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aUniversité de Strasbourg, Inria, F-54000 Nancy, France5
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Abstract

Minimally invasive fluoroscopy-based procedures are the gold standard for diagnosis and treat-
ment of various pathologies of the cardiovascular system. This kind of procedures imply for the
clinicians to infer the 3D shape of the device from 2D images, which is known to be an ill-posed10

problem.
In this paper we present a method to reconstruct the 3D shape of the interventional device,

with the aim of improving the navigation. The method combines a physics-based simulation with
non-linear Bayesian filter. Whereas the physics-based model provides a prediction of the shape
of the device navigating within the blood vessels (taking into account non-linear interactions be-15

tween the catheter and the surrounding anatomy), an Unscented Kalman Filter is used to correct
the navigation model using 2D image features as external observations.
The proposed framework has been evaluated on both synthetic and real data, under different
model parameterizations, filter parameters tuning and external observations data-sets.

Comparing the reconstructed 3D shape with a known ground truth, for the synthetic data-set,
we obtained average values for 3D Hausdorff Distance of 0.81 ± 0.53 mm, for the 3D mean
distance at the segment of 0.37 ± 0.17 mm and an average 3D tip error of 0.24 ± 0.13 mm . For
the real data-set,we obtained an average 3D Hausdorff distance of 1.74 ± 0.77 mm, a average
3D mean distance at the distal segment of 0.91 ± 0.14 mm, an average 3D error on the tip of
0.53 ± 0.09 mm. These results show the ability of our method to retrieve the 3D shape of the
device, under a variety of filter parameterizations and challenging conditions: uncertainties on
model parameterization, ambiguous views and non-linear complex phenomena such as stick and
slip motions.

Keywords: Constrained Unscented Kalman Filter, Physics-based simulation, Catheter20

Reconstruction, Endovascular Intervention, Computer Aided Surgery

1. Introduction and context

Image-guided minimally invasive procedures have become the gold standard for diagnosis
or treatment of many pathologies. Whereas static images, such as CT or MRI scans, are rather
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used for surgical planning or timely assessment of the surgical instrument position, real-time
imaging, such as fluoroscopy, provides the visual feedback necessary for all interventional radi-
ology procedures. The limitations of fluoroscopy based procedures are mainly associated with
dose absorption and the intrinsic properties of X-rays images. Indeed, a contrast medium often
needs to be injected in order to highlight anatomical structures, such as blood vessels. Fluoro-5

scopic images are also affected by a lack of depth perception proper to all 2D projected images,
which has been identified as one of the most important factors affecting clinical performance [1].
Augmenting the fluoroscopic image with a 3D overlay of the vessel surface [2] is a first step
in restoring a 3D sense of the intervention site, and it was proved to improve the intervention
outcome, reduce procedure time and facilitate navigation [3]. Recent approaches have leveraged10

deep learning techniques to recover the depth of a full field fluoroscopic image [4] but they fail
to recover fine structures such as catheters except for very specific shapes [5]. In such cases 3D
reconstruction is required. However, retrieving the 3D shape of an object from 2D features is
an ill-posed problem: due to missing depth information, several 3D shapes may correspond to a
given 2D configuration (Fig. 1). For endovascular interventions, one possible solution is to use15

bi-plane imaging systems in order to overcome the ambiguity of 2D images [6, 7, 8]. Contrary to
what occurs with stereoscopic cameras in laparoscopic procedures, there is no risk of occlusion
in fluoroscopic images. However, the wide baseline and the lack of texture makes image features
extraction and matching more difficult. The accuracy of the reconstruction was reported in [8] as
the mean distance (0.46mm) and error on the tip location (1.34mm). But such equipment is not20

very common in current practice. Given that single plane systems are more extensively used in
clinical routine, in this work we propose a method to reconstruct, online and in 3D, the interven-
tional device from 2D monocular fluoroscopic images. In this context, previous methods may

(a) Side view (b) Top view

Figure 1: 2D-3D Registration. Ill-posed problem: several 3D shapes may correspond to the same 2D configuration.
Catheter shapes can be seen as different in a top view (b) but may project onto the same curved line in a side view (a).

be classified as follows: reconstruction methods exploiting position or shape sensors, computer
vision methods based on the use of images and geometric models, and reconstruction methods25

combining fluoroscopic images and a physics-based model of the device.
For the methods using external sensors, the general idea is to embed an external sensor into

the instrument, in order to have a three-dimensional knowledge on the position of the tip or other
parts of the device. Condino et al. [9] proposed to use electro-magnetic (EM) tracking in com-
bination with occasional intra-operative CTA. Similarly, in [10] the EM data are completed with30

ultrasonography to update pre-operative CT data. However, image acquisition and registration
are time consuming and cannot be performed frequently enough to guarantee consistency be-
tween the virtual and real anatomies. EM trackers were also combined in [11] with a robotic
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catheterization system, providing a 3D instrument position and orientation visualization instead
of the classic 2D fluoroscopic view. Although embedded trackers can give a rather precise loca-
tion of the catheter, they allow only for a very partial reconstruction of the device and a full shape
cannot be retrieved. As an example close to our work [12] placed 5 EM sensors along a cardiac
ablation catheter to retrieve its position in combination with (simulated) fluoroscopic images.5

They report a root mean square (RMS) median error of 3.7 mm, with already 1.81 mm of error in
the EM to image registration process. In addition, embedding EM sensors on the interventional
device implies significant changes on the clinical workflow and restricts clinical applications.
EM Localization errors may further increase in the clinical environment of an operating room,
where interactions with ferromagnetic materials cannot be neglected [13].10

Computer vision methods aim at retrieving the 3D reconstruction of objects from 2D images.
Given the illposedness of the problem, some hypotheses need to be made in order to restrict
the space of possible solutions. In the case of an interventional device, it is assumed to lay
inside the vessel surface and regularization constraints are applied to the geometric model and
its deformations. Authors in [14], propose to constrain the reconstructed catheter to match the15

vessel centerline. Such regularization criteria lead to shapes that do not perfectly match reality.
In particular, aligning with the centerline precludes from reproducing any contacts between the
device and the vessel surface, whereas they occur very frequently, especially in curved vessels. In
[15] 3D device reconstruction is defined as a smooth curve that both lies within the blood vessels
and projects on the guidewire segmented in the images. The curve smoothness and continuity are20

ensured with a set of priors, including here again a constraint to stay close to the vessel centerline.
Ambiguous cases are not handled and left for the clinician to interpret. Using a particle filter,
Brückner et al. [16] combines the 3D geometric model of the vessels with the back-projection
of 2D features, creating a 3D probability distribution of the wire positions which is recursively
propagated. A spline shape model with maximum length and minimum curvature are priors set25

to regularize the maximum a posteriori solution. A probabilistic framework is also used in [17]
to track the device tip in 3D, using the closest point on the vessel surface as a geometric prior.

All these reconstruction methods rely on geometric prior models of the shape of the catheter
and cannot guarantee a reliable reconstruction, in particular under ambiguous views. Moreover
the device motion is not modeled, which can make 2D-3D data association, and thereafter re-30

construction fail, especially after sudden modifications of the catheter’s shape (e.g. following a
contact with the surrounding anatomy). Errors of 1.5 mm for the mean distance and around 2 to
3 mm for the tip localization are typically reported.

More sophisticated modeling of the device, like a physics based approach, could provide a
better description and overcome the above limitations. In [18] we proposed a constrained shape-35

from-template method combining a physics-based model of the catheter with 2D image features
through a constrained approach using Lagrange multipliers. No interactions with the surrounding
anatomy were taken into account during the navigation of the catheter, whereas device motion
was entirely driven by the detected image features. Device reconstruction was demonstrated in
simple cases but not under ambiguous scenarios, such as anatomy occlusions or partial views. In40

addition, uncertainties on mechanical characterization of the device, as well as noise on external
observations were taken into account only through empirical parameters.

Given the aforementioned approaches, multiple sources of information need to be combined
to retrieve a reliable reconstruction of the device: a shape model (physics-based or geometric,
taking into account motion and deformation), a navigation model, including forces modeling the45

insertion of the device and contacts with the surrounding anatomy, and information on the current
state of the device (projective 2D from image features, 3D from position or shape sensors). All
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of the above are prone to be tainted with errors. Recursive Bayesian estimation methods have
been investigated to handle those various sources of error. They allow to retrieve the most likely
state of a system, described by a process model and observed through external measurements,
potentially affected by noise. In [19], a catheter insertion model is combined with 3D positions
measured by external EM sensors through an Extended Kalman Filter (EKF). The filter enables5

to manage both noisy measurements of EM trackers and potential inaccuracies of the catheter
insertion model. In a more general computer vision context, sensor-less methods have been
proposed to recover the 3D shape of a deforming non-rigid object from a monocular sequence.
In particular Finite Element (FE) models enable to implement sophisticated priors on the shape
to capture realistic deformations while being robust to occlusions [20],[21],[22],[23]. It has been10

recently shown how a FE model could be leveraged in an EKF framework to achieve online
reconstruction [24],[25]. Two hypotheses are necessary for this method: they assume to know
the deformation modes of the surface and they suppose to detect and track some to 2D features,
whose correspondences with 3D points of the FE model are assumed to be known. The FE
model, driven by the 2D detected features, capture elastic deformations of the surface but it does15

not provide any information about the dynamic behavior of the object; contacts and collision are
not taken into account, whereas only fixed physical constraints can be included in the model. In
addition, such framework could not directly fit our specific problem of catheter reconstruction,
as a surface FE model cannot be applied to a curved shape like the interventional device.

2. Method20

The main aim of our work is to reconstruct the 3D shape of the interventional device from
2D single-view fluoroscopic images. To this end, we propose a finite element (FE) model re-
producing the navigation within blood vessels through a constrained physics-based simulation.
Contrary to existing methods, our model aims at having a better prediction of the device physical
behavior, in particular taking into account contacts with the surrounding blood vessels. Through25

a Bayesian filter, the predicted shape is corrected with 2D observations of the current real shape,
detected and tracked in an image sequence. Such stochastic formulation allows not only to take
into account inaccuracies in the navigation model (mechanical characterization of the catheter
model, uncertainties on applied constraints, etc), but it also allows to take into account the miss-
ing depth information of 2D image features as a further source of uncertainty of the stochastic30

state.
Given the non-linearity of both the model and the observations, we propose to use an Un-

scented Kalman Filter [26]. One of the major contributions of this work is a solution to the
constrained state estimation problem raised by contacts. In stochastics, a constrained estimation
occurs when not all the values of the random variable are acceptable samples. In our case, as the35

device is constrained to stay inside the vessel, the estimated positions cannot assume all the pos-
sible values within their probability distribution (e.g. outside the vessel surface). The proposed
method casts such constrained estimation as a Non-linear Complementarity Problem (NLCP)
solved using a Gauss-Seidel Method.

Several approaches are combined in this work. In this section, we first introduce some generic40

background about Bayesian filtering. Then, we present the physics based model of the catheter
navigation with its dynamics equations. The end of the section describes the whole proposed
formalism where both concepts are combined.
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2.1. Bayesian Filtering
Bayes filters recursively estimate the probability density function describing the random

state of a system. In the discrete domain, such state can be represented as a random variable Xk,
with k being the discrete time-step, assumed to evolve according to a process model. The process
model can be expressed as a collection of known functions gk(·) such that:5

Xk = gk(Xk−1, νk) (1)

Other external data may also be available at each time-step providing potentially partial observa-
tions Zk of the current state of the system. Such observations are related to the state through to
known observation functions hk(·):

Zk = hk(Xk, ωk) (2)

Both state and observations are affected by random noise processes, respectively νk and ωk.
Bayes filters are based on a general prediction-update scheme of the posterior probability P(Xk |Zk).10

Given the previous estimation P(Xk−1| Zk−1) at time k − 1, the first step consists of computing
a prediction of the probability density function by propagation through the process model gk:
P(Xk |Zk−1). Then, the predicted estimate is updated using the current observation, to provide the
posterior estimate: P(Xk |Zk). The final state of the system Xk is thereafter selected according to
some optimality criterion (e.g. Maximum A Posteriori or expected value).15

Kalman filters [27] are a particular case of Bayes filters where noise processes are assumed
to be Gaussian and both process and observation models are linear and can be expressed by
matrices Gk and Hk:

Xk = Gk Xk−1 + νk, with νk = N(0,Qk)
Zk = Hk Xk + ωk, with ωk = N(0, Rk)

(3)

Whenever these assumptions are not possible, the Kalman filter formalism may still be used, but
some approximations are necessary. For example, the Extended Kalman Filter (EKF) handles20

non-linear process and observation models, and propagates the system covariance thanks to their
first order approximations: Gk and Hk are the Jacobian matrices of gk and hk [28]. In this work,
we decided to use an Unscented Kalman Filter (UKF) [26, 28] that applies a sampling based ap-
proach to handle non-linear prediction and observation models (eq.((1)-(2))). The idea behind a
UKF is to draw r samples from the current estimate of the posterior probability in such a way that25

these samples, called sigma-points, capture the first two moments of the posterior distribution,
with minimum distortion on the third moment [26]. Each sigma-point σ j is propagated through
the non-linear process, then observation models, which enables to compute the transformed mean
and covariance of the state.

In our context, the boundary condition represented by the vessel wall and the non-rigid con-30

tacts which occurring between the device and the surrounding surface are non-linear phenomena,
varying through time, which lead to discontinuities in velocities of the objects in contact. The
by-design preservation of the first moments of the probability density function makes UKF a bet-
ter choice than EKF such kind of non-linearities occur [26, 29]. In addition, the implementation
of an EKF, where the computation of derivatives of both the state transition and the observation35

matrix is needed, is not straightforward nor computationally efficient in our context of colli-
sion response and projective observations. The following table summarizes the notations used
throughout the paper:

5



Table 1: Notations : discrete time index k was dropped for simplicity
X state vector P model covariance
σ j jth sigma-points I( j) unit vector to generate σ j

Q model noise covariance matrix Z observations vector
PẐ observations covariance R obs. noise covariance matrix
PX̂Ẑ state-observations cross-covariance K Kalman gain
g prediction function h observation function

2.2. Catheter Navigation Model
Catheters are flexible but inextensible slender non-linear elastic objects. A vast number of

methods have been developed to model the mechanical behavior of such objects, up to state-
of-the-art approaches that can now handle large elastic deformation and complex contacts with
the surrounding vessels in a fast and stable way [30]. In this paper, we use a physics-based5

model based on beam theory [31], solved using an efficient co-rotational finite element (FE)
approach [32]. Our model is represented as a series of N serially-linked beam elements, where
each node has 6 Degrees of Freedom (DoFs) [33] (see Fig. 2.a). To simulate the navigation of
the device inside the anatomy, we directly apply a constant force to the last node of the catheter,
mimicking the surgical gesture of insertion within the blood vessel, while being constrained10

inside the surface (see Fig. 2.b) .

W
1 1

W 3
3

(a)

N = 1

N = 2
N = 3

(b)

Figure 2: FE Physics-Based Model. (a) Lateral view of the simulated device inside the surface. Yellow arrow represent
the insertion force f, directly applied to the last node, and spread to the other nodes of the FE model according to the
mechanical properties of the object. Such force produces catheter forward motion; red arrows are the surface constraint
forcesW(xi, vi) applied on the ith node whenever a contact occurs. (b) The device is modeled as a series of N connected
6 DoFs beams

Co-rotational FE formulation, it is a trade-off between accuracy and computation time. In
general, two factors have to be taken into account in order to define an efficient model of a
catheter-like device: the different motions the device can undergo and the resulting deformations
and interactions with surrounding objects. We show, in Sec. 3.2.4, that the co-rotational FE15

model properly describes the dynamic behaviour of the catheter, while allowing to take into
account non-linear contacts between objects.

2.2.1. Dynamics of Deformable Model and Implicit Integration
The dynamics of the interventional device can be generally described by Newton’s second

law of motion: M(x)ẍ = F(t) − f (x, ẋ) +W(x, ẋ) (here expressed as second order differential20

equation). Where (x, ẋ, ẍ) (each ∈ RN with N being the number of nodes of the FE model) express
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respectively position, velocity and acceleration of a catheter’s node; M(x) and f (x, ẋ) represent
respectively the inertia matrix and the internal forces, both derived from the co-rotational FE
model and F(t) expresses the external forces whileW(x, ẋ) formalizes the boundary conditions
applied to the model.
In case of interventional device navigation, such boundary conditions are represented by the ves-5

sel wall and the contacts that occur with the device. Non-rigid contacts are non-linear phenom-
ena, varying through time, and collision response on mechanical objects leads to discontinuities
in velocities. This problem belongs to the domain of non-smooth mechanics, for which accelera-
tions are not defined. To handle non-smooth dynamics while enabling fast computations, we use
a time-stepping method [34] based on an Implicit Integration scheme.10

The discrete variables are then expressed as x = x(t), v = ẋ(t) with the respective differences
∆x = x(t + T ) − x(t) and ∆v = v(t + T ) - v(t) (T is the time-step). Non-linear terms, such as
f (x, ẋ), are linearized using a first order Taylor series expansion. Such linearization corresponds
to the first iteration of Newton-Raphson algorithm. Limited Newton-Raphson iterations enable
faster computations, with the risk of not obtaining full convergence of the solution. In our sce-15

nario, given the hypothesis of small displacements, a single iteration is usually sufficient to pro-
vide a reliable solution.

The implicit velocity update is then computed as: (M−T ∂ f
∂v−T 2 ∂ f

∂x )∆v = T (f + T ∂ f
∂x v) + TJTλ

After discretization, the matrix M expresses the mass and it can be considered as constant and
lumped; in particular we obtain a diagonal matrix M ∈ R12N×12N . The partial derivatives of20

elastic forces can be defined as K =
∂ f
∂x and B =

∂ f
∂v , respectively approximating the stiffness

of all the vertices ( K ∈ R12N×12N) and damping of the model (B = αM + βK). The term JTλ
expresses the linearized contacts. A more detailed explanation will be provided in following
sections. Last equation, rewritten as a linear system, becomes:

(M − TB − T 2K)︸                ︷︷                ︸
A

∆v = T (f + TKv)︸        ︷︷        ︸
b

+TJTλ (4)

Matrices M,B,K are computed by summing up the contributions of each element to its vertices.25

This operation is called the assembly and for elastic deformations, matrix A ∈ R12N×12N is
symmetric definite positive. The vector b ∈ R12N expresses applied external forces.

2.2.2. Contact Constraints
As stated above, the interventional device is forced to remain within the blood vessels through

boundary constraints expressed as non-linear inequalities. Regardless of the method used to30

integrate boundary conditions, the first step is to detect potential contacts. In our case, potential
points in contact are identified through a proximity detection between catheter nodes and the
vessel partitioned surface (for details see [35, 36]). This basically consists of identifying, for
each node of the catheter, the closest point on the surface. We define the interior normal n to
the surface at that point. Then, all the identified contact directions are gathered in matrix J.35

In particular, the transpose of the Jacobian JT = ∂W
∂x , represent the linearization of the applied

constraints.
Once proximity detection has been performed, we must verify whether contact has occurred

or not. Collision response is performed based on Signorini’s law:
δn ≥ 0
λn ≥ 0
δn · λn = 0

(5)
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where δn represents the interpenetration which must be ensured non negative (δn ≥ 0). If inter-
penetration has occurred (i.e. δn ≤ 0 and the point falls outside the boundary condition) a contact
force λn must be applied to correct the violation of the constraint. For each point, contact forces
are applied along the respective direction, gathered in JT .

Friction phenomena are taken into account according to Coulomb’s friction law. A compo-5

nent of the contact forces will hence depend on a friction parameter µ:

λT = −µ||λn||
δT

||δT||
(6)

2.2.3. Constraint-based Solution
In order to integrate the dynamics of the non-rigid objects (Eq. (4)), with contact’s law and

friction’s law (Equations (5)-(6)), we use a Lagrange multiplier approach with a single lineariza-
tion per time-step. Penalty methods, such as spring-like forces, which try to keep the object10

inside the surface (i.e. enforcing the boundary conditions) are not suitable nor stable solutions
for our problem. Instead, we introduce Lagrange multipliers ensuring that at the end of each
time step we have a valid configuration (every point of the catheter lies inside the vessel) while
reducing the computational cost.

Based on eq. (4), the behaviour of two interacting objects may be described as a Karush-15

Kuhn-Tucker system (KKT) as follows: A∆v = b + JTλ

JT ∆v = δ
(7)

The aim is to compute λ deriving from contact’s law. Such resolution is performed through
iterative steps:

1. Free Motion: we solve the linear system A∆v = b, which will provide ∆v f ree at the end
of the time step, as if no interaction constraints where applied (λ = 0 in eq.(4)).20

2. Constraint definition: we perform proximity detection (as described in sec. 2.2.2) in or-
der to linearize the constraint by computing the Jacobian of the constraints J. The collision
detection is performed using the positions at the beginning of the time step.

3. Compliance Computation: Once both the directions of constraints, expressed in J, and
the free motion ∆v f ree (without constraints) are known, we can define δ, being the violation25

of the constraint. In practice, it is the distance the interpenetration, projected along the
constraint directions. From Eq.(4): ∆v = ∆v f ree −A−1JTλ, we can rewrite the second term
of Eq. (7) as:

(JA−1JT︸  ︷︷  ︸
W

)λ = J∆v f ree − δ (8)

The Delassus Operator W represents the mechanical coupling between the constraints
and it is the most expensive step of the simulation as it requires to explicitly multiply the30

inverse of the mechanical matrix A with the Jacobian of the contacts.

4. Constraint Resolution: The above expression provides a Non-linear Complementarity
Problem (NLCP) where there are two unknowns: the applied forces λ and the violation δ.
This is solved through an iterative Gauss-Seidel Method, where each constraint is treated
singularly independently from other current constraints. For more details on this step35

see:[35] and [36]).
8



5. Final Correction: Once contact forces λ are known, it is possible to compute the final
position and velocity of each node of the model:

∆v = ∆v f ree − A−1JTλ

vT = v + ∆v
xT = x + TvT

(9)

2.3. Image Feature Observations
The projected shape of the catheter should be detected in fluoroscopic images. Several so-

lutions have been proposed to detect and track a curve in an image sequence [37, 38, 39]. We5

made the assumption extensively used in monocular reconstruction to detect and track 2D fea-
tures corresponding to known 3D points. In practice, the catheter is assumed to be tagged with M
radio-opaque markers {Pi = (xi, yi, zi)}i∈[1,M], equally distributed along the catheter length. Each
marker Pi is thus related to the catheter nodes through a constant linear mapping Mi (see Fig.
3). In the image, each marker is detected at pixel coordinates qi = (ui, vi) which are related to the10

3D marker coordinates through the [3 × 4] projection matrix C, such that

qi = C Pi (10)

where the underline notation expresses homogeneous coordinates. C only depends on the X-ray
view incidence, which is assumed constant during the acquisition of a fluoroscopic sequence.
This matrix can be accurately estimated from the view parameters (angles, source-to-image dis-
tance, ...) with a calibrated vascular C-arm [2]. We assume 2D-3D correspondences, between15

detected image-features and the FE model, to be known.

Figure 3: Image Feature Detection. Radio-opaque markers are related to 6 DoF catheter’s nodes (black spheres) through
a known constant mapping {Pi =Mi(x)}. Without loss of generality, we suppose markers to exactly match the nodes.

2.4. Combined Framework
We propose to combine the physics-based model with external 2D observations through a

Bayesian filter. The use of the filter allows to retrieve an accurate 3D shape taking into account
9



the uncertainty on both the model and the external measurements. In the following notation, the
index i specifies the catheters nodes, k indicates the discrete time-step, and j refers to sigma-
points.

2.4.1. State Vector
Usually, in Bayesian Filter for trajectory estimation, the state vector is composed of position,5

velocity and acceleration of the object [26]. In our case, we estimate the positions and velocities
of each catheter node given that, using the time integration scheme presented in Eq. (4), the
acceleration is in fact expressed as a difference of velocities. Considering the ith node, the state
vector can hence be expressed as:

X(i) = [xi, yi, zi, ψi, θi, φi︸              ︷︷              ︸
position xt

i

, vxi , vyi , vzi , vψi , vθi , vφi︸                    ︷︷                    ︸
velocity vt

i

] (11)

with i ∈ (1,N) and N being the number of serially linked beams. Given that position and velocity10

are expressed taking into account 6DoFs, the whole state will be X ∈ R12N .

2.4.2. Prediction Model
At time k, the temporal evolution of the state results from a two step process: first solve

Eq. (7) for ∆vk and then update the positions xk and velocities vk through Eq. (9).
The noise on this process mainly comes from an uncertain characterization of the FE model,

that it is propagated to the estimated ∆v, solution of Eq. (7). The resultant noise is modeled as a
Gaussian additive random term νk. As a result, our process model is given by

Ak∆vk = bk + JT
k λk

JT
k ∆vk = δk (12)
∆v̂k = ∆vk + νk (13)

vk = vk−1 + ∆v̂k

xk = xk−1 + Tvk (14)

Eqs. (12) provide ∆vk, that is disturbed by random noise νk in (13). The velocity vk and the15

position xk are then updated in Eq. and (14). We assume an independent and constant noise so
that E[νk(νk)t] = σmodI6N .

This results in the state covariance matrix expressed as:

Q = IN ⊗

(
06×6 06×6
06×6 σ2

modI6

)
(15)

and an initial state covariance matrix, which expresses the uncertianty on the initial configuration,
expressed as:20

P0 = IN ⊗

(
σ2

xmod
I6 06×6

06×6 σ2
vmod

I6

)
(16)

where ⊗ is the Kronecker product and IN is the N × N identity matrix.
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2.4.3. Observation Model
Observations are the projection of the radio-opaque markers, detected in the images:

Z(i) = qi = [ui, vi]t ∀i ∈ [1,M] (17)

According to our observation model, the ith detected feature will depend on the corresponding
3D marker, through the calibrated projection matrix C:

Z(i) = C [xi, yi, zi, 1]t =
(
U 03×9 V

) [
X(i)

1

]
= C+ X(i) (18)

where U and V are respectively a 3×3 matrix and a 3-vector such that C = (U V). The observation5

function hk(·) is therefore constant : hk = h. For the sake of simplicity, we assumed here that
identity mappings relate markers to nodes such that a node is defined at each marker location,
such that M, the number of markers, equals N, the number of nodes.

The observation vector Zk ∈ R2N concatenates the locations of all the 2D markers detected
in the image at time k. We assume that all observations are independent and that the noise ω10

on the observations does not depend on the acquisition time. Therefore, its covariance matrix is
constant and diagonal: R = σ2

obsI2N .

2.4.4. Filter Workflow and Computation Time
The simplex method [29] was used to generate the r sigma-points with a minimum compu-

tation cost: it requires only r = p + 1 sigma-points, where p = 12N is the state vector size. A15

generic sigma-points is expressed as

σ j = [σx1 ,σv1 , · · · ,σxN ,σvN ]t
j with j ∈ [1, r] (19)

Alg.(1) summarizes an UKF estimation, modified to take into account our specific process and
observation model. Fig. 4 summarizes the global pipeline in which filter and simulation are
combined. In the prediction phase, an entire simulation step is run for every sigma-point σ j.
From each propagated σ̂ j we can compute the predicted observations Ẑ j, through the observa-20

tion function h(·). A major challenge of our method lies in achieving high computation time.
Whereas a classic physics-based constrained simulation may be performed in real-time (over 25
FPS), such combined approach entails higher computation times due to the multiple simulations
performed during each time-step. In order to optimize computation time, one possible solution
is to reduce the state vector size by not taking into account all the degrees of freedom of the25

mechanical model. Results reported in Section 3.5 were obtained with a reduced state vector
where the orientations were removed: X(i) = [xi, yi, zi, vxi , vyi , vzi , vψi , vθi , vφi ]. In the process, the
orientations (ψi, θi, φi) were mathematically computed from the estimated positions (xi, yi, zi).

2.4.5. Constrained State Estimation
The catheter bounded within the vessel surface represents, from the filter point of view, a30

problem known as Constrained State Estimation [40]. During the prediction phase, random
sampling of the Gaussian distribution may generate some sigma-points σ j whose positions fall
outside the vessel surface (Fig. 5(b)), representing configurations not physically coherent.
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Initialization: set X0, P0,Q, R
for each simulation step k do

Prediction:
for j = 1 : r with r = number of sigma-points do

generate sigma-points
[σx,σv] jk = [xk−1, vk−1] +

√
Pk−1I( j)

propagate sigma-points (eqs. (12)- (14))
A∆σv jk

= b + JTλ

JT ∆σv jk
= δ

σ̂v jk
= σv j k−1 + ∆σv jk

+ Qv
σ̂x jk

= σx j k−1 + T σ̂v jk

end
X̂k = E[σ̂∗k]
P̂k = cov[σ̂∗k] + Q;
Correction:
for j = 1 : r do

Ẑ jk
= C+ σ̂ jk

see eq. (18)
end
PX̂Ẑ

k = cov[σ̂∗k, Ẑ
∗

k]
PẐ

k = cov[Ẑ∗k, Ẑ
∗

k] + R
Kk = PX̂Ẑ

k (PẐ
k )−1

Xk = X̂k + Kk(Zk − E[Ẑ∗k])
Pk = P̂k − PX̂Ẑ

k (PẐ
k )−1(PX̂Ẑ

k )t

end
Algorithm 1: UKF for physics-based constrained simulation. Index i is omitted in the nota-
tion.

simulation step

E[Z*]

Xk-1 Xk X

Zk

Initial state

Generated
sigma-points

Propagated
sigma-points

1σ k-1

2σ k-1

rσ k-1

σ

2σ k

rσ k

k

k

E[σ*] K

Predicted
State

Final
State

Real
Observations

Z1

k

k

k

Z2

Zr

Predicted
Observations

simulation
step

C

-

: :

:

1

Figure 4: Computation Overview. One single simulation-step is composed of several filter-steps. Filter final state will
provide the mechanical state of the catheter to be used in the following simulation step.
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P(Xk-1|Zk-1)

(a)

σ1

σ2

σ3 n
δn<0

(b)

σ1

σ2

σ3

(c)

P(Xk|Zk-1)

(d)

Figure 5: Constrained State Estimation.(a) Red dot represents a catheter node, described through a state vector and
covariance. Green arrows define the inside of the surface. (b) Generated sigma-points may fall outside the geometry,
behaving as interpenetrated objects δn ≤ 0 (c) Their position is then corrected during propagation through collision
response. (d) Predicted mean and covariance are hence computed from propagated samples.

From the simulation point of view, such scenario corresponds to a configuration of the
catheter not respecting the constraint (δn < 0 in Fig. 5(b)). The collision response model pre-
sented in Sec. 2.2.2 enables to solve this problem. During the propagation step, nodes detected as
crossing the vessel wall are corrected through contact forces, and projected back into the space of
physically acceptable states (i.e. with positions inside the vessel) (see Fig.5). Furthermore, non-5

linear interactions with the surrounding surface, taking into account non-sliding contacts (see Eq.
(6)), enables to further improve the prediction of the catheter shape. The proposed Bayesian fil-
ter process enables the fusion of mechanical constraints with the geometric constraints provided
by 2D image features. The number of possible solutions to the ill-posed 2D-3D reconstruction
problem is thereby reduced down to a single high probability, and correct, hypothesis in the vast10

majority of cases. Analyzing the covariance of the position of the catheter’s node, allows to back
up this assertion. In fact, the covariance of the position (i.e. its uncertainty) is greatly reduced
when a contact occurs (see Fig. 6).

0 20 40 60 80 100
ms

0

0.05

0.1

0.15

0.2

[m
m

]

std x
std y
std z

Figure 6: Standard Deviation of Tip Position. These results refer to the synthetic scenario performed in sec. 3.2. The
contact occurring around T ∼ 55 considerably reduces the standard deviation of the tip position. In addition, it is possible
to notice how the uncertainty on Z-axis, i.e. the depth direction of the projective view, is greater than the uncertainty on
X-axis and Y-axis, before any contact has occurred

3. Experimental Set-Up and Results

3.1. Overview and error metrics15

We tested the method to retrieve the 3D shape of a navigating device from 2D images, both
in a synthetic environment and in the real world. In both cases, a ground truth 3D shape was
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available to compare our results with. Tests have been carried out to estimate the performance
of the filter in the presence of different sources of model uncertainty, observation noise and
parameters tuning. In particular, our validation aimed at demonstrating how our approach can
naturally handle uncertainties related to model parameterization as well as observations obtained
from different angles of view.5

The quality of the reconstruction has been evaluated comparing 3D shape of the reconstructed
catheter with a known ground-truth. Comparison metrics have been evaluated on B-spline inter-
polations, computed starting from the tip, of both the reference shape gM = (g1, ..., gM) and the
catheter’s cM = (c1, ..., cM), (with M = 10N against the N nodes of the FE model). This allows
to have a finer discretization of the shapes. We evaluated, the Euclidean distance between the10

reference tip and the reconstructed tip: d(gM, cM) =

√
(g1 − c1)2; the mean distance between

the distal segment of the reference shape and the distal segment of the reconstructed shape:

m(gM, cM)= 1
L (

√∑L
i=1 (gi − ci)2, with i ∈ [1, L] covering the 1cm distal part of the device, and

the 3D Hausdorff distance between the whole ground truth shape and the reconstructed shape
h(gM, cM) = max

g∈gM
(min

c∈cM
(d(g, c))). We focused on the tip and distal segment of the device, because15

it is the part most subject to variations during the insertion and of the highest importance for
clinicians.

3.2. Synthetic Validation Set-Up
The synthetic set-up provided a fully controlled ground truth and allowed to evaluate the

robustness of the method to inaccuracies in the process model and to filter parameters tuning.20

3.2.1. Ground Truth Reference
We simulated catheter insertion on two different geometries First, a Y-shaped surface, mim-

icking a vessel bifurcation, was generated by connecting 3 cylinders of 1 cm in diameter. A
second geometry, extracted from an anatomical vascular phantom (see Sec. 3.3.3), has been used
to simulate a more real scenario. In both cases, we generated a sequence of ground truth 3D25

shapes, using the deterministic model of physics-based simulation (presented in Sec. 2.2) with
known model parameters. Overall, we have three different reference scenarios: two performed
with the Y-shaped geometry and one with the anatomical vessel. Model parameterizations used
to generate the 3 different ground truth scenarios are respectively summarized in tables 2, 3 and
4. The ground truth navigation was simulated mimicking a full insertion of the catheter along30

the total length of the vessel (10 cm).

3.2.2. 2D Observations
2D image-features were generated by projecting the ground truth positions under two differ-

ent view incidences (816 x 600 pixels, with a pixel size of 0.24 mm), (see Fig. 7 for the set-up
in the Y-shaped geometry): one from the side where the view of the bifurcation is ambiguous (a35

catheter viewed in the vessels could be in any bifurcating branch), and one from the top with a
clear view of the bifurcation.
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Figure 7: Observations. Two different views for 2D observations, side and top views. 2D observations were created by
rendering the virtual catheter, equipped with markers, in each view, detecting the markers, and adding a Gaussian noise
to their locations. Three instances of noisy observations were created for each view, adding a Gaussian noise of 0.1 pixel
to Real 2D Positions.

At each time step of the simulated insertion, virtual markers placed on the catheter are pro-
jected through a known projection matrix and their 2D positions are automatically computed. 3
different observations sets were generated by adding a random Gaussian 2D noise to such pro-
jected 2D position. A standard deviation of 0.1 pixels was chosen to be consistent with the level
of detection error encountered in actual images. Thereby, 6 different data-sets of 2D observations5

were generated.

3.2.3. Stochastic Environment: Filter Parameters Tuning
Filters parameters consist in: the initial state covariance P0, the process noise covariance Q

and the observation noise covariance R. Such parameters should be initialized to fit the actual
level of noise tainting both the process and the observations, which is usually very difficult to set10

in practice. In our synthetic, fully controlled, environment, though, these parameters are either
known (R) or can be evaluated (P0 and Q).
The covariance matrices P0 and Q have been estimated following a Monte Carlo approach based
on multiple process configurations, characterized each by a certain model inaccuracy (see Fig.
8). In practice, we forecast multiple simulations characterized by a given model parameteriza-15

tion, which is incorrect with respect to the known ground truth (red shape in Fig. 8. Differ-
ences in model parameterization generate different catheter configurations (blue shapes in Fig.
8). Computing the average standard deviation of all the configurations positions and velocities,
we initialize the uncertainty associated to the model (νk in Eq. (13)). The statistics on the po-
sitions and velocities were only computed on the distal segment of the catheter. This led us20

to set the computed values to initialize P0 (with covariances on both positions and velocities)
and Q (with covariances only on velocities, see Eq. (13)), in a nominal configuration that we
will call P0. To evaluate filter performance against its parameterization, we ran it with P0 and
two additional parameters configurations: an overestimation Psup = 1.752P an underestimation
Pin f = 0.252P. Besides, two observation noise covariance values were also considered: R1 and25

R2. As a consequence, the filter was run with 6 different parameterizations: [P, R1], [P, R2],
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(a) Different model parameters gen-
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Figure 8: Filter Parameters Tuning Initial values of P0 and Q are set through a Monte Carlo forecasting multiple
simulations affected by different model parameterizations. (a) Different configurations due to errors in Young’s Modulus.
(b) Standard deviation of tip velocity, computed among different configurations obtained with different Young’s Modulus.

[Psup, R1],[Psup, R2], [Pin f , R1], [Pin f , R2]. Numerical values will be provided in following
sections for each experiment.

3.2.4. Stochastic Environment: Process Model
Inaccuracies in the prediction by simulation are due do uncertainties on the FE model param-

eterization. The parameters which are known to influence the simulation are: intrinsic parameters5

such as the mass, stiffness and radius of the device, which appear in matrices M,B,K and extrin-
sic parameters such as contact forces or other applied forces which appear on the right hand side
of Eq. (4).

In our context, we assume that mechanical parameters, such as mass, diameter, or Young
modulus, can be determined either from literature or through simple measurements. In Fig. 9,10

we present a simple experiment showing the accuracy of our beam model. In practice, given
a segment of catheter fixed at one extremity and undergoing simple gravity, we reproduce its
behaviour through simulation and we evaluate whether the beam model provides a final con-
figuration similar to the real layout. A Headway Duo device has been used and its mechanical
parameters have been used for the FE model characterization ( linear density 0.0359 [mg/cm],15

outer diameter 0.7 [mm], inner diameter 0.424 [mm]).
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(a) Rest Configuration - Test 1 (b) Rest Configuration - Test 2

(c) Final Configuration - Test 1 (d) Final Configuration - Test 2

Figure 9: Beam FE Model. Starting from an initial configuration (green shape in (a) and (b) slightly curved due to the
usage of the catheter) we reproduce with the simulation the behaviour of the device, fixed at one extremity and subject
to gravity. Using the real mechanical parameter, we retrieve an accurate shape

A small uncertainty exists on the Young’s modulus value, which was not given by the man-
ufacturer. Using known values from literature, the simulation provided coherent results for an
interval of 710± 110 [MPa]. Using the real mechanical parameter, we show the ability of the co-
rotational FE model to retrieve an accurate configuration (mean 2D distance from real catheter
3.8 ± 2.1 [mm]). A parameter which could influence the behaviour of the simulation is the dis-5

cretization of the beam (i.e. the number N − 1 of serially linked elements). In Fig. 10, we show
how differently discretized models, under the same mechanical parameters, lead to the same
behaviour, except for the coarse model (d) which cannot retrieve the correct final configuration.

(a) N=100 (b) N=50 (c) N=25 (d) N=8

Figure 10: Beam FE Model Discretization. Coarser models deteriorate the mechanical behaviour. Results for N = 10
are shown in Fig. 10(c)-(d).

Other potential sources of uncertainty are represented by the forces applied to the device.
Indeed, they are difficult to know with precision, and they are likely to vary along the path of the10

device. Contact forces hinge on the friction coefficient µ, which depends on several factors, such
as patient anatomy, type of catheter, blood flow, etc. and cannot be known accurately. Whereas

17



the insertion force, which we assume to be constant during the navigation, can instead vary along
the path due to the gesture of the clinician which is not constant. We show below, see Sec. 3.2,
how these uncertain parameters may be added to the state vector, with the example of the force
insertion.

3.3. Synthetic Environment Results5

We tested the sensitivity of the reconstruction to uncertainties on the friction coefficient,
Young’s modulus, initial configuration and applied forces. At the same time, we aimed at demon-
strating how our approach can handle an ample range of model uncertainty, while providing valid
results within a reasonable range of filter parameters tuning.

3.3.1. Sensitivity to Friction Coefficient for Y-Shaped Geometry10

The friction coefficient µ is an impacting parameter in the case of simulation constrained due
to collisions and it is hard to measure. In order to evaluate the impact of the misknowledge we
will have in practice on such parameterization, As ground truth value, the friction coefficient was
set according to literature [41] µ = 0.04. we tested our filter with 20 different process model
configurations, each corresponding to a different value for µ, ranging from 0 (i.e. no friction) to15

0.08 (i.e. twice the ground truth value, and excluding the ground truth value 0.04) by steps of
0.004 (see Fig. 8). It is noteworthy that usual acceptable uncertainty lies in a range of 10-20%,
but we wanted to test the filter capacity to deal with larger errors. Other parameters were the
same as the reference model (Tab. 2).

Ground Truth Incorrect Model unit
Young’s Modulus 10 10 MPa
Radius 0.4 0.4 mm
Mass 0.5 0.5 g
Insertion Force 0.5e-03 0.5e-03 N/s
Total Length 9 9 cm
Time-step 0.001 0.001 s
Nodes 10 10
Friction Coefficient 0.04 0.04 ± 0.04

Table 2: Simulation parameters for friction coefficient sensitivity.

Filter parameter P0 has been initialized, according to Eq. (15) withσxmod = [10−3 m, 10−5 deg]20

and σvmod = [10−2 m/T, 10−3 deg/T]. Thus, Q was initialized with σmod = σvmod . Concerning the
nominal observations noise covariance, we tested for two different instances: R1 = (0.1)2 and
R2 = (0.01)2

The filter was able to provide an accurate estimate of the 3D catheter shape, even for impor-
tant model uncertainties (i.e. µ = 0, or µ = 0.08). Errors were mainly noticeable in the depth25

direction and on the proximal part of the catheter, (Fig. 11 (a-c)), meaning that the distal segment
was always accurately reconstructed (Fig. 11 (b-d)) due to the contact with the vessel surface.
For a given observation data set and filter configuration, all the reconstructions presented the
same error trend, indicating a behavior independent from model uncertainty. Nevertheless, the
filter parameters Pin f provided the best results (see Fig. 11). The initial peak, common to all30

the graphs, is due to the filter starting-up. The effect of mechanical constraints on the quality of
the reconstruction is particularly noticeable on Hausdorff distance that improves and stabilizes
after the first contact (around T = 250). On average, for filter parameters Pin f , we measured a
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Figure 11: Sensitivity to Model Uncertainty. Comparing metrics for different process model parameterization (21
curves on each plot). Observations from the side view were used and measurement noise covariance was R1. All
reconstructions lay within the same range of accuracy showing the same trends, independent of the uncertainty on the
model (error on µ).

3D Hausdorff distance of 0.07 ± 0.037 mm; a 3D distance at the tip equal to 0.021 ± 0.009 mm
and a 3D mean distance on the distal segment of the catheter of 0.02 ± 0.008 mm. Such accurate
results derive from the fact that this sensitivity analysis has been carried out assuming a globally
limited uncertainty on the model: only the friction coefficient is misknown with respect to the
real model.5

3.3.2. Sensitivity to Generalized Model Uncertainties for Y-Shaped Geometry
In practice, models may present multiple uncertainties with respect to the real dynamics. In

this section, we evaluate our filter performances when taking into account several incorrect pa-
rameters at the same time. A ground truth simulation of catheter navigation has been run on the
Y-shaped geometry. Mass and diameters for catheter’s models have been set according to man-10

ufacturer specifications for Headway Duo catheter (MicroVention Inc). Variations from ground
truth have been taken into account for: Young’s modulus, insertion force, friction coefficient
and initial shape. Three different cases have been investigated. Models parameterizations are
summarized in Tab. 3.
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Ground Truth Case 1 Case 2 Case 3 unit
Young’s Modulus 750 250 500 1500 MPa
Radius 0.35-0.02 0.35-0.02 0.35-0.02 0.35-0.02 mm
Mass 0.48 0.48 0.48 0.48 g
Insertion Force 1.7e-03 1.7e-03 1.7e-04 1.7e-02 N/s
Time-step 0.001 0.001 0.001 0.001 s
Total Length 10 10 10 10 cm
Nodes 31 10 10 10
Friction Coefficient 0.01 0.1 0 0.01
Initial Configuration c0 c0 c0 · [R|Tc] c0 + Tc

Table 3: Simulation parameters for sensitivity test to multiple model uncertainties. See Fig. 13 for reference configuration
c0 (blue shape).

Analogously to previous section, observations have been acquired from side and top view
as in Sec. 3.2.2. The nominal configuration P0 was set with: P ∼ σxmod = [10−3 m, 0 deg]
and σvmod = [10−3 m/T, 10−3 deg/T], and Q ∼ σmod = [10−2 m/T, 10−2 deg/T]. In this case, the
model uncertainty Q is greater due to the several model uncertainties. Concerning the nominal
observations noise covariance, we tested for three different instances: R1 = (0.1)2, R2 = (0.01)2

5

and R2 = (0.001)2.
Case 1 (Tab.3): we considered uncertainties on Young’s modulus and friction coefficient.

Averaging results for all filter parameterization and both top and side observations, we obtained
a 3D Hausdorff distance of 1.15 ± 0.15 mm; a 3D distance at the tip equal to 0.07 ± 0.05 mm
and a 3D mean distance on the distal segment of the catheter of 0.13 ± 0.09 mm.10
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Figure 12: Case 1. Average metrics evaluated between ground truth shape and reconstructed shape. All filter parameter-
ization provide good results. Whenever R is small and Q is higher, a greater error appears at tail of the catheter, in the
depth direction: (b) blue graphs.

All filter parameterizations allowed to retrieve an accurate 3D shape. Whenever a small R
is combined with higher Q, a larger error appears at the tail of the catheter (Fig. 12-(b) blue
graphs); this is due to a greater trust in 2D observations (small R) which intrinsically have an
uncertainty in the depth direction.

Case 2 : besides erroneous model parameterization, we considered a different initial con-15

figuration (Fig. 13-(b), real blue shape against incorrect red shape ). On average (for all filter
parameterizations and views), the 3D Hausdorff distance was of 2.29 ± 1.27 mm, the 3D mean
distance on the distal segment of 0.26 ± 0.25 mm and the 3D error at the tip of 0.13 ± 0.15 mm.
The initial peak is due to the mismatch of the initial configuration, which is compensated by the
filter after few time steps.20
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Figure 13: Case 2. Distal mean distance between ground truth distal segment and reconstructed catheter distal segment.
Blue shape c0, red shape c0 · [R|Tc]

Case 3: we considered model’s parameters errors plus a wrong initial configuration, sym-
metric with respect to the real one. In practice, the red model would naturally go towards the
opposite branch. In case of 2D observations from a top view, the filter is able to compensate
for model uncertainties and retrieve the correct shape. Instead, in case of perfectly horizontal
observations, it is not possible to solve the ambiguity: the filter would not be able to reconstruct5

the catheter in the right direction and the reconstructed shape will diverge from the ground truth
(Fig. 14). Nevertheless, a slight rotation of the camera with respect to the horizontal axis (∼ 5° as
shown in Fig.15-(b)) allows to solve the ambiguity and retrieve the correct 3D shapes, obtaining
on average a 3D Hausdorff distance of 1.14 ± 1.25 mm; a 3D distance at the tip equal to 0.23 ±
0.15 mm and a 3D mean distance on the distal segment of the catheter of 0.40 ± 0.29 mm.10

Figure 14: Case 3. A perfectly horizontal view, does not allow to solve the ambiguity, whenever the model would
naturally go towards the wrong branch.

3.3.3. Sensitivity to Generalized Model Uncertainties for Vessel Geometry
Lastly, we performed similar synthetic evaluation, taking into account a more complex ge-

ometry extracted from real anatomy (Fig. 16-(a)). The vessel is 13cm long with an average
diameter of 7mm. Mechanical characterization of catheter model has been set according to man-
ufacturer specifics for Headway TM 17 catheter (MicroVention Inc.), which is the device used15

for the experiment on real data of Sec. 3.5). Parameters are summarized in Table 4.
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Figure 15: Case 3.The ambiguity is easily solved by having a side view, slightly rotated with respect to the horizontal
axis

Ground Truth Incorrect Model unit
Young’s Modulus 300 400 MPa
Radius 0.4-0.215 0.4-0.215 mm
Mass 0.1 0.1 g
Insertion Force 0.01 0.0001 N/s
Total Length 6 6 cm
Time-step 0.001 0.001 s
Nodes 21 11
Friction Coefficient 0.1 0.2

Table 4: Simulation parameters for sensitivity test on synthetic vessel geometry.

In this testbed, we simulate a clinical scenario where the real insertion force cannot been
known (unless embedding the device with a sensor force). In order to take into account such
uncertainty and improve the estimation, we add to the state vector such force and estimate its
value.

X = [xt
1, v

t
1, ..., x

t
N , v

t
N , f

t] (20)

We assume the catheter to be inserted with a constant 6DoF force, applied to the bottom of the5

device. In practice, such force is not constant but varies through time with the gesture of the
clinician. In order to take into account such error of modeling, we assume it to be constant
through time except for a Gaussian error fT+1 = fT + σfmod . Thus, the initial state covariance
matrix P0 and the model covariance matrix Q are modified as follows:

Q =

IN ⊗

(
06×6 06×6
06×6 σ2

modI6

)
012N×6

06×12N 06×6

 (21)

10

P0 =

IN ⊗

(
σ2

xmod
I6 06×6

06×6 σ2
vmod

I6

)
012N×6

06×12N σ2
fmod

I6×6

 (22)

As previously, different filter parameterizations have been taken into account. Observations
have been acquired according view in Fig. (16-(a)) and noised with Gaussian additive. Although
all filter parameters combinations provide similar results, best performances have been achieved
with filter parameters combination P0, with an average 3D Hausdorff Distance of 0.81 ± 0.53
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Figure 16: Evaluation Metrics for Synthetic Vessel Geometry. Metrics provided for filter parameters combination
P0. Whenever R is small (green graph), reconstruction appears less accurate due to the confidence given to observations
which have an intrinsic uncertainty in depth direction.

mm, a 3D mean distance at the segment of 0.37 ± 0.17 mm and a 3D tip error of 0.24 ± 0.13
mm.

3.4. Experiments on Real Data
3.4.1. Ground Truth Reference

The real data-set was acquired using the testbed described in [42]. A 1.7F micro-catheter5

(Headway TM 17, MicroVention Inc.) was inserted in a rigid phantom made of a silicon mould
of an internal carotid artery (H+N-R-A-003 model, Elastrat). This navigation within the trans-
parent phantom was captured at 198 frames per second by a pair of two high speed cameras
(TM-6740CL, JAI/Pulnix), synchronized using a trigger (C320 Machine Vision Trigger Timing
Controller, Gardasoft). The stereovision camera setup was calibrated using a chessboard target10

and OpenCV algorithms. One camera was placed above the phantom, to provide a top view,
and the other one provided the side view. In particular, the calibration measured the projection
matrices for each view (matrix C in Eq. ((18))).

A sequence of 2130 images (640 x 480 pixels, with a pixel size of 0.13 mm), of a total
duration of 10 s, was acquired: the catheter was automatically segmented and reconstructed in 3D15

by triangulation in each frame. This provided the ground truth reconstruction. The reconstruction
error was estimated to be below 0.05 mm on 1000 images of a motionless catheter. In this
sequence, a stick and slip transition occurred around frame number T = 1300 (see Fig. 19,
(f)-(h)). The speed of the catheter tip was estimated to peak at 500 mm/s in the slip phase.
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3.4.2. FE model parameterization and 2D Observations
The catheter length was 6 cm at the end of the insertion. Thereafter, the catheter was modeled

as a series of 11 connected beams, of 5.5 mm each (12 nodes). Without further knowledge
on the physical properties of the material used (silicon, catheter, slippery liquid infused in the
phantom...) the friction coefficient was set to µ = 0.1, other mechanical properties such as mass,5

diameter and Young’s modulus have been set according to manufacterers specifics (see Tab.4,
ground truth). Concerning the insertion force, it has been set set according to the velocity values
provided for the catheter motion in [42] (f1=0.8e-03 N/timeStep). A second force intensity has
been tested (f2=2.5e-03 N/timeStep), to simulate uncertainties occurring in reality.

The detection of markers is out of the scope of this paper. Furthermore, the catheter did10

not carry any visible marker in the images. The 2D observations were therefore generated in a
similar way as in the synthetic setup: virtual markers were placed along the ground truth shapes
and reprojected in each frame, a Gaussian noise (with standard deviation of 0.1 pixel) was added
to their locations.

3.4.3. Stochastic Environment: Filter Parameter Tuning15

In this experiment, in order to accelerate the computation time, we used the reduced state
vector with 9 components per node (no orientation, see Sec. 2.4.4). As the synthetic vessel
scenario, we considered the insertion force within the state vector, still described with the model
fT+1 = fT +σfmod . Filter parameters have been initialized as the previous experiment. In particular,
for f1=0.8e-03 N/timeStep the covariance was initialized with σf1mod = 0.4e − 03, while for20

f2=2.5e-03 N/timeStep we set σf2mod = 1e − 03.

3.5. Real Data Results
3.5.1. Filter parameterization

Fig. 17 and 18 reports the evaluation metrics between the retrieved shape and the ground
truth, when initializing the model with two different insertion forces. We present the results25

for the filter parameters combination Psup, but all the three parameters configuration provided
similar results. Only the average 3D distance on the distal segments is displayed, but all the
metrics presented similar behaviors. All the configurations present a peak around T ∼ 1300. This
is due to the filter response to the stick and slip transition, a phenomenon where the cumulative
effect of the friction force causes an abrupt movement of the device. The filter was able to rapidly30

recover from such a sudden variation in positions and velocities.
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Figure 17: Evaluation Metrics for f1=0.8e-03 N/timeStep.
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Figure 18: Evaluation Metrics for f2=2.5e-03 N/timeStep.

Taking into account the forces within the state vector, allows high uncertainty on how the
insertion forces are modeled. On average, we obtained a 3D Hausdorff distance of 1.74 ± 0.77
mm, a 3D mean distance at the distal segment of 0.91 ± 0.14 mm, a 3D error on the tip of 0.53
± 0.09 mm. In Fig. 19, we present qualitative reconstruction results: the side view was used
for the observation data (observation view), and the reconstructed catheter is here superimposed5

(in green) over validation view (orthogonal to the observation view), to demonstrate how the
physics-based constrained simulation helps to accurately recover the depth of the catheter.

(a) T=006 (b) T=200 (c) T=620

(d) T=840 (e) T=1000 (f) T=1200

(g) T=1280 (h) T=1360 (i) T=2002

Figure 19: Qualitative Validation The reconstructed shapes are superimposed in the validation view (view orthogonal to
the observation view). In fig. (f), (g), (h) it is possible to observe the stick and slip transition where an abrupt movement
happens within a short interval (for more details see [42].
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3.5.2. Reducing the number of markers
Our method relies on the presence of opaque markers placed along the catheter. This is not

the case for most current catheters. Whereas the state vector keeps its configuration as in Eq.
(20), with N = 12; we test filter performances for different number of markers (respectively
3, 6, 12), equally distributed along the catheter shape (see Fig. 20).5

(a) 3 Observed Markers (b) 6 Observed Markers (c) 12 Observed Markers

Figure 20: Number of Observed Markers Validation view (view orthogonal to the observation view) for T ∼ 1300

Decreasing the number of observed markers, with respect to the number of nodes in the state
vector, globally degrades the quality of the reconstruction. This is particularly clear in Fig. 20,
where the filter precision is reduced when using 3 observed markers, the filter is no more able to
handle the stick and slip transition occurring at T ∼ 1300. Reconstruction performed with 12 or
6 observed markers allows to gather similar results (blue and red graph in Fig. 21).10
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Figure 21: Evaluation Metrics for Different Numbers of Observed Markers Although 12 observed markers (1 marker
per model node) provide the best results, red graph, simular performances are obtained using 6 observations (blue graph).
Reducing the observed markers to 3, entails a degradation in filter accuracy, especially around T ∼ 1200 where stick and
slip transition occurs. Having only 3 observations the filter is not able to retrieve immediately the correct configuration,
and the error between the ground truth shape and the reference one increase (green graph).

In another experience, we kept the one to one mapping between the markers and nodes,
iteratively reducing both of them. Indeed, reducing the number of nodes, proportionally impacts
the state vector and thereafter the filter processing time performances. When the number of
observations was divided by two (6 markers/nodes, see Fig. 22), the filter could reconstruct
the catheter when its motion was smooth and gradual. However, a loss of accuracy was observed15

after the stick and slip transition. Indeed, fewer observations, especially along the distal segment,
entails a loss of information on the curvature of the device, which is extremely flexible and may
undergo important deformations, like during the stick and slip transitions.
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(a) T∼110 (b) T∼400 (c) T∼800

(d) T∼1000 (e) T∼1200 (f) T∼1700

Figure 22: Validation view using 6 observations and 6 nodes. Reconstruction appears less smooth compared to the
background real image.

This was confirmed when further reducing the number of markers/nodes down to 3 (Fig. 23).
The sparsity of the observations implies a lack of information about the bending of the device,
which does not allow the filter to retrieve the correct 3D shape of the device.

(a) T∼110 (b) T∼400

Figure 23: Validation view using 3 observations and 3 nodes. Such configuration does not allow to retrieve the correct
curvature of the device.

4. Discussion and Conclusion

In a very common routine practice, radiologists navigate catheters through the vascular net-5

work under the visual guidance of single plane fluoroscopy images. This implies for the radi-
ologist to infer the 3D shape of the device from a monocular view, which has been long known
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to be an ill-posed problem. Although recent progress in physics-based simulation have enabled
realistic interactive virtual navigation, the 3D computed shape remains sensitive to even small
uncertainties in the value of mechanical parameters, such as the friction coefficient.

To go beyond these limitations, we have proposed to embed a physics-based simulation in a
Bayesian filtering framework where 2D observations are based on radio-opaque markers placed5

on the catheter detected in the fluoroscopic images. An Unscented Kalman Filter formulation was
provided and was experimented in both synthetic setup and real phantom data. Both quantitative
and qualitative results demonstrate the ability of our method to recover an accurate 3D shape at
interactive time frames, under a variety of filter parameterizations and challenging conditions:
inaccurate friction coefficient and ambiguous views (synthetic scenario), non-linear complex10

contacts and abrupt stick and slip motions (real data set). The optimal filter parameterization
could easily be deduced from practical considerations on the model uncertainty, but the standard
deviation on the observation noise had to be underestimated by an order of magnitude. This
question is part of our current investigations, but we believe that an offline calibration step could
provide adequate values, to be used during the clinical procedure.15

As presented in our results, including parameters in the state vector, in particular the insertion
force, allows to globally improve the estimation. We recently started to investigate the optimal
markers/node configuration to reach the best compromise between practical setup, accuracy of
the reconstruction, and simulation time. In conclusion, the number of observed markers and
nodes depends on the rigidity of the device and the deformations it will be subject to. More rigid20

devices, like needles, could be reconstructed from a very small number of observations. But in
the case of a catheter, a good design would probably adapt the number of markers to both the
flexibility and the accuracy required by the application, and would therefore position more mark-
ers on the distal segment, and only a few markers on the proximal portion. Such configuration
must be compatible with the device’s design requirements. More in general, future works aim25

at improving the validation of our method to bring it closer to clinical application. For exam-
ple, fluoroscopic images are usually captured at 30 frames per second, which is 6 times slower
than our high speed cameras. As a consequence, catheter motions in-between two consecutive
frames might be larger. Even though our experiments proved that our algorithm could handle
large motions, we believe a device should be used in practice to capture the motion induced by30

the practitioner on the device. This motion would serve as input to the simulation for a better
model prediction. As another example, in order to retrieve the 3D shape of non-tagged devices,
such as guidewires, we need to implement a marker-less method. Such assumption would require
to define a different observation function which relates the state vector with the observed 2D fea-
tures. In case of tagged-device, the observation function is basically a constant mapping between35

the detected 2D markers and the 3D nodes of the FE model, related the one to the others through
a projection matrix. In case of non-tagged device, defining an observation function would not be
so straightforward, given that no 2D positions would be directly detected in fluoroscopic images.
In this case, 2D-3D correspondence between 2D segments (curves) and 3D point cannot be done
through a constant mapping and a more robust observation function must be defined. This last,40

and other optimization aspects, will be investigated in future works.
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