Wikipedia network analysis of cancer interactions and world influence Guillaume Rollin, José Lages, Dima Shepelyansky #### ▶ To cite this version: Guillaume Rollin, José Lages, Dima Shepelyansky. Wikipedia network analysis of cancer interactions and world influence. 2019. hal-02469377v1 ### HAL Id: hal-02469377 https://hal.science/hal-02469377v1 Preprint submitted on 28 Jan 2019 (v1), last revised 12 Nov 2021 (v2) HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## Wikipedia network analysis of cancer interactions and world influence Guillaume Rollin¹, José Lages¹, Dima L. Shepelyansky² - ${\bf 1}$ Institut UTINAM, CNRS, UMR 6213, OSU THETA, Université de Bourgogne Franche-Comté, Besançon, France - 2 Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France guillaume.rollin@utinam.cnrs.fr jose.lages@utinam.cnrs.fr dima@irsamc.ups-tlse.fr #### Abstract We apply the Google matrix algorithms for analysis of interactions and influence of 37 cancer types, 203 cancer drugs and 195 world countries using the network of 5 416 537 English Wikipedia articles with all their directed hyperlinks. The PageRank algorithm provides the importance order of cancers which has 60% and 70% overlaps with the top 10 cancers extracted from World Health Organization GLOBOCAN 2018 and Global Burden of Diseases Study 2017, respectively. The recently developed reduced Google matrix algorithm gives networks of interactions between cancers, drugs and countries taking into account all direct and indirect links between these selected 435 entities. These reduced networks allow to obtain sensitivity of countries to specific cancers and drugs. The strongest links between cancers and drugs are in good agreement with the approved medical prescriptions of specific drugs to specific cancers. We argue that this analysis of knowledge accumulated in Wikipedia provides useful complementary global information about interdependencies between cancers, drugs and world countries. Introduction "Nearly every family in the world is touched by cancer, which is now responsible for almost one in six deaths globally" [1]. The number of new cancer cases in the world is steadily growing reaching 18.1 million projected for 2018 [2] with predicted new cases of 29.4 million for 2035 [3]. The detailed statistical analysis of new cases and mortality projected for 2018 is reported in [4]. Such statistical analysis is of primary importance for estimating the influence of cancer diseases on the world population. However, it requires significant efforts of research groups and medical teams all over the world such as consortia involved in the Global Burden of Diseases Study (GBD) [5] and the WHO GLOBOCAN reports [2]. Here, we develop a complementary approach, the Wikipedia network analysis based on the Google matrix and PageRank algorithm invented by Brin and Page in 1998 for World Wide Web search engine information retrieval [6,7]. Applications of this approach to various directed networks are described at [8]. Here we use the network of English Wikipedia articles collected in May 2017 with $N=5\,416\,537$ articles and connected by $N_l=122\,232\,032$ directed links, i.e. quotations from one article to another. 11 15 January 22, 2019 1/25 At present Wikipedia represents a public, open, collectively created encyclopaedia with a huge amount of information exceeding those of Encyclopedia Britannica [9] in volume and accuracy of articles devoted to scientific topics [10]. As an example, articles on biomolecules are actively maintained by Wikipedians [11,12]. The academic analysis of information collected in Wikipedia is growing, getting more tools and applications as reviewed in [13,14]. The scientific analysis shows that the quality of Wikipedia articles is growing [15]. 17 21 32 41 42 43 A new element of our analysis is the reduced Google matrix (REGOMAX) method developed recently [16,17]. This method selects a modest size subset of N_r nodes of interest from a huge global directed network with $N\gg N_r$ nodes and generates the reduced Google matrix G_R taking into account all direct pathways and indirect pathways (i.e. those going through the global network) between the N_r nodes. This approach conserves the PageRank probabilities of nodes from the global Google matrix G (up to a normalization factor). This method uses the ideas coming from the scattering theory of complex nuclei, mesoscopic physics and quantum chaos. The efficiency of this approach has been tested within Wikipedia networks of politicians [17], painters [18], world universities [19] and with biological networks from SIGNOR data base [20]. Table 1. List of articles devoted to cancer types in May 2017 English Wikipedia. This list of $N_{cr} = 37$ cancers taken from [21] is ordered by alphabetical order. | | Cancer type | | Cancer type | |-----|-----------------------------------|----|----------------------| | 1 | Adrenal tumor | 21 | Mesothelioma | | 2 | Anal cancer | 22 | Multiple myeloma | | 3 | Appendix cancer | 23 | Neuroendocrine tumor | | 4 | Bladder cancer | 24 | Non-Hodgkin lymphoma | | 5 | Bone tumor | 25 | Oral cancer | | 6 | Brain tumor | 26 | Ovarian cancer | | 7 | Breast cancer | 27 | Pancreatic cancer | | 8 | Cervical cancer | 28 | Prostate cancer | | 9 | Cholangiocarcinoma | 29 | Skin cancer | | 10 | Colorectal cancer | 30 | Soft-tissue sarcoma | | 11 | Esophageal cancer | 31 | Spinal tumor | | 12 | Gallbladder cancer | 32 | Stomach cancer | | 13 | Gestational trophoblastic disease | 33 | Testicular cancer | | 14 | Head and neck cancer | 34 | Thyroid cancer | | 15 | Hodgkin's lymphoma | 35 | Uterine cancer | | 16 | Kidney cancer | 36 | Vaginal cancer | | 17 | Leukemia | 37 | Vulvar cancer | | 18 | Liver cancer | | | | 19 | Lung cancer | | | | _20 | Melanoma | | | In this work the reduced network is composed of $N_{cr}=37$ types of cancers listed at Wikipedia [21] and $N_d=203$ drugs for cancer extracted from data base [22]. All these $N_{cr}+N_d=240$ items had an active Wikipedia article in May 2017. All these cancers and drugs are listed in alphabetic order in Tabs. 1 and 2. In addition we add to the selected set of articles $N_{cn}=195$ world countries that allows us to analyze the global influence of cancer types (the ranking and REGOMAX analysis of countries are reported in [23,24]). The PageRank list of the 195 selected countries is available at [25]. Thus in total the reduced Google matrix selected number of nodes is $N_r=N_{cr}+N_d+N_{cn}=435$. The inclusion of these three groups (cancer types, cancer drugs, and countries) in the reduced set of N_r articles allows to investigate the January 22, 2019 2/25 Table 2. List of articles devoted to cancer drugs in May 2017 English Wikipedia. This list of $N_d = 203$ cancer drugs taken from [22] is ordered by alphabetical order. | Cancer drug | Cancer drug | Cancer drug | Cancer drug | |----------------------------|--------------------------|------------------------------------|------------------------------| | 1 Abemaciclib | 52 Dactinomycin | 103 Ixazomib | 154 Prednisone | | 2 Abiraterone acetate | 53 Daratumumab | 104 Lanreotide | 155 Procarbazine | | 3 Acalabrutinib | 54 Dasatinib | 105 Lapatinib | 156 Propranolol | | 4 Afatinib | 55 Daunorubicin | 106 Lenalidomide | 157 Protein-bound paclitaxel | | 5 Aflibercept | 56 Decitabine | 107 Lenvatinib | 158 Radium-223 | | 6 Alectinib | 57 Defibrotide | 108 Letrozole | 159 Raloxifene | | 7 Alemtuzumab | 58 Degarelix | 109 Leuprorelin | 160 Ramucirumab | | 8 Amifostine | 59 Denileukin diftitox | 110 Lomustine | 161 Rasburicase | | 9 Aminolevulinic acid | 60 Denosumab | 111 Megestrol acetate | 162 Regorafenib | | 10 Anastrozole | 61 Dexamethasone | 112 Melphalan | 163 Ribociclib | | 11 Apalutamide | 62 Dexrazoxane | 113 Mercaptopurine | 164 Rituximab | | 12 Aprepitant | 63 Dinutuximab | 114 Mesna | 165 Rolapitant | | 13 Arsenic trioxide | 64 Docetaxel | 115 Methotrexate | 166 Romidepsin | | 14 Asparaginase | 65 Doxorubicin | 116 Methylnaltrexone | 167 Romiplostim | | 15 Atezolizumab | 66 Durvalumab | 117 Midostaurin | 168 Rucaparib | | 16 Avelumab | 67 Elotuzumab | 118 Mitomycin C | 169 Ruxolitinib | | 17 Axicabtagene ciloleucel | 68 Eltrombopag | 119 Mitoxantrone | 170 Siltuximab | | 18 Axitinib | 69 Enzalutamide | 120 Necitumumab | 171 Sipuleucel-T | | 19 Azacitidine | 70 Epirubicin | 121 Nelarabine | 172 Sonidegib | | 20 Belinostat | 71 Eribulin | 122 Neratinib | 173 Sorafenib | | 21 Bendamustine | 72 Erlotinib | 123 Netupitant/palonosetron | 174 Sunitinib | | 22 Bevacizumab | 73 Etoposide | 124 Nilotinib | 175 Talc | | 23 Bexarotene | 74 Everolimus | 125 Nilutamide | 176 Talimogene laherparepved | | 24 Bicalutamide | 75 Exemestane | 126 Niraparib | 177 Tamoxifen | | 25 Bleomycin | 76 Filgrastim | 127 Nivolumab | 178 Temozolomide | | 26 Blinatumomab | 77 Fludarabine | 128 Obinutuzumab | 179 Temsirolimus | | 27 Bortezomib | 78 Fluorouracil | 129 Ofatumumab | 180 Thalidomide | | 28 Bosutinib | 79 Flutamide | 130 Olaparib | 181 ThioTEPA | | 29 Brentuximab vedotin | 80 Folinic acid | 131 Olaratumab | 182 Tioguanine | | 30 Brigatinib | 81 Fulvestrant | 132 Omacetaxine mepesuccinate | = | | 31 Busulfan | 82 Gefitinib | 133 Ondansetron | 184 Tisagenlecleucel | | 32 Cabazitaxel | 83 Gemcitabine | 134 Osimertinib | 185 Tocilizumab | | 33 Cabozantinib | 84 Gemtuzumab ozogamicin | | 186 Topotecan | | 34 Capecitabine | 85 Glucarpidase | 136 Paclitaxel | 187 Toremifene |
| 35 Carboplatin | 86 Goserelin | 137 Palbociclib | 188 Trabectedin | | 36 Carfilzomib | 87 HPV vaccines | 138 Palifermin | 189 Trametinib | | 37 Carmustine | 88 Hyaluronidase | 139 Palonosetron | 190 Trastuzumab | | 38 Ceritinib | 89 Hydroxycarbamide | 140 Pamidronic acid | 191 Trastuzumab emtansine | | 39 Cetuximab | 90 Ibritumomab tiuxetan | 141 Panitumumab | 192 Trifluridine | | 40 Chlorambucil | 91 Ibrutinib | 142 Panobinostat | 193 Uridine triacetate | | 41 Chlormethine | 92 Idarubicin | 143 Pazopanib | 194 Valrubicin | | 42 Cisplatin | 93 Idelalisib | 144 Pegaspargase | 195 Vandetanib | | 43 Cladribine | 94 Ifosfamide | 145 Pegfilgrastim | 196 Vemurafenib | | 44 Clofarabine | 95 Imatinib | 146 Peginterferon | 197 Venetoclax | | 45 Cobimetinib | 96 Imiquimod | 147 Pembrolizumab | 198 Vinblastine | | 46 Copanlisib | 97 Inotuzumab ozogamicin | 147 Pembronzumab
148 Pemetrexed | 199 Vincristine | | 47 Crizotinib | 98 Interferon alfa-2b | 149 Pertuzumab | 200 Vinorelbine | | | 99 Interleukin 2 | 150 Plerixafor | | | 48 Cyclophosphamide | | 150 Pierixaior
151 Pomalidomide | 201 Vismodegib | | 49 Cytarabine | 100 Ipilimumab | | 202 Vorinostat | | 50 Dabrafenib | 101 Irinotecan | 152 Ponatinib | 203 Zoledronic acid | | 51 Dacarbazine | 102 Ixabepilone | 153 Pralatrexate | | January 22, 2019 3/25 The paper is composed as follows: the section "Description of data sets and methods" will present the May 2017 English Wikipedia network and explain the construction of (reduced) Google matrices. In the section "Results" we present the influence of cancer devoted pages in Wikipedia and extract a cancer ranking which is compared to cancer rankings extracted from GBD study [5] and GLOBOCAN [2] databases. We also use the reduced Google matrix to construct a reduced network of cancers and we determine the interaction of cancers with countries and cancer drugs. We compare cancer prescriptions obtained from May 2017 English Wikipedia network analysis with approved medications reported in National Cancer Institute [22] and DrugBank [26]. The last section presents the conclusion of this research. 47 53 Fig 1. Subnetworks of cancers and cancer drugs in May 2017 English Wikipedia. Bottom right inset: subnetwork of $N_r = 240$ articles comprising $N_{cr} = 37$ articles devoted to cancers (green nodes) and $N_d = 203$ articles devoted to cancer drugs (golden nodes). Main figure: subnetwork of top 20 cancers and top 20 cancer drugs extracted from the ranking of 2017 English Wikipedia using PageRank algorithm (see Tab. 3). The bulk of the other Wikipedia articles is not shown. Arrows symbolize hyperlinks between cancer and cancer drug articles in the global Wikipedia. ### Description of data sets and methods #### Network of English Wikipedia articles of 2017 We analyze the English language edition of Wikipedia collected in May 2017 (ENWIKI2017) [27] containing N = 5416537 articles (nodes) connected by January 22, 2019 4/25 $N_l = 122\,232\,932$ directed hyperlinks between articles (without self-citations). From this data set we extract the $N_{cr} = 37$ types of cancers listed at [21]. From [22] we also collect names of drugs related to cancer diseases obtaining the list of $N_d = 203$ drugs present at Wikipedia. The lists of 37 cancer types and 203 drugs are given in Tabs. 1 and 2. This reduced set of $N_r = 240$ nodes is illustrated in the inset of Fig. 1. For global influence investigations, it is complemented by $N_{cn} = 195$ world countries listed in [25]. Thus in total we have the reduced network of $N_r = N_{cr} + N_d + N_{cn} = 435 \ll N$ nodes embedded in the global network with more than 5 millions nodes. All data sets are available at [25]. 67 73 93 100 101 102 103 105 106 107 #### Google matrix construction rules The construction rules of Google matrix G are described in detail in [6–8]. Thus the Google matrix G is built from the adjacency matrix A_{ij} with elements 1 if article (node) j points to article (node) i and zero otherwise. The Google matrix elements have the standard form $G_{ij} = \alpha S_{ij} + (1 - \alpha)/N$ [6–8], where S is the matrix of Markov transitions with elements $S_{ij} = A_{ij}/k_{out}(j)$. Here $k_{out}(j) = \sum_{i=1}^{N} A_{ij} \neq 0$ is the out-degree of node j (number of outgoing links) and $S_{ij} = 1/N$ if j has no outgoing links (dangling node). The parameter $0 < \alpha < 1$ is the damping factor. For a random surfer, jumping from one node to another, it gives the probability $(1 - \alpha)$ to jump to any node. Below we use the standard value $\alpha = 0.85$ [7] noting that for the range $0.5 \leq \alpha \leq 0.95$ the results are not sensitive to α [7,8]. The right PageRank eigenvector of G is the solution of the equation $GP = \lambda P$ with the unit eigenvalue $\lambda = 1$. The PageRank components P(j) give positive probabilities to find a random surfer on a node j ($\sum_j P(j) = 1$). All nodes can be ordered by decreasing probability P(j) numbered by PageRank index K = 1, 2, ...N with a maximal probability at K = 1 and minimal at K = N. The numerical computation of P(j) is done efficiently with the PageRank algorithm described in [6,7]. It is also useful to consider the network with inverted direction of links. After links inversion $A_{ij}^* = A_{ji}$, the Google matrix G^* is constructed within the same procedure with $G^*P^* = P^*$. The matrix G^* has its own PageRank vector P^* called CheiRank [28] (see also [8,29]). Its probability values can be again ordered in a decreasing order with CheiRank index K^* with highest $P^*(j)$ at $K^* = 1$ and smallest at $K^* = N$. On average, the high values of P(j) ($P^*(j)$) correspond to nodes j with many ingoing (outgoing) links [8]. The PageRank order list of 37 cancers and 203 drugs is given in Table 3. In the global ENWIKI2017 network, countries are located on top PageRank positions (1. *USA*, 4. *France*, 5. *Germany*) so that cancers and drugs are located well below them since the first cancer type, i.e. *Lung cancer*, appears at 3 478th position, and the first cancer drug, i.e. *Talc*, appears at 22 177th position (see Fig. 2). As expected cancer types have a more central position than cancer drugs. The network of 40 nodes and their direct links is shown in Fig. 1 for the top 20 PageRank nodes of cancers and drugs (ordered separately for cancers and drugs). We see that already only for 40 nodes the network structure is rather complex. Here and below the networks are drawn with Cytoscape [30]. #### Reduced Google matrix algorithm The details of REGOMAX method are described in [16,17,20]. It captures in the reduced Google matrix of size $N_r \times N_r$ the full contribution of direct and indirect pathways existing in the full Google matrix between N_r nodes of interest. The reduced Google matrix G_R is such as $G_R P_r = P_r$ where P_r is its associated PageRank probability vector. The PageRank probabilities $P_r(j)$ of the selected N_r nodes are the January 22, 2019 5/25 Table 3. Ranking of articles devoted to cancer types and to cancer drugs in May 2017 English Wikipedia using PageRank algorithm. Cancer types are highlighted in boldface. | | | K_d Cancer/drug | | | | Cancer/drug | | | | | <i>K</i> | K | K_{\cdot} | Cancer/drug | K _n K _J Drug | |-----------------|----------|-------------------------------|------------------------|-------|-----|---------------------------|-------------------|--------|-----|----------------------------|-------------------|-------|-------------|------------------------|---| | $\frac{R_r}{1}$ | 1 1 | Lung | $\frac{\Lambda_r}{49}$ | 1 Cr | | Trastuzumab | $\frac{K_r}{97}$ | · · cr | | Mitoxantrone | $\frac{K_r}{145}$ | 1 Cr | | Eribulin | 193 156 Ixazomib | | 2 | 2 | Breast | 50 | | 1 | Vinblastine | 98 | 33 | 00 | Gallbladder | $145 \\ 146$ | | | Panitumumab | 194 157 Lenvatinib | | 3 | 3 | Leukemia | 51 | 28 | 2.5 | \mathbf{NETs}^c | 99 | 55 | 66 | Vemurafenib | 147 | | | Ofatumumab | 195 158 Trifluridine | | 4 | 4 | Prostate | 52 | 20 | 24 | Bleomycin | 100 | | 67 | Topotecan | 148 | 36 | 112 | Adrenal | 196 159 Ponatinib | | 5 | 5 | Colorectal | 53 | | l l | Carboplatin | 101 | | 68 | Fludarabine | 149 | 50 | 112 | Sipuleucel-T | 197 160 Alectinib | | 6 | 6 | Brain | 54 | | | Mercaptopurine | | | 69 | Pembrolizumab | ı | | | Pamidronic | 198 161 Nilutamide | | 7 | 7 | Pancreatic | 55 | | _ | Docetaxel | 103 | | 70 | Tioguanine | 151 | | | Cabozantinib | 199 162 Daratumumab | | 8 | 8 | Melanoma | 56 | | | Daunorubicin | $103 \\ 104$ | | 71 | Dacarbazine | $151 \\ 152$ | | | Brentuximab | 200 163 Valrubicin | | 9 | 9 | Stomach | 57 | | 1 | Hyaluronidase | $104 \\ 105$ | | 72 | Azacitidine | 152 153 | | | Gemtuzumab | 201 164 Sonidegib | | 10 | 10 | Ovarian | 58 | | 1 | Etoposide | 106 | 34 | 12 | Vaginal | 153 | | | Enzalutamide | 202 165 Osimertinib | | 11 | 11 | Cervical | 59 | | 1 | Bortezomib | $100 \\ 107$ | 34 | 73 | Carmustine | $154 \\ 155$ | | | Pegfilgrastim | 203 166 Pertuzumab | | 12 | 12 | Hodgkin's | 60 | | | Irinotecan | 107 | | 74 | Decitabine | 156 | | | Romidepsin | 204 167 Defibrotide | | 13 | 13 | Skin | 61 | 29 | 32 | Soft-tissue | 100 | | | Bicalutamide | $150 \\ 157$ | | | Rasburicase | 205 168 Bexarotene | | 14 | 13 | 1 Talc | 62 | 29 | 22 | Oxaliplatin | 1109 | | | Flutamide | $157 \\ 158$ | | | Bendamustine | 206 169 Palifermin | | | 14 | | 63 | | | | | 35 | 10 | Vulvar | $150 \\ 159$ | | | Interferon | 207 170 Idelalisib | | 15 | 14 | M. myeloma | 64 | | | Melphalan | $\frac{111}{112}$ | 99 | 77 | | 160 | | | | 208 171 Toremifene | | 16
17 | 15
16 | Esophageal
Liver | 65 | | | Leuprorelin
Raloxifene | $112 \\ 113$ | | 78 | Procarbazine
Cladribine | $160 \\ 161$ | | | | 208 171 Toremifene
209 172 Apalutamide | | | _ | | | | 1 | | | | | | | | - | | | | 18 | 17 | Non-Hodgkin | 66 | | | Hydroxycarb. ^d | 114 | | 79 | Tocilizumab | 162 | | | Ruxolitinib | 210 173
Regorafenib | | 19 | 18 | Bladder | 67 | | 1 | Aminolevulinic | 115 | | 80 | Busulfan | 163 | | | Talimogene | 211 174 Venetoclax | | 20 | 10 | 2 Methotrexate | 68 | | 1 | Cytarabine | 116 | | 81 | Denosumab | 164 | | | Belinostat | 212 175 Dexrazoxane | | 21 | 19 | Head & Neck | 69 | | 1 | Cetuximab | 117 | | | Pemetrexed | 165 | | | Eltrombopag | 213 176 Avelumab | | 22 | | 3 Thalidomide | 70 | | 41 | Folinic acid | 118 | | 83 | Lomustine | 166 | | | Cabazitaxel | 214 177 Dinutuximab | | 23 | 20 | Testicular | 71 | | 42 | Mitomycin C | 119 | | 84 | Vinorelbine | 167 | | | Lanreotide | 215 178 Ramucirumab | | 24 | | 4 Paclitaxel | 72 | 30 | 4.0 | Anal | 120 | | 85 | Nivolumab | 168 | | - 1 | Palbociclib | 216 179 Blinatumomab | | 25 | | 5 Prednisone | 73 | | 1 | Gemcitabine | 121 | | | Dabrafenib | 169 | | | | 217 180 Rolapitant | | 26 | | 6 Cisplatin | 74 | | 1 | Sorafenib | 122 | | | Letrozole | 170 | | _ | | 218 181 Niraparib | | 27 | | 7 Dexamethasone | 75 | | 45 | Imiquimod | 123 | | | | 171 | | | Vismodegib | 219 182 Pralatrexate | | 28 | 21 | Thyroid | 76 | 31 | | Spinal | 124 | | | Radium-223 | 172 | 37 | | Appendix | 220 183 Acalabrutinib | | 29 | | 8 Doxorubicin | 77 | | 1 - | Sunitinib | 125 | | | Olaparib | 173 | | | Omacetaxine | 221 184 Brigatinib | | 30 | 22 | Bone | 78 | | 1 | Ifosfamide | 126 | | | Pazopanib | 174 | | | Plerixafor | 222 185 Necitumumab | | 31 | | 9 Propranolol | 79 | | _ | Erlotinib | 127 | | - | Dasatinib | 175 | | | Lapatinib | 223 186 Midostaurin | | 32 | | 10 Interleukin 2 | 80 | | | Asparaginase | 128 | | | Idarubicin | 176 | | | Clofarabine | 224 187 Rucaparib | | 33 | 23 | Kidney | 81 | | 50 | Gefitinib | 129 | | 94 | Temsirolimus | 177 | | | Vandetanib | 225 188 Inotuzumab | | 34 | 24 | Mesothelioma | 82 | 32 | | \mathbf{GTD}^e | 130 | | | Exemestane | 178 | | | Axitinib | 226 189 Pegaspargase | | 35 | | 11 Cyclophospha. ^a | 83 | | 51 | Anastrozole | 131 | | | Crizotinib | 179 | | | Ibrutinib | 227 190 Durvalumab | | 36 | | 12 Fluorouracil | 84 | | 1 | Epirubicin | 132 | | | Zoledronic | 180 | | | Methylnal ^g | 228 191 Siltuximab | | 37 | 25 | Oral | 85 | | | Lenalidomide | 133 | | | Panobinostat | 181 | | | Carfilzomib | 229 192 Ribociclib | | 38 | | 13 Tamoxifen | 86 | | ı | Capecitabine | 134 | | | Mesna | 182 | | | | 230 193 Degarelix | | 39 | | 14 Vincristine | 87 | | 55 | Vorinostat | 135 | | | Ibritumomab | 183 | | | Bosutinib | 231 194 Neratinib | | 40 | | 15 Rituximab | 88 | | 56 | Chlormethine | 136 | | | Trametinib | 184 | | | Ceritinib | 232 195 Abemaciclib | | 41 | | 16 Bevacizumab | 89 | | | Everolimus | 137 | | | Nilotinib | 185 | | | Abiraterone | 233 196 Olaratumab | | 42 | | 17 HPV vaccines | 90 | | 1 | Alemtuzumab | 138 | | | Ixabepilone | 186 | | | Trabectedin | 234 197 Copanlisib | | 43 | | 18 Imatinib | 91 | | 1 | Chlorambuci. f | 139 | | | Megestrol | 187 | | | Elotuzumab | 235 198 Netupitant | | 44 | | 19 Arsenic trioxide | 92 | | 1 | Filgrastim | 140 | | | Romiplostim | 188 | | | Nelarabine | 236 199 Tipiracil | | 45 | 26 | Uterine | 93 | | ! | Goserelin | 141 | | | Afatinib | 189 | | | Palonosetron | 237 200 Uridine | | 46 | | 20 Dactinomycin | 94 | | | Ipilimumab | 142 | | 107 | ThioTEPA | 190 | | | Cobimetinib | 238 201 Axicabtagene | | 47 | 27 | ${\bf Cholangio.}^b$ | 95 | | 1 | Temozolomide | 143 | | | Aprepitant | 191 | | | Amifostine | 239 202 Glucarpidase | | 48 | | 21 Ondansetron | 96 | | | 0 | 144 | | | 1 | 192 | | | | 240 203 Tisagenlecleucel | | oc. h | 070 7 | randa "aanaan" "tun | 002 | , "], | mn | home" "coroom | o" l | 0770 | haa | n nomored from | 000 | 002 1 | trmo | donominations | a Crealanhaenhamidae | Notes: here words "cancer", "tumor", "lymphoma", "sarcoma" have been removed from cancer type denominations; ^aCyclophosphamide; ^bCholangiocarcinoma; ^cNeuroendocrine tumors; ^dHydroxycarbamide; ^eGestational trophoblastic disease; ^fChlorambucil; ^gMethylnaltrexone. same as for the global network with N nodes, up to a constant multiplicative factor taking into account that the sum of PageRank probabilities over N_r nodes is unity. The computation of G_R provides a decomposition into matrices that clearly distinguish direct from indirect interactions: $G_R = G_{rr} + G_{pr} + G_{qr}$ [17]. Here G_{rr} is the $N_r \times N_r$ submatrix of the $N \times N$ global Google matrix G encoding the direct links between the selected N_r nodes. The G_{pr} matrix is rather close to the matrix in which each column is given by the PageRank vector P_r , ensuring that PageRank probabilities of G_R are the same as for G (up to a constant multiplier). Thus G_{pr} does not provide much more 111 112 113 114 115 January 22, 2019 6/25 information about direct and indirect links between selected nodes than the usual Google matrix analysis described in the previous section. The component playing an interesting role is $G_{\rm qr}$, which takes into account all indirect links between selected nodes appearing due to multiple paths via the global network of N nodes (see [16,17]). The matrix $G_{\rm qr} = G_{\rm qrd} + G_{\rm qrnd}$ has diagonal ($G_{\rm qrd}$) and non-diagonal ($G_{\rm qrnd}$) parts. Thus $G_{\rm qrnd}$ describes indirect interactions between nodes. The explicit formulas as well as the mathematical and numerical computation methods of all three components of $G_{\rm R}$ are given in [16, 17, 20]. With the reduced Google matrix G_R and its components we can analyze the PageRank sensitivity in respect to specific links between N_r nodes. To measure the sensitivity of a country cn to a cancer cr we change the matrix element $(G_R)_{cn,cr}$ by a factor $(1+\delta)$ with $\delta \ll 1$ and renormalize to unity the sum of the column elements associated with cancer cr, and we compute the logarithmic derivative of PageRank probability P(cn) associated to country cn: $D(cr \to cn, cn) = d \ln P(cn)/d\delta$ (diagonal sensitivity). It is also possible to consider the nondiagonal (or indirect) sensitivity $D(cr \to cn, cn') = d \ln P(cn')/d\delta$ when the variation is done for the link from cr to cn and the derivative of PageRank probability is computed for another country cn'. Also instead of the link $cr \to cn$ we can consider the link from a cancer cr to a drug d computing then the nondiagonal sensitivity of country cn'. This approach was already used in [23,24] showing its efficiency. Results #### Cancer distribution on PageRank-CheiRank plane The PageRank order of 37 cancers and 203 cancer drugs is given in Tab. 3. In the top 3 positions we find Lung, Breast, Leukemia cancers. Lung and Breast cancers incidences are indeed the two most important [2] and Leukemia is the most frequent cancer in children and young adults [31]. In general in the PageRank order of 240 cancers and drugs, cancers occupy predominantly the top positions. The first three drugs are Talc, Methotrexate, Thalidomide, taking positions 14, 20, 22. The top position of Talc among cancer drugs may be explained by its industrial use and also by both potential carcinogenic and anticancer effects [32]. Methotrexate can be used in the most frequent cancers but also in autoimmune diseases and for medical abortions [33]. The third position of Thalidomide among cancer drugs may be explained by its high potential for the treatment of cancers but also for its well-known teratogenic effect; this teratogenic effect may by itself contribute to its prominence in Wikipedia. It is also used for treatment of other diseases than cancers (tuberculosis, graft-versus-host disease,...) [34]. The list of these 240 articles in CheiRank order is also given in [25]. The distribution of selected articles on the global PageRank-CheiRank plane of the whole Wikipedia network with $N=5\,416\,537$ nodes are shown in Fig. 2. The top PageRank positions are taking by the world countries as discussed in [8,23] marked by gray open circles. Then there is a group of cancers (above $K\sim3\times10^3$ and $K^*\sim10^4$), marked by green points, followed by drugs (mostly above $K\sim10^4$ and $K^*\sim10^5$), marked by gold points. There is a certain overlap between cancers and drugs on this plane but in global there is a clear separation between these two groups. As a comparison we also mark the positions of 230 infectious diseases by open blue circles. These 230 articles are studied in [24] in the frame of Wikipedia network analysis. The global PageRank list of 230 infectious diseases and 37 cancers is given in [25]. In this list Lung cancer is located at the 7th position. From Fig. 2 we observe these two types of diseases occupy somewhat the same (K,K^*) region (mostly above $K^*\sim10^5$ and above $K\sim3\times10^3$) suggesting that cancer types and infectious diseases have globally January 22, 2019 7/25 Fig 2. Density of May 2017 English Wikipedia articles in the CheiRank K^* – PageRank K plane. Data are averaged over a 100×100 grid spanning the $(\log_{10} K, \log_{10} K^*) \in [0, \log_{10} N] \times [0, \log_{10} N]$ domain. Density of articles ranges from very low density (purple tiles) to very high density (bright yellow tiles). The absence of article is represented by black tiles. The superimposed green (gold) circles give the positions of May 2017 English Wikipedia articles devoted to cancers (cancer drugs) listed in Tab. 1 (Tab. 2). For comparison, the gray (blue) open circles give the positions of pages devoted to sovereign countries (infectious diseases) in May 2017 English Wikipedia. the same importance in May 2017 English Wikipedia with the exception of the first six infectious diseases, Tuberculosis (K=639), HIV/AIDS (K=810), Malaria (K=1116), Pneumonia (K=1531), Smallpox (K=1532), Cholera (K=2300) which have a strong historical and/or a strong societal importance. The first three cancer types, i.e. Lung cancer, Breast cancer, and Leukemia, appear at positions K=3478, 3788, and 3871 just before Influenza at K=4191. 165 167 169 171 172 173 174 175 176
177 178 180 181 182 184 186 The 240 cancer types and drugs placed on the plane of local PageRank indices $K_r \in \{1, \dots, 240\}$ and CheiRank indices $K_r^* \in \{1, \dots, 240\}$ is shown in Fig. 3. We retrieve the fact that cancer types occupy the top positions in K_r and in K_r^* . Indeed the first 14 most influent articles of this subset $(K \leq 14)$, which appear to be devoted to cancer types, are also the most communicative with the exception of articles devoted to drugs Paclitaxel $(K_r = 24, K_r^* = 6)$ and Bicalutamide $(K_r = 109, K_r^* = 2)$. Paclitaxel [35] is a chemotherapy medication used to treat a wide range of cancer types e.g. Ovarian cancer, Breast cancer, Lung cancer, Pancreatic cancer, etc. Moreover Paclitaxel article cites Ovarian cancer article $(K_r = 10, K_r^* = 1)$ which is a very communicative article since the Ovarian cancer article CheiRank index, $K^* = 29317$, is about one order magnitude lower than the CheiRank indexes, $K^* \gtrsim 10^5$, of the other 239 considered articles (see Fig. 2). The wide applications of *Paclitaxel* and the citation of Ovarian cancer article explain the very good ranking of this cancer drug in the CheiRank scale. On the other hand, the $K_r^* = 2$ rank of the Bicalutamide article (see Fig. 3), devoted to an antiandrogen medication mainly used to treat *Prostate cancer*, is due to a very long article with a high density of intra-wiki citations [36]. Like the Paclitaxel article, the Bicalutamide article cites also the Ovarian cancer since this January 22, 2019 8/25 Fig 3. Distribution of the May 2017 English Wikipedia articles devoted to cancers and drug cancers in the local CheiRank K_r^* – PageRank K_r plane. The $N_{cr} = 37$ ($N_d = 203$) articles devoted to cancers (drug cancers) are represented by green (gold) plain circles. medication has already been tried for this cancer type [36]. The three most influent cancer drugs in ENWIKI2017 are Talc, $K_r = 14$, which is used to prevent blood effusions, e.g., in $Lung\ cancer$ or $Ovarian\ cancer\ [32]$, Methotrexate, $K_r = 20$, which is a chemotherapy agent used for the treatment $Breast\ cancer$, Leukemia, $Lung\ cancer$, Lymphoma, etc [33], and Thalidomide, $K_r = 22$, which is a drug modulating the immune system used, e.g., for $Multiple\ myeloma$ treatment [34]. Although Talc is widely used in chemical, pharmaceutical and food industries [32], its global PageRank position is nevertheless of the same order than the PageRank position of the second most influent cancer drug in Wikipedia, i.e., Methotrexate, which is a drug more specific to cancers [33]. # Comparison of Wikipedia network analysis with GBD study 2017 and GLOBOCAN 2018 for cancer significance We perform the comparison of cancer significance given by the GBD study 2017 [5], the GLOBOCAN 2018 [2], and the Wikipedia network analysis. We extract the rankings of cancer types by the number of deaths in 2017 estimated by the 2017 GBD study [37] (see Tab. 4) and by the number of disability-adjusted life years (DALYs) estimated by the 2017 GBD study [38] (see Tab. 4). Also, we extract the rankings of cancer types by the number of deaths and by the number of new cases in 2018 estimated by the GLOBOCAN 2018 [4] (see Tab. 5). In Fig. 4, we show the overlap of these 4 rankings with the extracted ranking of cancer types obtained from the ENWIKI2017 PageRanking (see bold items in Tab. 3). We observe that the ranking obtained from the Wikipedia network analysis provides a reliable cancer types ranking since its top 10 (top 20) shares about 70% (80%) similarity with GBD study data and GLOBOCAN data. The Wikipedia top 5 reaches even 80% similarity with top 5 cancer types extracted January 22, 2019 9/25 Table 4. List of cancer types ordered by the estimated number of deaths during the year 2017 (left table) and by the estimated disability-adjusted life years (DALYs) for 2017 (right table). Data extracted from GBD Study [37,38]. | Rank | Cancer Deaths | | Rank | Cancer | DALYs | |------|----------------------|-------------------------|------|----------------------|---------------------------| | | | in 2017 $(\times 10^3)$ | | | in 2017 ($\times 10^3$) | | 1 | Lung cancer | 1883.1 | 1 | Lung cancer | 40900 | | 2 | Colorectal cancer | 896.0 | 2 | Liver cancer | 20800 | | 3 | Stomach cancer | 865.0 | 3 | Stomach cancer | 19100 | | 4 | Liver cancer | 819.4 | 4 | Colorectal cancer | 19000 | | 5 | Breast cancer | 611.6 | 5 | Breast cancer | 17700 | | 6 | Pancreatic cancer | 441.1 | 6 | Leukemia | 12000 | | 7 | Esophageal cancer | 436.0 | 7 | Head and neck cancer | 10600 | | 8 | Prostate cancer | 415.9 | 8 | Esophageal cancer | 9780 | | 9 | Head and neck cancer | 380.6 | 9 | Pancreatic cancer | 9080 | | 10 | Leukemia | 347.6 | 10 | Brain tumor | 8740 | | 11 | Cervical cancer | 259.7 | 11 | Cervical cancer | 8060 | | 12 | Non-Hodgkin lymphoma | 248.6 | 12 | Prostate cancer | 7060 | | 13 | Brain tumor | 247.1 | 13 | Non-Hodgkin lymphoma | 7020 | | 14 | Bladder cancer | 196.5 | 14 | Ovarian cancer | 4670 | | 15 | Ovarian cancer | 176.0 | 15 | Bladder cancer | 3600 | | 16 | Gallbladder cancer | 174.0 | 16 | Gallbladder cancer | 3480 | | 17 | Kidney cancer | 138.5 | 17 | Kidney cancer | 3280 | | 18 | Skin cancer | 126.8 | 18 | Skin cancer | 2980 | | 19 | Multiple myeloma | 107.1 | 19 | Multiple myeloma | 2330 | | 20 | Uterine cancer | 85.2 | 20 | Uterine cancer | 2140 | | 21 | Thyroid cancer | 41.2 | 21 | Hodgkin's lymphoma | 1380 | | 22 | Hodgkin's lymphoma | 32.6 | 22 | Thyroid cancer | 1130 | | 23 | Mesothelioma | 29.9 | 23 | Mesothelioma | 671 | | 24 | Testicular cancer | 7.7 | 24 | Testicular cancer | 375 | Table 5. List of cancer types ordered by the estimated number of deaths during the year 2018 (left table) and by the estimated number of new cases in 2018 (right table). Data extracted from GLOBOCAN 2018 [4] | Rank | Cancer | Deaths | Rank | Cancer | New cases | |------|----------------------|---------------------------|------|----------------------|---------------------------| | | | in 2018 ($\times 10^3$) | | | in 2018 ($\times 10^3$) | | 1 | Lung cancer | 1761.0 | 1 | Lung cancer | 2093.9 | | 2 | Colorectal cancer | 861.7 | 2 | Breast cancer | 2088.8 | | 3 | Stomach cancer | 782.7 | 3 | Colorectal cancer | 1801.0 | | 4 | Liver cancer | 781.6 | 4 | Prostate cancer | 1276.1 | | 5 | Breast cancer | 626.7 | 5 | Skin cancer | 1042.1 | | 6 | Esophageal cancer | 508.6 | 6 | Stomach cancer | 1033.7 | | 7 | Head and neck cancer | 453.3 | 7 | Head and neck cancer | 887.7 | | 8 | Pancreatic cancer | 432.2 | 8 | Liver cancer | 841.1 | | 9 | Prostate cancer | 359.0 | 9 | Esophageal cancer | 572.0 | | 10 | Cervical cancer | 311.4 | 10 | Cervical cancer | 569.8 | | 11 | Leukemia | 309.0 | 11 | Thyroid cancer | 567.2 | | 12 | Non-Hodgkin lymphoma | 248.7 | 12 | Bladder cancer | 549.4 | | 13 | Brain tumor | 241.0 | 13 | Non-Hodgkin lymphoma | 509.6 | | 14 | Bladder cancer | 199.9 | 14 | Pancreatic cancer | 458.9 | | 15 | Ovarian cancer | 184.8 | 15 | Leukemia | 437.0 | | 16 | Kidney cancer | 175.1 | 16 | Kidney cancer | 403.3 | | 17 | Gallbladder cancer | 165.1 | 17 | Uterine cancer | 382.1 | | 18 | Multiple myeloma | 106.1 | 18 | Brain tumor | 296.9 | | 19 | Uterine cancer | 89.9 | 19 | Ovarian cancer | 295.4 | | 20 | Skin cancer | 65.2 | 20 | Melanoma | 287.7 | | 21 | Melanoma | 60.7 | 21 | Gallbladder cancer | 219.4 | | 22 | Thyroid cancer | 41.1 | 22 | Multiple myeloma | 160.0 | | 23 | Hodgkin lymphoma | 26.2 | 23 | Hodgkin lymphoma | 80.0 | | 24 | Mesothelioma | 25.6 | 24 | Testicular cancer | 71.1 | from the estimated number of new cases in 2018. January 22, 2019 10/25 Fig 4. Comparison between cancer rankings extracted from May 2017 English Wikipedia PageRank, from the global burden of disease (GBD) study 2017 data, and from GLOBOCAN 2018 data. The overlap $\eta(j)$ gives the number of cancer types in common in the top j of the ranking of cancers obtained from the May 2017 English Wikipedia PageRank (see bold terms in Tab. 3) and in the top j of the ranking of cancers by estimated number of worldwide deaths from GBD 2017 data [37] (black line, see Tab. 4), by estimation of disability-adjusted life years from GBD 2017 data [38] (black dashed line, Tab. 4), by estimated number of worldwide deaths from GLOBOCAN 2018 data [4] (red line, Tab. 5), and by estimated number of new cases from GLOBOCAN 2018 data [4] (red dashed line, Tab. 5). Only the black plain line is visible, where black plain line, red plain line and black dashed line overlap, e.g., from j = 1 to j = 5. #### Reduced Google matrix of cancers and drugs Let us consider now the subset of $N_r = 40$ nodes composed of the first 20 cancers and the first 20 cancer drugs of the ENWIKI2017 PageRanking (Tab. 3). For this sub-network of interest illustrated in Fig. 1, we perform the calculation of the reduced Google matrix G_R and its components G_{rr} , G_{pr} and, G_{qr} . From Fig. 5, as expected, we observe that the $G_{\rm R}$ matrix (top left panel) is dominated by the $G_{\rm pr}$ component (bottom left panel) since $W_{\rm pr} = 0.872 W_{\rm R}$. The $G_{\rm pr}$ component is of minor interest as it expresses again the relative PageRanking between the $N_r = 40$ cancers and drugs already obtained and discussed in previous sections. The G_{rr} (top right panel) gives the direct links between the considered cancers and drugs. Indeed, the G_{rr} matrix is similar to the adjacency matrix A since there is a one-to-one correspondence between non zero entries of G_{rr} and of A (for G_{rr} by non zero entry we mean an entry greater than $(1-\alpha)/N \simeq 2.8 \times 10^{-8}$). Fig. 1 illustrates the subnetwork of the direct links between the top 20 cancer types and the top 20 cancer drugs encoded in G_{rr} and A. Once the obvious G_{pr} component and the direct links G_{rr} component removed from the reduced Google matrix $G_{\rm R}$, the remaining part
$G_{\rm qr}$ gives the hidden links between the set of N_r nodes of interest. In Fig. 5 we represent G_{qrnd} (bottom right panel), the non diagonal part of G_{qr} . We can consider that a link with a non zero entry in G_{qrnd} and a zero entry in G_{rr} (consequently also in A) is a hidden link. Below we use the non obvious components of $G_{rr} + G_{qrnd}$ to draw the structure of reduced network. 213 214 215 216 217 219 220 221 222 223 224 226 228 230 231 232 January 22, 2019 11/25 Fig 5. Reduced Google matrix $G_{\rm R}$ associated to the intertwined subnetworks of top 20 cancer articles and of top 20 drug articles. The reduced Google matrix $G_{\rm R}$ (top left) and its 3 components G_{rr} (top right), $G_{\rm pr}$ (bottom left), and $G_{\rm qrnd}$ (bottom right) are shown. The weights of the components are $W_{\rm R}=1$, $W_{\rm pr}=0.872$, $W_{rr}=0.086$, and $W_{\rm qr}=0.042$ ($W_{\rm qrnd}=0.038$). For each component, thin green and gold lines delimit cancers and drugs sectors, i.e. upper left sub-matrix characterizes from cancers to cancers interactions, lower right sub-matrix from drugs to drugs interactions, upper right sub-matrix from drugs to cancers interactions, and lower left sub-matrix from cancers to drugs interactions. On the $G_{\rm qrnd}$ component (bottom right) superimposed crosses indicate links already present in the adjacency matrix (otherwise stated links corresponding to non zero entries in G_{rr} , see top right). January 22, 2019 12/25 #### Reduced network of cancers We construct the reduced Google matrix associated to the set of $N_r = N_{cr} + N_{cn} = 232$ Wikipedia articles constituted of $N_{cr} = 37$ articles devoted to cancer types and of $N_{cn} = 195$ articles devoted to countries. We consider the top 5 cancer types appearing in the ranking of May 2017 English Wikipedia using the PageRank algorithm which, according to Tab. 3, are 1 Lung cancer, 2 Breast cancer, 3 Leukemia, 4 Prostate cancer, 5 Colorectal cancer. Let us ordinate cancer types by their relative ranking in Tab. 3, cancer type cr_i is consequently the ith most influent cancer type in May 2017 English Wikipedia. Using the reduced Google matrix, the component $(G_{rr} + G_{qrnd})_{cr_i, cr_j}$, where $i, j \in \{1, \dots, N_{cr}\}$, gives the non obvious strength of the link pointing from the jth to the ith most influent cancer types. From each one the top 5 cancer types, $\{cr_j\}_{j\in\{1,\ldots,5\}}$, we select the two cancer types cr_{i_1} and cr_{i_2} , with $i_1, i_2 \in \{1, \dots, j-1, j+1, \dots, N_{cr}\}$, to which cancer type cr_j is preferentially linked ("friends"), i.e. those giving the two strongest $(G_{rr} + G_{qrnd})_{cr_i, cr_j}$ components. Around the main circle in Fig. 6 (top panel) we first place the top 5 most influent cancer types in May 2017 English Wikipedia. Then we connect each one of these cancer types to their two above defined cancer type friends. If these cancer types are not yet present in the network we add them in the vicinity of the cancer type pointing them. For each newly added cancer type we reiterate the same process until no new cancer type is added to the reduced network. The construction process of the reduced network of cancer ends at the 3rd iteration (see Fig. 6, top panel) exhibiting only 10 of the $N_{cr} = 37$ cancer types, which in addition of the top 5 cancer types, are 8 Melanoma, 9 Stomach cancer, 12 Hodgkin lymphoma, 17 Liver cancer and 18 Non-Hodgkin lymphoma. Among these 10 cancer types, 7 are among the top 10 deadliest in 2017 according to GBD study (see Tab. 4). In the reduced network of cancers showed in Fig. 6 (top panel) we observe that the most influent cancer, i.e., Lung cancer is pointed from all the other cancer types with the exception of Hodgkin and Non-Hodgkin lymphomas. Also, Fig. 6 (top panel) exhibits clearly a cluster of cancers (Colorectal, Stomach, and Liver cancers) affecting the digestive system, a cluster of cancers (Hodgkin and Non-Hodgkin lymphomas, and Leukemia) affecting blood, a loop interaction between Prostate and Breast cancers which are both linked to steroid hormone pathways and may be both treated with hormone therapy [39,40], loop interactions between Lung and Breast cancers and between Lung cancer and Melanoma affecting mainly the thoracic region. 233 234 236 237 238 240 241 242 243 244 246 247 248 249 251 252 253 255 257 259 260 261 262 263 264 266 267 268 270 271 272 273 274 275 276 278 279 280 281 282 283 It is worth to note that although Leukemia article in May 2017 English Wikipedia does not cite any of the other articles devoted to cancer types (as an illustration the first half of the Leukemia column in G_{rr} is filled with zero entries, see Fig. 5 top right panel), we are able to infer hidden links (in red in Fig. 6, top panel) from Leukemia to other cancers, here $Lung\ cancer$ and $Non-Hodgkin\ lymphoma$. In the reduced network of cancer, Fig. 6 (top panel), we connect to each cancer types the two preferentially linked countries, i.e., for each cancer type cr, the two countries cn_1 and cn_2 giving the two highest value $(G_{rr} + G_{qrnd})_{cn,cr}$. We observe that cancers affecting digestive system point preferentially to Asian countries with the exception of Great Britain and Chile (Liver cancer points to Thailand and Saudi Arabia, Stomach cancer to Mongolia and Chile, Colorectal cancer to Philippines and Great Britain). This results are correlated to the fact that high mortality rates for Liver cancer are found in Asia (with the highest death rates for Eastern Asia [41]), and for Stomach cancer in Eastern Asia and South America [42,43]. In the other hand Colorectal cancer epidemiology clearly states [44] that the highest incidence rates are found for Western countries such as Great Britain. The appearance of Philippines pointed by Colorectal cancer is an artifact due to the mention in the corresponding 2017 Wikipedia article of Corazon Aquino, former president of the Philippines who was diagnosed with this cancer type. Blood cancer types points preferentially to African January 22, 2019 13/25 Fig 6. Reduced network of cancers. We consider the reduced Google matrix associated to the $N_{cr}=37$ cancers and (top panel) the $N_{cn} = 195$ countries, (bottom panel) the $N_d = 203$ cancer drugs. We consider the top 5 cancers from the ranking of May 2017 English Wikipedia using the PageRank algorithm: 1. Lung cancer, 2. Breast cancer, 3. Leukemia, 4. Prostate cancer, 5. Colorectal cancer (see Tab. 3). These 5 cancers are symbolized by plain green nodes distributed around the central gray circle. We determine the two cancers to which each of these 5 cancers are preferentially linked according to $(G_{rr}+G_{qrnd})$. If not among the top 5 cancers, a newly determined cancer is placed on a gray circle centered on the cancer from which it is linked. Then for each one of the newly added cancers we determine the two best cancers to which they are each linked, and so on. This process is stopped once no new cancers can be added, i.e. at the 3rd iteration (top panel) and 4th iteration (bottom panel). Also, at each iteration the two countries (drugs) to which each cancer are preferentially linked are placed on the gray circle centered on the cancer; see top panel (bottom panel). No new links are determined from the newly added countries or drugs. On top panel, countries are represented by ring shaped nodes (red for American countries, yellow for African countries, cyan for Asian countries, blue for European countries, and orange for Oceanian countries). On bottom panel, drugs are represented by plain gold nodes. The arrows represent the directed links between cancers and from cancers to countries or drugs (1st iteration: plain line; 2nd iteration: dashed line; 3rd iteration: dotted line for top panel and dashed-dotted line for bottom panel; 4th iteration: dotted line for bottom panel). Black arrows correspond to links existing in the adjacency matrix, i.e., direct links, and red arrows are purely hidden links absent from the adjacency matrix but present in the G_{qr} component of the reduced Google matrix G_{R} . These networks have been drawn with Cytoscape [30]. January 22, 2019 14/25 countries with the exception of Cambodia pointed by Hodgkin lymphoma. At first sight this results can appear surprising since these blood cancers are found worldwide with incidence rates highest for Western countries and lowest for African countries [45]. In fact there is a Non-Hodgkin lymphoma, the Burkitt's lymphoma [46], which mainly affects children in malaria endemic region, i.e., Equatorial and Sub-Equatorial Africa and Eastern Asia. Countries pointed by blood cancer types, i.e., Liberia, Zambia, Cameroon, Gabon and Cambodia, belong to these regions. Let us note that these cancers and countries are connected through hidden links. Melanoma points to Australia, which is, with New Zealand [47], the country having the highest rate of Melanoma, and points to Peru, where nine 2400 years old mummies have been found with apparent signs of Melanoma [47]. Prostate cancer points preferentially to Japan, due to its exceptional low incidence on Japanese population in Japan and abroad [48, 49], to Nigeria, since it is believe that black population is particularly at risk [50]. Lung cancer points to Germany, where in 1929 it was shown for the first time a correlation between smoking and Lung cancer [51,52], and to Bhutan which adopted a complete smoking ban since 2005 [51]. Hidden link from Breast cancer to Republic of San Marino should be related to the fact that inhabitants of San Marino commemorate Saint Agatha, patroness of the Republic and of breast cancer patients [53]. Hidden link from *Breast cancer* to Cambodia is more difficult to interpret. 287 289 291 293 297 300 301 302 304 305 306 308 310 311 312 313 314 315 316 317 318 319 320 321 322 323 325 327 328 330 333 334 Let us now
consider the reduced Google matrix associated to $N_r = N_{cr} + N_d = 240$ May 2017 English Wikipedia articles devoted to $N_{cr} = 37$ cancer types and to $N_d = 203$ cancer drugs. As above the reduced network of cancer can be constructed (Fig. 6, bottom panel). The construction process ends at the 4th iteration. The main structure of reduced network of cancers is the same as the previous with some exceptions. Pancreatic cancer is added to the digestive system cancers cluster and via hidden links, Melanoma points now to Skin cancer which points to Breast cancer. Consequently we observe a new cluster of thoracic region cancers comprising Skin, Breast, Lung cancers and Melanoma. Let us connect to each cancer types the two preferentially linked cancer drugs, i.e., for each cancer type cr, the two cancer drugs d_1 and d_2 giving the two highest value $(G_{rr} + G_{qrnd})_{d,cr}$. Using DrugBank database [26], we easily check that indeed each drug is currently used to treat the cancer type to which it is connected. Also, closely connected cancer types share the same medication, e.g., Skin cancer and Melanoma are treated by Vemurafenib and Dabrafenib which are enzyme inhibitor of BRAF gene [54], Leukemia and Non-Hodgkin lymphoma are treated by the antibody Rituximab targeting B-lymphocyte antigen CD20 [55]. On the other hand non connected cancer types can in some cases share the same medication, the monoclonal antibody Trastuzumab typically used for Breast cancer is now also considered as a drug for Stomach cancer since these two cancer types overexpress the HER2 gene [56]. Let us note that hidden links connecting Non-Hodgkin lymphoma to Cyclophosphamide and Rituximab capture also a current medication reported in DrugBank database [26]. The reduced network of cancers shown in Fig. 6 depict in a relevant manner interactions between cancers, cancer-country and cancer-drug interactions through Wikipedia. #### World countries sensitivity to cancers We consider the reduced Google matrix associated to the set of $N_r = N_{cr} + N_{cn} = 232$ Wikipedia articles constituted of $N_{cr} = 37$ articles devoted to cancer types and of $N_{cn} = 195$ articles devoted to countries. We compute the PageRank sensitivity $D(cr \to cn, cn)$, i.e., the infinitesimal rate of variation of PageRank probability P(cn) when the directed link $cr \to cn$, $(G_R)_{cn,cr}$, is increased by an amount $\delta(G_R)_{cn,cr}$, where δ is an infinitesimal. Fig. 7 shows the world distribution of PageRank sensitivity $D(cr \rightarrow cn, cn)$ to Lung January 22, 2019 15/25 Fig 7. Sensitivity of countries to *Lung cancer*. A country cn is colored according to its diagonal PageRank sensitivity $D(cr \rightarrow cn, cn)$ to *Lung cancer*. Color categories are obtained using the Jenks natural breaks classification method [57]. Fig 8. Sensitivity of countries to cancer \rightarrow drug link variation. A country cn is colored according to its nondiagonal PageRank sensitivity $D(cr \rightarrow d, cn)$ to $cr \rightarrow d$ link variation. Variation of $Lung\ cancer \rightarrow Bevacizumab$ link is considered. Color categories are obtained using the Jenks natural breaks classification method [57]. January 22, 2019 16/25 cancer. The most sensitive countries are, as discussed in the previous section, Bhutan and Germany mainly because these countries are directly cited in Wikipedia's Lung cancer article. Besides articles devoted to these two countries the others are not directly linked from the Lung cancer article and the results obtained in Fig. 7 (top panel) is consistent with GLOBOCAN 2018 data [4]: apart Micronesia/Polynesia, the most affected countries, in term of incidence rates, are Eastern Europe, Eastern Asia, Western Europe, and, Southern Europe for males, and, Northern America, Northern Europe, Western Europe, and, Australia/New Zealand for females. The less affected are African countries for both sexes. Let us note that although incidence rates are very high for males in Micronesia/Polynesia according to [4], this fact is not captured by Wikipedia since Nauru, Kiribati, Tuvalu, Marshall Islands are the less PageRank sensitive countries. This is certainly due to the fact that articles devoted to these sovereign states are among the worst ranked articles devoted to countries in the May 2017 English Wikipedia ranking using PageRank algorithm. Their respective ranks are Nauru K = 7085, Kiribati K = 7659, Tuvalu K = 6201, Marshall Islands K = 4549 to compare e.g. with USA K = 1, France K = 4, Germany K = 5, etc (see PageRank indices of countries in [25]). 336 337 338 340 341 342 344 345 348 351 352 353 355 356 357 As complementary information, sensitivities of countries to *Breast cancer* and to *Leukemia* are given in [25]. In order to investigate cancer – drug interactions it is also possible to represent sensitivity of countries to the variation of links from a cancer to a drug. As an illustration, Fig. 8 shows countries PageRank sensitivities to variation of $Lung\ cancer \rightarrow Bevacizumab$ link. We see that in this case the sensitivity of countries is significantly reduced comparing to the direct sensitivity influence of lung cancer on world countries Fig 9. Sensitivity of cancers to drugs. The PageRank sensitivity $D(cr \to d, cr)$ of cancers to cancer drugs is represented. Here we consider the first 37 cancers (cr) listed in Tab. 3 and the first 37 drugs (d) listed in Table 2 (Talc has been removed as its article is too general). January 22, 2019 17/25 Fig 10. Sensitivity of drugs to cancers. The PageRank sensitivity $D(d \to cr, d)$ of cancer drugs to cancers is represented. Here we consider the first 37 cancers (cr) listed in Tab. 3 and the first 37 drugs (d) listed in Table 2 (Talc has been removed as its article is too general). shown in Fig. 7. Since the influence of this link variation is indirect for countries it is rather difficult to recover due to what indirect links the influence for specific countries is bigger or smaller. Among the most affected European countries we find Lichtenstein, Great Britain, Iceland, Portugal and Croatia while Germany and the Czech Republic are mostly unaffected. Another example of sensitivity of countries to cancer-drug link variation is given in [25]. #### Interactions between cancers and drugs Let us investigate interactions between cancers and drugs considering the subnetwork of $N_{cr} = 37$ cancers (see Tab. 1) and of the first 37 cancer drugs appearing in the PageRank ordered list Tab. 3. We do not consider Talc here since it is widely used in not only pharmaceutical industries. We consider the sensitivity of cancer to drugs via the computation of $D\left(cr \to d, cr\right)$ presented in Fig. 9. Although the PageRank sensitivity is computed using the logarithmic derivative of the PageRank, globally the most sensitives cancers are the ones with the highest PageRank probability, i.e., the ones with lowest PageRank indices K (see Fig. 2 and Tab. 3): Lung cancer is mostly sensitive to Irinotecan, Etoposide, Carboplatin, Breast cancer to Raloxifene, Trastuzumab, Docetaxel, Leukemia to Mercaptopurine, Imatinib, Rituximab, etc. Following the National Cancer Institute [22] and/or DrugBank [26] databases, these associations cancer – drug are indeed approved. Fig. 10 shows the complementary view of the sensitivity of drugs to cancers obtained from the computation of $D(d \to cr, d)$. Here the most sensitive drugs are *Dactinomycin* to Gestational trophoblastic disease, HPV vaccines to Vulvar and Vaginal cancers, Fluorouracil to Anal cancer, Doxorubicin to Soft-tissue cancers, etc. Again the National January 22, 2019 18/25 Table 6. Drug prescription by Wikipedia for the top 20 most influential cancer types and comparison with prescriptions by National Cancer Institute and DrugBank. For each of the top 20 cancer types ranked in May 2017 English Wikipedia using PageRank algorithm (see Tab. 3), we give the three strongest cancer \rightarrow drug links, i.e., for a given cancer type cr we select the three cancer drugs d with the highest values $(G_{rr} + G_{qr})_{d,cr}$. Drug in red indicates a pure hidden cancer \rightarrow drug link, i.e., the cancer type article in Wikipedia does not refer directly to the drug. For each cancer \rightarrow drug link, the drug is followed by a \checkmark mark if it is indeed prescribed for the cancer type according to National Cancer Institute [22] and/or DrugBank [26]; by a \blacktriangle mark if the drug appears only as a subject of passed, ongoing or planned clinical trials reported for the cancer type in DrugBank; and by a \rightthreetimes mark otherwise. | | Cancer | 1st drug | | 2nd drug | | 3rd drug | | |-----|------------------------|------------------|----------|------------------|---------------------------|--------------------------|----------| | 1 | Lung cancer | Erlotinib | V | Crizotinib | V | Cisplatin | V | | 2 | Breast cancer | Tamoxifen | • | Trastuzumab | V | Methotrexate | V | | 3 | Leukemia | Imatinib | V | Rituximab | V | Methotrexate | V | | 4 | Prostate cancer | Enzalutamide | 1 | Cyclophosphamide | | Prednisone | V | | 5 | Colorectal cancer | Fluorouracil | 1 | Irinotecan | V | Bevacizumab | V | | 6 | Brain tumor | Temozolomide | 1 | Dexamethasone | \mathbf{x}^{a} | Aminolevulinic acid | | | 7 | Pancreatic cancer | Fluorouracil | 1 | Gemcitabine | V | Protein-bound paclitaxel | V | | 8 | Melanoma | Vemurafenib | • | Dabrafenib | V | Trametinib | V | | 9 | Stomach cancer | Trastuzumab | • | Doxorubicin | V | Cisplatin | | | 10 | Ovarian cancer | Cisplatin | • | Tamoxifen | | Bevacizumab | V | | 11 | Cervical cancer | HPV vaccines | • | Cisplatin | V | Topotecan | V | | 12 | Hodgkin's lymphoma | Prednisone | V | Cyclophosphamide | V | Vincristine | V | | 13 | Skin cancer | Vemurafenib | 1 | Dabrafenib | V | Fluorouracil | V |
 14 | Multiple myeloma | Dexamethasone | | Elotuzumab | V | Bortezomib | V | | 15 | Esophageal cancer | Cisplatin | 1 | Carboplatin | V | Fluorouracil | V | | 16 | Liver cancer | Doxorubicin | | Cisplatin | | Sorafenib | V | | 17 | Non-Hodgkin's lymphoma | Cyclophosphamide | 1 | Rituximab | V | Prednisone | V | | 18 | Bladder cancer | Doxorubicin | 1 | Cisplatin | V | Methotrexate | V | | 19 | Head and neck cancer | Cetuximab | V | Paclitaxel | V | Cisplatin | V | | _20 | Testicular cancer | Etoposide | V | Cisplatin | V | Bleomycin | <u> </u> | Notes: a Dexamethasone may be used to decrease swelling around the tumor [58]. Cancer Institute [22] and DrugBank [26] databases report these possible drug – cancer associations. 384 386 391 393 395 397 398 300 401 Let us consider directly the reduced Google matrix associated to the top 20 cancer types and top 20 cancer drugs according to May 2017 English Wikipedia PageRank list (Tab. 3). This reduced Google matrix $G_{\rm R}$ and its G_{rr} , $G_{\rm pr}$ and $G_{\rm qrnd}$ components are shown in Fig. 5. For each cancer cr of the 20 most influent cancer types in May 2017 English Wikipedia let us determine the three most connected drugs d, i.e., the three drugs with the highest value of $(G_{rr}+G_{\rm qrnd})_{d,cr}$. In Tab. 6 we show the May 2017 English Wikipedia prescription for each one of the top 20 cancer types. Most of the prescribed drugs are approved drugs for the considered cancer types according to National Cancer Institute [22] and DrugBank [26]. Some of the Wikipedia proposed drugs are in fact subject of passed, ongoing or planned clinical trials. Only Dexamethasone is in fact not specific to $Brain\ tumor$ since it is a corticosteroid used to treat inflammation in many medical conditions. We observe that hidden links gives also accurate medication, see drugs associated to $Non-Hodgkin\ lymphoma$ and $Bladder\ cancer$ in Tab. 6. Conversely for each cancer drug d of the 20 most influent cancer drugs in 2007 English Wikipedia we determine the three most connected cancer types cr, i.e., the three cancer types with the highest value of $(G_{rr} + G_{qrnd})_{cr,d}$. In Tab. 7 we show for which cancers a drug is prescribed according to May 2017 English Wikipedia. Again the January 22, 2019 19/25 Table 7. According to Wikipedia for which cancer type is prescribed the top 20 most influential cancer drugs and comparison with prescriptions by National Cancer Institute and DrugBank. For each of the top 20 cancer drugs ranked in May 2017 English Wikipedia using PageRank algorithm (see Tab. 3), we give the three strongest drug \rightarrow cancer links, i.e., for a given drug d we select the three cancer types cr with the highest values $(G_{rr} + G_{qr})_{cr,d}$. Cancer type in red indicates a pure hidden drug \rightarrow cancer link, i.e., the drug article in Wikipedia does not refer directly to the cancer type. For each drug \rightarrow cancer link, the cancer type is followed by a \checkmark mark if the drug is indeed prescribed for the cancer type according to National Cancer Institute [22] and/or DrugBank [26]; by a \blacktriangle mark if the drug appears only as a subject of passed, ongoing or planned clinical trials reported for the cancer type in DrugBank; and by a \rightthreetimes mark otherwise. | | Drug 1st cancer type | | | 2nd cancer type | | 3rd cancer type | | |-----|----------------------|-------------------|----------|----------------------|------------|--------------------|----------| | 1 | Talc | Ovarian cancer | X | Lung cancer | X | Breast cancer | X | | 2 | Methotrexate | Leukemia | • | Breast cancer | V | Lung cancer | V | | 3 | Thalidomide | Multiple myeloma | • | Breast cancer | | Prostate cancer | | | 4 | Paclitaxel | Breast cancer | • | Lung cancer | V | Ovarian cancer | V | | 5 | Prednisone | Multiple myeloma | | Non-Hodgkin lymphoma | V | Hodgkin's lymphoma | V | | 6 | Cisplatin | Lung cancer | • | Testicular cancer | V | Breast cancer | V | | 7 | Dexamethasone | Multiple myeloma | | Brain tumor | x a | Leukemia | V | | 8 | Doxorubicin | Leukemia | V | Hodgkin's lymphoma | V | Breast cancer | V | | 9 | Propranolol | Ovarian cancer | | Brain tumor | X | Colorectal cancer | | | 10 | Interleukin 2 | Melanoma | V | Leukemia | | Hodgkin's lymphoma | | | 11 | Cyclophosphamide | Leukemia | • | Multiple myeloma | V | Breast cancer | V | | 12 | Fluorouracil | Colorectal cancer | V | Breast cancer | V | Stomach cancer | V | | 13 | Tamoxifen | Breast cancer | • | Uterine cancer | | Prostate cancer | | | 14 | Vincristine | Leukemia | • | Hodgkin's lymphoma | V | Lung cancer | V | | 15 | Rituximab | Leukemia | • | Non-Hodgkin lymphoma | V | Multiple myeloma | | | 16 | Bevacizumab | Breast cancer | V | Colorectal cancer | V | Lung cancer | V | | 17 | HPV vaccines | Cervical cancer | V | Breast cancer | X | Colorectal cancer | X | | 18 | Imatinib | Leukemia | V | Breast cancer | | Prostate cancer | | | 19 | Arsenic trioxide | Leukemia | V | Brain tumor | | Breast cancer | | | _20 | Dactinomycin | $\mathrm{GTD^b}$ | ~ | Testicular cancer | V | Ovarian cancer | <u> </u> | Notes: a Dexamethasone may be used to decrease swelling around the tumor [58]. b Gestational trophoblastic disease. results are globally in accordance with National Cancer Institute [22] and DrugBank [26] databases. We note that hidden links here correspond mainly to clinical trials, e.g., Imatinib is an approved drug for treatment of certain forms of *Leukemia*, but experiments were or will be done for *Breast cancer* and *Prostate cancer*. Conclusion Using PageRank and CheiRank algorithms, we investigate global influences of 37 cancer types and 203 cancer drugs through the prism of Human knowledge encoded in the English edition of Wikipedia considered as a complex network. From the ranking of Wikipedia articles using PageRank algorithm we extract the ranking of the most influent cancers according to Wikipedia. This ranking is in good agreement with rankings, by either mortality rates or yearly new cases, extracted from WHO GLOBOCAN 2018 [2] and Global Burden of Diseases study 2017 [5] databases. The recently developed algorithm of the reduced Google matrix allows to construct a reduced network of cancers taking into account all the information aggregated in Wikipedia. This network exhibits direct and hidden links between the most influent cancers which form clusters of similar or related cancer types. The reduced Google matrix gives also countries or cancer drugs which are preferentially linked to the most influent cancers. Inferred relations between cancer types and countries obtained from January 22, 2019 20/25 Wikipedia network analysis are in accordance with global epidemiology literature. The PageRank sensitivity of countries to cancer types gives also a complementary tool corroborating epidemiological analysis. Inferred interactions between cancers and cancer drugs allows to determine drug prescriptions by Wikipedia for a specific cancer. These Wikipedia prescriptions appear to be compatible with approved medications reported in National Cancer Institute [22] and DrugBank [26] databases. 422 423 425 427 429 431 433 434 435 441 The reduced Google matrix algorithm allows to determine a clear and compact description of global influences and interactions of cancer types and cancer drugs integrating well documented medical aspects but also historical, and societal aspects, all encoded in the huge amount of knowledge aggregated in Wikipedia since 2001. #### Authors contributions All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript. #### Acknowledgments We thank Jean-Paul Feugeas and Tatiana Serebriyskaya for useful remarks and discussions. This work was supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-0003), by the Bourgogne Franche-Comté Region 2017-2020 APEX project (conventions 2017Y-06426, 2017Y-06413, 2017Y-07534; see http://perso.utinam.cnrs.fr/~lages/apex/ and in part by the Programme Investissements d'Avenir ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT (project THETRACOM). #### References - 1. Wold Health Organization. World Cancer Day 2018; 2018. Available from: https://www.who.int/cancer/world-cancer-day/2018/en/. - Union for International Cancer Control. New Global Cancer Data: GLOBOCAN 2018; 2018. Available from: https://www.uicc.org/new-global-cancer-data-globocan-2018. - 3. P G Altbach LER L Reisberg. IARC Biennial Report 2016-2017. International Agency for Research on Cancer; 2017. Available from: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Biennial-Reports/IARC-Biennial-Report-2016-2017. - 4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394–424. doi:10.3322/caac.21492. - 5. GBD. Global Burden of Disease; 2010. The Lancet. Available from: https://www.thelancet.com/gbd. - Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems. 1998;30(1):107 – 117. doi:https://doi.org/10.1016/S0169-7552(98)00110-X. January 22, 2019 21/25 - 7. Langville AN, Meyer CD. Google's PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press; 2012. - 8. Ermann L, Frahm KM, Shepelyansky DL. Google matrix analysis of directed networks. Rev Mod Phys. 2015;87:1261–1310. doi:10.1103/RevModPhys.87.1261. - 9. Encyclopaedia Britannica; 2018. Available from: http://www.britannica.com. - 10. Giles J. Internet encyclopaedias go head to head. Nature.
$2005;\!438:\!900-\!901.$ doi:10.1038/438900a. - 11. Butler D. Publish in Wikipedia or perish. Nature. 2008;doi:10.1038/news.2008.1312. - Callaway E. No rest for the bio-wikis. Nature. 2010;468(7322):359–360. doi:10.1038/468359a. - 13. Reagle Jr JM. Good Faith Collaboration: The Culture of Wikipedia (History and Foundations of Information Science). The MIT Press; 2012. - 14. Nielsen FÅ. Wikipedia Research and Tools: Review and Comments. SSRN Electronic Journal. 2012;doi:10.2139/ssrn.2129874. - Lewoniewski W, Wecel K, Abramowicz W. Relative Quality and Popularity Evaluation of Multilingual Wikipedia Articles. Informatics. 2017;4(4):43. doi:10.3390/informatics4040043. - Frahm KM, Shepelyansky DL. Reduced Google matrix. arXiv. 2016:arXiv:1602.02394. - 17. Frahm KM, Jaffrès-Runser K, Shepelyansky DL. Wikipedia mining of hidden links between political leaders. The European Physical Journal B. 2016;89(12):269. doi:10.1140/epjb/e2016-70526-3. - Zant SE, Jaffrès-Runser K, Frahm KM, Shepelyansky DL. Interactions and Influence of World Painters From the Reduced Google Matrix of Wikipedia Networks. IEEE Access. 2018;6:47735–47750. doi:10.1109/ACCESS.2018.2867327. - 19. Coquidé C, Lages J, Shepelyansky DL. World influence and interactions of universities from Wikipedia networks. arXiv. 2018;arXiv:1809.00332. - Lages J, Shepelyansky DL, Zinovyev A. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks. PLOS ONE. 2018;13(1):1–28. doi:10.1371/journal.pone.0190812. - 21. Cancer Treatment Centers of America. Types of Cancer; 2018. Available from: https://www.cancercenter.com/cancer/. - 22. National Cancer Institute. List of Cancer Drugs; 2018. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/. - 23. El Zant S, Jaffrès-Runser K, Shepelyansky DL. Capturing the influence of geopolitical ties from Wikipedia with reduced Google matrix. PLOS ONE. 2018;13(8):1–31. doi:10.1371/journal.pone.0201397. - Rollin G, Lages J, Shepelyansky D. World Influence of Infectious Diseases from Wikipedia Network Analysis. bioRxiv. 2018;doi:10.1101/424465. January 22, 2019 22/25 - 25. Rollin G, Lages J, Shepelyansky D. Wiki4Cancers: Wikipedia network of cancers; 2018. Available from: http://perso.utinam.cnrs.fr/~lages/datasets/Wiki4Cancers/. - 26. DrugBank. DrugBank database; 2018. Available from: https://www.drugbank.ca. - 27. Frahm KM, Shepelyansky DL. Wikipedia networks of 24 editions of 2017; 2017. Available from: http://www.quantware.ups-tlse.fr/QWLIB/24wiki2017. - 28. Chepelianskii AD. Towards physical laws for software architecture. arXiv. 2010;arXiv:1003.5455. - 29. Zhirov AO, Zhirov OV, Shepelyansky DL. Two-dimensional ranking of Wikipedia articles. The European Physical Journal B. 2010;77(4):523–531. doi:10.1140/epjb/e2010-10500-7. - Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research. 2003;13(11):2498–2504. doi:10.1101/gr.1239303. - 31. Kaatsch P. Epidemiology of childhood cancer. Cancer Treatment Reviews. 2010;36(4):277–285. doi:10.1016/j.ctrv.2010.02.003. - 32. Wikipedia. Talc; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Talc. - 33. Wikipedia. Methotrexate; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Methotrexate. - 34. Wikipedia. Thalidomide; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Thalidomide. - 35. Wikipedia. Paclitaxel; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Paclitaxel. - 36. Wikipedia. Bicalutamide; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Bicalutamide. - 37. Global Burden of Disease Study. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1736 1788. - 38. Global Burden of Disease Study. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1736 1788. - 39. Wikipedia. Breast cancer; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Breast_cancer. - 40. Wikipedia. Prostate cancer; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Prostate_cancer. January 22, 2019 23/25 - 41. Wong MCS, Jiang JY, Goggins WB, Liang M, Fang Y, Fung FDH, et al. International incidence and mortality trends of liver cancer: a global profile. Scientific Reports. 2017;7:45846. - 42. Brenner H, Rothenbacher D, Arndt V. In: Verma M, editor. Epidemiology of Stomach Cancer. Totowa, NJ: Humana Press; 2009. p. 467–477. Available from: https://doi.org/10.1007/978-1-60327-492-0_23. - 43. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiology and Prevention Biomarkers. 2014;23(5):700–713. doi:10.1158/1055-9965.EPI-13-1057. - 44. Haggar FA, Boushey RP. Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Clinics in Colon and Rectal Surgery. 2009;22(04):191–197. doi:10.1055/s-0029-1242458. - 45. Miranda-Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: a population-based study. The Lancet Haematology. 2018;5(1):e14–e24. doi:10.1016/S2352-3026(17)30232-6. - 46. Wikipedia. Burkitt's lymphoma; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Burkitt's_lymphoma. - 47. Wikipedia. Melanoma; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Melanoma. - 48. Kimura T. East meets West: ethnic differences in prostate cancer epidemiology between East Asians and Caucasians. Chin J Cancer. 2012;31(9):421–429. doi:10.5732/cjc.011.10324. - 49. Wakai K. Descriptive epidemiology of prostate cancer in Japan and Western countries. Nippon Rinsho. 2005;63(2):207–212. - 50. Badmus TA, Adesunkanmi ARK, Yusuf BM, Oseni GO, Eziyi AK, Bakare TIB, et al. Burden of Prostate Cancer in Southwestern Nigeria. Urology. 2010;76(2):412 416. doi:https://doi.org/10.1016/j.urology.2010.03.020. - 51. Wikipedia. Lung cancer; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Lung_cancer. - 52. Witschi H. A Short History of Lung Cancer. Toxicological Sciences. 2001;64(1):4–6. doi:10.1093/toxsci/64.1.4. - 53. Wikipedia. San Marino; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/San_Marino. - 54. Wikipedia. BRAF; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/BRAF_(gene). - 55. Wikipedia. Rituximab; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Rituximab. - 56. Gunturu KS, Woo Y, Beaubier N, Remotti HE, Saif MW. Gastric cancer and trastuzumab: first biologic therapy in gastric cancer. Therapeutic Advances in Medical Oncology. 2013;5(2):143–151. doi:10.1177/1758834012469429. - 57. Wikipedia. Jenks natural breaks optimization; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization. January 22, 2019 24/25 58. Wikipedia. Brain Tumor; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Brain_tumor. January 22, 2019 25/25