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ABSTRACT 

According to the topological design theory and method of parallel mechanism (PM) based on position 

and orientation characteristic (POC) equations, this paper studied a 3-DOF translational PM that has 

three advantages, i.e., (i) it consists of three fixed actuated prismatic joints, (ii) the PM has analytic 

solutions to the direct and inverse kinematic problems, and (iii) the PM is of partial motion decoupling 

property. Firstly, the main topological characteristics, such as the POC, degree of freedom and 

coupling degree were calculated for kinematic modeling. Thanks to these properties, the direct and 

inverse kinematic problems can be readily solved. Further, the conditions of the singular 

configurations of the PM were analyzed which corresponds to its partial motion decoupling property. 

INTRODUCTION 

In many industrial production lines, process operations require only pure translational motions. 

Therefore, the 3-DOF translational parallel mechanism (TPM) has a significant potential, thanks to its 

fewer actuated joints, a relatively simple structure and easy to be controlled. Many researchers have 

studied the TPMs. For example, original design of 3-DOF TPM is the Delta Robot, which was 

presented by Clavel [1]. The Delta-based TPMs have been developed with prismatic actuated joints [2, 

                                                      
1 The original version of this paper has been accepted for presentation at the ASME 2019 International Design Engineering Technical 

Conferences &Computers and Information in Engineering Conference, DETC2019-97077, 2019, Anaheim, CA, USA 
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3] and the sub-chain is a 4R parallelogram mechanism
2
. Several optimizations based on the Jacobian 

matrices were carried out in [4-7]. In [8, 9], the authors proposed a 3-RRC TPM and developed the 

kinematics and workspace analysis. Kong et al. [10] proposed a 3-CRR mechanism with good motion 

performance and no singular postures. Li et al., [11, 12] developed a 3-UPU PM and analyzed the 

instantaneous kinematic performance of the TPM. Yu et al. [13] carried out a comprehensive analysis 

of the three-dimensional TPM configuration based on the screw theory. Lu et al. [14] proposed a 3-

RRRP (4R) three-translation PM and analyzed the kinematics and workspace. Yang et al. [15, 16] 

studied 3T0R PMs based on the single opened chains (SOC) units, and a variety of new TPMs were 

synthesized and then classified [17, 18]. Considering the anisotropy of kinematics, Zhao et al. [19] 

analyzed the dimensional synthesis and kinematics of the 3-DOF translational Delta PM. Zeng et al. 

[20-22] introduced a 3-DOF TPM called as Tri-pyramid robot and presented a more detailed analytical 

approach for the Jacobian matrix. Prause et al. [23] compared the characteristics of dimensional 

synthesis, boundary conditions and workspace for various 3-DOF TPMs for the best performances 

among them. Mazare et al. [24] proposed a 3-DOF 3-[P2(US)] mechanism and analyzed its kinematics 

and dexterity.  

However, most of the previous TPMs generally suffer from two major problems: i) the coupling 

degree κ of these PMs is greater than zero, which means that analytical direct position solution is 

difficult to be derived, and ii) these PMs do not have input-output decoupling characteristics [25], 

leading to the complexity of motion control and path planning.  

In the next sections, the topology design theory of PM based on position and orientation characteristics 

(POC) equations [16, 17] is applied to present a new TPM, with the coupling degree determined. 

Then, the position analysis is conducted to deduce the direct and inverse kinematic model. For a given 

example, the maximum number of solutions for the direct and inverse kinematic model are obtained. 

Then, the configurations for the serial and parallel singularities are presented. 

DESIGN AND TOPOLOGY ANALYSIS 

Topological design   

The 3T parallel manipulator proposed in this paper is illustrated in Fig. 1. The base platform 0 is 

connected to the moving platform 1, by two hybrid chains that contain both loop(s) and serial joints. A 

chain that is composed of links and joints in series is called Single-Opened-Chains (SOCs), while 

hybrid chains are called hybrid Single-Opened-Chains (HSOCs). The structural and geometric 

constraints of two HSOCs are given as follows: 

                                                      
2 Throughout this paper, R, C, P and U stand for revolute, cylindrical, prismatic and universal joints, respectively. 
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FIGURE 1 KINEMATIC STRUCTURE OF THE 3T PM 

 For the 6-bar planar mechanism loop (abbreviation: 2P4R planar mechanism) in right side of 

Fig. 1, two revolute joints R3 and R4 with axes parallel to each other are connected in series, 

where R3 is connected to link 11 and R4 is connected to the moving platform 1 to obtain the 

first HSOC branch (denoted as: hybrid chain I). Two prismatic joints P1 and P2 of the 6-bar 

planar mechanism will be used as actuated joints. 

 The left side branch is made up of a prismatic joint P3 and two 4R parallelogram mechanisms 

connected in series, and the parallelograms connected from P3 to the moving platform 1 are 

respectively recorded as ①, ②. The prismatic joint, P3 and the parallelogram ① are rigidly 

connected with the motion confined in the same plane, and they are connected to the 

parallelogram ② in their orthogonal plane to obtain the second HSOC branch (denoted as: 

hybrid chain II). 

 The prismatic joints P1, P2 and P3 are connected to the base platform 0; P1 and P2 are 

arranged coaxially, and prismatic P1 is parallel to P3. When the PM moves, the 2P4R planar 

mechanism is always parallel to the plane of the parallelogram ①. 

Analysis of topology characteristics 

Analysis of the POC set: The POC set equations for parallel mechanisms are expressed, respectively, 

as follows [16]: 


m

i

Jibi MM

1

                                                                  (1) 

 
1

n

Pa bi

i

M M


 I  (2) 

where  

 
JiM - POC set generated by the i-

th 
joint. 

 
biM - POC set generated by the end link of i-

th 
branched chain. 

 
PaM - POC set generated by the moving platform of PM. 
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 POC- position and orientation characteristics 

 ∪ -union operation 

 ∩-intersection operation 

Apparently, the output motions of the intermediate link 11 in the 2P4R planar mechanism on the 

hybrid chain I are two translations and one rotation (2T1R), hence, the output motions of the end link 

of the hybrid chain I are three translations and two rotations (3T2R).  

The output motions of the link S of the parallelogram ① on the hybrid chain II are two translations 

(2T), thus, the output motions of the link T of the parallelogram ② on the hybrid chain II are three 

translations (3T).  

Therefore, the topological architecture of the hybrid chain I and II of the PM can be equivalently 

denoted as [16], respectively: 

  (2 4 ) (2 4 ) (2 4 )

1 3 4- - || -P R P R P RHSOC P P R R R （ ）  

 (4 ) (4 )

2 3

R RHSOC P P P     

Where,  

-
(2 4 ) (2 4 ) (2 4 )-P R P R P RP P R means that the 2P4R planar mechanism generates two translations and one 

rotation, which is denoted as 

2

12

1

12

( )

(|| )

t R

r R

 
 
 

, while  (4 ) (4 )R RP P   means two translations generated 

by two parallelograms composed of 4R joints that is denoted as 

2

0

t

r

 
 
 

.  

- 
2

12( )t R means that there are two translations, i.e., t
2
, in the plane that is perpendicular to the axis 

of joint R12 . Moreover, 
1

12(|| )r R means that there is one rotation, i.e., r
1
, that is parallel to the axis of 

joint R12. 
 The other notations in the formulas above can be found in [16].

 

The POC sets of the end link of the two HSOCS are determined according to Eq. (1) as follows:  

                          
1

2 32

312

1 21

3 12 312

( )( )

(|| ) (|| ( , ))(|| )
HSOC

t R tt R
M

r R r R Rr R

     
     

     
U  

2

1 2 3

3

0 0 0

(|| )
HSOC

t P t t
M

r r r

     
      
     

U  

The POC set of the moving platform of this PM is determined from Eq. (2) by 

 
1 2Pa HSOC HSOCM M M I

3

0

t

r

 
 
 

  

This formula indicates that the moving platform 1 of the PM produces three-translation motion. It is 

further known that the hybrid chain II in the mechanism itself can realize the design requirement of 

three translations, which simultaneously constrains the two rotational outputs of the hybrid chain I. 
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Determining the DOF: The general and full-cycle DOF formula for PMs proposed in author’s work 

[16] is given below: 

 1 1

m v

i Lj

i j

F f 
 

    (3) 

 


  











v

j
bb

j

i
Lj MM

ji
1 1

)1(
.dim  ）（  (4) 

where 

 F - DOF of PM. 

 fi - DOF of the i
th 

joint. 

 m - number of all joints of the PM. 

 v - number of independent loops of the PM, and 1v m n   . 

 n - number of links.  

 
jL - number of independent equations of the j

th 
loop.  

 
1

i

j

b

i

M


I - POC set generated by the sub-PM formed by the former j branches. 

 ( 1)b jM  - POC set generated by the end link of j+1 sub-chains. 

The PM can be decomposed into two independent loops, and their constraint equations are calculated 

as follows:  

① The first independent loop is consisted of the 2P4R planar mechanism in the hybrid chain I, the 

LOOP1 is deduced as: 

 (2 4 ) (2 4 ) (2 4 )

1 ( , )P R P R P RLOOP P P R    

Obviously, the independent displacement equation number of the planar mechanism is 
1

3L  . 

② The above 2P4R planar mechanism and the following sub-string
3 4||R R with the additional  HSOC2 

will form the second independent loop, namely, 

 (4 ) (4 )

2 3 4 3|| R RLOOP R R P P P      

In accordance with Eq.(4), the independent displacement equation number 
2L of the second loop can 

be obtained [16] as below: 

 
2

3 32

12

1 21

3 12 312

( )
dim. dim. 5

(|| ) (|| ( , ))(|| )
L

t tt R

r R r R Rr R


          
         

           

U  

Thus, the DOF of the PM is calculated from Eq. (3) expressed as

 

 
2

1 1

(6 5) (3 5) 3
j

m

i L

i j

F f 
 

         

Therefore, the DOF of the PM is equal to 3, and when the prismatic joints P1, P2 and P3 on the base 

platform 0 are the actuated joints, the moving platform 1 can realize three-translational motion. 
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Determining the coupling degree: According to the composition principle of mechanism based on 

single-opened-chains (SOC) units, any PM can be decomposed into a series of Assur kinematic chains 

(AKC), and an AKC with v independent loops can be decomposed into v SOC. The constraint degree 

of the j
th
 SOC, △ j, is defined [16, 17] by 

 

0

1

5, 4, 2, 1

0

1, 2, 3,

j

j

j
m

j i j L j

i

j

f I 






     


      

      

  (5) 

where 

 △ j - constraint degree of the j
th
 SOC. 

 jm - number of joints contained in the j
th
 SOCj.  

 
if - DOF of the i

th 
joints. 

 jI - number of actuated joints in the j
th
 SOCj . 

 
jL - number of independent equations of the j

th 
loop. 

For an AKC, it must be satisfied with the following equation. 

 
1

0
v

j

j

   

Sequentially, the coupling degree of AKC [16, 17] is defined by 

 
1

1
min

2

v

j

j




 
  

 
  (6) 

The physical meaning of the coupling degree κ can be intepreted in this way. The coupling degree k 

describes the complexity level of the topological structure of a PM, and it also represents the 

complexity level of its kinematic and dynamic analysis. It has been proved that the higher the coupling 

degree κ is, the more complex the kinematic and dynamic solutions of the PM are [15, 16]. 

The number of independent displacement equations of LOOP1 and LOOP2 have been calculated in the 

previous section Determining the DOF, i.e., 
1

3L  , 
2

5L  , thus, the constraint degree of the two 

independent loops are calculated by Eq. (5), respectively, with the solution below : 

 
1 2

1 21 1 2 2

1 1

6 2 3 1, 5 1 5 1
m m

i L i L

i i

f I f I 
 

                   

The coupling degrees of the AKC is calculated by Eq. (6) as

 

 
1

1 1
( 1 1) 1

2 2

v

j

j

k


        

Thus, the PM contains only one AKC, and its coupling degrees is equal to 1. Therefore, when solving 

the direct position solutions of the PM, it is necessary to assign only one virtual variable in the 1
st 

 loop 

whose constraint degree is one ( =+1)j . Then, one constraint equation with this virtual variable is 
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established in the second loop with the negative constraint degree ( = -1)j . Further, the real value of 

this virtual variable can be obtained by the numerical method with only one unknown, thus, the direct 

position solutions of the PM are obtained finally. 

However, owing to the 3-translational output motion, a very special constraint, of the moving platform 

1 of the PM, the second loop with the negative constraint degree ( = -1)j can be directly applied to 

the geometric constraint of the first loop with the positive constraint degree is one ( =+1)j
.
. That 

means that the motion of the link 11 is always parallel to the base platform 0, which can be easily 

determined from the second loop. Therefore, the virtual variable is easily obtained from the first loop, 

and there is no need to solve the virtual variable by one-dimensional numerical method, which 

significantly simplifies the process of the direct solutions. Thus, the analytical direct position solutions 

of the PM can be directly obtained in the following section. 

POSITION ANALYSIS 

The coordinate system and parameterization 

The kinematic modeling of the PM is shown in Fig. 2. The base platform 0 is in a rectangular shape 

with a length and a width of 2a and 2b, respectively. The global coordinate system O-XYZ is 

established on the base platform 0, with the origin at the geometric center. The X and Y axes are 

perpendicular and parallel to the line A1A2, and the Z axis is normal to the base plane pointing 

upwards. The moving coordinate system O'-X'Y'Z' is established with the coordinate axes parallel to 

those of the global frame located at the geometric center of the moving platform. 

The length of the three driving links 2 is equal to l1, the lengths of the connecting links 9 and 10 on the 

hybrid chain I are both equal to l2, and the lengths of the intermediate links 11 and 12 are equal to l3, l4, 

respectively. 

The length of the parallelogram short links 3, 6 on the hybrid chain II is equal to l5. The point B3, C3, 

D3 and E3 are the midpoints of the short edges, respectively. The length of the long links 4, 7 is equal 

to l6, and the length of the connecting link 5 between the parallelograms is l7. Moreover, the length of 

the connecting link 8 is l8, and the length of the line D2F3 on the moving platform 1 is 2d. 
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(A) KINEMATIC MODELING (B) GEOMETRIC RELATIONSHIP OF THE 

SECOND LOOP (PARTIAL) IN THE XOZ 

DIRECTION 

FIGURE 2 KINEMATIC MODELING OF THE 3T PM 

The angle between the vectors B1C1 and the Y axis is  , and the   is assigned as virtual variable. 

The angles between the vectors D1D2, D3E3 and the X axis are   and  , respectively. 

Direct kinematic problem 

To solve the direct kinematic problem, it is to compute the position O'(x,y,z) of the moving platform 

when setting the position coordinates of the prismatic joints at points P1, P2 and P3, with the 

coordinates 
1Ay , 

2Ay
 
and 

3Ay . 

1）Solving the first loop  

1LOOP :
1 1 1 2 2 2A B C C B A      

The coordinates of points A1, A2 and A3 on the base platform 0 are derived, respectively 

 
11 ( , ,0)T

AA b y  ,
22 ( , ,0)T

AA b y  ,
33 ( , ,0)T

AA b y . 

The coordinates of the three revolute joints, B1, B2 and B3 will be solved as  

 
11 1( , , )T

AB b y l  ,
22 1( , , )T

AB b y l  ,
33 1( , , )T

AB b y l . 

Due to the special constraint of the three translations of the moving platform 1, during the movement 

of the PM, the intermediate link 11 of the 2P4R planar mechanism is always parallel to the base 

platform 0, that is, (C1C2) || (A1A2). Then the following constraint equation produced by topological 

characteristics of three-translation outputs of the moving platform is obtained. 

 
1 2C Cz z  (7) 

Therefore, the coordinates of points C1 and C2 are calculated as 

 
11 2 1 2( , cos , sin )T

AC b y l l l      and 
12 2 3 1 2( , cos , sin )T

AC b y l l l l       

With the link length constraints defined by
2 2 2B C l , two constraint equations can be deduced as 

below, 

 1 1 1 1 1 1

2 2 2 2

2( ) ( ) ( )C B C B C Bx x y y z z l     
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 2 2 2 2 2 2

2 2 2 2

2( ) ( ) ( )C B C B C Bx x y y z z l     

 

(8) 

Equation (8) leads to 
2cos 0AB B   . The value of   can be determined as long as  0A , namely,  

 
arccos

B

A
 

 
   

 
 with 

1 22 32 , .A AA l B y l y     (9) 

From the first loop, there are two solutions for this PM due to the two existng intersection points of 

two circles defined by Eq. (8). Thus, the second loop acts on the special geometric constraint of the Eq. 

(7) on the first loop, which is the key to directly finding the analytical solutions of  . This is an 

advantage to ease the derivation of the analytical direct kinematics of this PM. 

2）Solving the second loop  

 
2LOOP :

1 2 3 3 3 3 3 3D D F E D C B A        

The coordinates of points D1 and D2 obtained from points C1 and C2 are calculated as 

 
1 1

4

1 2 3 2 2 3

1 2 1 2 4

cos

cos / 2  and  cos / 2

sin sin sin

A A

b lb

D y l l D y l l

l l l l l



 

  

    
  

       
       

 

Simultaneously, the coordinates of point O' can be calculated as: 

 
1

4

'

2 3

1 2 4

cos

cos / 2

sin sin

A

b l dx

O y y l l

z l l l





 

    
  

     
       

 (10) 

Further, the coordinates of points F3, E3, D3 and C3 are represented with the known coordinates of 

point O' as below: 

 3 ( , , )TF x d y z   

 3 8( , , )TE x d y z l    

 3 8 6( , , sin )TD b y z l l     

  3 8 6 7( , , sin )TC b y z l l l     (11) 

With the link length constraints defined by
3 3 6B C l , the constraint equation can be deduced as below. 

  3 3 3 3 3 3

2 2 2 2

6( ) ( ) ( )C B C B C Bx x y y z z l     
 

(12) 

from Fig. 2, with the following equation, , 

 4 6sin sinl l t    (13) 

there exists 

 
2

1 2( ) 0H t H    

 1 2t H H    (14) 

with 

 
1 2 8 7sin ,H l l l  

3 3

2 2

2 6 ( ) .C BH l y y    
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When the PM moves, the 2P4R planar mechanism is always parallel with the plane of the 

parallelogram ①, therefore, the following relationship always exists: 

 1 3D Dy y  (15) 

 4 6cos 2 cos 2l d l b     (16) 

Eliminating   from Eqs. (13) and (16), yielding 

 
1 2 3sin cos 0J J J     

 

2 2 22 2 2

1 3 2 1 2 31 3 2 1 2 3

2 2 2 2 2 2

2 3 1 1 2 3 2 3 1 1 2 3

arctan  and arctan
J J J J J JJ J J J J J

J J J J J J J J J J J J
 

       
    
           

 (17) 

Where 
2 2 2 2

1 4 2 4 3 6 42 ,  4 ( ),  4( ) .J l t J l b d J l l t b d         To this end, by substituting the values of 

 and  obtained from Eqs. (9) and (17) into Eq. (10), the coordinates of point O' in the reference 

coordinate system can be obtained, namely, 

 

1 2 3

1 2

1 2 3

'

1

'

2

'

3

( , , )

( , )

( , , )

A A A

A A

A A A

x f y y y

y f y y

z f y y y

 







 

Thus, the PM has partial input-output motion decoupling, which is advantageous for trajectory 

planning and motion control of the moving platform. For the sake of understanding, the above 

calculation procedure can be depicted in Fig. 3. 

 1 1

2 2 2 2

3 32 2

1 calculate    2 2 2

2

1 2

2

1

'

3

Calculate the coordinates
 ( ) ( ) 0

of  points  C  and C

Calculate the coordinates ( ) (

of  points O  and C

LOOP

C B C B

C BLOOP

y y z z l

y y

  

 

 
        

 

   
  

  

 

3 3

' ' '

2 2

6 calculate   

4 6

 and  are   known

) 0

cos 2 cos 2

Moving  platform      

position , ,

C B

O O O

z z l

l d l b

x y z



 


 

    
 

    

  
 

  

 

FIGURE 3 FLOW CHART OF DIRECT POSITION SOLUTIONS 

It can be seen that the geometric constraints Eqs. (7), (15) and (16) are the key to find the analytical 

equation of the first and second loop position equations of the PM. In summary, when the positions of 

three prismatic joints P1,P2,P3 are know, the mechanism under study can have up to  eight direct 

kinematic solutions, according to Eqs. (9), (16) and (17). 

Inverse kinematic problem 

To solve the inverse kinematics, the values of
1Ay , 

2Ay and
3Ay as a function of the coordinate O'(x,y,z) 

of the moving platform are computed. For a given position of the moving platform, from Eqs. (10) and 

(16), the angles   and   are calculated as 

 4

arccos
x b d

l


  
   

 
  (18) 
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 6

arccos
x d b

l


  
   

 
 (19) 

Further, the coordinates of points C1 and C2 are defined as:  

 1 3 4( , / 2, sin )TC b y l z l       

 2 3 4( , / 2, sin )TC b y l z l      

In addition, the coordinates of point C3 have been given by Eq. (11). Therefore, with the link length 

constraints defined by
1 1 2 2 2B C B C l  and

3 3 6B C l , there are three constraint equations as below. 

 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

2 2 2 2

2

2 2 2 2

2

2 2 2 2

6

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

C B C B C B

C B C B C B

C B C B C B

x x y y z z l

x x y y z z l

x x y y z z l

      


     


     
 

(20) 

From Eqs. (20), ( 1,2,3)
iAy i   are calculated as following. 

 
( 1,2,3)

i iA C iy y M i    (21) 

with 

 
1 2

2 2 2 2

1 2 1 2 2 1( ) , ( ) ,C CM l z l M l z l     
3

2 2

3 6 1( ) .CM l z l    

In summary, when the coordinates of point O' on the moving platform 1 are known, each input values

1Ay , 
2Ay and

3Ay has two sets of solutions. Therefore, the number of the inverse position problem is 

2 2 8 32   . 

Numerical simulation for direct and inverse kinematics 

Direct solutions 

The dimension parameters of the PM are set to 300a  ， 150b ， 50d  ，
1 30l  ，

2 280l  ，

3 140l  ，
4 180l  ，

5 90l  ，
6 230l   in the unit of mm. Let the length of the connecting links 5 

between the parallelograms and the length of the connecting link 8 are set to 
7 0l   and 

8 0l  , 

respectively. As an example, if the three input values are 
1 2 3

350, 300, 25A A Ay y y     , there are 

eight real direct kinematic solutions, as listed in Table 1. 

Inverse solutions 

In Table 1, the third direct solution is substituted into the Eq. (21), and the 32 inverse kinematic 

solutions are obtained, as shown in Table 2. It can be seen that the 7
th
 inverse kinematic solutions from 

Table 2 is consistent with the three input values given when the direct kinematic problem is solved, 

which means the validation of the procedure of the direct kinematic derivation. 
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TABLE 1 THE VALUES OF DIRECT SOLUTIONS 

No. ( )x mm  ( )y mm   ( )z mm  

1 -123,24178 25 -249,844792 

2 -29,6299347 25 -4,50975921 

3 -2,99651958 25 11,1500571 

4* 25,2633156 25 23,019356 

5 25,2633156 25 36,980644 

6 -2,99651958 25 48,849943 

7 -29,6299347 25 64,5097592 

8 -123,24178 25 309,844792 

Discussion 

It should be noted that the number of real solutions to the direct and inverse kinematic model is not 

constant within the workspace. However, they are the maximum number of the direct and inverse 

kinematics. As a comparison, the number of solutions of a linear Delta robot are only two solutions for 

the direct kinematic model and height for the inverse kinematic model. If the kinematic model is more 

complex, joint limits can be easily introduced to avoid singularities. An optimization based on the 

Jacobian matrices and its isotropic posture can yield a new Orthoglide mechanism where a given 

assembly mode and a given working mode are fixed [4, 26]. 

SINGULARITY ANALYSIS 

Singularity analysis can be performed by studying HSOCs separately. From [27], the serial and 

parallel singularities are investigated. The biglide mechanism depicted in the Fig. 4 is similar to the 

HSOC1 and the upper part of HSOC2. 

P

A C BD

r1 r2

L

L0

L

 

FIGURE 4 THE BIGLIDE MECHANISM 

Three types of singularities can be determined from the study of the Jacobian matrix that links joint 

velocities to Cartesian velocities (i) the serial singularities, (ii) the parallel singularities and (iii) the 

constraint singularities [28].  

When the manipulator is in serial singularities, there is a direction along which no Cartesian velocity 

can be produced. The serial singularities define the boundaries of the Cartesian workspace [29]. For 

the mechanism depicted in Fig. 5, the serial singularities occur whenever the axis of the actuated 

prismatic joint (BD) is orthogonal to the leg (DP). For the mechanism under study, such 

configurations exist as long as (B1C1) or (B2C2) or (B3C3) or (D1D2) or (D3E3) are vertical. This 

property explains the existence of 32 solutions to the inverse kinematic model. 
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FIGURE 5 THE BIGLIDE MECHANISM, SERIAL SINGULARITY 

TABLE 2 THE VALUES OF INVERSE KIENMATICS SOLUTIONS 

No. 1Ay
 2Ay

 3Ay
 

1 -160 -300 -25 

2 -165,881846 -305,881846 -25 

3 -160 -300 -67,5941964 

4 -165,881846 -305,881846 -67,5941964 

5 -160 -300 75 

6 -165,881846 -305,881846 75 

7* 350 -300 -25 

8 350 -300 -67,5941964 

9 355,881846 -305,881846 -25 

10 355,881846 -305,881846 -67,5941964 

11 -160 -300 117,594196 

12 -165,881846 -305,881846 117,594196 

13 350 -300 75 

14 355,881846 -305,881846 75 

15 -160 210 -25 

16 -160 210 -67,5941964 

17 -165,881846 215,881846 -25 

18 -165,881846 215,881846 -67,5941964 

19 350 -300 117,594196 

20 355,881846 -305,881846 117,594196 

21 -160 210 75 

22 -165,881846 215,881846 75 

23 350 210 -25 

24 350 210 -67,5941964 

25 355,881846 215,881846 -25 

26 355,881846 215,881846 -67,5941964 

27 -160 210 117,594196 

28 -165,881846 215,881846 117,594196 

29 350 210 75 

30 355,881846 215,881846 75 

31 350 210 117,594196 

32 355,881846 215,881846 117,594196 

In the parallel singularities, it is possible to move locally the tool center point even though the actuated 

joints are locked. These singularities are particularly undesired, because the structure cannot resist any 

external force and the motion of the mechanism is uncontrolled. To avoid any deterioration, it is 

necessary to eliminate the parallel singularities from the workspace. For the mechanism depicted in 

P

A C BD

r1 r2
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Fig. 6, the parallel singularities occur whenever the points C, D, and P are aligned or whenever C and 

D coincide. 

 

FIGURE 6 THE BIGLIDE MECHANISM, PARALLEL SINGULARITIES 

For the mechanism under study, this property is related to (B1C1) or (B2C2) parallel or aligned, or 

(D1D2) or (D3E3) parallel or aligned or (C3B3) is parallel to the axis of the prismatic joint P3. There are 

thus three conditions for parallel singularities, which justifies the existence of eight solutions to the 

direct kinematic problem. Figures 7 and 8 represent an example of serial and parallel singular 

configurations, respectively. 

  

FIGURE 7 EXAMPLE OF SERIAL SINGULARITY CONFIGURATION 

       

 FIGURE 8 EXAMPLE OF PARALLEL SINGULARITY CONFIGURATION 

The constraint singularities are related to parallelograms [28, 30] whenever they become anti-

parallelogram (or flat parallelogram) and can no longer constrain the two opposite bars to remain 

parallel. These singularities exist when the revolute joints (Ra1, Rb1, Rc1, Rd1) or (Ra2, Rb2, Rc2, Rd2) are 

aligned. 

P

A C BD

r1 r2

P

A C BD

r1 r2
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CONCLUSIONS 

The paper presents a 3-translational parallel mechanism with three main advantages: (1) it is only 

composed of three actuated prismatic joints and passive revolute joints, which is easy to be 

manufactured and assembled; (2) its direct and inverse kinematics can be solved analytically, 

simplifying error analysis, dimensional synthesis, stiffness and dynamics modeling; and (3) it has 

partial input-output motion decoupling, which is very beneficial to the trajectory planning and motion 

control of the PM. 

According to the kinematic modeling principle proposed by the author based on the single-opened-

chains units and topological characteristics method, in the first loop with positive constraint degree, 

the set one virtual variable  can be directly obtained by the special topological characteristics 

constraint condition that the output link of the first loop always maintains the horizontal position, 

where the condition is provided by the second loop with negative constraint degree. Therefore, the 

entire analytical position solutions are obtained without solving the virtual variable by the geometric 

constraint equation in the second loop with negative constraint degree. This is the advantage of the 

topology of the proposed PM being different from other PMs, and it has analytical direct solutions. 

The method has clear physical meaning and simple calculation. Thus, the loci of the singular 

configurations of the PM are identified. 

The work of this paper lays the foundation for the stiffness, trajectory planning, motion control, 

dynamics analysis and prototype design for this new PM. 
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