clfAli
and the trust degree is150

determined using the F1-score metric (Ting, 2010) for each performed activity

in li.

− ACQAli
: is the acquaintance list of the agent Ali . It’s dynamically adjusted

and contains agents who can recognize the local predicted activity by Ali .

155

Each agent Ali has a basic life cycle (Figure 2) which includes the following

steps to recognize activities:

− Given as input a feature vector FV arrived over time in li, the agent Ali

interrogates its classifier clfAli
to get the local predicted activity paAli

.

− After that, the agent Ali determines the trust degree dpa related to the activity160

paAli
from ACTAli

list.

− According to dpa value, we distinguish two cases:

• If paAli
is well recognized with a degree dpa >= δ (δ is a detection thresh-

old chosen by the designer), the agent will not collaborate with other

agents and will generate as an output the activity FpaAli
which is paAli

.165

• If paAli
is recognized with a degree dpa < δ, the agent proceeds by the

following steps:

9



– Building its acquaintance list ACQAli
. This one contains agents who

can recognize paAli
.

– Sending its input to some agents in ACQAli
. These ones are selected170

if their trust degrees of the related activity are higher than dpa.

– Receiving foreign activity predictions with their trust degrees from

selected agents.

– Applying conflict resolution strategies when the local prediction paAli

and foreign predictions are in a disagreement.175

– Generating as an output the final activity FpaAli
which can be dif-

ferent from paAli
.

The following subsection provides more detailed information through the

proposed algorithms.

3.2. The DCR algorithms180

An agent in the DCR system can be triggered in two cases as follows:

• When there is a new incoming feature vector (the input). In this case, it’s

called the starter agent.

• Following the request of another agent. In this case, it’s called the receiver

agent. The request is set off for two reasons:185

– In order to determine its acquaintance list ACQAli
, the starter agent

Ali requests all other agents to check if its predicted activity belongs

to their activities list ACTAlj
(j 6= i).

– In order to determine the final output, the starter agent Ali collab-

orates with some agents in its acquaintance list ACQAli
by sending190

its input to get their predictions.

The sequence diagram of DCR approach is described in Figure 3.
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Figure 2. The state diagram of the DCR approach

3.2.1. The starter agent algorithms (three algorithms)

Processing feature vector input (Algorithm 1) This algorithm takes as

input the feature vector FV and generates a list of predicted activities, source195

agents and their trust degrees pAct list. This agent S starts by loading its

classifier clf (line 3), predicting the activity paS (line 4) and determining its

trust degree dpa(S)
(line 5). If this one is greater than the threshold δ then the

starter agent S recognizes successfully the activity paS (line 6). It’s useless to

collaborate with other agents because it is time consuming and may decrease200

the recognition accuracy of paS . If the trust degree is less than the threshold δ

then the agent S sends a message containing the predicted activity paS to all

11



Figure 3. Sequence diagram of the DCR approach

other agents in order to find agents that are able to recognize it (lines 9-10).

Algorithm 1. Processing feature vector algorithm
Input:

FV : a feature vector; S: a sender agent; O: all other agents; δ: a threshold

ACTS = {< a1, d1 >,< a2, d2 >, ..., < am, dm >}: a list of recognized activities with

their trust degrees

Output:

pAct list = (< a1, S, d1 >,< a2, R1, d2 >, ..., < an, Rn, dn >): list of predicted activities,

source agents and their trust degrees

1 begin

2 initialise(pAct list)

3 clf = loadClassifier()

4 paS = predictActivity(clf, FV )

5 dpa(S)
= getDegreeFrom(paS , ACTS)

6 if dpa(S)
≥ δ then

7 pAct list.add(< paS , S, dpa(S)
>)

8 else

9 for oi ∈ O do

10 Send message(paS , S, oi, act : “check − activity′′)

11 return(pAct list)

Processing answer for request “check-activity” (Algorithm 3) This

algorithm aims at determining the acquaintance list of the starter agent ACQ(S).205

This list contains agents that are able to recognize the predicted activity paS .

The algorithm takes as input the reply message from the receiver agent R during

a period ∆t. If R can recognize paS , the message will contain the related trust

degree dpa(R)
of paS . After ∆t, no message is processed.
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Processing answer for request “check-FV” (Algorithm 2) The starter210

agent receives all predicted activities with their trust degrees from selected

agents in ACQ(S). In fact, the message msg contains the answer from the

selected agent that correctly identifies the paS (line 3). The starter agent S

adds the answer to pAct list(S) and overwrites the last line of the result file

rFILE by concatenating old predicted activities with the new one. The result215

file rFILE contains rows where each row is the list of predicted activities, the

source agents and their trust degrees for each FV.

Algorithm 2. Processing answer for request check-FV
Input:

msg: received message; S: sender agent; R: receiver agent

pAct listS : list of predicted activities, the source agents and their trust degrees

Output:

rFILE: result file

1 begin

2 if act = “ans− check − FV ′′ then

3 < pa(R), R, d(R) >= msg.getContent()

4 pAct list(S).add(< pa(R), R, d(R) >)

5 last line = read last line(rFILE)

6 concat(last line,< pa(R), R, d(R) >)

7 replaceLastLine(rFILE, last line)

8 return(rFILE)

3.2.2. The receiver agent algorithms (two algorithms)

Processing request “check-activity” (Algorithm 4): this algorithm

determines if the receiver agent can recognize the predicted activity of the sender220

agent pa(S). In fact, the receiver agent checks if pa(S) is in its activity list

ACT(R). If it is the case, it answers the sender agent by sending the related

trust degree d(R) (lines 5, 6 and 7). Otherwise, it does not send anything.

Processing request “check-FV” (Algorithm 5): the selected receiver

agent who can recognize the predicted activity pa(S) better than the starter225

agent, will receive a message from the latter. This message is a request to

check FV(S) which activity corresponds. Thus, the receiver agent loads its

classifier clf(R) (line 4), predicts the activity pa(R) according to the FV(S) (line

13



Algorithm 3. Processing answer for request check-activity
Input:

msg: received message; R: receiver agent; S: sender agent; act: action; FV : feature

vector; dpa(S)
: trust degree of paS ; startT ime: processing start time; ∆t: max period of

processing

Output:

ACQ(S): acquaintance list

1 begin

2 period = 0

3 if (act = “ans− check − activity′′) then

4 while period < ∆t do

5 dpa(R)
= msg.getContent()

6 if dpa(R)
is not ∅ then

7 ACQ(S).add(R)

8 if dpa(R)
> dpa(S)

then

9 Send message(FV, S,R, act : “check − FV ′′)

10 period = getCurrentT ime()− startT ime

11 return(ACQ(S))

5), determines its trust degree d(R) (line 6) and answers the starter agent by

sending a message containing the couple of its predicted activity with its trust230

degree < pa(R), d(R) > (line 7).

Algorithm 4. Processing request check-activity
Input:

msg: received message; S: sender agent; R: receiver agent; act: action

Output:

dpa(R)
: trust degree

1 begin

2 if (act = “check − activity′′) then

3 pa(S) = msg.getContent()

4 ACT(R) = R.getACTlist()

5 if pa(S) ∈ ACT(R) then

6 dpa(R)
= R.getDegreeFrom (pa(S), ACT(R))

7 Send message(dpa(R)
, R, S, act : “ans− check − activity′′)

8 return(dpa(R)
)

14



Algorithm 5. Processing request check-FV
Input:

msg: received message; S: sender agent; R: receiver agent; act: action; clf(R): receiver

classifier

Output:

< pa(R), d(R) >: couple of predicted activity and its trust degree of the receiver agent

1 begin

2 if (act = “check − FV ′′) then

3 FV(S) = msg.getContent()

4 clf(R) = loadClassifier()

5 pa(R) = predictActivity(clf(R), FV(S))

6 d(R) = getDegreeFrom(ACT(R), pa(R))

7 Send message(< pa(R), d(R) >,S, act : “ans− check − FV ′′)

8 return(< pa(R), d(R) >)

3.3. Properties of the DCR algorithms

In this section, we discuss some properties of the DCR algorithms regarding

their termination, their number of messages and their complexity.

Termination: we assume a multi-agent system MAS = {Al1 , Al2 , ..., Aln}235

with a finite number of agents in the system.

Number of messages: Given n as the total number of agents, the exchange

of messages between the starter agent and receiver agents entails the following

two steps:

• When fixing acquaintance list: exchange of messages between the starter240

agent and all other agents. In this case, the number of messages is equal

to 2× (n− 1).

• During the collaboration with some agents within the acquaintance list:

in the worst case, all agents in the acquaintance list identify properly the

predicted activity. Thus, the number of messages stands at 2× (n− 1).245

Therefore, the number of messages exchanged between the starter agent and

the other receiver agents for a feature vector is equal to: NbrMsg = 4 × (n −

1). Assuming that we have mFV feature vectors, the total number of message

exchanged is: ToT = mFV ×NbrMsg = 4× (n− 1)×mFV ' O(n×mFV ) =

O(mFV ) where |n| << |mFV |250

15



Complexity analysis: in the worst case, the computational complexity of

the DCR algorithms on a single agent is proportional to the number of agents

n and to the number of feature vectors mFV : O(n ×mFV ) = O(mFV ) where

|n| << |mFV |.

3.4. Conflict resolution strategies255

In DCR, the conflict may occur when the starter agent S receives foreign

predicted activities from receiver agents Rj which are different from the local

predicted activity pa(S). These received activities exist in the list pAct list(S) =

{(pa(S), S, dpa(S)
), (pa(R1), R1, dpa(R1)

), ..., (pa(R(n−1)), Rn−1, dpa(R(n−1))
)} includ-

ing pa(S).260

Starter agents adopt a conflict resolution based on self-modification strategy

(Barber et al., 2000). Thus, three aggregation methods are used by a starter

agent S to resolve conflicts as follows:

1)−The maximum trust degree method (max-trust): the starter agent chooses

the most confident activity which means the one having the higher mean of trust265

degrees.

2)−The most frequent method (max-freq.): the starter agent considers activity

frequency. Thus, it chooses the most frequent activity in the pAct list(S) list.

3)−The stacking method (Wolpert, 1992) (stack.): the starter agent contains a

meta-classifier which is trained on a meta-dataset. This one contains as features270

the set of local and foreign predictions (pAct list(S)) and as the class the correct

activity. The logistic regression method (Gromping, 2016) is used to build the

meta-classifiers. The stacking method was not presented in (Jarraya et al.,

2018).

3.5. Discussion and Limitations275

The DCR system is a set of agents with similar functionalities that commu-

nicate and interact with each other to identify the participant’s current activity

in the smart home. These agents incorporate heterogeneous classifiers and pre-

defined activities lists ACTAli
. These elements are initialized once and will not
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be updated over time. However, the DCR system must deal with the following280

changes that may occur over time:

1. Environment changes (e.g, a new deployed sensor, a new activity to dis-

cover, etc.)

2. The behavior change of the participant. For DCR, we assume that the

frequency of the participant’s behavior change is very low.285

In this paper, we are interested in the second point described above. Es-

pecially, DCR must consider the participant’s behavior changes by applying an

online learning. Indeed, an agent must learn online and consider feedbacks re-

sulted from collaborations with others. In other words, agents must evaluate

their final predicted activity by comparing it with the real one and take actions290

in the future to improve the recognition accuracy.

Therefore, a new challenge appears and join the set of challenges cited in the

Introduction section: C8: learning : how agents can learn from their experiences

and improve their performances ?

The following section aims to propose an improved version of DCR to deal295

with this new challenge, by applying an online learning using learning agents.

These latters are capable of learning from their collaborations. They start with

some basic knowledge of the MAS system and are then able to act and adapt

autonomously, through learning, to improve their own performance. This new

distributed online approach is called DCR-OL (DCR with Online Learning).300

4. DCR-OL: the DCR approach with an online learning

In this section, we present our new DCR-OL approach by applying an online

learning. First, we review two recent existing works on the online learning

and discuss their differences. Then, we present the DCR-OL system overview.

Finally, we describe the DCR-OL algorithm.305
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4.1. Related works on the online learning

When working with data streams, we should expect an infinite amount of

data captured from distributed and heterogeneous sensors. Observations come

in one by one and are being processed in that order. The effective use of such

high data also involves a significant challenge: the nature of observed data,310

their labels and their relationships can change over time, known as concept drift

(Zliobaite, 2010).

Several works have been proposed to deal with this challenge. We discuss

two existing works as below:

1. Authors, in (Canzian et al., 2015), propose the Perceptron Weighted Ma-315

jority (PWM), a distributed online ensemble learning approach to classify

observed data from distributed data sources. They focus on binary clas-

sification problems. Their system consists of multiple distributed local

learners, which analyze different data streams that are correlated to a

common event that needs to be classified. Each learner uses a local classi-320

fier to make a local prediction. The local predictions are then collected by

each learner and combined using a weighted majority rule to output the

final prediction. After making the final prediction, the learner compares

the final prediction and the real one. The learner updates the aggregation

weights adopting a perceptron learning rule. Indeed, if the comparaison325

fails, the weights of the learners that reported a wrong prediction are de-

creased by one unit, whereas the weights of the learners that reported a

correct prediction are increased by one unit. Otherwise, the model is not

modified.

Their approach only learn an aggregation rule to handle the dynamic330

data streams. Classifiers maintain an aggregation rule up-to-date and are

able to deal with the concept drift. They process each observation on

arrival only once, without the need for storage and reprocessing chunks of

data. The local classifiers are not centrally retrained (e.g., in a distributed

scenario it may be expensive to retrain the local classifiers or unfeasible if335
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the learners are operated by different entities).

2. Authors, in (van Rijn et al., 2018), study the use of heterogeneous en-

sembles for data streams in a centralized way and propose the Online

Performance Estimation framework, which dynamically weights the votes

of individual classifiers in an ensemble. This approach is called BLAST340

(short for best last) which is an ensemble embodying the performance

estimation framework. In fact, it consists of a group of diverse base-

classifiers. Each classifier maintains a performance value which is updated

by a performance estimation function. During the learning phase, the

performance estimation function estimates the performance value of each345

classifier based on the result of comparison between the local prediction

and the real one. Then, the BLAST algorithm updates the classifier with

the current training instance. For each test instance, the ensemble selects

a classifier with the highest performance value to make the prediction..

This selected classifier is considered as the active classifier. When sev-350

eral classifiers obtain the same estimated performance value, an arbitrary

classifier can be selected as the active classifier.

Table 3 compares the difference points of the two approaches described

above.

Table 3. (Canzian et al., 2015) vs (van Rijn et al., 2018)

Criteria (Canzian et al., 2015) (van Rijn et al., 2018)

Field Binary classification problems Multi-class classification problems

Identification of

the final predic-

tion

Combining the local predictions of learn-

ers and aggregating the final prediction

Selecting an active classifier with the

highest performance value to make the fi-

nal prediction

Online learning If the final prediction is different from the

real prediction, the weights of the learn-

ers are modified

The performance values of base-classifiers

are instantly up-to-date during the learn-

ing phase

Updating classi-

fiers

No update for the distributed classifiers,

only the aggregation rule is updated

Instant update of the classifiers when

observations arrive during the learning

phase

In this regard, we present our DCR-OL approach which addresses the fol-355
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lowing propositions:

• The focus is on activity recognition field (multi-class identification prob-

lem).

• Distributed learning agents are used, each has a performance value.

• The final activity is the aggregation of several predictions (local and re-360

ceived predictions) resulted from a new aggregation strategy called the

maximum weighted performance strategy.

• The performance values of agents are updated if the final prediction is

different from the real prediction.

• Classifiers will not be modified. Only the performance values of agents365

change when new feature vectors arrive over time.

4.2. The DCR-OL model

The DCR-OL model adopts the same representation as the DCR system.

Except, it replaces intelligent agents by learning agents and modifies the defi-

nition of the agent Ali by adding a fifth component. This latter is a list of the370

performance values of all agents in MAS. The purpose of adding this list is to

evaluate the performance of agents in terms of their predictions comparing to

the real one.

Thus, DCR-OL is a set of distributed learning agents LAi (i ∈ n;n is the

number of learning agents in MAS) in the smart home. Each learning agent375

LAi is defined as a tuple LAi = (idLAi
, clfLAi

, ACTLAi
, ACQLAi

, PERFLAi
)

where PERFLAi = {pLA1 , pLA2 , ..., pLAn} is a list of the performance values of

each agent LAi in the MAS system. We note that pLAi ∈ [0, 1], with better

performing agents obtaining a higher score in terms of prediction.

The PERFLAi
list is specific for each agent LAi and depends only on agent’s380

context. It is different from an agent to another. When initializing the DCR-

OL system, this list is initialized with the value 1; we assume that all learning

agents in MAS are performant.
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The learning agent LAi reasons with the same way as the agent Ali in the

DCR system. When a new feature vector FV arrives, the learning agent LAi385

named the starter learning agent SLi, asks its local classifier to get the local

predicted activity with its trust degree. If the latter is higher than the threshold

δ, the learning agent will not collaborate with other agents and will generate as

an output the corresponding activity.

If the trust degree is less than the threshold δ, the agent SLi collaborates390

with some agents in its acquaintances list to get their predictions. If the local

predicted activity is different from the received predictions, the agent SLi will

apply a conflict resolution strategy, called the maximum weighted performance

max-wPerf strategy to make a final decision.

After generating the final prediction, the agent SLi must learn from feed-395

backs received from other agents. It has to adapt its performance list PERFSLi .

Thus, it starts by comparing its final prediction FpaSLi
with the real prediction

RP(FV ). We assume that the latter is retrieved during the interaction with the

participant who confirms or contradicts the final predicted activity. For this

purpose, we distinguish two cases:400

1. If the final prediction FpaSLi is different from the real prediction RP(FV ),

PERFSLi
will be modified. In the following, we describe how to update

the performance values of different learning agents.

2. If the final prediction FpaSLi
is the same to the real prediction RP(FV ),

PERFSLi
will not be modified.405

Updating the performance list PERFSLi

Performance values of different learning agents in PERFSLi = {pLA1 , pLA2 , ..., pLAn}

list will be updated according to the performance measure Perf-measure used

by the BLAST approach in van Rijn et al. (2018) as follow:

pLAi = (pLAi × α) + {(1− Loss(paLAi(FV(SLi)), RP (FV(SLi))))× (1− α)}410

Where:
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• α : the fading factor gives a high importance to recent predictions, whereas

the importance fades away when they become older. This parameter is

chosen by the expert and is initialized with the value 0.999. The choice of

this value is detailed in (van Rijn et al., 2018).415

• Loss() : is a zero/one loss function, giving a penalty of 1 to all misclassified

feature vectors.

• paLAi
(FV(SLi)): the local predicted activity of the agent LAi according

to the corresponding feature vector FV(SLi).

• RP (FV(SLi)): the real activity of the corresponding feature vector FV(SLi).420

Thus, the learning agent SLi considerates feedbacks received from other

learning agents by using the performance measure Perf-measure and updates

its performance list PERFSLi
.

The maximum weighted performance strategy max-wPerf425

The performance list PERFSLi of the starter learning agent SLi will be

used by the new conflict resolution strategy max-wPerf. The latter aggregates

the final prediction by computing the maximum weighted performance of each

predicted activity in the pAct list(SLi) list.

Indeed, the weighted performance PP(paj) of each activity PP(paj) in the430

list pAct list(SLi) is defined as below:

PP(paj) =

K∑
k=1

pLAk
(paj)

|pAct list(SLi)
|∑

f=1

pLAf

where:

• j: index of the predicted activity in the list pAct list(SLi).

• K: number of learning agents who predicted the activity paj .435
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The final predicted activity FpaSLi is the predicted activity paj with the

highest value of PP(paj) in the pAct list(SLi).

Figure 4 describes two steps: the learning step in which the learning agent

compares its final prediction with the real prediction. If this comparison fails,

the agent SLi updates its PERFSLi list by computing the performance value440

pLAi
of each learning agent LAi existing in the list pAct list(SLi). The testing

step consists in applying the maximum weighted performance strategy max-

wPerf considering the updated list PERFSLi
.

Figure 4. The DCR-OL approach

Figure 5 describes the life cycle of a starter learning agent SLi in the DCR-

OL approach and shows its contribution according to the DCR approach by445

adding the feedbacks loop.

4.3. The DCR-OL algorithm

The DCR-OL algorithm (Algorithm 6) describes the new online conflict res-

olution method which is the maximum weighted performance strategy max-

wPerf. The starter learning agent SLi applies this online algorithm to generate450

the final prediction from the pAct list(SLi) list which contains the local predic-

tion and all the received predictions. This algorithm consists of two main steps

after the initialization step of the PERFSLi list (line 2):
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Figure 5. The state diagram of the DCR-OL approach

1. Generate the final prediction FpaSLi by applying the max-wPerf strat-

egy (line 4). This step is performed via the maxWeightedPerformance455

method (algorithm 9).

2. Update the PERFSLi
list by evaluating the concerned agents int pAct list(SLi)

list (line 5). This step is performed via the updatePerformanceV aluesmethod

(algorithm 10).

We detail these two methods as follows:460

• The maxWeightedPerformance method: computes the weighted perfor-

mance of each activity in the pAct list(SLi) list (line 4) and generates the

final activity with the highest weighted performance (line 6).

• The updatePerformanceV alues method: updates the the PERFSLi
list

of the starter agent SLi. Indeed, this method retrives predictions of agents465
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Algorithm 6. DCR-OL: the DCR approach with an online learning
Input:

SLi : the starter learning agent; n : number of agents in MAS; pAct list(LSi)
: list of

triplets (predicted activity, source agent, trust degree); α : fading factor;

1 begin

// Initialization of PERFSLi

2 set PERFSLi
= {pSLi

, pLA2
, ..., pLAn−1

} ← 1

// For all feature vectors

3 for all observations o = (FVSLi
, RP (FVSLi

)) do

4 FpaSLi
= maxWeightedPerformance(pAct list(SLi)

, PERFSLi
)

5 if FpaSLi
<> RP(FVSLi

) then

6 PERFSLi
=

updatePerformanceV alues(pAct list(SLi)
, PERFSLi

, RP (FVSLi
), α)

in the pAct list(SLi) (lines 2 and 3), determines their performance values

according to the Perf-measure measure (line 4) and finally updates the

PERFSLi list for concerned agents (line 5).

Algorithm 7. the maxWeightedPerformance method
Input:

pAct list(SLi): list of triplets (predicted activity, source agent, trust degree);

PERFSLi
= {pSLi

, pLA2
, ..., pLAn−1

}: list of performance values of all agents in MAS.

Output:

FpaSLi
: the final predicted activity

1 begin

// List of predicted activities PaListSLi

2 PaListSLi
= getDistinctPredictedActivities(pAct listSLi

)

3 for each ak in PaListSLi
do

// Compute the weighted performance value of each activity

4 PPak
= computePP (pAct listSLi

, PERFSLi
)

5 PPlist.add(< ak, PPak
>)

// FpaSLi
is the activity with the highest weighted performance value

6 FpaSLi
= maxPP (PPlist)

7 return(FpaSLi
)

These algorithms are implemented and tested in the next section.
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Algorithm 8. The updatePerformanceV alues method
Input:

pAct list(SLi): list of triplets (predicted activity, source agent, trust degree);

PERFSLi
= {pSLi

, pLA2
, ..., pLAn−1

}: list of performance values of all agents in MAS.

RP(FVSLi
): the real activity of FV ; α : fading factor;

Output:

PERFSLi
: performance list updated of the agent SLi

1 begin

2 for all agents LAi in pAct listSLi
do

// Retrieve local predictions of agents LAi in pAct listSLi

3 LPLAi
(FVSLi

) = getLocalPrediction(pAct listSLi
, LAi)

// Compute the new performance value of the agent LAi

4 pLAi
= (pLAi

× α) + {(1− Loss(LPLAi
(FVSLi

), RP (FVSLi
)))× (1− α)}

// Update PERFSLi
of the agent SLi

5 PERFSLi
= updatePerformanceV ector(PERFSLi

, LAi, pLAi
)

5. Simulation and evaluation470

5.1. Aruba dataset

To simulate our DCR approach, this paper uses the Aruba open data col-

lected from CASAS smart homes, a project of Washington State University

(CASAS Project, 2007) (Cook and Schmitter-Edgecombe, 2009). Aruba dataset

records the daily life of an elderly person living alone. Data collected from Aruba475

dataset was obtained using 31 motion sensors, three door sensors, five temper-

ature sensors and three light sensors. In this paper, we are only interested in

motion and door sensors. 11 activities were performed for 220 days (7 months).

These data are all represented as a sequence of time-stamped sensor events with

annotated activities, as shown in Figure 6.480

Figure 6. An example of timestamped sensor events with annotated activities

26



Table 4. Activities statistics of Aruba dataset

Id Activity number of events Id Activity number of events

1 Bed to Toilet 844 7 Relax 173 337

2 Eating 10 421 8 Resperate 211

3 Enter Home 1 097 9 Sleeping 21 247

4 Housekeeping 10 583 10 Wash Dishes 8 021

5 Leave Home 1 161 11 Work 9 927

6 Meal Preparation 149 875 12 Other 493 274

The dataset is imbalanced, as some of the activities occur more frequently

than others. Table 4 presents the number of sensor events per activity in the

Aruba dataset. Other activity contains events with missing labels. It covers

54% of the entire sensor events.

5.2. Preprocessing of Aruba dataset485

The purpose of Aruba dataset preprocessing is to prepare the acquired data

for performing the DCR approach. As mentioned above, this process involves

four main steps: segmentation, feature extraction, adding location feature and

creating sub datasets per location feature. Figure 7 summarizes these steps.

In this work, we used data results of segmentation and feature extraction steps490

provided by (Yala et al., 2017).

Figure 7. Preprocessing of Aruba dataset for DCR approach

5.2.1. Segmentation step

Segmenting a continuous sensor sequence is usually a prerequisite process for

activity recognition. It aims to split the data into segments or windows which
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contain information about activities. Retrieving important and useful informa-495

tion from continuous stream of sensor data is a difficult issue for continuous

activity (Alzahrani and Kammoun, 2016). In (Yala et al., 2017), authors used

the sensor-based windowing technique to deal with streaming sensor data. Each

window contains an equal number of events which is fixed to 10 events. The

choice of this number is influenced by the average number of sensor events that500

span the duration of different activities.

5.2.2. Feature extraction step

It aims to extract features as the main characteristics of a raw data segment.

In other words, it is the transformation of large input data into a reduced

representation of the set of features, which can also be referred as a feature505

vector (Alzahrani and Kammoun, 2016). Once the segmentation technique is

performed, each window can be transformed into a feature vector. In (Yala

et al., 2017), authors used the baseline method as a feature extraction method

(Krishnan and Cook, 2014). Thus, from a window, one feature vector FVi is

built with a fix dimension containing the start time of the first event, the last510

time of the last event, the duration of the window and the occurrence number

N (N(D001), N(D002), ..., N(M031) where Dxxx are door sensors and Mxxx are

motion sensors) of each sensor within the window. Given Aruba dataset, if we

have 34 sensors installed in the smart home, the feature vector’s dimension FVi

will be 34+3. FVi is tagged with the label yi of the last sensor event in the515

window. Each label yi corresponds to an activity class (Figure 8).

Figure 8. Feature vector and its corresponding class

Thus, a collection of FVi and the corresponding yi become the training data

on which the classifier of each agent is built.
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Table 5. List of sensors for each location

Location Sensors id Location Sensors id

Living M009,M010,M012,M013,M020 Bedroom 1 M023,M024

Dining M014 Bedroom 2 M001,M002,M003,M005,M006,M007

Kitchen M015,M017,M018,M019 Bathroom 1 M031

Office M025,M026,M027,M028 Bathroom 2 M004

Corridor M021,M022, M008, M029 Exit D001,D002, D004, M011, M016, M030

5.2.3. Adding location feature

Our DCR architecture holds a set of agents assigned to different zones or520

locations in the smart home. Therefore, in order to simulate our approach, we

have to determine the location of each feature vector in the map (Figure 9).

We distinguish 10 locations (10 zones): living room, kitchen, dining, bedroom

1, bedroom 2, bathroom 1, bathroom 2, exit, corridor and office.

Figure 9. Smart home map of Aruba dataset

Table 5 summarizes the set of sensors installed in each location.525

The location of each feature vector is determined by the following strategy:

FV contains the occurrence number of each triggered sensor within the window.
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These triggered sensors belong to different locations in the smart home. The

final location of the FV is the location of the triggered sensors having the

maximum mean occurrence number. The location feature is added to each530

feature vector (Figure 10).

Figure 10. Adding location feature

5.2.4. Creating sub datasets per location

Adding location feature in the vector aims to split the Aruba dataset into

different sub datasets according to the location feature. Thus, each sub dataset

corresponds to a specific location, contains all related feature vectors and then535

can be assigned to an agent in that location. Feature vectors in sub datasets do

not include the location feature.

5.3. Simulation environment

In order to test and evaluate our DCR and DCR-OL approaches on Aruba

dataset, the simulation environment was employed with two setups:540

Hardware setup: tests were performed on a virtual machine Windows

Server 2012. This one is an Intel(R) Xeon(R) CPU E5-2673 v3 @2.40 GHz 2.39

GHz (endowed with 8 cores hyper threading enabled), 28.0 GB of RAM and

126 GB of hard disk.

Software setup: we have chosen the Anaconda1 V3, the leading open545

source data science platform including Python language. For data analysis, we

used the open source python library Scikit-learn2 that implements a range of

machine learning, preprocessing, cross-validation and visualization algorithms.

1https://www.continuum.io/anaconda-overview
2http://scikit-learn.org/
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For the multi-agent setup, we used SPADE3 V2.3 (Smart Python multi-Agent

Development Environment) which is a Multi-agent Platform based on the XMPP/Jabber550

technology and written in Python.

5.4. Initialization of DCR and DCR-OL systems

In this section, we describe the initialization step of the two models DCR

and DCR-OL.

5.4.1. Initialization of DCR system555

DCR models the smart home (Figure 9) as a multi-agent system MAS =

{Al, Ad, Ak, Ao, Ac, Abed1, Abed2, Abath1, Abath2, Ac} where agents are respectively

assigned to livingroom, dining, kitchen, office, corridor, bedroom1, bedroom2,

bathroom1, bathroom2 and corridor locations. The threshold δ is chosen at

80%. Agents in MAS have to be initialized with their classifiers clfAli
and560

their activities lists ACTAli
as follows.

1)-Building clfAli
: we have to analyze sub datasets by classifying activi-

ties with machine learning algorithms (Alpaydin, 2010): Random Forest (RF),

Decision Tree (DT), Extra-tree (ExT) and Naive Bayes (NB) (these four classi-

fiers were chosen according to the accuracy and processing time, e.g, SVM takes565

much time to provide the results). The classification was performed with default

parameters and using 10-fold cross-validation. This analysis aims to choose the

best classifier for each sub dataset in terms of accuracy and F-measure metrics.

Table 6 denotes the accuracy value for all sub datasets per location by em-

ploying the four different classifiers. In fact, we notice that the RF classifier570

presents the best accuracy and also for the F-measure and G-mean metrics for

all sub datasets (due to the lack of space, we did not describe the F-measure

and G-mean details). Therefore, all agents will adopt an activity model built

upon the RF classifier. It should be noted that the choice of a classifier to build

an activity model depends mainly on the sub dataset. Thus, in our case, we575

3https://pypi.python.org/pypi/SPADE
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Table 6. Accuracy of different classifiers for Aruba sub datasets

Dataset Location Instance number RF (%) DT (%) ExT (%) NB (%)

Dl Living 322530 75.96 72.36 60.3 59.73

Dd Dining 33789 66.04 61.46 64.72 58.71

Dk Kitchen 241218 58.96 55.67 56.43 51.38

Do Office 30485 66.04 61.54 65.55 65.55

Dc Corridor 52600 84.46 77.82 83.15 26.66

Dbed1 Bedroom 1 36127 66.98 63.31 66.28 42.12

Dbed2 Bedroom 2 146002 91.84 89.89 90.99 48.61

Dbath1 Bathroom 1 990 81.23 70.01 79.91 64.92

Dbath2 Bathroom 2 2667 92.7 90.94 92.44 58.32

De Exit 13582 74.05 68.64 73.06 35.68

have by chance obtained the same type of classifiers for all sub datasets but we

can have activity models built upon different type of classifiers in other cases

(using other datasets).

2)-Building ACTAli
: each agent incorporates this list which is a set of recog-

nized activities by the classifier and their trust degrees. The latter corresponds580

to the F1-score measure for each activity. The ACTAli
list content of each agent

is sketched in Table 7.

5.4.2. Initialization of DCR-OL system

The DCR-OL approach is the DCR approach with an online learning over

time. Thus, DCR-OL adopts the same representation and the same initialization585

of data as those of the DCR system. For the performance list PERFLAi =

{pLA1
, pLA2

, ..., pLAn
}, it is initialized with the value 1. All the pLAi

values

are equal to 1. To illustrate the DCR approach and the DCR-OL approach, we

present in the following an example of application for each system.
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Table 7. List of recognized activities ACTA(li)
of each agent

Agent Ali Dataset Dli List ACTA(li)

Al Dl {(2, 42.19%), (4, 43.64%), (5, 21.62%), (6, 61.34%), (7, 86.21%), (9, 89.03%),

(10, 24.14%), (11, 30.0%), (12, 83.92%)}

Ad Dd {(2, 73.23%), (4, 31.02%), (5, 44.44%), (6, 51.91%), (7, 75.71%), (9, 0.0%),

(10, 28.57%), (11, 0.0%), (12, 84.62%)}

Ak Dk {(2, 19.62%), (3, 100.0%), (4, 25.2%), (5, 11.11%), (6, 74.6%), (7, 64.37%),

(9, 81.58%), (10, 23.56%), (11, 0.0%), (12, 68.78%)}

Ao Do {(2, 0.0%), (4, 64.29%), (5, 42.86%), (6, 68.93%), (7, 82.84%), (8, 77.86%),

(9, 90.91%), (10, 64.52%), (11, 69.71%), (12, 85.38%)}

Ac Dc {(2, 37.93%), (3, 23.53%), (4, 33.95%), (5, 48.97%), (6, 59.0%), (7, 63.13%),

(8, 0.0%), (9, 83.93%), (10, 22.86%), (11, 5.56%), (12, 94.62%)}

Abed1 Dbed1 {(2, 66.67%), (4, 39.51%), (5, 54.55%), (6, 70.44%), (7, 69.77%), (9, 70.09%),

(10, 50.0%), (11, 47.2%), (12, 84.63%)}

Abed2 Dbed2 {(1, 51.58%), (2, 0.0%), (4, 31.2%), (6, 61.08%), (7, 52.0%), (9, 89.84%), (10,

44.44%) (11, 46.15%), (12, 96.87%)}

Abath1 Dbath1 {(4, 56.67%), (12, 22.22%), (6, 93.71%)}

Abath2 Dbath2 {(1, 57.78%), (4, 56.25%), (6, 0.0%), (7, 66.67%), (9, 0.0%), (12, 97.5%)}

Ae De {(2, 50.0%), (3, 61.13%), (4, 55.56%), (5, 21.62%), (6, 80.1%), (7, 75.0%), (9,

98.25%), (10, 30.77%), (11, 75.0%), (12, 89.16%)}

5.5. Application examples of DCR and DCR-OL systems590

5.5.1. Application example of DCR system

In this subsection, we aim to simulate an example of DCR approach. Given

the office agent Ao as an example (Figure 11), it incorporates its sub dataset

Do. First step: it takes as input the first feature vector from Do, interrogates

its classifier clfAo and gets its predicted activity pao (e.g. pao is identified by595

id 5 which corresponds to the leave home activity). Then, it determines its

trust degree dpao from ACTAo
(see Table 7) which is 42.86%. This one is less

than 80% which means that the agent Ao is not able to recognize accurately the

leave home activity and has to collaborate with some agents who are capable
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to recognize it with a higher precision. Second step: it starts finding its600

acquaintance agents and determines its ACQAo
list that includes agents who

can recognize pao. In our case, ACQAo
list contains agents Al, Ad, Ak, Ac,

Abed1 and Ae. Third step: the agent Ao sends its input to some selected

agents in ACQAo . Selected agents are agents who recognized pao better than

Ao which means that their trust degree for pao is higher than dpao (42.86%).605

Selected agents are Ad, Abed1 and Ac (see Table 7). Fourth step: the agent Ao

receives foreign predictions and aggregates them with its local prediction pao

by applying the max-trust. aggregation method as an example. The output is

a set of predicted activities built upon a collaboration mechanism. Thus, the

agent Ao generates two activities: the leave home activity (id 5) with a trust610

degree equal to 47.28% and the other activity (id 12) with a trust degree equal

to 94.62%. As a final result, the agent Ao chooses the most confident activity

which is the other activity (id 12). This process is applied for all feature vectors

existing in the sub dataset Do.

Figure 11. An example of DCR applied to the office agent Ao

5.5.2. Application example of DCR-OL system615

We keep the same example of the office agent Ao previously described (i,e.

the same example of data). Thus, we keep the same process of 1, 2 and 3 steps

(Figure 12).
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Fourth step: we apply the DCR-OL approach by using learning agents.

These agents learn over time by considering feedbacks from others. Specifically,620

they apply the maximum weighted performance strategy to resolve conflicts

when the local prediction is different from those received.

We assumed that at all agents in MAS are performant in the initialization

step and therefore the PERFAo
list of the agent Ao is initialized with the value

1 (Figure 12). The agent Ao receives foreign predictions from selected receiver625

agents and inserts them in the pAct listAo
list including its local prediction pao.

It proceeds by computing the weighted performance value for each activity in

pAct listAo
(PP (id5) and PP (id12)). With the max-wPerf strategy, the agent

Ao selects the activity with the maximum weighted performance value which

is the activity id5 with a performance value of 75%. Thus, the final predicted630

activity Fpao is the activity leave home (id5).

Fifth step: the agent Ao starts with the learning phase of the PERFAo

list. Indeed, it compares the final predicted activity Fpao with the real activity

RPFV (Figure 12). In our case, the comparison test fails and then the PERFAo

list must be modified.635

Sixth step: this step aims to update of the PERFAo
list. We apply the

Perf-measure measure for each agent in the pAct listAo
list. As a result, the

performance values of agents that misclassify the real activity RPFV decrease.

These agents are Ao, Ad and Abed1 whose performance values pAo , pAd
and

pAbed1
are respectively 0.999. The performance value of the agent that correctly640

predicted RPFV remains the same. This agent is the agent Ac whose perfor-

mance value pAc
is respectively 1. The PERFAo

list is updated with the new

performance values of concerned agents which are Ao, Ad and Abed1. On the

next arrival of a feature vector, the max-wPerf strategy will considerate the

updated PERFAo
list.645

In the next section, we start with the experimental evaluation of the DCR

system on Aruba dataset.
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Figure 12. An example of DCR-OL applied to the office agent Ao

5.6. Experimental evaluation of the DCR system

After MAS initialization step, the DCR approach can be launched. In fact,

each starter agent has its sub dataset and performs the DCR approach with650

10 folds cross-validation. Therefore, each sub dataset is split in 10 folds. Each

fold represents the testing dataset and the merge of the others represents the

training dataset. Thus, each starter agent has 10 folds of training and testing

data respectively and then has 10 RF classifiers. A starter agent takes as input

each feature vector from a testing dataset, launches the DCR program and655

generates as output the set of predicted activities with their trust degree. This
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task is repeated 10 times for all testing datasets and for each starter agent. To

evaluate the performance of our DCR approach, evaluation metrics (Ting, 2010)

used in this paper are: accuracy – shows the percentage of correctly classified

instances; F-measure – is the harmonic mean of precision and recall (Ting,660

2010); G-mean – is the geometric mean measure that tries to maximize the

accuracy on each of the classes while keeping these accuracies balanced (Kubat

and Matwin, 1997); processing time – the time taken to run a program and

message number – the number of messages exchanged between agents.

5.6.1. Evaluation with accuracy, F-measure and G-mean metrics665

Given as an example the office agent Ao, Table 8 denotes in details accuracy,

F-measure and G-mean metrics with 10 folds for DCR by applying the three

aggregation strategies. According to this comparative table, DCR (stack.) is

the best aggregation method in terms of the global average of accuracy and

F-measure metrics. DCR (max-freq.) is the best aggregation method in terms670

G-mean metric. The evaluation details of the 10 folds of the remaining agents

are not mentioned in this paper due to the lack of space. We only show the

global average of accuracy, F-measure and G-mean metrics of each agent’s sub

dataset in the whole MAS (Table 9). DCR is evaluated according to the fol-

lowing comparisons:675

− DCR vs central.: highlights the contribution of the DCR approach com-

pared to a centralized approach. This one consists of building the activity model

(RF classifier) upon the whole Aruba dataset. According to Table 9, DCR out-

performs the centralized approach in terms of accuracy, F-measure and G-mean

metrics, especially with DCR (max-freq. and stack.).680

− DCR (max-trust) vs DCR (max-freq.) vs DCR (stack.) vs DCR

(UB): highlights the choice of the aggregation method. Table 9 shows that

DCR (stack.) is the best aggregation method compared to both max-trust

and max-freq. in terms of accuracy values. However, DCR (max-freq.) is the

best aggregation method compared to both max-trust and stack. in terms of685

F-measure and G-mean values. DCR (UB) represents the maximum values

37



computed (upper bound) of metrics that an aggregation method can achieve.

Therefore, a new aggregation method can be implemented to get more closer to

DCR (UB).

− DCR vs W-DCR: highlights the collaborative aspect of DCR compared to690

W-DCR. This latter is a degraded version of DCR without considering agent

collaboration. Especially, each agent interrogates its classifier with its FVs and

directly generates as an output one activity. Table 9 denotes that the accuracy is

slightly improved with DCR (max-freq.) compared to W-DCR. However, DCR

(stack.) outperforms W-DCR up to 2.3%. This is thanks to the collaboration695

between the starter agents and their selected agents that consolidate the recog-

nition rate of the correct activity. The F-measure and G-mean metrics values

decrease for DCR (max-trust, max-freq. and stack.) compared to W-DCR.

− DCR vs CASE system (Cicirelli et al., 2016): highlights a comparison

of DCR with CASE, a related work discussed above. The obtained metrics of700

DCR outperform the ones obtained by CASE (Table 9).

5.6.2. Evaluation of processing time

Figure 13 denotes the average processing time in minutes of different sub

datasets for each agent when launching the DCR program (without considering

the strategies max-trust. and max-freq.). The kitchen agent Ak presents the705

highest processing time that exceeds 300min and achieves 22 hours. This is

due to the huge collaboration with other agents when predicting locally the

other activity (id 12) and the meal preparation activity (id 6). These activities

present respectively 41% and 53% of activities in the dataset and their trust

degrees are less than 80%. The other agents present a processing time that does710

not exceed 3 hours. This is due to the other activity that presents more than

50% of activities in the dataset and has a trust degree more than 80%. Thus,

the collaboration with other agents is not required.
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Table 8. Agent Ao: evaluation of office dataset Do

Do DCR

max-

trust

max-

freq.

stack.

1-fold
Acc. 53.02% 59.25% 59.48%

F-meas. 36.94% 53.02% 53.18%

G-mean 49.89% 57.62% 53.18%

2-fold
Acc. 26.54% 57.55% 67.06%

F-meas. 11.38% 57.54% 54.20%

G-mean 44.14% 69.89% 46.54%

3-fold
Acc. 51.35% 66.7% 67.58%

F-meas. 36.02% 62.53% 62.63%

G-mean 49.69% 67.37% 67.39%

4-fold
Acc. 76.67% 75.3% 79.46%

F-meas. 69.90% 75.95% 70.57%

G-mean 45.16% 64.34% 40.36%

5-fold
Acc. 97.47% 61.15% 98.13%

F-meas. 96.87% 74.29% 97.20%

G-mean 13.48% 50.13% 13.54%

6-fold
Acc. 90.06% 62.07% 90.26%

F-meas. 86.02% 69.95% 85.82%

G-mean 32.91% 67.40% 29.35%

7-fold
Acc. 62.43% 54.59% 64.11%

F-meas. 49.81% 52.18% 50.36%

G-mean 47.75% 55.3% 48.15%

8-fold
Acc. 65.65% 68.64% 70.05%

F-meas. 54.02% 66.22% 66.35%

G-mean 46.76% 59.06% 59.12%

9-fold
Acc. 50.62% 61.91% 62.98%

F-meas. 35.02% 57.55% 58.12%

G-mean 49.66% 63.75% 64.19%

10-fold
Acc. 53.0% 64.79% 70.28%

F-meas. 40.87% 65.07% 68.10%

G-mean 47.62% 64.57% 66.94%

Global
Acc. 62.68% 63.19% 72.93%

F-meas. 54.38% 63.43% 66.65%

G-mean 42.70% 61.94% 48.87%

5.6.3. Evaluation of message number

Agents exchange messages when collaborating together. Messages can be715

request or answer messages. It should be noted that the message exchange starts

when the local predicted activity has a trust degree less than the threshold.

Figure 14 describes the average of the message number exchanged between the

starter agent and the other agents. The kitchen agent Ak presents the highest

message number that exceeds 50000 messages and achieves 652726 messages.720

This result is meaningful since its processing time is high.
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Table 9. DCR vs other approaches

Agents
Central.

CASE
System W-DCR

DCR

max-trust max-freq. stack. UB

Al

Acc. - 63.52% 76.04% 76.38% 76.4% 76.36% 76.97%

F-meas. - 63.46% 75.43% 75.38% 75.61% 75.1% 76.37%

G-mean - 66.77% 78.07% 69.9% 77.99% 77.74% 78.38%

Ad

Acc. - 51.54% 65.81% 67.25% 67.44% 68.01% 70.60%

F-meas. - 51.32% 64.24% 62.62% 64.13% 61.9% 68.25%

G-mean - 55.27% 65.57% 62.67% 64.23% 61.76% 68.36%

Ak

Acc. - 52.17% 58.81% 50.41% 51.45% 61.31% 83.17%

F-meas. - 52.5% 58.97% 49.77% 50.88% 52.24% 83.16%

G-mean - 56.55% 63.14% 54.45% 57.56% 52.89% 85.97%

Ao

Acc. - 53.51% 62.76% 62.68% 63.19% 72.93% 76.52%

F-meas. - 54.61% 63.16% 54.38% 63.43% 66.65% 74.08%

G-mean - 52.27% 68.21% 42.7% 61.94% 48.87% 69.51%

Ac

Acc. - 75.67% 84.13% 85.21% 85.24% 85.65% 86.89%

F-meas. - 75.29% 80.76% 79.71% 80.3% 79.48% 82.67%

G-mean - 45.70% 46.97% 37.78% 41.03% 35.7% 48.13%

Abed1

Acc. - 49.82 65.81% 65.16% 67.01% 68.40% 77.97%

F-meas. - 51.22% 65.75% 58.37% 64.7% 60.48% 76.04%

G-mean - 52.40% 64.11% 53.04% 61.27% 51.55% 71.24%

Abed2

Acc. - 85.72% 91.99% 92.57% 92.52% 92.48% 92.77%

F-meas. - 85.51% 91.18% 91.25% 91.35% 91.0% 91.60%

G-mean - 74.23% 83.56% 82.9% 83.41% 83.02% 83.63%

Abath1

Acc. - 78.18% 80.10% 77.78% 83.53% 81.78% 86.36%

F-meas. - 76.79% 76.48% 75.69% 78.36% 78.56% 83.03%

G-mean - 39.42% 33.46% 42.36% 33.68% 39.9% 53.05%

Abath2

Acc. - 90.92% 92.34% 93.39% 93.99% 93.69% 94.07%

F-meas. - 91.02% 91.71% 92.31% 92.55% 91.38% 92.66%

G-mean - 46.58% 56.15% 55.33% 55.41% 35.45% 55.52%

Ae

Acc. - 57.4% 73.86% 73.17% 74.24% 74.26% 76.97%

F-meas. - 57.25% 72.34% 68.52% 72.35% 70.37% 74.98%

G-mean - 56.12% 70.27% 66.07% 70.16% 66.5% 72.00%

Global
Acc. 72.94% 65.84 75.16% 74.4% 75.5% 77.48% 82.23%

F-meas. 71.80% 65.89% 74.0% 70.8% 73.36% 72.71% 80.28%

G-mean 55.27% 54.53% 62.95% 56.72% 60.66% 55.33% 68.57%
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Figure 13. Processing time of DCR’s agents and the centralized approach

Figure 14. Message number exchanged between each starter agent and others

5.7. Experimental evaluation of the DCR-OL system

The simulation of the DCR-OL approach is performed with 10 folds cross-

validation and it is the same as well as the DCR approach. A starter agent

SLi takes as an input each feature vector from the testing dataset, launches the725

DCR-OL system and generates as an output the final predicted activity with

its weighted performance value (this value is considered as a trust degree). This

task is repeated 10 times for all testing datasets and for each starter agent in

MAS.
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5.7.1. Evaluation with accuracy, F-measure and G-mean metrics730

Considering the same example of the office agent, Table 10 adds a column

for the DCR-OL approach and especially the new max-wPerf conflict resolution

strategy. The aim is to evaluate this new online strategy against the other three

conflict resolution strategies of the DCR approach. The evaluation details of

the 10 folds of the remaining agents are not mentioned in this paper due to the735

lack of space.

We deduce that the max-wPerf method improves the accuracy compared

to the two methods max-freq and max-trust. However, the stacking method

remains the best method in terms of accuracy. Considering the F-measure and

G-mean metrics, the max-wPerf method exceeds the max-trust method but it740

is less performant than the two other methods: max-freq and stacking.

Given the MAS system, Table 11 summarizes the global average of metrics

(accuracy, F-measure and G-mean) of all agents. We highlight DCR-OL’s con-

tribution to DCR as follows:

745

− DCR-OL (max-wPerf) vs DCR (max-trust) vs DCR (max-freq.)

vs DCR (stack.) vs DCR (UB): the max-wPerf method improves the

accuracy compared to the two max-freq and max-trust methods. However, the

stacking method is still the best method in terms of accuracy. For the F-

measure and G-mean metrics, the max-wPerf method exceeds the max-trust750

and the stacking methods but it is less performant than the max-freq method.

To summarize, the stacking method is the best method of conflict resolution

followed by the max-wPerf online method in terms of accuracy metric and the

max-freq. method is the best conflict resolution method followed by the max-

wPerf online method in terms of F-measure and G-mean metrics.755

5.7.2. Accuracy evolution over time

This subsection analyzes the evolution of the accuracy of different agents

over time. In fact, this study highlights the impact of the evolution of each

agent’s performance measure on the accuracy over time.
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Table 10. Agent LAo: evaluation of office dataset Do with DCR-OL

Do DCR DCR-OL

max-trust max-freq. stacking max-wPerf

1-fold
Acc. 53.02% 59.25% 59.48% 54.27%

F-meas. 36.94% 53.02% 53.18% 39.72%

G-mean 49.89% 57.62% 53.18% 51.24%

2-fold
Acc. 26.54% 57.55% 57.58% 37.57%

F-meas. 11.38% 57.54% 54.20% 33.26%

G-mean 44.14% 69.89% 46.54% 52.69%

3-fold
Acc. 51.35% 66.7% 67.58% 57.28%

F-meas. 36.02% 62.53% 62.63% 48.75%

G-mean 49.69% 67.37% 67.39% 56.31%

4-fold
Acc. 76.67% 75.3% 79.46% 77.0%

F-meas. 69.90% 75.95% 70.57% 70.28%

G-mean 45.16% 64.34% 40.36% 45.7%

5-fold
Acc. 97.47% 61.15% 98.13% 97.57%

F-meas. 96.87% 74.29% 97.20% 96.92 %

G-mean 13.48% 50.13% 13.54% 13.49%

6-fold
Acc. 90.06% 62.07% 90.26% 89.86%

F-meas. 86.02% 69.95% 85.82% 85.72%

G-mean 32.91% 67.40% 29.35% 31.13%

7-fold
Acc. 62.43% 54.59% 64.11% 62.57%

F-meas. 49.81% 52.18% 50.36% 50.08%

G-mean 47.75% 55.3% 48.15% 47.91%

8-fold
Acc. 65.65% 68.64% 70.05% 65.94%

F-meas. 54.02% 66.22% 66.35% 54.66%

G-mean 46.76% 59.06% 59.12% 47.3%

9-fold
Acc. 50.62% 61.91% 62.98% 55.48%

F-meas. 35.02% 57.55% 58.12% 44.70%

G-mean 49.66% 63.75% 64.19% 54.73%

10-fold
Acc. 53.0% 64.79% 70.28% 67.18%

F-meas. 40.87% 65.07% 68.10% 67.15%

G-mean 47.62% 64.57% 66.94% 66.34%

Global
Acc. 62.68% 63.19% 72.93% 66.51%

F-meas. 54.38% 63.43% 66.65% 59.12%

G-mean 42.7% 61.94% 48.87% 46.68%
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Table 11. DCR vs DCR-OL

Agents DCR DCR-OL
upper bound

max-trust max-freq. stacking max-wPerf

LAl

Acc. 76.38% 76.4% 76.36% 76.51% 76.97%

F-meas. 75.38% 75.61% 75.1% 75.42% 76.37%

G-mean 69.9% 77.99% 77.74% 77.96% 78.38%

LAd

Acc. 67.25% 67.44% 68.01% 67.99% 70.60%

F-meas. 62.62% 64.13% 61.9% 64.21% 68.25%

G-mean 62.67% 64.23% 61.76% 64.01% 68.36%

LAk

Acc. 50.41% 51.45% 61.31% 58.82% 83.17%

F-meas. 49.77% 50.88% 52.24% 57.22% 83.16%

G-mean 54.45% 57.56% 52.89% 58.9% 85.97%

LAo

Acc. 62.68% 63.19% 72.93% 66.51% 76.52%

F-meas. 54.38% 63.43% 66.65% 59.12% 74.08%

G-mean 42.7% 61.94% 48.87% 46.68% 69.51%

LAc

Acc. 85.21% 85.24% 85.65% 85.46% 86.89%

F-meas. 79.71% 80.3% 79.48% 80.29% 82.67%

G-mean 37.78% 41.03% 35.7% 39.63% 48.13%

LAbed1

Acc. 65.16% 67.01% 68.40% 66.96% 77.97%

F-meas. 58.37% 64.7% 60.48% 61.98% 76.04%

G-mean 53.04% 61.27% 51.55% 56.97% 71.24%

LAbed2

Acc. 92.57% 92.52% 92.48% 92.6% 92.77%

F-meas. 91.25% 91.35% 91.0% 91.3% 91.60%

G-mean 82.9% 83.41% 83.02% 82.97% 83.63%

LAbath1

Acc. 77.78% 83.53% 81.78% 84.43% 86.36%

F-meas. 75.69% 78.36% 78.56% 79.36% 83.03%

G-mean 42.36% 33.68% 39.9% 36.69% 53.05%

LAbath2

Acc. 93.39% 93.99% 93.69% 93.99% 94.07%

F-meas. 92.31% 92.55% 91.38% 92.55% 92.66%

G-mean 55.33% 55.41% 35.45% 55.41% 55.52%

LAe

Acc. 73.17% 74.24% 74.26% 73.31% 76.97%

F-meas. 68.52% 72.35% 70.37% 68.71% 74.98%

G-mean 66.07% 70.16% 66.5% 66.29% 72.00%

Global
Acc. 74.4% 75.5% 77.48% 76.64% 82.23%

F-meas. 70.8% 73.36% 72.71% 73.01% 80.28%

G-mean 56.72% 60.66% 55.33% 58.55% 68.57%
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(a) Agent LAo (b) Agent LAbath1

(c) Agent LAbath2 (d) Agent LAbed1

Figure 15. Evolution of accuracy over time for agents LAo, LAbath1, LAbath2 and

LAbed1

In order to achieve this, the dataset of each agent is divided into 10 sub-760

datasets. We start with the first sub-dataset received over time by launching

the DCR-OL system and especially by applying the max-wPerf method. Then,

we measure the accuracy. Next, we add the second sub-dataset received over

time by keeping the ascending chronological order. We launch the DCR-OL

system, apply the max-wPerf method and measure the accuracy. Next, we add765

the third sub-dataset received over time by keeping the ascending chronological

order and so on.

Figures 15 and 16 denote the evolution of the accuracy by merging sub-

datasets one by one each time in the ascending chronological order. For example,

the x-axis with the value 3 means the merge of the three sub-datasets.770

Discussion: the more agents learn, adapt and evolve their performance val-

ues, more they correctly recognize the activities and thus the accuracy improves.

There is only the LAbed1 agent whose accuracy is decreased over time.
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(a) Agent LAbed2 (b) Agent LAc

(c) Agent LAe (d) Agent LAd

(e) Agent LAk (f) Agent LAl

Figure 16. Evolution of accuracy over time for agents LAbed2, LAc, LAe, LAd, LAk

and LAl
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6. Conclusion and future works

This paper proposes DCR as a novel Distributed Collaborative Reasoning775

approach to recognize human activities from a continuous sensor sequence in

smart homes. DCR consists of several agents, with diverse classifiers based on

reasoning mechanism, that are able to analyze data coming from deployed sen-

sors and collaborate together in order to identify activities. After segmentation

and feature extraction steps of the continuous sensor sequence, agents analyze780

feature vectors according to their location in the smart home, predict a local

activity and collaborate with each other in order to achieve the correct activity

based on three strategies of decision making (max-trust, max-freq. and stack.).

Our DCR approach achieves some requirements as follows: C1→P1- the

whole distributed HAR system (Figure 1) deals with continuous sequence of785

sensor data through three modules namely Perception, Observation and Identi-

fication, from raw sensor data to identifying activities. The Identification task

is performed through DCR which is a totally distributed architecture includ-

ing heterogeneous, autonomous and interacting agents. C2→P2- our approach

adopts a bottom up strategy (from raw data, event, segments, feature vectors790

to activities) which guarantees the data freshness; C3→P3- agents incorporate

classifiers built upon past history; C4→P4- we defined a collaboration strategy

that consists of selecting agents who identify the activity with a more valuable

accuracy than the starter agent; C5→P5- agents hold different types of clas-

sifiers built upon different training data regarding their locations in the smart795

home; C6→P6- agents assign a trust degree to each recognized activity which

help the starter agent to make a decision; C7→P7- the stacking method is the

best method of conflict resolution in terms of accuracy metric and the max-freq.

method is the best conflict resolution method in terms of F-measure and G-

mean metrics. In addition to these achievements, we note that our approach is800

generalizable and can be extended to other datasets for HAR that contain a set

of events with annotated activities.

Moreover, a new version of DCR with an online learning, which is the DCR-
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OL approach is proposed. This approach satisfies the challenge C8 by using

learning agents. These latters can learn from their collaborations, act and adapt805

their performance over time in order to improve the recognition accuracy.

In our ongoing work, for the DCR approach, the number of messages ex-

changed between agents and the processing time are important. Therefore, we

need to define a new communication strategy in order to reduce them. Con-

sidering the DCR-OL approach, we plan to evolve the trust degrees defined in810

the ACTLAi
list over time. Furthermore, we can use the performance values of

agents as weighting factors for the two aggregation methods: max-trust method

(the weighting factor of the concerned agent will be applied to its trust degree)

and max-freq method (the weighting factor of the concerned agent will be ap-

plied to its frequency). We are currently working in this direction to ensure the815

model adaptability and evolution.
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